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Pattern dynamics of parametrically excited spin waves near the instability threshold
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The dynamics of dissipative patterns built up by parametrically excited spin waves in an insulating ferro-
magnetic film driven by out-of-plane parallel pumping is studied theoretically. Crystal-field anisotropies and
surface pinning of spins are neglected whereas the dipolar field is fully included. Near the instability threshold
the dynamics are governed by amplitude equations for the slowly time-varying amplitudes of pairs of unstable
spin waves. Because of rotational symmetry an infinite number of spin waves having the same wavelength but
propagating in different directions become unstable simultaneously. The dynamics of the amplitude equations
is mainly determined by a nonlinear coupling coefficient which is not an even function of the difference
between the angles of propagation. A detailed description of the numerical method of the calculation of the
coefficients of the amplitude equations is given. From the amplitude equations stationary solutions and their
stability are calculated. The only stable patterns are squares and three-wave patterns; hexagons are unstable.
For frequencies of the pump field above some threshold all stationary patterns are unstable. In this regime the
dynamical behavior is dominated by switching between squares and/or three-wave patterns. The pattern
switching is extremely sensitive to noise which leads to a weak noise-induced turbu[SQE63-
182996)05122-3

[. INTRODUCTION successfully this typical nonequilibrium effect parametric
resonanceof spin wave$ In the last ten years high-power
Pattern formation in systems driven far from thermalferromagnetic resonance has become a well-known example
equilibrium has universal features which can be found infor deterministic chaos in a solid-state system.
many different physical, chemical, and even biological sys- The nonlinear dynamics of parametrically excited spin
tem (for a review see Ref.)1 Most of the physical systems waves is mostly investigated by means of traditional ferro-
which have been studied experimentally as well as theoretimagnetic resonance techniques. These methods are unable to
cally are fluids driven in various ways. The reason for that isvisualize the patterns which emerge above the threshold;
twofold. First, the basic macroscopic equation of motion of athey provide only spatially averagedinformation about
simple fluid, the Navier-Stokes equation, have been welthem. There are a few experiments reported in the literature
known for more than 150 years. This equation is well estabwhere inelastic Brillouin scattering was used to investigate
lished and its limits are very well known. It is the foundation these pattern%’ But this method is also unable to visualize
on which all theoretical studies rely. But the main reason forpatterns in real space because of the inelastic character of the
the popularity of fluids is that it is easy tosualizethe pat-  scattering. The lack of visualizations of pattern formation in
terns and their formation. high-power ferromagnetic resonance is a major disadvantage
This visualization gives important information about the compared to fluid systems.
state of the system which fruitfully stimulates theoretical ap- What is an appropriate method of visualization of para-
proaches. The theories lead to predictions which can often bmetrically excited spin waves? Equilibrium patterns in mi-
tested in relatively cheap experiments. Thus the visualizatiosromagnetism can be visualized very well witaraday ro-
of the pattern formation in fluids leads to a strong interactiortation because the rotation of the polarization of a light beam
between theory and experiment which is an important factopenetrating a sample depends on the component of the mag-
for a successful understanding of pattern formation. netization parallel to the beam. This method has also been
But how typical is pattern formation in fluids for nonequi- successfully applied in the measurement of precession cones
librium pattern formation in general? Which behaviors arein ferromagnetic resonanée.
universal? In order to answer these questions, totally differ- In order to have optimal experimental conditions of visu-
ent systems were studied and still have to be studied. In thiglization, afilm with the static field perpendicular to the film
paper | investigate insulating solid-state ferromagnets welplane would be ideal. The reasons for that are twofold. First,
below the Curie temperature. There are well-known systemi a film the pattern is quasi-two-dimensional. Second, the
for nonlinear pattern formation in thermal equilibritnrer-  static field should be parallel to the light beam in order to
romagnets can be driven away from thermal equilibrium bymeasure the precession cone as optimally as possible. From
fast oscillating electromagnetic fields. the experimental point of view either parallel or transverse
In 1952 a nonequilibrium effect in ferromagnets driven in pumping is appropriate. In this paper only parallel pumping
this way was found by Bloembergen and Danidfhey ob- s investigated because of simplicity.
served an anomalous behavior in the ferromagnetic reso- The aim of this paper is to investigate and to predict spin-
nance if the strength of the driving microwaysump field wave patterns and their dynamics in a system which is opti-
exceeds some threshold. In 1957 Suhl was able to explaimized as above in order to get good chances for successful
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pattern visualization. Because of simplicity a very ideal film parallel pumpind From the general point of view the rea-

is studied. It is a uniform one without inhomogeneities andson for pattern switching in both systems is the lack of re-
impurities. In the k,y) plane it extends to infinity with an flection symmetry.

overall constant thickness. The only intrinsic fields are an The starting point of the present theoretical investigation
isotropic exchange field and the dipolar field. Furthermorejs the basic equation of motion of micromagnetism, i.e., the
the surface spins are assumed to be free. Crystal-fieldandau-Lifshitz equation. In a first step the stability of the
anisotropies and surface pinning of the spins are neglectedround state is calculated. At the instability threshold of
This is not a matter of principle. The restriction is introducedparametric resonance nontrivial solutions bifurcate. In lead-
only for simplicity; the theory presented below can be easilying order these solutions are linear superpositions of the de-
extended in this direction. stabilizing spin waves. In a second step a systeraropli-

It is very helpful especially for the discussion of universal tude equationgor the amplitudes of the standing spin waves
aspects of pattern formation to compare out-of-plane parallgs derived in the framework of multiple-scale perturbation
pumping with two pattern-forming systems from fluid dy- theory where the smallness parameter is the distance from
namics. The first system is tH&araday instabilityobserved the threshold.
in 1831 by Faraday.It is a parametric resonance instability It iS very common to investigate pattern formation in
of surface waves on a fluid which is driven by a verticalterms of amplitude equatioris® The advantage is twofold.
oscillation of the fluid container. Squares, stripes, hexagong;irst, from the point of view of bifurcation theory they are
and spatially quasiperiodic patterns, as well as defects inormal forms and can therefore be rigorously derived. For
these patterns have been observ@te similarity to the out-  that reason they are universal which means that their form is
of-plane parallel pumping of a ferromagnetic film is evidentdetermined completely by symmetry and the kind of symme-
because of parametric resonance. Furthermore both systeriiy breaking caused by the instability. All other properties of
are in the ideal case translationally and rotationally symmetthe system are condensed into a few coefficients. The second
ric. The latter symmetry has the consequence that at the irkdvantage is that pattern formation can be investigated even
stability threshold a continuous set of waves with the saméhough the coefficients of the amplitude equations are not
wavelength but propagating in different directions becomeknown explicitly either because the basic equation is not
unstable at once. Nonlinear interaction between these wavéd&own or because it is to difficult to derive the coefficients.
is responsible for the kind of patterns the system will select. The approach presented in this paper is different from
In the case of the Faraday instability this leads mainly toapproaches found in the literature of spin-wave instabilities.
squares? In the case of out-of-plane parallel pumping | have The most systematic one is tSetheory'®*”In the language
predicted squares and three-wave pattétns. of pattern formation thés theory is a multiple-scale pertur-

The general behavior of a pattern forming system isbation theory. It starts from theindampedsystem. The
strongly influenced by symmetries. They are importantsmallness parameter is the strength of the parametric driving.
sources of universalities. From this point of view one recog-The resulting equation of motion describes the dynamics of
nizes an essential difference between Faraday instability aritie amplitudes of all spin wavége., solutions of the linear-
spin-wave instability. The fluid system has an additionalized, undamped, undriven systefulfilling the parametric
symmetry which is strongly broken in the magnetic systemresonance conditiotti.e., frequency of spin waves equals
the reflection symmetry at an arbitrary plane perpendicular tdalf the driving frequency Damping is introduced phenom-
the surface. The reason for the symmetry breaking is thenologically into the equations of motion. It is not related to
magnetic field, more precisely, the dipolar field which is alsothe Landau-Lifshitz damping. Amplitude equations can also
responsible for the parallel pumping instability. be derived from the equations of motion of tRetheory.

For that reason | compare pattern formation in out-of-Milner has successfully applied this two-step appro@eh,
plane parallel pumping also with another well-studied fluidbasic equation of motions> S theory — amplitude equa-
system where the reflection symmetry is also broken butions) for the Faraday instability?
which is still translationally and rotationally symmetric. Itis ~ The main reason for starting directly from the Landau-
the rotated Rayleigh-B@ard system. The rotation breaks the Lifshitz equation is that thé& theory is applicable only for
reflection symmetry. When the angular velocity is below asmall damping constants, because the threshold for paramet-
threshold, the system behaves like a nonrotated Rayleighic resonance scales linearly with the damping constant. An-
Benard convection where convection rolls appear for Ray-other disadvantage is that tietheory does not include the
leigh numbers(i.e., for temperature differencesvhich are  damping in a systematic way. But linear and nonlinear
larger than a critical value. But above the threshold these rollamping terms have strong influences on pattern formation.
patterns are unstable even at the onset of convection. This is An attempt to study pattern formation in high-power fer-
the Kippers-Lortz instability? In 1980 Busse and Heikes romagnetic resonance in terms of amplitude equations was
analyzed the consequence of this instability based on thdone by the author several years 84’ A general discus-
investigation of a system of three coupled amplitudesion of the possible forms of amplitude equations in terms of
equations?® They found that when a new convection roll symmetry was given by the author in Ref. 20. Very recently
grows due to the Kppers-Lortz instability the old roll dis- Matthaus and Sauermann derived amplitude equations for a
appears simultaneously. Thus one roll pattern is switched offerromagnet with an uniaxial internal anisotropy field but
and at the same time a new roll pattern, rotated by a finitevith dipolar field neglected! In the present work the dipolar
angle (roughly 60°), is switched on. They also did experi- field is fully included. The amplitude equations are derived,
ments which seemed to confirm this analysis. | have showtheir coefficients are calculated, and their solutions are dis-
that thispattern switchingshould also occur in out-of-plane cussed. The main results have been previously published in
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two short communications:* uniguely. Such a generalized damping term can be derived
The paper is organized in the following manner. The basionly from a microscopic theor§>?* Nevertheless we use in
equations of motions are presented in Sec. Il. In Sec. Il thehis paper the LL equatiofil) because we want to demon-
stability of the ground state is calculated numerically as wellstrate our method for a simple case. A second reason is that
as in an analytical approximation. In Sec. IV the amplitudethe state of the art in visualization of a parametrically excited
equations are derived. The stationary solutions of the amplispin-wave pattern is far from the point where an accurate
tude equations as well as their stability are investigated imuantitative comparison between theory and experiment is
Sec. V. The dynamical behavior of the amplitude equationpossible.
are discussed in Sec. VI. In the last secti@ec. VI) the The LL equation has to be completed by the specification
results are summarized and their relevance for experimentsf He",
are discussed. Also concluding remarks concerning exten-

. ; . 5 = . ff_ ~ 20
sions of the theory in various directions are given. H®=(H+hcosst)e,+ DV-M—V®y, . (2

The first term is the external field; the second term comes

Il. THE BASIC EQUATIONS OF MOTION from the exchange interaction; the third term is the dipolar

field where electromagnetic wave propagation has been ne-

Static magnetization patterns are very well described byjlected. The dipolar field is the gradient of the magnetostatic
the theory of micromagnetisiiThey are local minima of the potential®,, which obeys Poisson’s equation,

free energyW. Micromagnetism assumes that the tempera-
ture is much below the Curie temperature and that typical 4wVM, inside the sample,
length scales of the patterrie.g., the width of a domain Ady= 0
wall) are much larger than the atomic scéeg., the diam- I o _
eter of the crystallographic unit cellThe state of a ferro- We assume a film of thicknes$ infinitely extended in the
magnet is therefore determined by the magnetization fieldX.y) plane. The boundary conditions are

M(r). Its dynamics is governed by the Landau-LifsHitz )

3

outside the sample.

equation, |V(DM|(|Z|_>°C):6'ZM|Z:O:‘92M|z:d:O- (4)
This Neumann-like boundary conditions for the magnetiza-
1 g tion are caused by the fact that we assume free surface spins.
;atM =—MxH"- M_oM X (M x Hef), (1) Inthe case of strong surface pinning the boundary conditions

would be Dirichlet-like.

Since the length of the magnetization vector is invariant
under the dynamics, the number of independent components
of M is two rather than three. The magnetization is defined

line width of the resonance line. The LL equation will be our by a point on the sphere with radidé, . It is convenient to

basic equation of motion like the Navier-Stokes equation foPfOI€Ct this sphere stereographically onto theyj plane.
fluid dynamics. Interpreting each point in this plane as a complex number,

The damping term of the LL equatiofi.e., the second the_magnetization reduces to a complex fi@i,t) which is
term on the right-hand sideis a phenomenological d€fined by

where y is the gyromagnetic ratidyl, is the value of the
magnetization in thermal equilibriunty®(r,t) = — SW/ M
is the effective magnetic field at site andg is the relative

one. In the literature other damping terms are also used. Mo+iM
The most common ones aré) the Gilbert damping m=——7 (5)
(GIYMgMXaM,  which  is  mathematically Mo+M;
equivalent to the Landau-Lifshitz damping andi)  The transformation back t™ reads
the Bloch-Bloembergen dampingI’, M,e+1" Mg, .
+T')(M,—Mo)e,, which is mainly used in connection with Mo m-+m
. i B i im* — i
ferromagnetic resonance. Only the Landau-Lifshitz and Gil M = T [mp? im*—im | . (6)

bert damping leave the length of magnetization vector un- 1-|m|?
changedi.e., [M|=M,=const).

In theories of parametrically excited spin waves, dampingThe LL equation in terms ofn read$®
is usually introduced in another phenomenological W2
The magnetization_is (_jescribed by a superp(_)sition of spin am=(i—g)| —12am+212
waves. The dynamics is governed by a equations of motion

m* (Vm)? .
W+§(ﬁx+l0y)¢w|

for the amplitudes of the spin waves. They are derived from 5

the undamped_L equation. Damping is introduced by add- _ 1(3 —idy) by + M0y + wpCOSOt— d,dy) |
ing phenomenological damping terms. Their coefficients are 2 0 Y ‘
assumed to depend on the wave number. The coefficient of )

the linear term can be obtained from measurements of the . ) . ) )
threshold of parallel pumpin®: These measurements are not We have_ introduced the following dimensionless time and
consistent with the coefficient one would get from the LL SPace units:

equation. From this point of view the damping term in the t

LL equation should be replaced by a spatial convolution t——-—,

term. But M=const and the correct wave-number depen- 4myMo
dence of the linear damping term do not determine itand parameters

r—rd (8)
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1 /D Dy will see below, the bulk analysis is still correct in so far as
= Va7 ¢M:47TM q’ the waves which are roughly uniform mdirection cause the
0 instability. The only exception is related to the second effect
H h = of the boundaries, namely thg/bridization(i.e., the avoid-
V=, W= ———, ®= ) 9) ing of crossings of different branchesf waves with differ-
4mMo 4mMo 4myMo entz components in the wave number. Near a hybridization
The Poisson equatiof8) becomes region the threshold of each wave will be increased which
may allow another wave to become the most unstable one.
i m* B(z) . mB(z) In order to study the stability of the ground st#163) we
A= (dxtidy) m) +(dx—idy) m) have to calculate whether an infinitesimally small deviation
increases in time or dies out. Therefore the linearized equa-
1—|m|? tions of motion for the deviations and¢= ¢y, — ¢, has to
04 | 707z | B(D) | (10
1+|m| ) be solved. They are
whereB(z) is the box function 1
gm—(i—g)| —1°Am+ E(ax+i¢9y)¢
0, for z<O,
B(z)=9 1, for O=z=<l, (11 +(wy— 1+ wpcoswt)m] =0 (143
0, for z>1. and
The advantage of writing the Poisson equation with the box )
function is that we do not need to distinguish between inside A¢—[(dytidy)m* +c.c]B(2)=0. (14D

and outside of the sample. Furthermore the correct boundary,o boundary conditions are stit.2).

cor}dition for the dipolar fielq at the surfa}ce is automatically Equation(14a, its conjugated complex, ard4b) define
fulfilled. The boundary conditiong4) turn into a system of partial differential equations for, m*, and

¢. This system is invariant under translation symmetry in the
plane and rotation symmetry around thaxis. Since some
Note that the boundary condition fon would be nonlinear coefficients are time periodic due to the driving field we

|V¢M|(|Z|_>°O):azm|z=0:azm|z=lzo- (12

in the case of surface pinning of the spins. make a Floquet ansatz:
Equations(7) and(10) together with the boundary condi- )
tion (12) represent the basic equations of motion from which m e'“u(zt)
we will start our investigation. There are five independent m* | (r.t)=| e ur(zt) | eikr e, (15)
parameters: The exchange lengitmeasured in units of the .
film thickness, the damping constagt the static fieldwy ¢ 2ig(z,)/k

anc_i the. pump fieldv,, measured in units of the demagneti- wherek=k,g+k,€, is an arbitrary in-plane wave number
zation field(i.e., 4mM,), and the frequency of the driving \ith k=kcosx and k,=ksine. The functionsy, u*, and

field measured in units of 1/@#yM,). 4 are solutions of
lIl. THE INSTABILITY OF THE GROUND STATE O+ Ap—(i—g)[— 1202 +12k%u
The trivial stationary state of7,10,12 is +(wy— 1+ wpcoswt) u— =0, (163
—lz—1 .
m'=0, d)Ll:%' (13 (9t,u,*-H\,u*—l—(l—l—g)[—lz(?g,u*-i—lzkz,u*
+(wy— 1+ w,comwt) u* — ]=0, (16b

where the magnetizatiol is parallel to the external field.

The magnetostatic potentiab), causes the dipolar field P—K2h— K+ pw*)B(2)/2=0 (160
—V¢I,|=—ez which reduces the external static fiedd, . ‘ '

This demagnetization leads to the well-known instability of awith the boundary conditions

uniformally magnetized sample against domain formations

for wy<1. In that case the trivial staté3) is not the ground (™, ) (2t 27 ) = (p, u* ) (Z,1),
state. We are not further dealing with this case. Therefore we
assume that alway®,>1 holds. The trivial stat€13) is W(|z]—)=0, (17)
then the ground state of the undriven system.
It is well known that in the bulk the ground state becomes Ogpt] = 0= Ot = 1= I pt* | )= 0= I,u* | ,=1=0.

unstable if the pump field exceeds some threshold. The de- ] o ] ]
stabilizing modes are spin waves which fulfill the parametriclt IS often convenient to eliminatg by integrating(160):
resonance conditiofi.e., w,= w/2) and propagate perpen- K1

d|cqlar to the externgl fieléf Bu.t the bound_arles.make the Wz, t)=— _J e—k|z—z'\[M(Z/,t)+M*(Z/’t)]dZ/_
subject more complicated. First they discretize roughly 4Jo

speaking the component of the wave number. But, as we (19
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The imaginary part ol is only determined up to integer 0.45 4
multiples of w, similar to the wave vector in the Bloch an- )
satz for the wave function of an electron in a crystal. We will
restrict ourself to the first Brillouin zongm\|< w/2.

Equations(16) and (17) define an eigenvalue problem.
The real part of the eigenvaluaswill tell us whether the
ground state is stable or not. It is also important to know the
unstable eigenfunctions, because in leading order the pat-
terns emerging at the threshold are superpositions of these
eigenfunctions. We call these eigenfunctions “spin waves”
although they are strictly speaking not spin waves because
they are the solution of the linearized hditiven LL equa-
tion. For small values of and w,, the difference is not very
large but important. It is therefore instructive to solve the
eigenvalue problem fog= w,=0.

A. Mode spectrum

We are looking for eigensolutions of thaendampedi.e.,
g=0) andundriven(i.e., w,,=0) eigenvalue problenil16)
with boundary condition$17). The eigenvalue\ is purely
imaginary, i.e.\=iw,. Since the time-periodic term is ab-
sent, the eigenfunctions are constant.id\ppendix A shows
the way to solve this eigenvalue problem exactly. But there
remains a transcendental algebraic equationdprwhich
can be solved only numerically. Figure 1 shows the disper-
sion relation of several eigensolutions which are character-
ized by the number of nodes indirection.

It is possible to get remarkably good results outside the
hybridization area from an analytic approximation which
works also very well for the stability thresholds. Furthermore
a generalization of this approximation becomes the basis of
the numerical treatment of the linear stability analysis and
the calculation of the coefficients of the amplitude equations. o _ . _

The approximation can be divided into three steps. First, FIG. 1. Exact(solid lines and approximatédotted line$ dis-
we make the ansatz

persion relations fowy=1.1 and(a) 12=0.0025, (b) 1?=0.007.
The numbers denote mode indices.

(s, *)=(po,m5)COgN7Z), (19

1 1-e ¥
whereN is an integer denoting the number mbdesof the 'BOZE( 1 K ): Z+O(k2) (223
eigenfunction ire direction. This ansatz fulfills the boundary
conditions(17). It also reflects the symmetry of the eigen- @
value problem under reflection at the plarve 1/2. Second, K2 K3[1—(—1)Ne ¥
we calculateys exactlyby using (18). Note thatys contains Bnio=57——7—5 — s
terms of the form exptk2) caused by the boundaries. In the 2(k"+N=r%) (k*+N"7%)
third step weproject ¢ onto cosl72). That is, we multiply  This approximation off inserted inta16) leads to the eigen-
(18) with cos(N72), integrate ovee from zero to one, divide frequency
the result byfécos’-(Nwz)dz, and multiply the result again

(22b

with cosN72). This leads to o= ey~ By (23
ith
y=—Bn(po+ pu5)cogNm2) "
_ _ 21,2 2_2
+terms orthogonal to coblz), (20) an= oy = 1+HI(K"+ N7 + By - (24)

where SinceBo=O(k) we get

k
K w(k0)=wH—1+Z+(’)(k2). (25)

101 ,
5 f f ekz=2)cogdN7z)cod N7z’ )dZ' dz.
0
on ’ (21) This nodeless mode is thdipolar modebecause in leading
order of k the dipolar interaction dominates. The other
Here §;; is the Kronecker symbol. Calculating the integrals modes(i.e., N>0) are ferromagnetic spin waves where the
leads to exchange interaction and the dipolar interaction are equally

Pn=17
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important. Foik— o we get the well-known bulk dispersion 0.10 . . . . .
relation because @y— k?/(k?+ N?7?). ®=0.39 w=0.41
Figure 1 shows a very good agreement between the exact  0.08 | + '. s
dispersion relation and the approximate one. Of course the ‘ '
approximation cannot reproduce the hybridization because 30-06 1 . r
the ansat19) assumes independent branches. In the exact 5° L
spectra crossings between two even modes or two odd modes 0.04 1 l T : l

are avoided by hybridizatioff:?” But crossings between

even and odd nodes are possible because they belong to dif-
ferent irreducible representations of the inversion group. The 0.00 + ; ; ' , ,
size of the hybridization region increases with decreasing 0=0.43 w=0.435

film thickness(i.e., increasing). 0.08 1: 1 '
0.06 1 T ’ -
B. Linear stability analysis = _ .
0.04 : + LF
In order to analyze the stability of the ground state we ‘ : - :
have to discuss the eigenvalues(6) with finite damping 0.02 : . 3

0.02

C‘)NC

(i.e.,g#0) and finite driving(i.e., w,#0). The sign of the

real part ofa (k) decides whether the trivial solution is stable 0.00
(negative sighor unstablepositive sign against a particular 05 10 15 20 05 10 15 20 25
mode with wave numbek. The value ofw;, where the real k k

part of A is exactly zero defines the instability threshold

above which this particular mode will grow exponentially. G, 2. Neutral curves for several values faround the hy-

This threshold is called theeutral curvewnyc(k). Inthe  pridization point in Fig. 1a). Parameterswy=1.1, 12=0.0025,
case of parametric resonance it has local minima at values @f=0.01, N=4, andL=2. An arrow denotes the absolute minimum

k where the parametric resonance conditiog=nw/2, N of the neutral curve; it defines the instability threshelgl. and the
integer, is fulfilled* The lowest minimum belongs to the critical wave numbek, . Solid (dotted lines indicate points on the
first-order parametric resonan@ee., w,~ w/2). The ground neutral curve where spatially periodic solutions with wavelength
state is only stable if the real parts ofof all modes are less 2#/k bifurcate supdsubcritically.
than zero. The instability threshold,. is therefore given by
the absolute minimum of the neutral curve, i.e, \
whe=Minwne(K). Thus the parametric resonance causin .
ingiabilitiéshigcélgvays of first ordeF ’ S P D e )e'(' - Peicognmz).
. . . 21-2L-1n

Based on the approximatiail9) made in Sec. IIl. A we (29)

are able to calculate approximatively the neutral curve. In

accordance with the Floguet theory we make the ansatz The exact solution of16) fits also into this ansatz but with
N=L=o. ThusL andN define numerical cutoffs i and

. . z, respectively, and28) is therefore a Galerkin ansatz.
(morig)=(py o)€@+ (u* u¥)e™ 'Y (26)  Again ¢ is eliminated by(18). After projecting(16a and
(16b) onto €' "V tcosfinz) we get a homogeneous system

This ansatz together witt0) is put into (168 and (16b).  Of 4L(N+1) linear algebraic equations folgN+1) un-
We calculate the neutral curve directly by setting:0 in ~ Known coefficientsuz o -1, and u3_» 1, Because
(16a and(16b). This leads to a generalized eigenvalue prob_(16) is linear inw,, it is a generalized linear eigensystem
lem with wy, as the eigenvalue. The characteristic polynomialVherewy, is the eigenvalue. The chazracteristic polynomial is
can be solved because it is quadraticeif (for details see @ polynomial of order E(N+1) in wj, because of symme-

leading order ofy is solution of this polynomial. | have solved this generalized

eigensystem with a standard routine from thepACK sub-
routine package. It also yields the eigensolutiqn £* , )

M

2L
M21-2L—-1n

o w? which is the starting point for the derivation of the amplitude
whe =gw\/ 1+ 132 (27)  equations in Sec. IV.
N

Figure 2 depicts several numerically obtained neutral
curves. Each relative minimum is related to the first-order
and takes place ab(k”)=w/2+ O(g?). It can be shown that parametric resonance of a particular mode. For decreasing
oN<wN*Y  Thus the dipolar modéi.e., N=0) causes damping g the minima get closer to zero and become
the instability. This result is consistent with the bulk calcu-sharper. The distance to zefice., the thresholdscales like
lation which leads to an instability of spin waves propagatingg whereas the curvature scales likg?2/

perpendicular to the static fiefd. The w dependence of the relative minima of the neutral
The numerical approach to calculate the neutral curve isurve is shown in Fig. 3. The left-hand part of the figure
based on an extension of the approximati¢t® and (26). looks almost identical to Fig.(&) because the deviation from

We make the ansatz the parametric resonance conditiar= 2w, is of orderg?.
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IV. DERIVATION OF THE SYSTEM

e S R OF AMPLITUDE EQUATIONS
C 3 B - In this section we describe in some detail how amplitude
o C equations can be derived in principle and how it is done
™, 2 B - numerically.
2° 4 - The basic equations of motidi) and(10) and the bound-
3 ] C ary conditions(12) can be written in symbolic form as
14 -
] - F(u,w,)=0 and B(u)=0, (29
0]
] . respectively, where of the pump fieldl, is the control pa-
2.5 3 E rameter and
2.0 3 - m(r.t)
o1 - u(r,ty=| m*(r,t) (30)
=7 - Pu(r.t)
10 3 a is theorder parametemhich contains the magnetization de-
] C scribed bym andm* and the magnetostatic potentidl, .
0.5 E o From the previous section we know that the ground state
] C (13) becomes unstable ab,=w;,.. Above the instability
S AR HL R B R threshold theamplitudesof the modes responsible for the
0.2 0.3 0.4 0.5 0.6

instability increase exponentially. The nonlinearities of the
equations of motion may eventually stop this growth. From
bifurcation theory it is expected that far,— w,. the values
FIG. 3. Instability threshold,,. and critical wave numbek, as  of the saturated amplitudes go to z&%dn order to calculate
functions of w. Parametersiwy=1.1, 12=0.0025, N=4, and  nontrivial solutions it is therefore natural to use a perturba-
L=2. Solid and dashed-dotted lines denote numerical values fotion theory with w,— wp. as the smallness parameter. The
g=0.001 andg=0.01, respectively. Dotted lines denote approxi- perturbation theory we use ismultiple-scale perturbation
mate values. Bold lines denote the absolute minimum. The numbetgeory!>° Instead ofw,,— wy, it is more convenient to in-
distinguish different modes. troduce a formal smallness parametgr which loosely
speaking is proportional to the amplitudes and which will be

set to one after the calculation. The order parameter as well

Th_e right-har_ld part of Fig. 3 .ShOWS the thresholds. The and3s the control parameter are expanded into power series of
lytically obtained approximations are remarkable good ex-_.

cept near the hybridization area. Here the threshold increases

W

strongly. Therefore another mode becomes the most unstable wn= opne(K) + oy 7+ op 72+ O(73), (319
one (usually the mode number oneThe width of the inter-
val in w where this is the case is roughlydependenbf the u=uT+uy 7+ U2+ O(73), (31b)

damping constarg (see Fig. 3. At those values of where

k. switches from one mode to another a competition takegvhere u’ denotes the ground staté3). A multiple-scale
place between two different instabilities. Such a point isPerturbation theory assumes that the amplitudes of the desta-
called acodimension 2point because it is defined by two bilizéd modes vary slowly in time. It leads to a system of
parameters of the systetherew;, and w). All this does not equations of motion for these amplitudes calkplitude

happen when the damping constantis too large or the equationsor Landau equationsThe latter name comes from

coupling strength of the hybridized modes too low. Therethe similarity to Landau’s phenomenological theory of phase

will be no codimension-2 bifurcation either due to the Com_t_ransmon. In the language of bifurcation theory these equa
. S tions are normal forms.
petition between the hybridized modes or between an addi- .
tional mode. For example, the hybridization between the di-. e Nave expandedy, aroundwiyc(k) (i.e., the neutral
j P, y . ) curve at an arbitrary value & instead ofw,,. which is only
polar mode and the second exchange mode in Fi.i4 too

Ki q h h litative behavi h_a special casé.e., the minimum of the neutral curkeThis
weak in order to change the qualitative behavior near thisneang that we calculate the bifurcation of a spatially periodic
point. There is only a very small and tiny peak in the thresh

solutions from an arbitrary point on the neutral curve. After
old wpo(w). that we will restrict ourselves to the physically relevant case

In the next section we derive the system of amplitudex—_ (i.e., the absolute minimum of the neutral curve
equations governing the dynamics of the amplitude of the |nserting the expansio(81) into the equation of motion

most unstable modes. We do this only for the dipolar mode$29) and sorting out powers of we get a hierarchy of linear
which are the most unstable modes outside of hybridizatiorquations and linear boundary conditions,

regions. The case near hybridization points will be treated
separately in a forthcoming paper. Llu,]=f,, K[u,]=b, for n=1,2,..., (32
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with f;=b;=0. The operator and K are defined by the e p(z,—t)
linearized equation of motioflL4) for w,= wunc and by the a4

boundary condition$12), respectively. The inhomogeneities . '~9

f, andb,, depend on the solutions', u,, ... ,u,_;. Here utr b= e'iu*(z,—t) ik 39

b,=0 because the boundary conditiqd®) are linear. In the e —-i—g '

case of(partially) pinned surface spins, the boundary condi- iw(z,—1)

tions are nonlinear anl,# 0. -/ -

Since the first equation in this hierarchy(&4), the gen- k
eral solution is a linear combination of wave solutidd$)  The solvability conditions read
propagating in different directions
(u'lf,)=0, n=23,.... (39)

Z eiaj[Aj(Tn)eikjr+C.C;lﬂ(z’t) It means thatesonant termshould be zero. The inhomoge-
J

neities are build up from superpositions of terms of the form
c(z,t)exp(=)_.k; r). A term is resonant if27_,k; |=k.

uy(r,)=| 2 e U[A(Te  +eclu*(zt) |, All inhomogeneities have two terms which are linear in
J the amplitudesA,
2 H ikir
E; [IA;(Tye"i"+c.cly(z,t) (i—g)ym; m,
(33 fo1=wpaCost| (—i=Q)MI | —gr | MI | +O(A?),
where 0 0
n=12,... .
kj=k(cosa;- &+ sina; &), B Atter the projection ontas we get
T,=7"t, n=12,..., (35) Sior Aj= wnnSpAj+ O(A?) (40)
with

and whereu, u*, andy are solutions of16) for A=0 and
op=onne(K). Note, that the amplitudes of counter- 1 f2ntof w(z,—t) w(z,t)
propagating waves cannot be chosen arbitrarily because the St:J J (;'FC.C. dtdz (41
magnetostatic potentigéle., the third component af) has to 0Jo -9
be real. The solutio(83) excludes all waves which are either ;4
damped or growing on a time scale of ordgt. In the lan-
guage of bifurcation theory this means that we only want to 1 (2nlw
know what happens on the center manifold. Sh:J j [u(z,—t)u(z,t)coswt +c.cldtdz (42)
. . 0oJo

The amplitude#\; are assumed to depend slowly on time.
This is described by several time scales which are proporBecause 0f36) and (318 the sum over all equation@O)
tional to inverse powers of the smallness parametefThe  multiplied by %" yields
slow time dependence is formally established by introducing

new independent time variabl@s and by the replacement StAj:(wh_whNC)ShAj+O(A2)- (43
. It is convenient to introduce the dimensionless control pa-
rameter,
d— ot E n"dr, . (36)
-t ' oh—wpne  h—hye
€= = . (44
This leads to additional terms in the inhomogeneitigs @hNe NC

which are proportional to time derivatives on slow scales. |; js negative(positive below (above the threshold. After

_Ir_l order to get n_ontrivial so_ll_Jtions c(t_%_Z) the inhom_oge- dividing (43) by wnneS, We get the linear part of the ampli-
neities have to fulfill a solvability condition becaugeis a  y,qe equations

singular operator. For that reason we introduce the scalar

product 7oA = €A+ O(A?), (49
with
(Ualto)= | [ (mam i + gudp)cPrat. (37 .
= . 46
07 neS, (46)

We define a adjoint operataf’ by (u,]| Lup)=(LTu,|up).
The boundary conditioCu=0 is in our case self-adjoint. The characteristic time scale of the dynamics of the spin-
The solutionsu™ of the adjoint problem can be obtained from wave amplitudes are given by /e. It diverges at the thresh-
the solution(15) of the orginal problem by the transforma- old because 0é— 0. This is the well-known critical slowing-
tion (y,t,m)—(—-y,—t,(g—i)m/2), i.e., down at nonequilibrium phase transitions. For the
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approximation introduced in Sec. lll we can calculatg
analytically. Using the results from Appendix B we get for
the dipolar mode

! +0(g°) (47)
To=—— ,
0= %og g
where a is defined by(24). Thus the time scale is, as ex-
pected, proportional to the inverse of the damping constant

g

In order to get the nonlinear terms @¥5) we first look at
the quadratic term of,. It reads

(i—g)myd, ey
—| (=i—g)mid, ey |, (48) ' I [ BN
29,[|my|*B(2)]

whereB(z) is the box function(11). The projection of this / ; /; //
term onto the adjoint solutiori38) leads to the quadratic

term in(45). From Sec. 1Il we know that the modes are either b RAERARY
even or odd in the direction. Thereforg48) is always odd.

From this it follows thathe quadratic term in the amplitude - b/

equations is absent for even modeause the adjoint mode

is also even and the projection is therefore zero.

Usually a quadratic term is absent since the most unstable
mode is the dipolar mode which is even. Only near hybrid- _ ) _ )
ization points where an odd mode becomes the most unstable FIG. 4. AI.I possible resonances whlch contributes to thg third-
one do we get a quadratic term. The dipolar mode is eVeﬁrd_er_term in the amplitude equation fok;. The notation,
because we have assumed that the sample is symmetric un:12+1s Mmeans the resonanée, +k;, +kj,.
der reflection at the plare=1/2. In a real sample this sym-
metry is often broken because the film is usually mounted on .

a substrate which may have a different permeability than the ToA| = €A}~ C[ |Aj|2+ E a(a;— aj’)|Aj’|2
air above the film. Furthermore the substrate may change the 17
boundary conditions for the magnetization. In the following |t can be shown that the coefficients of the nonlinear terms

we assume that the quadratic term is absent. The more gefre real. Theoupling function 4«) has the following prop-
eral case will be treated in a forthcoming paper. erties:

In order to calculatéd; we need the solution of32) for
n=2. A general solution is the sum of a particular solution a(a—0)=2, alat+m)=a(a), a(—a)#a(a).
and a solution of the homogeneous equation. The relevant (50)
part of the latter onéi.e., the part on the center manifplig . ]
(33) where the amplitude#\; are replaced by some other The first property is caused by the fact that, e.g., the reso-
amplitudes. We omit this part because it leads only to g'ances {",j,—j’) and (,j’,—]j’) give the same contribu-
renormalization of the amplitudes; . From the quadratic tionsas {,j,—j) if k;,—k; (see Fig. 4 The rotational sym-
part (48) of the inhomogeneityf, we get terms like Metry is responsible for the second prop_e°’|’tyThe last
o(z,t)AjA; exi(k;+k;.)r] which lead to similar terms in property is cause_d by the fact that ttipolar field stron_gly
the solutionu, . Actually the inhomogeneous version @) brea!<s the reflection symmetry at any plane perpendicular to
should be solved fon=0 and k=|k;+k;,|. We do this the film plane. ,
numerically by the Galerkin ansat28) where ¢ has been The broken reflt_ectlon symmetry has strong consequences.
eliminated by(18). The nonlinear terms if have the same [N order to see this we assume for a moment that it is not
parity as the adjoint solution| . Thus the solvability condi- broken which yields an even coupling functiaga). In this
tion leads always to a nonzero third-order term in the ampli-c2S€ the system of amplitude equati¢#) can be written in

tude equation$4s). a variational form

What is the general structure of this third-order term? We
can answer this question by looking at the possible reso- ToAJ:— =,
nances of; for k; . Since the nonlinear terms tf are of the 2y
form c(z,t)AjA; Ajrexdi(k;+k; +kj.)r], nine different
combinations are possiblsee Fig. 4 Note that the ampli-
tude which belongs te-k; is AJ* . Three combinations lead c c
to a term of the fornjAj|2Aj whereas six combinations lead | = | — e|A]-|2+ —|A |4+ = a( aj—ajr )|Aj,Aj|2
to a term of the form|A;/|?A; with j’#j. Thus the ampli- i 2 2,77,
tude equations up to third order read (52

_J L L7

J PTeTitd ARSI

A. (49

L
(51)

where
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of a analytically because the dipolar mode becomes uniform

1 | 1 | |
73 odd part in the z direction (see Appendix €
0.25 L L
50 ] 0.204 i 4 2 .
25 0. L ala)= §+ 3 COS 2 +agsin 2a, (54)

relative error

4=0.001

where a; is given by (C5). It can be calculated in general
only numerically. But forg— 0 it is possible to do this ana-
lytically because the Galerkin ansa@8) for L=1 becomes
exact. We get

\ 000 y T /
\ 000 002 004 006 /[
k d

9=0.01

c

9=0.001

T T T k
0 30 60 90 120 150 180 s c

, %=3ug (55

FIG. 5. The coupling functiom(a) for wy=1.1, '_2:0-0025’ Thus, in leading order of the coupling function is an odd
®=0.22, andg=0.001. The solid line is the numerical result for ¢,,ction which reflects the strongly broken reflection sym-
N=4, L=2 whereas the dashed line is the analytical reé) o Nevertheless the even part of the coupling function,
with as given by (55). The insets depict the maximum of the rela- ., o4k of higher order, will be important for the saturation
tive deviation of the numerical result from the analytical result. of the amplitude of the unstable spin waves.

Figure 5 shows a comparison between analytic and nu-
{nerical results for small values d&.. The even part of
a(a) is quite well approximated by (#2cos2)/3. The er-
ror is not larger than one percent and is independeryg. of
The deviations in the odd part of the coupling function are at
least by a factor of 10 larger, and they strongly depend on

is a real function calledlyapunov functionlt corresponds to
the free energy in Landau’s phenomenological theory o
phase transitions. llecreases monotonicalip time if the
amplitudes are solutions ¢51). Thus limit cycles or irregu-
lar oscillations are not possible for-. In systems like the
Faraday instability or the Rayleigh-Bard convection where
the reflection symmetry is not broken, E(1) describes

therefore only stationary attractors. In our case the reflectiopatggl?nni?:]c?r?:rbtht::%vgmgl'ézdaenegz?ggﬁ Ctaér(]:iigﬁsczll(s:lli-
symmetry is broken, and the coupling function is not even P P'e, y

In fact the odd part o&(e) (i.e.,[a(a) +a(— )]/2) is usu- to do that. This is especially true for even modes where the

. . . next term is of fifth order because the fourth-order term is
ally quite large(see Fig. 5. A Lyapunov function does not absent for the same reason as for the quadratic Geemf, is
exist. Therefore limit cycles or even chaotic motions are pos- q 4

sible at the onset of the main instability. In Sec. VI we will alwa_ys odd inz). . o
see that this is indeed the case. Higher-order terms are important & (i.e., the overall

The calculation ofry, b, ¢, anda(a) is in general pos- strength of the third-order termbecomes small or negative.
sible only numerically?'Th’e (:ilgorithm | have used is based\lgmerical calculations show thatchanges its sign near the

on the fact that all functions which are involved in the cal-"'Ma of the _n_eutral curvésee F'g'.?'. At. the minimum
culation have the general form c is always positive except near hybridization points. But the

point on the neutral curve where is equal to zero ap-
R proaches the minimum fay— 0. This behavior is typical for
n. n. . + _ z .
F(r,t)=2 AJAD cjexr{|(nj kir+n;k_r+njmz parametric resonance because the resonance frequency usu-
] ally depends on the amplitude which leads to a foldover of
the resonance lin& In our case the demagnetizing field is

i . (53)  responsible for this frequency detunifiy.

w
+n‘-—t) +nfInf k. +njk_|z

wherek.. =k(cos@/2)-e,*sin(a/2)-g,), all n’s are integer, V. STATIONARY SOLUTIONS

. —N_/_ A*\n i

Cj¢ls a complex number, andl; _—( AZL)". The terms with _ OF THE AMPLITUDE EQUATIONS

n"#0 are necessary to describe parts of the magnetostatic ' . _ ' '

potential which are obtained from exact integrati@). It is In this section we investigate stationary patterng4$)

easy to write subroutines for such an integration and otheand their stability. The general stationary pattern, called the
operations(multiplication, addition, scalar product, etéin ~ N-wave pattern, is built up frorhl different standing waves,
the function space defined 1§%3). In order to construct the i.e., N amplitudesA; are unequal zero whereas the rest is
solutionu, four linear algebraic equations have to be solvedzero.
which | have done by using a standard routine from the Itis more convenient to replace the amplitude48) by
LINPACK subroutine package.

Of special importance is the coupling functiafa). As
we will see in the next section, the functional dependence of
a on « tells us which patterns exist and which of them are
stable. In the limitk,— 0 we can derive the functional form which leads to

Aj=R;e', (56)
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ToRjZGRJ‘_C RJ2+E a(aj—ajr)Rjz, R], (57) 120
i'#] 801
40
-40
Thus x;=const for all waves. Two linear combinations of -80
X;j are related to the translation symmetry in tixey) plane. 1203 % 5 % Jo o o
Assuminge,c>0 and introducing the scaling o
0.54 L
t— 2, and P;=—R? (59) 0 @
T 2e” ey '
~< —05
we get 16
Pi=|1-Pj— > a(a;—a;)P;/ |P;. (60) 135 30 60 90 120 150 180
i’ #] o
0.51 .
Equation(60) does not contain the control parameteany o ° Py
more. This fact has the important consequence tiatdy-
namical behavior of the solutions is independent of the < -05
strength of the control parameteiThe control parameter 10
only determines the time scale on which the dynamics hap- ‘
pens. Thus it is not possible to describe secondary instabili- -157 % = % o @ o
ties in the framework of a third-order amplitude equations a
without quadratic terms. The dynamics is only determined by
the coupling functiora(«). FIG. 6. Examples of external instability. Parametesg=1.1,
For a given set of angle$a, . ..,a\} the stationary 12=0.0025,g=0.001, N=4, L=2, »=0.25 yieldingk,=0.117.

N-wave pattern is uniquely given because it is determined byhe nonvanishing amplitudes of a pattern are denoted by circles.
a system of linear algebraic equations. But the solution doeShe radius of a circle is proportional to the amplitude. The growth
not make sense for all possible angles becausBjallhave  rate \(a) defined by(62) is shown for a one-wave pattern, a
to be positive. Nevertheless solutions exist for a finite numsquare, and a three-wave patteer, € 70° anda;=102°).

ber of connected subsets in the angle space.

In order to investigate the stability of the stationary solu-one interval ofa for which A («) is positive. Figure 6 shows
tions we linearize60) around the solution. This leads to an \(«) for several types oN-wave patterns. Using60) and
equation of motion for small perturbatio@®; which can be  (50) we get
solved by the ansataP; =Cje“. We get an eigenvalue

problem which separates into the nontrivial case Ma—aj)=—Pj. (63
Thus the pattern is externally stable against waves with
(P;+)\)Cj+P; > a(ej—a;))C;/=0, j=1,...N, angles from a finite interval around, . In the following we
i'#] calculateN-wave patterns and their stability for different val-

(6D ues ofN.

and into infinitely many trivial cases where we immediately
get A. One-wave patterns
The simplest pattern is built up from a single standing
wave, i.e.,P;=1 andP;.,;=0. It is a stripe pattern similar
Ma)=1- Zl ala—aj)Pj, aé{ay, ... an}. to the roll pattern in Rayleigh-Berd convection. Fron61)
. (62) We find immediately that one-wave patterns are always inter-
nally stable becausk=—1. They are externally stable if
We define two kinds of stability. M a)=1—a(a)<O0 for all «. This is true only if the mini-
Internal stability A pattern will be internally stable if the mum ofa(«) is larger than one. In the limk,— 0 where the
real parts of all eigenvalues of the nontrivial cas€61) are  coupling function has the fornfb4), one-wave patterns are
less than zero. Thus a perturbation of the amplitudes whichlways unstable becausé/2)=1/3>0. In the general case
build the pattern decays to zero. wherea(«) can be calculated only numerically, | have al-
External stability A pattern will be externally stable if ways found that the minimum of coupling functions is
M(«) defined by(62) is less than zero for alle. External  strongly negative(see, e.g., Fig bdue to the odd part of
stability means that the amplitudes which do not build thea(«). The angle of the fastest growing wave is roughly
pattern do not grow. 45° behind the stripe pattefsee, e.g., Fig. )6
A pattern is stable if it is externally as well as internally  This external instability of one-wave pattern is similar to
stable. If a pattern is externally unstable there will be at leasthe Kippers-Lortz instability in rotated Rayleigh-Bard

N
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convectiont? This rotation breaks the reflection symmetry

1 | |
and leads therefore to an odd contribution for the coupling 0.25 Lt
function a(a). But contrary to our situation the Kupers- e
Lortz instability can be controlled by the angular velocity. 0.20 -
The odd part of the coupling function increases with the
angular velocity. If a threshold is exceeded the roll pattern
becomes unstable. The most unstable wave is roughly 60° 0.15 7
ahead of the roll pattern. ~°
0.10
B. Two-wave patterns
Two-wave patterns are built by two standing waves with 0.05 - L
amplitudes
P 1~a(=Aa) ith A 0.0010 1|1 1|2 1|3 1|4 1.5
i_]_—a(Aa)a(—Aa/)’ WI a=o o_ . . . . o . . .
(64) !

SinceP.. should be positive two-wave patterns exist only if  F|G. 7. Stability of squares and quasiperiodic three-wave pat-
either a(*Aa)<l and a(Aa)a(—Aa)<l or terns. For values of. above the soliddotted line squaresthree-
a(xAa)>1. Thus they should always exist fda near wave patterns are unstable. The thresholds are calculated for
zero becausa(0)=2. For small values of the damping con- g=10"% and|?=0.0025. Quantitatively almost the same values are
stantg the odd part of the coupling functiambecomes very obtained forl2=0.0001.

large. Therefore the signs a{ = Aa)—1 are always differ-

ent except forA « near zero and neat/2. Because the odd ) ) . )
part ofa scales like 1d the width of the interval of existence IStS Which neither decays nor increases. From numerically
scales likeg. Two-wave patterns aroung/2 (i.e., squares calculated coupling functions | found that the correction
exist if a(7/2)+ 1>0 which is the case fok,—0 since(54) terms to(54) are always such that hexagons are internally

. . 3 . . . .
holds. Nothing changes qualitatively in the general cas&NStable contrary to what is stated in Ref. 1 This is Slan]e’l_
where the coupling function can be calculated only numeri@r 10 what is found in a rotated Rayleigh-&&d systen.
cally. The general stationary three-wave pattern is defined by

The analysis of the eigenvalue probléfi) leads to the arbitrary anglesy;. Since theP,-"s have to be positive, not
condition  for internal  stabilty which  reads all angles are allowed. In the limk.—0 andg—0 where

a(Aa)a(—Aa)<1. Thus patterns foha near zero are al- the coupling functiona(a) is given by (54) and where
ways internally unstable. Squares are stable. This can K& —* the set of possible angles can be calculated analyti-

proved in the limitk,—0 (see Appendix I This seems to cally (see Appendix E It turns out that any combination of
be true also in the general case. angles has to be inside the region defined by

In order to study the external stability of square patterns
M(a) defined by (62) has to be calculated. In the limit
k.—0 square patterns are staligee Appendix D But in  Due to permutation symmetry and periodicity affe’) addi-
the general case they become unstablk;iexceeds some tional angles are allowed. All allowed angle combinations
threshold. An example is shown in Fig. 6. Figure 7 showscan be most easily visualized by cutting the circle with three
that the threshold monotonically increases with the strengtlines into six pieces. The lines should go through the center
wy of the static field. It is roughly independent of the ex- of the circle. They represent three pairs of wave vectors like
change length which means that the instability is mainly in Fig. 4. The circle has to be cut in such a way that the angle
caused by the dipolar interaction. On the other hand thef each wedge is less than 90°. For finite but laegethe
threshold strongly depends on the damping consgant  allowed region is inside the triangle defined t85). The
monotonically increases with. distance of the border to an edge of the triangle is of order

Also stable rhombic patterns exist. But their interval of 1/a2 whereas in the corners it is of orderal/ In the general
Aa is aroundn/2. Its width scales with the damping con- case wheré. is arbitrary butg still small the same region of
stantg and is therefore very small. Thus stable rhombic patallowed angles has been found numerically.
terns are practically indistinguishable from square patterns. Contrary to two-wave patterns where for small damping
Figure 8a) shows how a square pattern looks if it appears inonly squares are allowed a whole variety of three-wave pat-
an experiment where Faraday rotation is used for visualizaterns are possible. There is a dense set of periodic patterns. A
tion. pattern is periodic if integera;, n,, andn; can be found

with

Ay~ g, a3—a1<90°<a3—a1. (65)

C. Three-wave patterns
. . X nlkl+ n2k2+ n3k3: 0 (66)
First we discuss regular three-wave patterns, i.e., hexa- _
gons. Appendix D shows that fér,— 0 they exist, they are and with
externally stable, but they are internally only marginally

stable. That is, an oscillating mode with frequeray2 ex- ni<n3+n3, and cycl. perm. (67)
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FIG. 8. Simulated photographs of a square patterna periodic(b) and a quasiperiodi) three-wave pattern assuming Faraday rotation
as the appropriate visualization technique. Parameigrs: 1.1, 12=0.0025,g=0.001,N=4, L=2, ©=0.22(i.e. k,.=0.043),2,=0°, (a)
a,=90°, (b) @,=75.5225°,3=104.4775°(c) @,=70°, a3=100°. The angles for the periodic three-wave pattern are chosen in such a
way as to fulfill (66) for n,=1 andn,=n3;=2. The grey scale denotes the temporal averag\ai)f M§ where black means zero.

The last condition is a consequence @&5). Hexagons the whole existence triangle even in the linkit—0 and
(n;=n,=n3) are periodic patterns with the smallest unit g—0 (see also Fig. 1 in Ref. 11Thus there exist externally
cell. Quasiperiodic patterns are patterns for whiéB) can-  unstable patterns. The region of external stability shrinks
not be fulfilled for any set of integer. These are the generigyith increasingk, and eventually disappears. Above a cer-
three-wave patterns because the measure of periodic pattefign critical value ofk, all possible three-wave patterns are
is zero. In practice one cannot distinguish between periodigither externally or internally unstable. Figure 7 shows that
patterns with large unit cells and quasiperiodic patterns beg;s threshold increases with the external static figld The
cause of finite extension of the sample in lateral directionyyreghold is always larger than the threshold of square pat-
tlfa);ﬁn;i)(leezh%fwa;] ri)r?rllzci)s'lsc (g)ngn‘?j %‘gs:zzggg'tfvg;;ee'wave Patems. Again it is nearly independent of the exchange length
All three-wave patterns are internally stable fqg—0 | and increases with the damping constgnt
and g—0 (see Appendix E But numerical hexagons are
unstable in this limit as already mentioned above. Figure 9
shows the regions of internal and external stability for three
different values ofk,. We see that for small values &f. Appendix D shows that reguld{-wave patterns are ex-
indeed all patterns are internally stable except aroundernally unstable i is larger than three. This is proved only
ar,— a1 =a3— a,=60°. This instability region grows with in the limit k.— 0 where(54) holds but all numerically cal-
increasingk.. The region of external stability does not fill culated coupling functions share this property. Furthermore,

D. N-wave patterns
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tern the system select$his question can be answered for
thermal equilibrium systems where a free-energy functional
exists. This is also possible for some models of systems far
from thermal equilibrium where a Lyapunov functional ex-
ists which plays the role of a free energy. The absolute mini-
mum of the free energy or of the Lyapunov functional gives
the ground state. All relative minima define metastable
states. On a large time scale which is determined by the
barrier height and the strength of thermal noise the system
will eventually select the ground state.

In Sec. IV we have seen that the system of amplitude
equationg49) does not have a Lyapunov functional because
the coupling functiona(«) is not even. Thus regular and
irregular oscillations may occur which lead to a richer tem-
poral behavior than usual where the coupling is symmetric.
On the other hand, the lack of a Lyapunov function makes it
difficult to solve the problem of pattern selection.

In the previous section we have also seen that; iex-
ceeds some threshold, all stationary patterns are unstable. In
that case we want to know the temporal behavior of the
system of amplitude equations.

Both questions can be attacked by numerical integration
of the amplitude equation&7). By a rescaling similar to
(59 we can set formallyro=e=c=1. | have done this in-
tegration for a set ol equally distributed wave vecto(se.,
a;=mj/N) with N=90. The selected pattern may depend on
the history of the systerhFor that reason | have assumed
that, like in most experiments, the pump field is suddenly
tuned from below threshold to above threshold. This situa-
tion can be simulated by an initial condition with randomly
chosen amplitudes with-<OR;<0.01. The dynamical behav-
ior strongly depends on whether a noise term is added to the
equations of motion or not.

A. Dynamics without noise

First | present the result of the simulations without noise.
Figure 10 shows the typical behavior for three different val-
ues ofk.. Note that for each example the coupling function
is the same as for the corresponding part of Fig. 9. For clar-
ity, simulations withN= 36 are shown instead &f= 90, but
the presented examples are typical for90.

The behavior at the initial stageoughly up to 20 time
units) is the same for all coupling functions. This is most
clearly seen in Fig. 1@) because the time scale is by a factor
of 10 smaller than in Figs. 16) and 1@c). At the beginning
all amplitudes grow exponentially because the nonlinear
terms in (57) are small. When the amplitudes are large
enough the nonlinearities lead to an intermediate saturation.

in numerical simulations of the system of amplitude equaAfter that, competition takes place, and only three ampli-

tions (49) | have never found internally stabl-wave pat-

terns withN>3.

VI. TEMPORAL BEHAVIOR
OF THE AMPLITUDE EQUATIONS

tudes survive whereas all other amplitudes die out exponen-
tially. Note that in general the surviving amplitudes do not
coincide with those which are initially the largest ones. For
example, at=0 the three largest amplitudes in Fig.(&40
areRyg, Rsp, andRyq in that order.

After this initial stage of the dynamics, the further tempo-

In the previous section we have seen that above theal behavior depends on the coupling function. In the case
threshold not only one stable stationary pattern is possibl&.— 0 there is a large probability that the initially selected
but large continuous families of patter(sguares and three- three-wave pattern is stable like in the example shown in Fig.
wave patterns This multistability is very common in pattern 10(a). By repeating the numerical experiment | found that

formationt and raises immediately the questiamich pat-

mostly three-wave patterns are selected. They are presum-
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the growth rate now depends on the angle. It is given by

M) defined by(62). The fastest growing amplitude even-

B tually competes with the established amplitudes. Since four-
wave patterns are internally unstable this competition has
loosers which includes at least one of the established waves.

= Thus the system switches from one internally stable but ex-

ternally unstable pattern to another one which is at least in-
ternally stable. Suctpattern switchingis mathematically

| S speaking aheteroclinic orbitbetween two internally stable

20 30 0002040608 1.0 1.2 patterns.

j abs. power i . i . .

In order to understand this pattern switching, we first dis-
cuss as the simplest example a system of three amplitude
equations corresponding to three equally spaced angles. This
system was investigated in ecology where it is a model for
the competition of three speci&sThe internally stable so-
lutions are one-wave patterns whereas the hexagon pattern is
l . L — L internally unstable. Starting with a slightly disturbed hexa-

i

0 e  RAARRREEZL e
0 10

:::IHHMHWI H”

gon the solution winds outward on a spiral. It does not reach
- l' — B an ordinary limit cycle. Instead it approaches tor« a

o Ih.’;m;Q.x;.,ﬁ;!m.!x N, I | sequence of heteroclinic orbits. Each of them is a switching
....... AR R P T
0 10 20 %08 09 10 11 12 from a one-wave pattern to another one-wave pattern rotated
] aps. power

by 60°. Because the heteroclinic orbits are approached closer
and closer, the waiting time between two switchings in-
creases. This gives rise to an unusual type of limit cycle with
a diverging period. Mathematically speaking this system of
equations is structurally unstable which means that a tiny
- change in the equation of motion changes the behavior quali-
tatively. For example, the behavior is extremely sensitive to
noise. Busse and Heikes have used the same system of am-
= plitude equations for rotated Rayleigh#Bed convection
SiTs e ‘ above the Kppers-Lortz instability:® From this sensitivity
i LA AR AAMARRA b o8 08 10 11 12 on noise they conclude that weak turbulence occurs right at
abs. power the onset of convection.
The behavior of this simple system of three amplitude
FIG. 10. The dynamical behavior of a system of 36 amplitudeequations occurs qualitatively also in the general case. For
equations. The angleg; are equally spaced. On the left-hand side, example we clearly see in Fig. 10 an increase of the average
the absolute values of the amplitudes of the mgdes, ... .36 are  waijting time. The situation is more complicated because
represented by the widths of the lines plotted against the vettical there is a complex “net” of heteroclinic orbits which be-
axis. The right-hand side shows the absorbe_d power in units of thegmes denser and denser for an increasing number of ampli-
absorbed power of a one-wave pattern, which is giver=b;.  y,ge equations. The nodes of this net are the internally stable
The parameters are the same as for Fig. 9. N-wave patterns. Thus there are infinitely many. From each
externally unstable node heteroclinic orbits start which end
ably distributed equally over the space of stable angle conat other nodes. | never found heteroclinic orbits which do not
figurations. Squares occur very rarely because it is very unend at internally stable patterns. Patterns which are also ex-
likely that two amplitudes are selected with wave vectorsternally stable are terminating nodes in this net.
forming an angle from the small stable interval around Starting with some random initial condition the system
90°. Since the width of this interval scales with the dampingrelatively quickly approaches the net. After that it “travels”
constani, the probability for squares is presumably propor-on it from node to node. Each transition corresponds to a
tional tog. Below we will see that in the presence of noise pattern switching. At the beginning the journey is still influ-
the situation is reversed and squares are much more probalgeced by the randomness of the initial condition. But for
than three-wave patterns. increasing time the transition from one node to another one
In Sec. V C we have seen that the region of stable threébecomes more and more predictable. The reason for that is
wave patterns decreases for increadingsee also Fig. ®  twofold. First, the angle-dependent growth raigy) selects
Thus the probability of the initially selected three-wave pat-the fastest growing heteroclinic orbits. Second, the waiting
tern to be stable also decreases. The typical behavior for théitne increases because the system approaches the hetero-
case is shown in Fig. 10). At the beginning one of the large clinic orbits closer and closer. Thus the amplitudes of exter-
number ofinternally stablethree-wave patternfsee Fig. nally stable angles [i.e., \(«)<0] relax to extremely low
9(b)] will be selected. But because it is externally unstableyvalues[e.g., att=1000 all amplitudes in Fig. 1B) have
amplitudes which have died out after the initial growth be-values below 101° except the three amplitudes defining the
come unstable again and grow. Contrary to the initial staggatter. This increases the predictability of the selection

—.
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process because near the maximum\ &) the amplitudes B. Dynamics with noise

have a Gaussian distribution, i.e., In this subsection we investigate the amplitude dynamics
in the presence of Gaussian white noise, i.e.,

”
m

A
Rj(T)%Rj(O)e"maxTex;< Zax (@j— ama)?|, (68)

I"#]

where the maximum and the curvature of the growth rate at

a= @may IS denoted byi,,,>0 and\, <0, respectively, with

T is the waiting time between two switchings, and the

R;(0) are the values of the amplitudes after the last switch. _ PN\ — St/

We clearly see that the sharpness of the Gaussian distribution (&) (§(0g;(1))=00=t) 5, (79
increases withl. For T— the heteroclinic orbit is deter-

mined bye,.,. The dynamics on the net becontetermin- Ina system with a Lyapunov functional, noise is neces-
istic because there is always one single maximum @f) sary to bring the system from a metastable state to the

which defines a unique heteroclinic orbit. The only excep-9round state. In our case where a Lyapunov potential does
tions are externally unstable squares because they have tfiQt €Xist, a qualitatively similar behavior may occur. That s,
equally sized maximésee Fig. 6)]. Thus the values of the noise may d_rlve the system into some_preferred state. _There-
amplitudes at the angles of the maxima determine the heterd2® | have integratede9) for the coupling function of Fig.
clinic orbit. | have found numerically that the heteroclinic 9@ Wherekc is small and the number of stable three-wave
orbit ends in a square if these amplitudes are of the samRatterns is large. For<10"?\/e%/c the system behaves
order. If a square pattern occurs the probability increases th&ualitatively as in the deterministic case discussed in the
the next switching will lead also to a square. previous subsection. Far>10"2\/e%/c the probability for

The dynamics can be described by a map of the angléquares increases. The reason for that is twofold. First, some
space of the internally stable three-wave pattern onto itselof the squares are not genuine squares. They are rhombic
Up to an arbitrary rotation three-wave patterns are characteforming an angle which is not from the small interval around
ized by angle differences. For example, one can us&0° mentioned in Sec.V B. These rhombic patterns are noisy
a,—a; and az—a, as in Fig. 9. Thus the map is two- three-wave patterns located in the angle space near the
dimensional. Not every internally stable three-wave patterdoundary of existencgsee Fig. €a)]. One of the amplitudes
is mapped onto another internally stable three-wave patter®f such patterns is of the same order as the noise amplitude.
There are three other possibilities. In each of them the dytn the simulation shown in Fig. 1a) an example of a rhom-
namics is terminated in the sense that the trajectory on thkic pattern appears fdrbetween 600 and 800. One clearly
net does not return to three-wave patterns. In the first casgees that the averaged noise level for the amplitudes
the pattern is externally stable. Thus a stable fixed point oRy, . .. ,Ryg is larger than forRy, ... ,Rss. If we would
the amplitude equations is reached. In the second case tiswitch off the noise, one of the amplitudds, ... Rjg
pattern leads to a square. If squares are externally unstablould reach a nonzero value.
the system moves on the net from square to square. The The second reason for a larger probability of squares is
motion is similar to the simple behavior of the system ofthat sometimes a noise-induced pattern switching occurs
three amplitude equation. Thus we get a quasiperiodic mowhich replaces the initial three-wave pattern by a three-wave
tion. In the third case, the three-wave pattern leads to a ongpattern which is closer to the border of existence in the angle
wave pattern. Looking at Fig.(8 it is clear that a one-wave space. Thus noise drives the system in such a way that it
pattern leads to another one-wave pattern rotated by roughigrefers squares or rhombic patterns which are almost
45°, squares. Squares are more stable than rhombic patterns

| have numerically simulated this map. There are thregvhich are more stable than three-wave patterns. For
steps. In a first step the pattern is calculated for a point in the>0.1\e%/c even squares becomes unstable. In Figa)ll
plane (@,— aq,a3—ay) which belongs to an internally we clearly see squares and rhombic patterns which are fol-
stable three-wave pattern. In the second step the maximufowed by irregular noisy bursts where the noise is amplified.
of the growth ratex(«) is searched. In the third step the After a burst there follows again a square or a rhombic pat-
amplitude equations are integrated numerically for a fourtern. Note that these pattern changes are different from the
dimensional subspace defined by the amplitudes of theattern switching discussed in the previous subsection. Here
anglesa,=0, a,, a3, and an,. For the initial value of the patterns perform a random walk on the circle whereas in
Rmax @ small number, say 0.01, is chosen. This loop is rethe case of pattern switching the pattern drifts in a well-
peated until one of the above-mentioned termination condidefined direction.
tions is reached. Nevertheless this drift is extremely sensitive to noise. In

For the coupling functions of Figs. i) and 1@c) | have the previous subsection we have seen that the pattern-
often found very long transientseveral hundred iterations switching map becomes deterministic if the waiting tifnes
until the dynamics of the map is terminated. These transientigrge. From(68) we see thaf is related to the values of the
are chaotic. | have seen this by looking at the distance beamplitudes after the last switch. In the case of noise the
tween the trajectories of two slightly different initial condi- amplitudes cannot decay on average below a level which is
tions. The distance clearly increases roughly exponentially agroportional to the noise amplitude. Thus the averaged wait-
long as it is much smaller than the possible maximum. ing time is proportional to the logarithm of the inverse noise
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() function as for Fig. 1&) and Fig. 9c). Here all stationary
1000 T T S patterns are unstable. The noise level is the same as in Fig.
im’

11(b) but \ 4 is often larger. Thus in accordance wit8)
B the averaged waiting time is smaller. It is almost of the same
order as the switching time. A careful inspection of Fig.
11(c) shows that a fuzzy square drifts very fast clockwise
L L around the circle. The anticlockwise rotation seen in Fig.
] { 11(c) is an optical illusion caused by the finite number of
2009 B amplitudes.

>

o 10 20 0 06 08 10 12 14
j abs. power VIl. CONCLUSION

In this work a system of amplitude equations for the out-
(b) of-plane parallel pumping has been derijé&ts. (49)]. In-
ternal anisotropy fields and surface pinning of spins have
been neglected, but the dipolar field has been fully included.
The dipolar field has two important consequen¢gdt is the
- main factor determining the most unstable mode. Corrections
due to the exchange field are of second or@erlt gives rise
to a strong odd contribution in the nonlinear coupling func-
tion a(«). In fact, without the dipolar fielda would be a
constant plus a very small even term caused by the exchange
interaction.

The coupling function has been calculated numerically
and analytically. It determines the dynamical behavior of the
system of amplitude equations. Squares and periodic as well
as quasiperiodic three-wave patterns are the only stable sta-
tionary patterns. Figure 8 shows how these patterns would
L look if visualized by Faraday rotation. These patterns be-
come unstable if the critical wave number determined by
the parametric resonance condition/2=w{”=wy—1
+k/2+ O(k?) exceeds a threshold. Near and above this
threshold the dynamics is characterized by pattern switching.
o That is, an internally stable pattern, e.g., a square, is
switched off and at the same time another internally stable
J o A % 08 09 10 T 12 pattern is switched on. This process is extremely sensitive to

j abs. power noise and leads to noise-induced weak turbulence.
Quadratic terms in the amplitude equation are absent be-

FIG. 11. The dynamical behavior of a system of 36 amplitudecause the system is symmetric against reflection at the
equations with noise. The parameters are the same as in Fig. 1fjiddle plane of the film. In a real film this symmetry is often
The noise levels are(@) »=0.13/e’/c and (b) and (¢)  proken. Thus weak quadratic terms should be expected. Qua-
v=5x10""\€’lc. dratic terms also appear near hybridization points where due

to a strong coupling the threshold of the dipolar mode is
amplitude. Pattern switching therefore disappears if the avincreased to values which are above the threshold of the
eraged waiting time is of the same order as the averagethost unstable odd mode. Quadratic terms lead to hexagonal
switching time. patterns and to secondary instabilities where these patterns

Figure 11b) shows an example of a simulation with a become unstable.
noise level which is by orders of magnitude smaller than the What may be expected if crystal-field anisotropies and
noise level of the simulation shown in Fig. (L The cou- surface pinning are included in the theory? A uniaxial anisot-
pling function is the same as for Fig. (). Again we see ropy which does not destroy the rotational symmetry leaves
that the drift caused by pattern switching and, as expectedhe system of amplitude equations unchanged. Only the cou-
the waiting time does not increase. Squares are much mogging function is slightly modified but still has the properties
probable than in the noiseless case. On the other hand thef®0). This is also the case for surface pinning. If the spins pin
are noise-induced switchings from squares to three-wave patlifferently at the lower and the upper surface, quadratic
terns, a process which is very unlikely in the deterministicterms should appear. Cubic anisotropies destroy the rota-
case. The stable three-wave patterns are robust against thimnal symmetry. There are two special casgs.The film
noise level. It is not clear whether the behavior shown in Figsurface is parallel to the (1,0,0) plane. Only in this case the
11(b) is a transient or not. In simulations of the kind shownlinearized equation of motio14) is not changed andall
in Fig. 11(b) | have never found a case in which the systemwaves with an in-plane wave numbkg become still un-
selects a stable pattern. stable simultaneously. But the coupling no longer depends

Figure 11c) shows a simulation for the same coupling on the angle differences alone. This may lead to a preference

200 — '

0 %’!!;T!!::Y::::.;:.lél‘.’!!!!::t:;::: —
0 10 20 30 08 09 10 11 12
j abs. power
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of square patterngii) The film surface is parallel to the tion during the appearance or disappearance of a defect
(1,1,1) plane. The number of amplitude equations reduces tahere the Nusselt number which measures heat flow also
three. The preferred pattern may be hexagonal. sharply decreasés.

Amplitude equations are very successful in order to un- We do not know which patterns and pattern dynamics
derstand pattern formation in systems with strong dissipalead to certain actually measured time behavior of the ab-
tion. In the case of parametric resonance where the dampirgprbed power. In the literature one often finds models which
is relatively weak, amplitude equations may not be the opti-are simplifications like the Lorenz equation which is a sim-
mal way to treat these systems. This is due to the fact that thelification of Rayleigh-Beard convection. That is, a small
third-order terms of the amplitude equations at the minimurmumber of modes are assumed to be the most relevant de-
of the neutral curve are presumably of the same strength agees of freedom. Even though the models are often based on
the fifth-order terms. The calculation of the fifth-order termsthe S theory they are often not derived systematically. For
is straightforward but extremely tedious. TBeheory does example, the nonlinear coupling constants are not calculated.
not have this problem because it is a multiple-scale expanthey are chosen in such a way that the nonlinear dynamics
sion where the pump field is the expansion parameter. Thusf the model fits at least qualitatively with the observed data.
the relative control parametershould not be small. Only the A systematic calculation of the coefficients would improve
threshold has to be small which implies small damping. Buthese models, but it would not help much because Lorenz-
the main problem of theS theory is that the damping is like models neglect often important degrees of freedom.
included only phenomenologically after the multiple-scaleFrom the theoretical point of view it is difficult to get them.
expansion of the undamped problem. It is an open questioh is relatively easy only near the main-pattern forming insta-
whether it possible to get the linear and nonlinear dampingpility.
terms of theS theory systematically. | would like to strongly encourage experimentalists to

An experimentalist wants to know whether such patterngerform experiments where the patterns caused by parametri-
can be observed in a real experiment. In order to visualizeally excited spin waves can be directly observed. This step
them it is important to know how strongly a pattern changeds absolutely essential in order to make progress in the un-
the orientation of the polarization of the transmitted light. derstanding of the nonlinear dynamics of high-power ferro-
Faraday rotation at normal incidence measures the timenagnetic resonance. Theoretical works like the present one
averagedz component of the magnetization integrated overhopefully lead to a strong motivation which is needed to
the film thickness. Thus thicker films are better than thinovercome the experimental difficulties of visualization.
films. Because the deviation M from Mge, will be small,
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APPENDIX A:  EXACT SOLUTIONS OF THE
LINEARIZED, UNDAMPED AND UNDRIVEN
EQUATION OF MOTION

where( ), , is the average with respect tandz. For regu-

lar periodic patterns the maximum @f can be calculated.

For small values ok, the maximum scales with the square

root of kce. The linearized equations of motigf6) without damping
In the Introduction | have already emphasized the imporand driving(i.e., g=w,=0) reads

tant role of pattern visualization in order to understand the

nonlinear behavior. Global information like the absorbed (wp—1+12K2—w ) u—1?u"— =0,

power is ambiguous. This is illustrated in Figs. 10 and 11

where the evolution of each amplitude is compared with the (wp—1+12K2+ w ) u* —12u*"— =0, (A1)
absorbed power which is proportional to the sum of the am-

plitudes squared. Sometimes it seems to be possible to iden- W —K2y— K+ u*)/2=0,

tify from the absorbed power signal the pattern. For example . h
the absorption is stronger for squares than for three-wave

patterns[see_F|g. 11b)]. But this |Qent|f|cat|on works only w'(0)=p*'(0)=4' (0)—kyy(0)=0,
after a learning process where, first, some pattern has been (A2)
identified and, second, a correlation between pattern and glo- ' (1)=u*"(1)=¢' (1) +ki(1)=0.

bal information has been found. The same is true for other

features of the dynamical process. For example, the absorbddhe boundary conditions fay come from integrating16¢)
power sharply decreases during a pattern switching processutside the intervgl0,1] and matching the exterior values of
A similar phenomenon occurs in RayleighiBed convec- ¢ and ¢’ with its interior values at the boundary.
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The general solution dfAl) is an arbitrary linear combi- a. By o2 0 o

nation of the six eigenfunctions By a. 0 o2l u

M Mo wh/2 O aﬁ ﬁN ,LLt - 0’ (BZ)
M* = /1’3 eiqZ, 0 wh/2 BN Oli ,LLj_
Y o with

whereq is a solution of the characteristic polynomial i@ (B3)

G Y(ixg)

whereay and 8y are defined by24) and(22), respectively.
— k[ wy—1+a(k®+g?)]=0. (A3)  The neutral curve is the smallest positive real solution of the

characteristic polynomial iy, :

Because the general solution has to fulfill the six boundary

conditions(A2), the coefficients of the eigenfunctions are the wme)c( )=2pn— /—pl%l_ Ins (B4)

nontrivial solutions of a linear homogeneous system of alge-

braic equations. The determinant of the corresponding matri¥/ith

has to be zero. This defines an implicit equationdr. The 1-g o2

determinant factorizes becau6&l) and (A2) are invariant = a2+ 82— (_) (B5)

under inversion az=1/2. Thus Pn=ant Ay (1+9g9)°\ 2

(K2+g?)([oy—1+13(k*+g) 12— wd)

B and
w1 =2 Cifi(2)| ey |, (A4) QN:<al%l_Bﬁl_ w2/42) aﬁz ;0’9 (B6)
~ .
" i 1 1+g (1+g )
The eigenvector is given by
with
o pe=wp—2(Byt k) o
Ao =wy—1+12(K2+q%) *+ wy, A5
@ Tonm i TcTa R oy (A9 —A[BE— (0t a) B+ a o
q;cosqj(z—1/2), foreven solutions, +8(Bi—a* a)(Bn—az), (B7)
: sin g;(z—1/2), for odd solutions. wherew,, is defined by(B4). The minimum of(B4) is
The boundary conditions u'(0)=u*'(0)=4¢'(0)
—ky(0)=0 lead to w<th>=B—g+c9(g2) (B8)
VAw; 1Aw, 1lAw; C1f1(0) It occurs at
1UAw; 1UAw, 1Aw; || C.f50) | =0, Ny ©
Ny _ & 2
1-kh, 1—kh, 1—khs/ \ C4fi(0) w =5 T0(9%), (BY)
A7
A7) which is the condition for first-order parametric resonance.
with The eigenvector at the minimum is
-1 . w
g; “cotq;/2, for even solutions, — _ - i 2
h,= i . i - (A8) pm+=8way| any— BNE 5 (1+i)g+0O(g°). (B10)
—(q; “tanq;/2, for odd solutions.
The zeros of the determinant of the matrix on the left-hand APPENDIXC:  CALCULATION OF THE NONLINEAR
side of (A7) definew, which can be calculated numerically. COEFFICIENTS FOR k—0
In order to calculata(«) we take in(33) only two am-
APPENDIX B: APPROXIMATED STABILITY ANALYSIS plitudes, say A with a.=*al2 and
7—k(cos(a/2) e*sin(a/2)-g,). The projection of; onto
The ansatz u', defined by(38) with k; =k, and ;= a/2 gives
w= (€924 y* e 192)coNrrz, (ul|f3)
Sor - ClALPra@IA A D
/-L* — (#_eiwt/2+ /-Lj efithZ)COSN 7z, (Bl)

In the limit k— 0 the dipolar mode becomes independent
together with Eq(18) andA =0 turns(16a,16b into of z, i.e.,
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k o0
m(z,t)=pu(t) and ¢(Z,t)=—z[ﬂ(t)+ﬂ*(t)]- a(a)= _E a,e?"®,  with a_,=a*. (D3)
(C2 T

The last equation is obtained frofh8). The solution 0f(32)
for n=2 becomes therefore simply

The Fourier coefficients are given by

1(~ :
anz—f a(a)e 2" da. (D4)
m=m5=0, d,4,=—-2lmy’B(z).  (CI e
For k.—0 wherea(«) is very well approximated by54),

The nonlinear terms of the third-order inhomogeneity the Fourier components are

reads
2 4 1 a 0 DS)
. my . =5, a1=5—i5, a=1=0.
('_9)[7(@_"Qy)¢1_2m1|m1|2} 3 3 2 i
Using the identi
— mi® (e J v

(_i_g) 2 (&x+i(9y)¢1_2mi|ml|2}

T ) , *
— e—27r|(m/N)J:N a ' D6
[(dx+idy)my|my|®+c.c]B(2) Nl) > Amenn (D6)

N
> a
j=1 n=-o
We have dropped the exchange terms because they contriye can expresP also in terms of the Fourier components of
ute only in second order d&. For the projection ontui we a(a)
have to calculate only the term ¢E4) which is proportional
to expfk,r). After some tedious calculations we get p

1

- - D7
NSZ_ ann—1 (O7)

T — 2 2
ul|f3)=6Rew[|A |*ta(a)|A_|7]A,, o . .
(uilfs) (1A (@]A-[A, RegularN-wave patterns exist iP is positive. In the limit

wherea is given by(54) with k.—0 all regular patterns exist because of
—2|mW C5 P= >0, for N>1 D8
%~ 3Rew €9 Tan-3 > T he (08)
and In the general case regular patterns will exist at least for

large N if ay is positive anda(a) is a smooth function. In
w={(u?()[2u(—t) w* (1) + w(—t) (1) + p(— ) u* (1) ]);, fact it is sufficient that the coupling function does not have
(Cé steps which would lead t¢a,|~1/n. For all numerically
calculated coupling functions | have always found that
a(a) is continuous anday>0. Moreover, all regular
N-wave pattern exist becausa(a) is always smooth
—_— (C7)  enough.
Shwne In order to test the internal stability of the regular pat-
| terns, the eigenvalue proble®l) has to be solved. This can
be done by the ansatz

where( ), denotes the temporal average. Eowe get

—6Rew
C:

Using (B10) one finds that at the minimum of the neutra
curvew is purely imaginary in leading order. This has two

consequencesi) ¢ changes its sign near the minimum of the C.=e2m(mMN)  m_gq N—1 (DY)
neutral curve(ii) ag scales like 1g. Calculating the next- J ’ R |
order terms we get55) plus terms of ordeg®. Using (D6) we get the eigenvalues
APPENDIX D: REGULAR N-WAVE PATTERN An=P|1—N 2 ammN)_ (D10
Regular N-wave patterns are characterized by equally =
spaced evenly angles;. That is, Because ofD7) A\o=—1 holds for anyN. For continuous
coupling functions regulaN-wave patterns become eventu-
™ ally unstable ifN gets large. In the long-wavelength limit

4N (DD where only two Fourier components are nonzero all patterns
with N>3 are internally unstable. Hexagofi®., N=3) are

Furthermore all amplitudeB; are equal. Using50) and(60)  just marginal. That is,
we get
— aS
1 Nyo=I > (D11

Pj=P sV a(mj/N)— 1’ (02)

I

Squares are stable because= — 1/5.
It is convenient to introduce the Fourier series of the cou- In order to test the external stability of reguldrwave
pling functiona(«): patterns we have to calculaé?) which yields
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© _ and its cyclic permutations. The denominalbiis the deter-
AMa)=1—-NP X, a,e?"Ne. (D12)  minant of the matrix ifE2). In leading order oy it is given
n=—o by

By using (D7) we immediately verify(63). For k,—0 any
regular pattern is externally stable because only the Fourier
componentsa, and a, are nonzero. In the general case of Becausev; is always positive, we immediately see that
continuous coupling functions, regular patterns are externally’;>0 for j=1,2,3 is only possible if al;’s have the same

D =u(u;+uyv3)+cycl. perm. (E4)

stable ifN is sufficiently large. sign. Thus the basic region of allowed angles is given by
(65).

APPENDIX E: THREE-WAVE PATTERNS The general three-wave pattern is internally stable if the

FOR k,—0 AND g—0 real part of each root of the characteristic polynomial defined

by the determinant of the matrix qB61) is negative. The
We calculate the general three-wave pattern for the coucharacteristic polynomial reads

pling function (54) with ag;—< (i.e. g—0). We introduce

the abbreviations A3+ A2+ CN+Co=0 (E5)
with
U3:assin Z(QZ_CY:L), U3:§+§COS Zaz—al) C2=P1+P2+P3, C0=P1P2P3D (E6)
(ED and
and the cyclic permutations of them. The amplituéigsare _ 2
solutions of c,=P,P3(1—vi+uj)+cycl perm. (E7)

In accordance with the well-known Rough-Hurwitz criterion

1 v3—Uz vptUz\ [Py 1 (see, e.g., Ref. 3%he real part of is always negative if and
v3tU3 1 vi—Up P,|=| 1], (g2 onlyif
Vo~ Uy Ul+ uq 1 P3 1 Czcl>C0>0. (ES)
which are given by Since P;>0 the last inequality leads tB>0 which is in
leading order always fulfilled. Evaluatingyc; —cg in lead-
_ Us(us+Uptug) -1 ing order ofag shows that the first inequality also holds.
1= +O(a, (EJ . -
D Thus any possible three-wave pattern is internally stable.
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