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White’s density-matrix renormalization-group~DMRG! method has been applied to the one-dimensional
Ising model in a transverse field~ITF!, in order to study the accuracy of the numerical algorithm. Due to the
exact solubility of the ITF for any finite chain length, the errors introduced by the basis truncation procedure
could have been directly analyzed. By computing different properties, like the energies of the low-lying levels
or the ground-state one- and two-point correlation functions, we obtained a detailed picture of how these errors
behave as functions of the various model and algorithm parameters. Our experience with the ITF contributes to
a better understanding of the DMRG method, and may facilitate its optimization in other applications.@S0163-
1829~96!05418-5#

I. INTRODUCTION

In the past three years we have witnessed a breakthrough
in the numerical analysis of one-dimensional~1D! quantum
lattice models. This considerable progress was due to the
invention of the density-matrix renormalization-group
~DMRG! method by White.1 Recent applications of the
method has demonstrated its extreme efficacity and versatil-
ity. By now the DMRG has become one of the leading nu-
merical tools in the study of most 1D quantum spin and
electron problems of current interest.

There are several numerical methods to obtain the low-
energy states of a given quantum Hamiltonian. Exact diago-
nalization algorithms are able to compute the ground state
and the lowest excited states with a precision of more than
12 digits. The attainable system sizes, however, are rather
limited due to memory restrictions. On the other hand, sto-
chastic methods, like the diverse variants of the quantum
Monte Carlo method, are capable of treating systems with
hundreds of sites — at the price of reducing the precision of
the obtained results. In this case, it is rather the computation
time that limits the applications. Use of renormalization-
group procedures, such as the DMRG, could be the way out
of this dilemma. The key idea is to gradually increase the
system size, and, at the same time, systematically truncate
the Hilbert space by keeping only those degrees of freedom
that are really ‘‘important’’ for an accurate representation of
the desired state. The main point, and this is where the
DMRG differs drastically from the preceding numerical RG
methods, is how to choose the most important degrees of
freedom to minimize the error caused by discarding the other
‘‘unimportant’’ ones.

The DMRG is an iterative algorithm to build up the lattice
to the desired length and find approximants to the target state
~the ground state or an excited state!, using only a limited
number of basis states. The total system is divided into two
parts, the block and the environment. In each step of the
procedure the block is increased by adding one lattice site,

but only the most probable states, obtained from the reduced
density matrix of the block, are kept. The environment is
composed from the block of the previous step, and its role is
to embed the block into a larger system, when the density-
matrix is formed. Application of the reduced density matrix
in the truncation process, and not simply keeping the lowest
energy states of the block as in previous RG techniques,2 is
the key ingredient of the DMRG method, since, as was
shown by White,1 this is the way to minimize the error in-
troduced into the representation of the target state. Although,
during the algorithm the length of the total system increases
gradually, the dimension of the Hilbert space is always kept
manageable by the truncation process, and systems with rela-
tively large size can be studied.

The DMRG has been successfully applied to various 1D
and coupled chain problems, such asS51/2 ~Refs. 1,3! and
S>1 ~Ref. 4! spin chains, strongly correlated electron
systems,5 impurity problems,6 or the two-chain Heisenberg
and Hubbard models.7 Promising implementations of the al-
gorithm to compute dynamical properties8 of 1D systems or
to simulate 2D lattices9,10 have also been reported. At least
for quasi-1D problems, its advantage over the standard nu-
merical procedures has become evident. While the available
system sizes are comparable to those of the Monte Carlo
method, the precision of the computed quantities seems bet-
ter by several orders of magnitude.

The DMRG works especially well when the system is
subject to open boundary condition. In the case of periodic
boundary condition, on the other hand, errors are definitely
stronger. Moreover, the conservation of momentum cannot
be directly built into the method, so restriction of the com-
putation to a certain momentum sector is not possible. These
drawbacks have led to the fact that a large part of current
applications of the method treatopensystems.

Although this is a renormalization-group procedure, con-
trary to the naive expectations, results seem more accurate if
the system is away from criticality, i.e., when the model
possesses a finite spectral gap in the thermodynamic limit.
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Other parameters of the model in study, like the number of
degrees of freedom at a single site or the range of interac-
tions also have drastic effects on the precision.

For any numerical method, it is of essential importance to
understand, how errors evolve, when parameters of the pro-
cedure or those of the model in study are varied. So far, the
accuracy of the DMRG method has only been tested on
small clusters where numerically exact results were known
from exact diagonalization, or alternatively, large lattice
DMRG data were extrapolated to the infinite chain limit, and
these extrapolated values have been compared to rigorous
results, available only in the thermodynamic limit. In many
of the applications, however, at most the small lattice exact
data are available for testing. Nevertheless, large lattices,
even with hundreds of sites, are used to draw conclusions on
the behavior of the system. In many cases, it is really a
difficult problem to reliably estimate the precision as the
system size increases.

Our main goal in this paper is to study the general trends
of numerical errors during the DMRG algorithm, especially
when the length of the system is in the range of the typical
applications, i.e., well beyond the limit where exact diago-
nalization data are attainable. For this purpose, we apply the
method to an exactly solvable system, theIsing model in a
transverse field~ITF!. The main advantage of the ITF model
as a test system is that its energy spectrum and ground-state
correlation functions can be calculated by simple tools for
any finite chain length, even when the chain is subject to
openboundary condition, as in the standard DMRG applica-
tions. The ITF is also a model with a second order quantum
phase transition, so the effect of the appearance of criticality
on the accuracy can also be analyzed.

We carried out a detailed DMRG study of the ITF, vary-
ing several parameters of the model and the numerical pro-
cedure, like the strength of the magnetic field, the chain
length, the number of states kept, the number of iterations
and the number of target states. Beside the energies of the
low-lying states, we also computed different one- and two-
point correlation functions.

The setup of the paper is as follows. In Sec. II we briefly
summarize the exact solution of the ITF with open boundary
condition. Section III is devoted to the details of the DMRG
algorithm, while Sec. IV contains the analysis of the ob-
served trends in the numerical errors. Section V is a sum-
mary of our main conclusions.

II. THE 1D ITF WITH OPEN BOUNDARY CONDITION

The Ising model in a transverse field~ITF! on a one-
dimensional chain ofN sites is defined by the following
Hamiltonian:

H52 (
n51

N21

sn
xsn11

x 2g (
n51

N

sn
z , ~1!

wheresa, a5x,y,z are the Pauli matrices,g is the trans-
verse magnetic field applied in thez direction, and the chain
is subject toopen boundary condition, as in our DMRG
implementation.

In the thermodynamic limit, the ITF possesses a second
order phase transition that takes place atg51, where the

energy gap vanishes asN→`. Forg,1 ~ordered phase!, the
ground state is doubly degenerate and there is a long-range
order: the ground-state correlation functionr l

x5^sn
xsn1 l

x &
tends to a finite value asl→`. On the other hand, for
g.1 ~disordered phase!, the ground state is unique and
r l
x→0 as l→`. The gap is finite on both sides of the tran-
sition point.

The ITF in Eq.~1! is exactly solvable for any chain length
N. Details of the calculation can be found, e.g., in Ref. 11.
Here we only summarize the main steps and the necessary
formulas. Introducing Fermi operators via the Jordan-Wigner
transformation

cn5expS p i(
j51

n21

s j
1s j

2Dsn
2 , ~2!

the HamiltonianH reduces to a quadratic form

H522g (
n51

N

cn
†cn2 (

n51

N21

~cn
†cn111cn

†cn11
† 1H.c.!1Ng.

~3!

This can be diagonalized directly by a Bogoliubov
transformation12

hk5 (
n51

N S fn
k1cn

k

2
cn1

fn
k2cn

k

2
cn
†D , ~4!

leading to the final diagonal form

H5 (
k allowed

L~k!S hk
†hk2

1

2D , ~5!

L~k!52~11g212g cosk!1/2. ~6!

TheN-element real vectorf k is a solution of a set of linear
equations,11 and turns out to be

fn
k5ANS sinkn2

sink

g1cosk
cosknD , ~7!

where n51,2, . . . ,N and AN is a normalization constant.
c k can be expressed fromf k as

cn
k5AN8 ~gfn

k1fn11
k !, ~8!

whereAN8 is another normalization constant, and formally
fN11
k [0.
Reflecting the fact that the chain is subject to open bound-

ary condition, the allowedk modes in the summation of Eq.
~5! cannot be written in a simple form for generalg, but are
determined through a trigonometric equation

sin@k~N11!#

sin~kN!
52

1

g
. ~9!

In any case, the total number of independent modes is equal
to the number of sitesN. By convention, the allowedk val-
ues are the rootsk5k01 ik1 , whose real partk0 is in the
interval 0,k0<p. When g.gc(N)[N/(N11) all the
roots are real. Forg,gc(N), however, a complex~local-
ized! solution becomes possible withk05p andk1.0. Note
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that gc(N)→gc51, the phase transition point, asN→`.
The imaginary partk1 can be obtained by solving the equa-
tion

sinh@k1~N11!#

sinh~k1N!
5
1

g
, ~10!

and the correspondingf vector is11

fn
loc5AN~21!n21sinh@~N2n11!k1#, ~11!

where, again,n51,2, . . . ,N andAN is a normalization con-
stant.cn

loc is obtained again through Eq.~8!. The elements of
fn
loc and cn

loc are exponentially small far from the left and
right chain ends, respectively, which indicates, by Eqs.~4!,
that the complex mode is localized to the chain ends. The
energy associated with this localized mode is

L~p1 ik1!52~11g222g coshk1!
1/2. ~12!

When N is large, Eq. ~10! is readily solved to yield
k1; ln1/g. By substitution, this givesL(p1 ik1);0, i.e., it
is a mode of zero energy, leading to the double degeneracy
of the ground state sector wheng,1.

The ground state energy of the model, the fermionic
vacuum, is expressed as

E05
1

2 (
k allowed

L~k!, ~13!

that can be written in a closed form only at the transition
point g51, where it reduces13 to

E0512 cosecS p

4N12D . ~14!

The first excited state of the model is always determined by
the wave numberk, whose real partk0 is closest top; for
g.gc it is a real root and the energy gap converges to
2(g21) asN→`. For g,gc , this is the localized mode,
and the first excited state becomes asymptotically degenerate
with the ground state. It is the second excited state that con-
stitute the real~finite! energy gap in this case.

Finally, ground-state one- and two-point correlation func-
tions can also be calculated, by the method described in de-
tails by Liebet al.12 The only interesting one-point function
isMn

z5^sn
z&, which can be expressed as

Mn
z5

1

2
Gnn , ~15!

whereGnm is defined by

Gnm52 (
k allowed

cn
kfm

k . ~16!

Note that even in the ordered stateMn
x5^sn

x&50, since the
Hamiltonian, and thus any finite lattice ground state, is in-
variant to the transformationsn

x→2sn
x . The same holds for

sn
y , so thatMn

y5^sn
y&50, too. As for the two-point func-

tions,rnm
x 5^sn

xsm
x &, rnm

y 5^sn
ysm

y &, andrnm
z 5^sn

zsm
z &, one

arrives to the formulas

rnm
x 51/4U Gn,n11 Gn,n12 ••• Gnm

A A

Gm21,n11 ••• Gm21,m
U , ~17!

rnm
y 51/4UGn11,n Gn11,n11 ••• Gn11,m21

A A

Gm,n ••• Gm,m21
U , ~18!

and

rnm
z 51/4~GnnGmm2GmnGnm!, ~19!

wheren,m.
In order to be able to compare the approximate results,

produced by the DMRG method, with the exact ones for a
certain value ofg and chain lengthN, the exact quantities
were calculated by an independent numerical process, using
either double precisionFORTRAN routines or theMATH-
EMATICA software that allows computations with arbitrary
precision. We solved the nonlinear equations~9! and~10! to
obtain the allowed set of wave numbers, and used these val-
ues to express the associatedf k andc k vectors. Then the
ground-state and excited state energies and the correlation
functions were calculated numerically according to the above
formulas. All the results obtained in this way were precise to
at least 14 digits.

III. THE DENSITY-MATRIX
RENORMALIZATION-GROUP METHOD

White’s density-matrix renormalization-group method
~DMRG! is a numerical real-space renormalization-group
procedure, in which the effective size of the system increases
gradually, while the dimension of the associated Hilbert
space remains constant, due to a systematic truncation pro-
cess. Since the method is well described in the original
papers,1 we only present a brief summary here.

The basic object of the method is the system blockBl that
consists ofl lattice sites. All the necessary operatorsAi of
this block ~e.g.,sn

a , a5x,y,z and 1<n< l ) are stored as
M3M matrices. Note that the real dimension of a block of
l sites isdl , whered is the number of states at a single site,
andM!dl , so the representation of the block matrices is
only approximative. In each step of the algorithm, a new
single sited is added to the existing blockBl , and operators
of the resulting systemBld of dimensionMd are formed as
tensor products from the matrix representations of the corre-
sponding operators of the two constituting parts.Bld is then
renormalized, first by carrying out an appropriate unitary
transformation, then by truncating its degrees of freedom
from Md to M . Only the most importantM states are kept,
and the remainingM (d21) ones are discarded. The result-
ing system of dimensionM and lengthl11, denoted by
Bl11 , is then used iteratively in the subsequent step of the
algorithm. Choosing the states kept, i.e., finding the appro-
priate unitary transformation, is the most crucial point of the
renormalization-group procedure.

Previous applications of the renormalization-group tech-
nique, where theM lowest energy states ofBld were kept,
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led to disappointing results for many model systems. As was
observed by several authors,14 this was due to the interaction
having been neglected during the renormalization process
betweenBld and the rest of the larger~in many cases infi-
nite! system of what it makes a part.Bld was renormalized
in a way that an unnatural open boundary condition was
forced on both of its ends.

In order to avoid this problem, White’s method embeds
Bld into a superblock, and uses the eigenstates of this larger
system to carry out the renormalization ofBld. Choosing the
superblock configuration asBlddBl

R , whereBl
R is the re-

flection of Bl , its effective Hamiltonian, built up from the
matrix representations of the necessary operators of the two
blocks and the two single sites, is diagonalized to obtain the
desired~target! stateC. Even though the target state can be
a linear combination of more states, by targeting only one
state, the renormalized block states are more specialized for
representing that single one, and fewer of them are needed
for a given accuracy.

Having the target state expressed on the superblock as

C5 (
i , j51

Md

C i , j u i &u j &, ~20!

where i and j label theMd states ofBld and its surround-
ings dBl

R , respectively, the reduced density-matrix of the
subsystemBld is formed as

r i i 85(
j

C i jC i 8 j . ~21!

As was shown by White,1 the error introduced into the rep-
resentation of the target state by the truncation toM states is
minimized, if the new basis that one changes to is the basis
that diagonalizes the density-matrixr i i 8. The renormaliza-
tion of the tensor product operators ofBld,

Ai→OAiO
†, ~22!

is thus carried out by theM3Md transformation matrix
O , whose rows are composed from theM density-matrix
eigenvectors, associated to theM largest eigenvaluesva ,
a51, . . . ,M .

The simplest version of the DMRG method, theinfinite
lattice algorithm, starts with four lattice sites, i.e., from the
superblock configurationB1ddB1

R. In each step, the total
length of the chain increases by 2. Measurements of the in-
terested quantities are made after the calculation of the target
state in each step, and the whole process is continued until
the results converge satisfactorily. This method is especially
suitable to yield, with minimal computational efforts, rather
precise estimates of bulk properties, like the ground-state
energy density or ground-state correlation functions.

The usual measure of the accuracy of the truncation to
M states is the deviation of the sum of the density-matrix
eigenvalues associated with the states keptPM[(a51

M va

from unity. Clearly, in the extreme case when the discarded
states have zero weight, i.e.,vM115vM125•••5vMd50
so thatPM51, they are not required to represent the target
stateC, and no error has been committed. There is, how-
ever, another source of error in the DMRG procedure,
namely that theBld subsystem is only embedded into an

approximatesuperblock when it is renormalized, and not
into the, a priori unknown, exact environment. The two
kinds of errors, the ‘‘truncation’’ error and the ‘‘environ-
ment’’ error are not simply additive. The latter one, however,
can be reduced in an iterative manner, using the so-called
finite lattice algorithm.

The finite lattice algorithm starts by building up the lattice
to the desired lengthN, using the infinite lattice algorithm.
Then the superblock configuration is modified to
BlddBN222 l

R , so that the total length remains always
N, and the blocksBl , l51, . . . ,N23, are recomputed. The
process when allBl ’s are recomputed constitute thecycleof
the algorithm. Since at each step from this time on, the block
to be renormalized is part of a system of the desired length
N, the environment becomes more precise, and a consider-
able improvement of the results, corresponding to the
N-site system, is achieved. These results can be then used to
carry out a systematic finite-size scaling analysis, or to study,
e.g., boundary effects in the finite chain.

IV. NUMERICAL RESULTS

In order to determine the accuracy of DMRG method,
numerical calculations on the ITF, using both the infinite and
finite lattice algorithms, were performed. Errors in various
quantities, such as the ground-state and first excited-state en-
ergiesEGS andE1XS, respectively, the one-point correlation
functionsMn

z andMn
x , and the two-point correlation func-

tions r l
z and r l

x were monitored. In the case of theinfinite
system algorithm, our main concern was how the errors of
the energies depend on the system sizeN, when other pa-
rameters are kept constant. In thefinite lattice algorithm, on
the other hand, the length of the chain was kept fixed, and
the effect of introducing additional cycles in the process was
analyzed. When excited states were computed, the number of
target states was also varied.

Since the ITF possesses a second order phase transition at
gc51, it was expected that many of the above quantities
have different behavior, whetherg is equal to the critical
value, or greater or less thangc . Therefore, we investigated
the three different regions of the phase diagram by choosing
three different values for g, namely, g50.5,gc ,
g515gc , andg52.gc .

A. Energies

Let us first consider the error of the ground-state~GS! and
first excited-state~1XS! energies. Using theinfinite lattice
algorithm, we built up a chain of lengthN5300 and kept
states up toM548. Except one example which will be dis-
cussed below, we found that targeting one state alone is by
orders of magnitude more precise than targeting several
states together. Hence, unless stated otherwise, the results to
be presented here were obtained in a way that the ground
state and the first excited state were targetedseparately.

The errorsE( DMRG)2E(exact) were always found to
be positive, satisfying the statement that the DMRG is a
variational method, which gives~at least for the GS energy!
an upper bound estimate.9 The relative errors
dE[@E(DMRG)2E(exact)#/uE(exact)u as a function ofN
for various values ofM andg are shown on log-log scale in
Figs. 1–3.
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Until the algorithm keeps all states, i.e., for
N<2(lnM11), the DMRG is exact and only the machine’s
numerical inaccuracy is seen, limiting the precision on the
order of 10214. For longer chains, however, the errors asso-
ciated with the reduction of degrees of freedom also come in.

For the off-critical values,g52 and 0.5, the ground-state
errordEGSshows practically no size dependence. It depends,
however, crucially on the value ofM . The behavior is the
most clear forg52, where the infinite system ground state is
unique with a gap above it. Even a small value ofM ,
M;10, is enough to reach the machine’s precision limit
@Fig. 1~a!#. There is, on the other hand, an interesting size
dependence in the error of the first excited statedE1XS, es-
pecially for greaterM values @Fig. 1~b!#. A maximum
evolves, above whichdE1XS begins to dwindle again. This

can be understood, however, since the approximate excited
state, yielded by the DMRG process, is not necessarily ex-
actly orthogonal to the real ground state, and can have a
finite overlap with it. This fact leads to an overcompensation
of the otherwise increasing positive absolute error for long
chains.

Forg50.5, where the ground state is asymptotically dou-
bly degenerate, the behavior is more subtle@Figs. 2~a,b!#.
The splitting of the two lowest levels decreases exponen-
tially as N increases. When this difference goes below the
machine’s precision limit;10214, the algorithm is inca-
pable to further resolve the two levels, and the target state
that it yields is a linear combination of the two exact eigen-
vectors with random coefficients. As a consequence, in each
step of the DMRG algorithm the target state changes unpre-

FIG. 2. Same as Fig. 1, but in the ordered
regime atg50.5. Curves labeled by TS52 show
the case, when the excited state was targeted to-
gether with the ground state.

FIG. 1. Relative errors of the~a! ground-state
energy, and~b! first excited-state energy as a
function of the chain lengthN for different values
of M . Data obtained by the infinite lattice algo-
rithm (I51) in the disordered regime atg52.
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dictably, leading to the loss of optimality of the truncation
process, and hence, to considerably higher, rather scattered
error rates. As Fig. 2~b! shows, the DMRG can even ‘‘lose’’
the target state above a certain chain length. In a try to avoid
these problems, we also computedE1XS by choosing the tar-
get state to be a linear combination of the ground-state and
the first excited-state vectors. This proved to be an improve-
ment in the range where otherwise the excited state was lost;
for smaller values ofN, however, the errors were consider-
ably larger@Fig. 2~b!#.

At the critical pointg51, the errors were found to be by
several orders of magnitude larger than at the off-critical
values ofg. This is in accordance with the findings of Ref.
15: the correlation length of the model is one of the most
significant factors that influence the precision of the DMRG
method. Moreover, the curves in Figs. 3~a,b! have a clear
size dependence. WhenM is kept fixed, the errors can be-
come larger by 4 to 6 orders of magnitude, as the chain
length approachesN5300. For smallerM , the clear down-
ward curvature seen in the log-log plot indicates that the
errors converge to a finite value at large lengths. For larger
M values, however, this convergence is much slower, and
the analysis is made more difficult by the appearance of a
crossover effect, which change the behavior in the smallN
region, and makes the curves more flat there. While for
M516 the crossover size is aroundN;10 ~and hence unob-
servable!, for M532 it is atN;100, and forM548 it is at
N;250, showing that the crossover size scales for larger
lengths as more and more states are kept.

A possible interpretation of this crossover effect can be
obtained by recalling that there are two different sources of
errors in the DMRG method~see Sec. III!. For smallM , this
is clearly the ‘‘truncation’’ error that dominates. Curves with
M54,8,16 in Figs. 3~a,b! basically show the size depen-
dence of this type of error alone. The effect of the ‘‘environ-
ment’’ error only shows up for large enoughM and small
enoughN values, when the truncation error is strongly re-
duced. The environment error approaches its saturation ear-
lier than the truncation error, as is seen from theM548

curves, where the environment error dominates. However,
since the truncation error increases several orders of magni-
tude in the smallN regime, it always exceeds the environ-
ment error for large enough sizes. This produces a rather
sharp break in the curves in the log-log plot at the crossover
size, such as seen forM532 in the figure.

For comparison, and to reduce the environment error,
computations using thefinite lattice algorithmwere also per-
formed. Fixing the chain length atN5100, the iteration pro-
cess was repeated until the desired energies converged. For
g52, the relative errors are plotted in Figs. 4~a,b! as a func-
tion of the sum of the discarded density matrix eigenvalues
12Pm . While there is practically no improvement in the
ground-state energy, the first excited-state energy becomes
much more precise, when further cycles are carried out, and
full convergence is reached only after theI53 iteration. At
the critical pointg51, dEGS and dE1XS behave similarly:
two cycles are needed to get rid of the environment error
@Figs. 5~a,b!#.

It is seen in the figures that theI51 cycle data~the infi-
nite lattice algorithm results! do not fit onto a straight line on
the log-log plot. Points from the fully converged cycles,
however, do so nicely. The slope of the fitted line was found
to be very close to unity in all cases, indicating that the error
is proportional to the discarded weights, i.e.,

dE5const~12Pm!, ~23!

where the constant can depend on the model parameters and
the system size. We emphasize, however, that this form only
holds for theconvergedenergies. Extrapolating the infinite
lattice algorithm (I51) data by this formula to the
12Pm→0 (M→`) limit can yield false results.

B. One-point correlation functions

Expectation values of local operators in the ground state
were computed using the finite lattice algorithm at a fixed
chain lengthN5100. BothMn

x andMn
z (n51, . . . ,100!

were measured, and the errorsdMn
a[Mn

a(DMRG)

FIG. 3. Same as Fig. 1, but at the critical point
g51. Curves withM54,8,16 are dominated by
the truncation error, while those withM548 by
the environment error. TheM532 curves show a
crossover between the two types.
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2Mn
a(exact),a5x,z were calculated. Note that forMn

x ,
the exact values are zero, as it was detailed in Sec. II.

At the critical point g51, our results are presented in
Figs. 6~a,b!. The I51 cycle ~infinite lattice algorithm! pro-
duces an error which depends significantly on the position in
the chainn. Results are more precise around the middle of
the system. Note that spatial variations can reach several
orders of magnitude for largerM values, as e.g. for the
I51, M516 curve in Fig. 6~a!. There is also a sudden im-
provement in accuracy very near to the chain ends, but this is
believed to be an anomaly of the ITF model and not a gen-
eral feature of the DMRG technique.~The exact one-point
functions of the model, when open boundary condition is
used, show a strong boundary effect close to the ends, and
this seems to influence the errors too.!

In the case ofMn
z @Fig. 6~a!#, additional iteration cycles

(I>2) considerably improve the precision by decreasing the
environment error. Although some fluctuations may still be
present~especially for largeM ) in the I52 data, the error
becomes more or less constant and spatially more homoge-
neous forI>2. The convergence found with respect to the
number of cycles is similar to that of the energies.

ForMn
x @Fig. 6~b!#, where the exact values of the mag-

netization are zero, the situation is different. Additional
cycles, and increasing the value ofM , rather unexpectedly,
make the data less precise. The sign of the error also
changes: while for theI51 cycle dMn

x is negative, for
I53 it always turns out to be positive.~Note that in the
figure the absolute values of the errors are plotted.! The rapid
oscillations seen in theI52,M58 curve are due to the fact

FIG. 4. Relative errors of~a! the ground-state
energy, and~b! first excited-state energy as a
function of the sum of the discarded density ma-
trix eigenvalues 12Pm for different values of
M ~shown as labels!. Data obtained by the finite
lattice algorithm, carrying out theI51,2,3 itera-
tion cycles, and the chain length is fixed at
N5100. Disordered regime atg52.

FIG. 5. Same as Fig. 4, but at the critical point
g51.
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that the error fluctuates between positive and negative val-
ues. We believe that for this pathological case the observed
errors stem from the numerical inaccuracy of the diagonal-
ization subroutines, and not from the algorithm itself. Test
runs on short systems keeping all states in the blocks, i.e.,
when the DMRG is numerically exact, produced the same
qualitative picture ofdMn

x .
It might have been thought that monitoring the magnitude

of errors of quantities, whose exact results area priori
known, likeMn

x in our case, could yield information on the
precision on other,a priori not known, quantities, like
Mn

z . We see, however, that the errors of the two one-point
functions behave completely differently without any obvious
correlation, so the knowledge of the accuracy of one of them
cannot be used to draw predictions on the other one.

For theg52 case~figure not presented!, all the iteration
cycles gives the same result forMn

z . There is practically no
n dependence, and the algorithm reaches the border of nu-
merical inaccuracy very soon, in accordance with what was
found for the ground-state energy. ForM58, the relative
errors scatter on the scale of 1029, and this precision could
not be improved by increasingM . The behavior was found
to be very similar in the ordered phase, atg50.5, the only
difference is that more cycles were needed for the full con-
vergence.

C. Two-point correlation functions

Measurements of the two-point correlation functions were
carried out similarly to the one-point correlation functions, at
a fixed length N5100. Following White’s recipe,
r l

a[rn,n1 l
a , a5x,z, was measured so that the pointsn and

n1 l were positioned symmetrically to the middle of the
chain.1 This special allocation of the points assures that, at
least for the short-range correlations, end effects are strongly
reduced. Although, in most applications the bulk correlation
functions are of interest, since our aim was to test the DMRG
algorithm itself, we compared the numerical data with the
exact finite-lattice results obtained atN5100.

At the critical point,g51, the absolute value of the error
of the correlation functions udr l

au[ur l
a(DMRG)

2r l
a(exact)u is plotted in Figs. 7~a,b! for a5z and x. For

smallM values, the curves are rather smooth with a moder-
ate dependence onl . Convergence with respect to the num-
ber of cyclesI is reached when the ground-state energy con-
verges. For larger values ofM , the errors seem to fluctuate
rather irregularly, especially forudr l

xu, for which several
cusps evolve, where the error rate drops abruptly. This
strange feature, however, is once again an artifact of plotting
the absolute valueof the error on a logarithmic scale. For
eachl where the cusp appears, we found thatdr l

a changes
sign, similarly to the behavior of the correspondingMn

x

curve, and this sign fluctuation causes the strange-looking
shape of the curves.

Disregarding the fact that the sign of the errors is not
fixed, there is a clear tendency that in theI51 cycle~infinite
lattice algorithm! the long-range correlators are less precise.
This is in complete accordance with the behavior of the one-
point functions: operators are represented less accurately
moving towards the chain ends because of the environment
error. More cycles improve the situation, especially fordr l

z

@Fig. 7~a!#, where the errors for largel decrease by 3 orders
of magnitude and, quite unexpectedly, the long-range corr-
elators become more precise than the short-range ones. On
the other hand, there is no similar change in the tendency of
the curves fordr l

x @Fig. 7~b!#. Although the improvement is
the most significant for largel , long-range correlators remain
less accurate.

For the noncritical valuesg52 and 0.5~figure not pre-
sented!, dr l

z and dr l
x show practically nol dependence.

There is only a moderate change in accuracy for very small
and very large values ofl , but this does not exceed an order
of magnitude. The average accuracy of the correlation func-
tions is considerably worse than that of the energies. The
limit of the relative precision we could achieve by increasing
M was not better than 1029, similarly to what was found in
the case of the one-point functions. The effect of carrying out

FIG. 6. Errors of the one-point functions~a!
Mn

z , and~b! Mn
x as a function of the position in

the chainn. Data obtained by the finite lattice
algorithm, carrying out theI51,2,3 iteration
cycles, and keepingM58 or 16 states. The chain
length is fixed atN5100. Critical pointg51.
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more cycles was also similar, the correlation functions con-
verged exactly when the energies reached their limit values.

V. SUMMARY

In the present paper, we have analyzed in detail the accu-
racy of White’s density-matrix renormalization-group
method, by applying it to the one-dimensional Ising model in
a transverse field. Due to the exact solvability of this model,
the exact and the numerical results could have been directly
compared. We varied several parameters, either in the nu-
merical algorithm or in the model, and obtained a rather
detailed picture how the accuracy of the DMRG approxima-
tion depends on these parameters.

Our main results are summarized as follows.
~i! The DMRG yields an extremely precise value for the

ground-state energy, especially when the model is far from
the critical point, and the ground state is unique. Excited
state energies or the ground-state energy of a critical system
can be obtained with much less accuracy.

~ii ! Targeting exclusively one of the excited states is, in
general, more precise than targeting it together with the
ground states or other low-energy states. This, however, can
become unstable when the levels are too close to each other,
like in the case of asymptotic degeneration of the ground
state. When this is expected to happen, more states must be
targeted together.

~iii ! Carrying out only theI51 iteration cycle~infinite
lattice algorithm! leads to a significant ‘‘environment’’ error.
Its effect is the most pronounced, when lots of states are
kept, i.e., whenM is large, so the ‘‘truncation’’ error is rela-
tively small. The two types of error produce a crossover
effect asN increases in the critical case. The environment
error dominates in the smallN largeM regime.

~iv! Although the chain length dependence of the errors is
strong in the critical case, both the truncation and the envi-
ronment errors seem to converge to finite values asN in-

creases. In the practical range of applications 10,N,300,
however, the errors, especially the truncation error, become
larger by 2–3 orders of magnitude.

~v! For large M values, the finite lattice algorithm
(I>2) improves the results considerably by decreasing the
environment error. This is seen not only in the energies, but
in the one- and two-point correlation functions. When the
data are fully converged~but not after the firstI51 cycle!,
the errors are nicely proportional to the sum of the discarded
density matrix eigenvalues 12Pm . This fact can be used to
make an extrapolation to theM→` limit.

~vi! Accuracy of the correlation functions is always worse
than that of the energies. In theI51 cycle, the error in the
representation of the local operators becomes larger as one
moves outward from the chain center. When two-point func-
tions are computed in the usual way, i.e., symmetrically to
the chain center, this leads to the fact that the long-range
correlators are less precise. Additional iteration cycles make
the errors smaller and their spatial dependence more homo-
geneous.

Although the one-dimensional ITF is a rather simple
many body system, we believe that most of our findings hold
equally well for other, more complex quasi-one-dimensional
lattice problems. We hope that the above results contribute to
a better understanding of the DMRG procedure, and provide
a direct help in optimizing the algorithm in other applica-
tions.

ACKNOWLEDGMENTS
The authors would like to thank Jeno˝ Sólyom for encour-
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FIG. 7. Errors of the two-point functions~a!
r l
z , and ~b! r l

x as a function ofl . Data obtained
by the finite lattice algorithm, carrying out the
I51,2,3 iteration cycles, and keepingM58 or
16 states. The chain length is fixed atN5100.
Critical pointg51.
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10A. Drzewiński and F. Daerden, J. Magn. Magn. Mater.140-144,

1621 ~1995!.
11G. G. Cabrera and R. Jullien, Phys. Rev. B35, 7062~1987!.
12E. Lieb, T. Schultz, and D. Mattis, Ann. Phys.~N.Y.! 16, 407

~1961!.
13T. W. Burkhardt and I. Guim, J. Phys. A18, L33 ~1985!.
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14 358 53ÖRS LEGEZA AND GÁBOR FÁTH


