PHYSICAL REVIEW B VOLUME 53, NUMBER 21 1 JUNE 1996-I

Accuracy of the density-matrix renormalization-group method

Ors Legeza
Research Institute for Solid State Physics, H-1525 Budapest, P.O. Box 49, Hungary
and Technical University of Budapest, H-1521 Budapest, Hungary

Gabor Fah*
Institute of Theoretical Physics, University of Lausanne, CH-1015 Lausanne, Switzerland
(Received 11 December 1995

White’'s density-matrix renormalization-grol®MRG) method has been applied to the one-dimensional
Ising model in a transverse fieldTF), in order to study the accuracy of the numerical algorithm. Due to the
exact solubility of the ITF for any finite chain length, the errors introduced by the basis truncation procedure
could have been directly analyzed. By computing different properties, like the energies of the low-lying levels
or the ground-state one- and two-point correlation functions, we obtained a detailed picture of how these errors
behave as functions of the various model and algorithm parameters. Our experience with the ITF contributes to
a better understanding of the DMRG method, and may facilitate its optimization in other applicES0b83-
182996)05418-5

I. INTRODUCTION but only the most probable states, obtained from the reduced
density matrix of the block, are kept. The environment is
In the past three years we have witnessed a breakthrougiomposed from the block of the previous step, and its role is
in the numerical analysis of one-dimensioiféD) quantum to embed the block into a larger system, when the density-
lattice models. This considerable progress was due to thmatrix is formed. Application of the reduced density matrix
invention of the density-matrix renormalization-group in the truncation process, and not simply keeping the lowest
(DMRG) method by Whité. Recent applications of the energy states of the block as in previous RG techniduss,
method has demonstrated its extreme efficacity and versatithe key ingredient of the DMRG method, since, as was
ity. By now the DMRG has become one of the leading nu-shown by Whité! this is the way to minimize the error in-
merical tools in the study of most 1D quantum spin andtroduced into the representation of the target state. Although,
electron problems of current interest. during the algorithm the length of the total system increases
There are several numerical methods to obtain the lowgradually, the dimension of the Hilbert space is always kept
energy states of a given guantum Hamiltonian. Exact diagomanageable by the truncation process, and systems with rela-
nalization algorithms are able to compute the ground statéively large size can be studied.
and the lowest excited states with a precision of more than The DMRG has been successfully applied to various 1D
12 digits. The attainable system sizes, however, are rathend coupled chain problems, such®s1/2 (Refs. 1,3 and
limited due to memory restrictions. On the other hand, stoS=1 (Ref. 4 spin chains, strongly correlated electron
chastic methods, like the diverse variants of the quantunsystems, impurity problems or the two-chain Heisenberg
Monte Carlo method, are capable of treating systems witland Hubbard modelsPromising implementations of the al-
hundreds of sites — at the price of reducing the precision ofjorithm to compute dynamical propertlesf 1D systems or
the obtained results. In this case, it is rather the computatioto simulate 2D lattices™® have also been reported. At least
time that limits the applications. Use of renormalization-for quasi-1D problems, its advantage over the standard nu-
group procedures, such as the DMRG, could be the way ounerical procedures has become evident. While the available
of this dilemma. The key idea is to gradually increase thesystem sizes are comparable to those of the Monte Carlo
system size, and, at the same time, systematically truncateethod, the precision of the computed quantities seems bet-
the Hilbert space by keeping only those degrees of freedorter by several orders of magnitude.
that are really “important” for an accurate representation of The DMRG works especially well when the system is
the desired state. The main point, and this is where thsubject to open boundary condition. In the case of periodic
DMRG differs drastically from the preceding numerical RG boundary condition, on the other hand, errors are definitely
methods, is how to choose the most important degrees aftronger. Moreover, the conservation of momentum cannot
freedom to minimize the error caused by discarding the othebe directly built into the method, so restriction of the com-
“unimportant” ones. putation to a certain momentum sector is not possible. These
The DMRG is an iterative algorithm to build up the lattice drawbacks have led to the fact that a large part of current
to the desired length and find approximants to the target statpplications of the method treapensystems.
(the ground state or an excited shatesing only a limited Although this is a renormalization-group procedure, con-
number of basis states. The total system is divided into twdrary to the naive expectations, results seem more accurate if
parts, the block and the environment. In each step of théhe system is away from criticality, i.e., when the model
procedure the block is increased by adding one lattice sitggossesses a finite spectral gap in the thermodynamic limit.
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Other parameters of the model in study, like the number oEnergy gap vanishes &s—o. For y<1 (ordered phagethe
degrees of freedom at a single site or the range of interagground state is doubly degenerate and there is a long-range
tions also have drastic effects on the precision. order: the ground-state correlation functipii=(o}oh_ )

For any numerical method, it is of essential importance taends to a finite value ab—. On the other hand, for
understand, how errors evolve, when parameters of the proy>1 (disordered phage the ground state is unique and
cedure or those of the model in study are varied. So far, thgf_@ asl—o. The gap is finite on both sides of the tran-
accuracy of the DMRG method has only been tested oRjtion point.

small clusters where numerica“y exact results were known The ITF in Eq(l) is exacﬂy solvable for any chain |ength
from exact diagonalization, or alternatively, large lattice N, Details of the calculation can be found, e.g., in Ref. 11.
DMRG data were extrapolated to the infinite chain ||m|t, andHere we on|y summarize the main Steps and the necessary

these extrapolated values have been compared to rigoroggrmulas. Introducing Fermi operators via the Jordan-Wigner
results, available only in the thermodynamic limit. In many ransformation

of the applications, however, at most the small lattice exact
data are available for testing. Nevertheless, large lattices, n-1
even with hundreds of sites, are used to draw conclusions on cnzex;{ i Z 0'j+ aj‘) o s 2
the behavior of the system. In many cases, it is really a =1
difficult problem to reliably estimate the precision as thethe Hamiltonian 7 reduces to a quadratic form
system size increases.

Our main goal in this paper is to study the general trends N N—1
of numerical errors during the DMRG algorithm, especially .7=—2y>, clc,— >, (clcari+ciel, +H.c)+Ny.
when the length of the system is in the range of the typical n=1 n=1 3
applications, i.e., well beyond the limit where exact diago- ®)
nalization data are attainable. For this purpose, we apply th€his can be diagonalized directly by a Bogoliubov
method to an exactly solvable system, teing model in a  transformatiof?
transverse fieldITF). The main advantage of the ITF model

as a test system is that its energy spectrum and ground-state M IASEIS ok — yk ;

correlation functions can be calculated by simple tools for nk:;l 2 Cnt 2 Cn/s 4

any finite chain length, even when the chain is subject to

openboundary condition, as in the standard DMRG applicaleading to the final diagonal form

tions. The ITF is also a model with a second order quantum

phase transition, so the effect of the appearance of criticality o +

on the accuracy can also be analyzed. '%_k a,%WQdA(k) N ) ©
We carried out a detailed DMRG study of the ITF, vary-

ing several parameters of the model and the numerical pro- A(K)=2(1+ y2+2y cok) V2 (6)

cedure, like the strength of the magnetic field, the chain

length, the number of states kept, the number of iterationghe N-element real vectog ¥ is a solution of a set of linear
and the number of target states. Beside the energies of tlegjuations! and turns out to be

low-lying states, we also computed different one- and two-
point correlation functions.

The setup of the paper is as follows. In Sec. Il we briefly
summarize the exact solution of the ITF with open boundary ] o
condition. Section Ill is devoted to the details of the DMRG Wheren=1,2,... N and Ay is a normalization constant.
algorithm, while Sec. IV contains the analysis of the ob-%" can be expressed from" as
served trends in the numerical errors. Section V is a sum- Kok K
mary of our main conclusions. In=An(YPnt dni1), 8

sink

mcoskn) , (7)

¢>ﬁ=AN<sinkn—

where A(| is another normalization constant, and formally
Il. THE 1D ITF WITH OPEN BOUNDARY CONDITION ¢"§‘+150_

Reflecting the fact that the chain is subject to open bound-
ary condition, the allowe# modes in the summation of Eq.
(5) cannot be written in a simple form for genengl but are
determined through a trigonometric equation

The Ising model in a transverse fieldTF) on a one-
dimensional chain olN sites is defined by the following
Hamiltonian:

N-1 N
oy ik(N+1)] 1
T=— D, oot~y o, (1) Slr[—:__
&~ InIn+1m Y= In SIn(kN) " 9

whereo?, a=Xx,y,z are the Pauli matricesy is the trans- In any case, the total number of independent modes is equal
verse magnetic field applied in tlzedirection, and the chain to the number of siteBl. By convention, the allowed val-
is subject toopen boundary condition, as in our DMRG ues are the rootk=k,+ik;, whose real parkq is in the
implementation. interval O<kg=w. When y>vy.(N)=N/(N+1) all the

In the thermodynamic limit, the ITF possesses a secondoots are real. Fory<+y.(N), however, a complexlocal-
order phase transition that takes placeyat1, where the ized solution becomes possible wikg= 7= andk,>0. Note
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that y.(N)—vy.=1, the phase transition point, &— . Ghnsi  Gnpsz - Gnm
The imaginary park, can be obtained by solving the equa- . ' :
tion prm=1/4 : ; , 17
K Gm—l,n+1 T Gm—l,m
sin N+1 1
gnrl((k N) 12, (10
1 Y Gn-%—l,n Gn-%—l,n-%—l T Gn-%—l,m—l
and the corresponding vector ig* Y : g
loc— An(—1)" sinff (N—n+ 1)k, ], (11) Gmn o Gm,m-1
where, againn=1,2,. .. ,N andAy is a normalization con- gnd
stant.z,//',$° is obtained again through E(B). The elements of
¢ and ¢°¢ are exponentially small far from the left and Pam=U4GnGmm— GmnGnm). (19

right chain ends, respectively, which indicates, by E¢gs.
that the complex mode is localized to the chain ends. Th
energy associated with this localized mode is

é(vheren< m.
In order to be able to compare the approximate results,
produced by the DMRG method, with the exact ones for a
A(m+iky)=2(1+ y?— 27 costk,)¥2 (12)  certain value ofy and chain lengttN, the exact quantities

were calculated by an independent numerical process, using

When N is large, Eq.(10) is readily solved to yield either double precisiorFORTRAN routines or theMmATH-

k;~Inl/y. By substitution, this givea\(7+ik)~0, i.e., it  EMATICA software that allows computations with arbitrary

is a mode of zero energy, leading to the double degeneragyrecision. We solved the nonlinear equati¢dsand (10) to

of the ground state sector when<1. obtain the allowed set of wave numbers, and used these val-
The ground state energy of the model, the fermionicues to express the associaié and % vectors. Then the
vacuum, is expressed as ground-state and excited state energies and the correlation

functions were calculated numerically according to the above

1 formulas. All the results obtained in this way were precise to
Bo=3, %Wed[\(k)' (19 at least 14 digits.
tha_lt can be Written in a cé(ésed form only at the transition lIl. THE DENSITY-MATRIX
point y=1, where it reduces to RENORMALIZATION-GROUP METHOD
T White’s density-matrix renormalization-group method
Eo=1- cose¢ 55 |- (14 (DMRG) is a numerical real-space renormalization-group

procedure, in which the effective size of the system increases
The first excited state of the model is always determined byradually, while the dimension of the associated Hilbert
the wave numbek, whose real park, is closest tor; for ~ space remains constant, due to a systematic truncation pro-
v>1v. it is a real root and the energy gap converges tocess. Since the method is well described in the original
2(y—1) asN—w. For y<v,, this is the localized mode, papers. we only present a brief summary here.
and the first excited state becomes asymptotically degenerate The basic object of the method is the system biBckhat
with the ground state. It is the second excited state that corconsists ofl lattice sites. All the necessary operatovg of
stitute the realfinite) energy gap in this case. this block (e.g., oq, @=x,y,z and 1=n=<I) are stored as
Finally, ground-state one- and two-point correlation func-M x M matrices. Note that the real dimension of a block of
tions can also be calculated, by the method described in dé-sites isd', whered is the number of states at a single site,
tails by Liebet al'? The only interesting one-point function and M<d', so the representation of the block matrices is
is . Zt=(o}), which can be expressed as only approximative. In each step of the algorithm, a new
single site® is added to the existing blod; , and operators
of the resulting systerB,® of dimensionMd are formed as
tensor products from the matrix representations of the corre-
sponding operators of the two constituting paBge is then
whereG,, is defined by renormalized, first by carrying out an appropriate unitary
transformation, then by truncating its degrees of freedom
- k sk from Md to M. Only the most importani states are kept,
Gnm_ l//n¢m- (16) . .
k allowed and the remainingl(d—1) ones are discarded. The result-
] , ] ing system of dimensioM and lengthl+ 1, denoted by
Note that even in the ordered staté,=(o7,)=0, since the g . "is then used iteratively in the subsequent step of the
Hamiltonian, and thus any finite lattice ground State, is in'a|g0rithm_ Choosing the states kept' i_e_’ f|nd|ng the appro-
variant to the transformatios,— — o,. The same holds for  priate unitary transformation, is the most crucial point of the
oY, so that.7)=(a’)=0, too. As for the two-point func- renormalization-group procedure.
tions, phm=(ohony, pim=(olal), andp? = (otol), one Previous applications of the renormalization-group tech-
arrives to the formulas nigue, where theVl lowest energy states d&,® were kept,

1
M=% Gnn, (15)
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led to disappointing results for many model systems. As waapproximatesuperblock when it is renormalized, and not
observed by several authdfsthis was due to the interaction into the, a priori unknown, exact environment. The two
having been neglected during the renormalization proceskinds of errors, the “truncation” error and the “environ-
betweenB,® and the rest of the largéin many cases infi- ment” error are not simply additive. The latter one, however,
nite) system of what it makes a pai,;® was renormalized can be reduced in an iterative manner, using the so-called
in a way that an unnatural open boundary condition wadinite lattice algorithm
forced on both of its ends. The finite lattice algorithm starts by building up the lattice

In order to avoid this problem, White’s method embedsto the desired lengtiN, using the infinite lattice algorithm.
B,® into a superblock, and uses the eigenstates of this largdthen the superblock configuration is modified to
system to carry out the renormalization®)®. Choosing the B,QQBE_Z_I , so that the total length remains always
superblock configuration a8,0@B, whereBl is the re- N, and the block®,, =1, ... N—3, are recomputed. The
flection of By, its effective Hamiltonian, built up from the process when aB,’s are recomputed constitute tlogcle of
matrix representations of the necessary operators of the twihe algorithm. Since at each step from this time on, the block
blocks and the two single sites, is diagonalized to obtain théo be renormalized is part of a system of the desired length
desired(targe) stateW. Even though the target state can beN, the environment becomes more precise, and a consider-
a linear combination of more states, by targeting only oneable improvement of the results, corresponding to the
state, the renormalized block states are more specialized fdi-site system, is achieved. These results can be then used to
representing that single one, and fewer of them are needeashrry out a systematic finite-size scaling analysis, or to study,
for a given accuracy. e.g., boundary effects in the finite chain.

Having the target state expressed on the superblock as

Md IV. NUMERICAL RESULTS

=2 Wl (20) In order to determine the accuracy of DMRG method,
hi=1 numerical calculations on the ITF, using both the infinite and

wherei andj label theMd states of8,® and its surround- finite lattice algorithms, were performed. Errors in various

ings ®BR, respectively, the reduced density-matrix of the quantities, such as the ground-state and first excited-state en-
subsystenB, @ is formed as ergiesEgs andE xs, respectively, the one-point correlation

functions. 7% and. 7}, and the two-point correlation func-
tions p{ and p; were monitored. In the case of thefinite
p”’:; Wi Wi - (D) system algorithm, our main concern was how the errors of
the energies depend on the system $izewhen other pa-
As was shown by Whité the error introduced into the rep- rameters are kept constant. In tfieite lattice algorithm, on
resentation of the target state by the truncatioMtstates is  the other hand, the length of the chain was kept fixed, and
minimized, if the new basis that one changes to is the basige effect of introducing additional cycles in the process was
that diagonalizes the density-matri;,. The renormaliza- analyzed. When excited states were computed, the number of
tion of the tensor product operators Bfe, target states was also varied.
ot Since the ITF possesses a second order phase transition at
A= OO, (22) v.=1, it was expected that many of the above gquantities
is thus carried out by thé1xMd transformation matrix have different behavior, whethey is equal to the critical
), whose rows are composed from the density-matrix ~ value, or greater or less than . Therefore, we investigated
eigenvectors, associated to the largest eigenvalues,,  the three different regions of the phase diagram by choosing
a=1,... M. three different values fory, namely, y=0.5<vy,,
The simplest version of the DMRG method, timdinite ~ ¥=1= 7., andy=2>1y,.
lattice algorithm starts with four lattice sites, i.e., from the .
superblock configuratio;@®BY. In each step, the total A. Energies
length of the chain increases by 2. Measurements of the in- Let us first consider the error of the ground-st@@s) and
terested quantities are made after the calculation of the targéitst excited-statg1XS) energies. Using thénfinite lattice
state in each step, and the whole process is continued untilgorithm, we built up a chain of lengtiN=300 and kept
the results converge satisfactorily. This method is especiallgtates up tdl =48. Except one example which will be dis-
suitable to yield, with minimal computational efforts, rather cussed below, we found that targeting one state alone is by
precise estimates of bulk properties, like the ground-staterders of magnitude more precise than targeting several
energy density or ground-state correlation functions. states together. Hence, unless stated otherwise, the results to
The usual measure of the accuracy of the truncation tge presented here were obtained in a way that the ground
M states is the deviation of the sum of the density-matrixstate and the first excited state were targeseoarately

eigenvalues associated with the states kep==M_ o, The errorsE( DMRG) — E(exact) were always found to
from unity. Clearly, in the extreme case when the discardede positive, satisfying the statement that the DMRG is a
states have zero weight, i.evy 1= wyi2=---=wyg=0  variational method, which give@t least for the GS energy

so thatPy, =1, they are not required to represent the targein upper bound estimale. The relative errors
state W, and no error has been committed. There is, how-SE=[ E(DMRG)— E(exact)|/|E(exact) as a function oiN
ever, another source of error in the DMRG procedurefor various values oM andy are shown on log-log scale in
namely that theB,® subsystem is only embedded into an Figs. 1-3.
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Until the algorithm keeps all states, i.e., for can be understood, however, since the approximate excited
N=2(InM+1), the DMRG is exact and only the machine’s state, yielded by the DMRG process, is not necessarily ex-
numerical inaccuracy is seen, limiting the precision on theactly orthogonal to the real ground state, and can have a
order of 10 1% For longer chains, however, the errors asso-inite overlap with it. This fact leads to an overcompensation
ciated with the reduction of degrees of freedom also come inof the otherwise increasing positive absolute error for long

For the off-critical valuesy=2 and 0.5, the ground-state chains.
error SEgs shows practically no size dependence. It depends, For y=0.5, where the ground state is asymptotically dou-
however, crucially on the value d#l. The behavior is the bly degenerate, the behavior is more suljfiigs. 2a,b].
most clear fory= 2, where the infinite system ground state is The splitting of the two lowest levels decreases exponen-
uniqgue with a gap above it. Even a small value Mf, tially as N increases. When this difference goes below the
M~10, is enough to reach the machine’s precision limitmachine’s precision limit~10'4 the algorithm is inca-
[Fig. 1(@)]. There is, on the other hand, an interesting sizepable to further resolve the two levels, and the target state
dependence in the error of the first excited si#fgys, es-  that it yields is a linear combination of the two exact eigen-
pecially for greaterM values [Fig. 1(b)]. A maximum vectors with random coefficients. As a consequence, in each
evolves, above whicldExs begins to dwindle again. This step of the DMRG algorithm the target state changes unpre-

o
107 T T T T T T T 10°
(a) (b)
¥=0.5 o &
10731 ~+ , —-107°
O M=8
e M=8 (TS=2)
A M=16
-8 —6
107 A M=16 (TS=2)T ., 710 . _
2 x '%...'. % FIG. 2. Same as Fig. 1, but in the ordered
‘% o MA“% % regime aty=0.5. Curves labeled by S2 show
—9 —9 the case, when the excited state was targeted to-
10 _DCII%?D 110 gether with the ground state.
A A
10712 @__ AN %A d10-12

10—15 | ] l ] n 1 ] | 10—15
10 40 100 300 10 40 100 300
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FIG. 3. Same as Fig. 1, but at the critical point
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dictably, leading to the loss of optimality of the truncation curves, where the environment error dominates. However,
process, and hence, to considerably higher, rather scattersthce the truncation error increases several orders of magni-
error rates. As Fig. ®) shows, the DMRG can even “lose” tude in the smalN regime, it always exceeds the environ-
the target state above a certain chain length. In a try to avoichent error for large enough sizes. This produces a rather
these problems, we also computégd,s by choosing the tar- sharp break in the curves in the log-log plot at the crossover
get state to be a linear combination of the ground-state ansize, such as seen ftMt =32 in the figure.
the first excited-state vectors. This proved to be an improve- For comparison, and to reduce the environment error,
ment in the range where otherwise the excited state was lostpmputations using thinite lattice algorithmwere also per-
for smaller values ofN, however, the errors were consider- formed. Fixing the chain length &= 100, the iteration pro-
ably larger[Fig. 2(b)]. cess was repeated until the desired energies converged. For
At the critical pointy=1, the errors were found to be by y=2, the relative errors are plotted in Figgad) as a func-
several orders of magnitude larger than at the off-critication of the sum of the discarded density matrix eigenvalues
values ofy. This is in accordance with the findings of Ref. 1—-P,,. While there is practically no improvement in the
15: the correlation length of the model is one of the mostground-state energy, the first excited-state energy becomes
significant factors that influence the precision of the DMRGmuch more precise, when further cycles are carried out, and
method. Moreover, the curves in Figsad) have a clear full convergence is reached only after the 3 iteration. At
size dependence. Whewi is kept fixed, the errors can be- the critical pointy=1, sEgs and SE;xs behave similarly:
come larger by 4 to 6 orders of magnitude, as the chaitwo cycles are needed to get rid of the environment error
length approachell=300. For smalleM, the clear down- [Figs. 5a,b].
ward curvature seen in the log-log plot indicates that the It is seen in the figures that tHe=1 cycle datathe infi-
errors converge to a finite value at large lengths. For largenite lattice algorithm resuligio not fit onto a straight line on
M values, however, this convergence is much slower, anthe log-log plot. Points from the fully converged cycles,
the analysis is made more difficult by the appearance of &owever, do so nicely. The slope of the fitted line was found
crossover effect, which change the behavior in the sidall to be very close to unity in all cases, indicating that the error
region, and makes the curves more flat there. While foiis proportional to the discarded weights, i.e.,
M =16 the crossover size is arouhid-10 (and hence unob-

servablg, for M =32 it is atN~ 100, and forM =48 it is at oE=const1—Pp), (23
N~250, showing that the crossover size scales for largefyhere the constant can depend on the model parameters and
lengths as more and more states are kept. the system size. We emphasize, however, that this form only

A possible interpretation of this crossover effect can beyg|ds for theconvergedenergies. Extrapolating the infinite
obtained by recalling that there are two different sources Ofyytice algorithm (=1) data by this formula to the

errors in the DMRG method;ee Sec. I For smallM, this ~ 1-P,,—0 (M—) limit can yield false results.
is clearly the “truncation” error that dominates. Curves with
M=4,8,16 in Figs. 8a,b basically show the size depen-
dence of this type of error alone. The effect of the “environ-
ment” error only shows up for large enoud¥t and small Expectation values of local operators in the ground state
enoughN values, when the truncation error is strongly re-were computed using the finite lattice algorithm at a fixed
duced. The environment error approaches its saturation eaghain lengthN=100. Both.#Z; and.#; (n=1,...,100

lier than the truncation error, as is seen from #e=48 were measured, and the error.7,=.7,(DMRG)

B. One-point correlation functions
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M (shown as labe)s Data obtained by the finite
lattice algorithm, carrying out the=1,2,3 itera-
tion cycles, and the chain length is fixed at
107t N=100. Disordered regime at=2.

107°

| 10—15

| | | | | | | | | |
1071%107*10™° 10 1072107107 10° 10°® 107

1_PM 1 _PM
— ./ (exact), =x,z were calculated. Note that forZ};, In the case of /77, [Fig. 6(@)], additional iteration cycles
the exact values are zero, as it was detailed in Sec. Il.  (I1=2) considerably improve the precision by decreasing the

At the critical pointy=1, our results are presented in €nvironment error. Although some fluctuations may still be
Figs. 6a,b. Thel=1 cycle (infinite lattice algorithm pro-  present(especially for largeM) in the | =2 data, the error
duces an error which depends significantly on the position ifPeécomes more or less constant and spatially more homoge-
the chainn. Results are more precise around the middle ofteous forl=2. The convergence found with respect to the
the system. Note that spatial variations can reach sever@umber of cycles is similar to that of the energies.
orders of magnitude for largeM values, as e.g. for the  For ./ [Fig. 6b)], where the exact values of the mag-
=1, M=16 curve in Fig. 6a). There is also a sudden im- netization are zero, the situation is different. Additional
provement in accuracy very near to the chain ends, but this igycles, and increasing the value Idf, rather unexpectedly,
believed to be an anomaly of the ITF model and not a genmake the data less precise. The sign of the error also
eral feature of the DMRG techniquéThe exact one-point changes: while for thd =1 cycle 6.7} is negative, for
functions of the model, when open boundary condition isl=3 it always turns out to be positivéNote that in the
used, show a strong boundary effect close to the ends, arfifjure the absolute values of the errors are plo}t€te rapid
this seems to influence the errors fo0o0. oscillations seen in the=2, M =8 curve are due to the fact
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that the error fluctuates between positive and negative val- At the critical point,y=1, the absolute value of the error
ues. We believe that for this pathological case the observegf the correlation functions |8p{*|=|p/(DMRG)
errors stem from the numerical inaccuracy of the diagonal-— pi(exact) is plotted in Figs. 7a,b) for a=z andx. For

ization subroutines, and not from the algorithm itself. Testymall M values. the curves are rather smooth with a moder-
runs on short systems keeping all states in the blocks, i.egq dependence dn Convergence with respect to the num-

when the DMRG is numerically exact, produced the samgyq of cycled is reached when the ground-state energy con-

L x
qualitative picture ofé. /7, verges. For larger values ®, the errors seem to fluctuate

It might have been thought that monitoring the magnitude geher jrregularly, especially fofspY|, for which several
of errors of quantities, whose exact results @repriori o ;5n5 eyolve, where the error rate drops abruptly. This
known, like.7Z, in our case, could yield information on the grange feature, however, is once again an artifact of plotting
precision on othera priori not known, quantities, like the apsolute valueof the error on a logarithmic scale. For
. We see, however, that the errors of the two one-pointach| where the cusp appears, we found thaf changes
functions behave completely differently without any obvioussign’ similarly to the behavior of the corresponding

correlation, so the knowledge of the accuracy of one of them e ~and this sign fluctuation causes the strange-looking
cannot be used to draw predictions on the other one. shape of the curves

For they=2 case(figure not ,szese”ted?” the iteration Disregarding the fact that the sign of the errors is not
cycles gives the same result foz,, . There is practically N0 fiyeq there is a clear tendency that in thel cycle(infinite
n dependence, and the algorithm reaches the border of nytice algorithm the long-range correlators are less precise.
merical inaccuracy very soon, in accordance with what wasrjs is in complete accordance with the behavior of the one-
found for the ground-state energy. Fbr=8, the relative point functions: operators are represented less accurately
errors scatter on the scale of 19 and this precision could moving towards the chain ends because of the environment
not be improved by increasingl. The behavior was found error, More cycles improve the situation, especially &7
to be very similar in the ordered phase,jat 0.5, the only  [rig 7a)], where the errors for largedecrease by 3 orders
difference is that more cycles were needed for the full cony¢ magnitude and, quite unexpectedly, the long-range corr-
vergence. elators become more precise than the short-range ones. On
the other hand, there is no similar change in the tendency of
the curves fordp| [Fig. 7(b)]. Although the improvement is

Measurements of the two-point correlation functions werethe most significant for large long-range correlators remain
carried out similarly to the one-point correlation functions, atless accurate.
a fixed length N=100. Following White’'s recipe, For the noncritical valuey=2 and 0.5(figure not pre-
PI'=pnnt, @=X,Z, was measured so that the pointand  sented, dp{ and p} show practically nol dependence.
n+1 were positioned symmetrically to the middle of the There is only a moderate change in accuracy for very small
chain! This special allocation of the points assures that, atind very large values df but this does not exceed an order
least for the short-range correlations, end effects are stronglgf magnitude. The average accuracy of the correlation func-
reduced. Although, in most applications the bulk correlationtions is considerably worse than that of the energies. The
functions are of interest, since our aim was to test the DMRG@imit of the relative precision we could achieve by increasing
algorithm itself, we compared the numerical data with theM was not better than 10, similarly to what was found in
exact finite-lattice results obtained fdt= 100. the case of the one-point functions. The effect of carrying out

C. Two-point correlation functions
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more cycles was also similar, the correlation functions conereases. In the practical range of applications:N3< 300,
verged exactly when the energies reached their limit valueshowever, the errors, especially the truncation error, become
larger by 2—3 orders of magnitude.

(v) For large M values, thefinite lattice algorithm
(I=2) improves the results considerably by decreasing the

In the present paper, we have analyzed in detail the accenvironment error. This is seen not only in the energies, but
racy of White's density-matrix renormalization-group in the one- and two-point correlation functions. When the
method, by applying it to the one-dimensional Ising model indata are fully convergetbut not after the first=1 cycle,

a transverse field. Due to the exact solvability of this modelthe errors are nicely proportional to the sum of the discarded
the exact and the numerical results could have been directijensity matrix eigenvalues-1P,,. This fact can be used to
compared. We varied several parameters, either in the nynake an extrapolation to thd — o limit.

merical algorithm or in the model, and obtained a rather (vi) Accuracy of the correlation functions is always worse
detailed picture how the accuracy of the DMRG approxima+than that of the energies. In the=1 cycle, the error in the
tion depends on these parameters. representation of the local operators becomes larger as one

Our main results are summarized as follows. moves outward from the chain center. When two-point func-

(i) The DMRG vyields an extremely precise value for thetions are computed in the usual way, i.e., symmetrically to
ground-state energy, especially when the model is far fromhe chain center, this leads to the fact that the long-range
the critical point, and the ground state is unique. Excitedcorrelators are less precise. Additional iteration cycles make
state energies or the ground-state energy of a critical systefie errors smaller and their spatial dependence more homo-
can be obtained with much less accuracy. geneous.

(i) Targeting exclusively one of the excited states is, in  Although the one-dimensional ITF is a rather simple
general, more precise than targeting it together with thenany body system, we believe that most of our findings hold
ground states or other low-energy states. This, however, cagqually well for other, more complex quasi-one-dimensional
become unstable when the levels are too close to each othgittice problems. We hope that the above results contribute to
like in the case of asymptotic degeneration of the groundy petter understanding of the DMRG procedure, and provide
state. When this is expected to happen, more states must Bedirect help in optimizing the algorithm in other applica-

V. SUMMARY

targeted together. tions.
(iii) Carrying out only thel =1 iteration cycle(infinite
lattice algorithm leads to a significant “environment” error. ACKNOWLEDGMENTS
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