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The dynamics of dissipative patterns built up by parametrically excited spin waves in an insulating ferro-
magnetic film driven by out-of-plane parallel pumping is studied theoretically. Crystal-field anisotropies and
surface pinning of spins are neglected whereas the dipolar field is fully included. Near the instability threshold
the dynamics are governed by amplitude equations for the slowly time-varying amplitudes of pairs of unstable
spin waves. Because of rotational symmetry an infinite number of spin waves having the same wavelength but
propagating in different directions become unstable simultaneously. The dynamics of the amplitude equations
is mainly determined by a nonlinear coupling coefficient which is not an even function of the difference
between the angles of propagation. A detailed description of the numerical method of the calculation of the
coefficients of the amplitude equations is given. From the amplitude equations stationary solutions and their
stability are calculated. The only stable patterns are squares and three-wave patterns; hexagons are unstable.
For frequencies of the pump field above some threshold all stationary patterns are unstable. In this regime the
dynamical behavior is dominated by switching between squares and/or three-wave patterns. The pattern
switching is extremely sensitive to noise which leads to a weak noise-induced turbulence.@S0163-
1829~96!05122-3#

I. INTRODUCTION

Pattern formation in systems driven far from thermal
equilibrium has universal features which can be found in
many different physical, chemical, and even biological sys-
tem ~for a review see Ref. 1!. Most of the physical systems
which have been studied experimentally as well as theoreti-
cally are fluids driven in various ways. The reason for that is
twofold. First, the basic macroscopic equation of motion of a
simple fluid, the Navier-Stokes equation, have been well
known for more than 150 years. This equation is well estab-
lished and its limits are very well known. It is the foundation
on which all theoretical studies rely. But the main reason for
the popularity of fluids is that it is easy tovisualizethe pat-
terns and their formation.

This visualization gives important information about the
state of the system which fruitfully stimulates theoretical ap-
proaches. The theories lead to predictions which can often be
tested in relatively cheap experiments. Thus the visualization
of the pattern formation in fluids leads to a strong interaction
between theory and experiment which is an important factor
for a successful understanding of pattern formation.

But how typical is pattern formation in fluids for nonequi-
librium pattern formation in general? Which behaviors are
universal? In order to answer these questions, totally differ-
ent systems were studied and still have to be studied. In this
paper I investigate insulating solid-state ferromagnets well
below the Curie temperature. There are well-known systems
for nonlinear pattern formation in thermal equilibrium.2 Fer-
romagnets can be driven away from thermal equilibrium by
fast oscillating electromagnetic fields.

In 1952 a nonequilibrium effect in ferromagnets driven in
this way was found by Bloembergen and Damon.3 They ob-
served an anomalous behavior in the ferromagnetic reso-
nance if the strength of the driving microwave~pump field!
exceeds some threshold. In 1957 Suhl was able to explain

successfully this typical nonequilibrium effect byparametric
resonanceof spin waves.4 In the last ten years high-power
ferromagnetic resonance has become a well-known example
for deterministic chaos in a solid-state system.5

The nonlinear dynamics of parametrically excited spin
waves is mostly investigated by means of traditional ferro-
magnetic resonance techniques. These methods are unable to
visualize the patterns which emerge above the threshold;
they provide only spatially averagedinformation about
them. There are a few experiments reported in the literature
where inelastic Brillouin scattering was used to investigate
these patterns.6,7 But this method is also unable to visualize
patterns in real space because of the inelastic character of the
scattering. The lack of visualizations of pattern formation in
high-power ferromagnetic resonance is a major disadvantage
compared to fluid systems.

What is an appropriate method of visualization of para-
metrically excited spin waves? Equilibrium patterns in mi-
cromagnetism can be visualized very well withFaraday ro-
tationbecause the rotation of the polarization of a light beam
penetrating a sample depends on the component of the mag-
netization parallel to the beam. This method has also been
successfully applied in the measurement of precession cones
in ferromagnetic resonance.8

In order to have optimal experimental conditions of visu-
alization, afilm with the static field perpendicular to the film
plane would be ideal. The reasons for that are twofold. First,
in a film the pattern is quasi-two-dimensional. Second, the
static field should be parallel to the light beam in order to
measure the precession cone as optimally as possible. From
the experimental point of view either parallel or transverse
pumping is appropriate. In this paper only parallel pumping
is investigated because of simplicity.

The aim of this paper is to investigate and to predict spin-
wave patterns and their dynamics in a system which is opti-
mized as above in order to get good chances for successful
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pattern visualization. Because of simplicity a very ideal film
is studied. It is a uniform one without inhomogeneities and
impurities. In the (x,y) plane it extends to infinity with an
overall constant thickness. The only intrinsic fields are an
isotropic exchange field and the dipolar field. Furthermore,
the surface spins are assumed to be free. Crystal-field
anisotropies and surface pinning of the spins are neglected.
This is not a matter of principle. The restriction is introduced
only for simplicity; the theory presented below can be easily
extended in this direction.

It is very helpful especially for the discussion of universal
aspects of pattern formation to compare out-of-plane parallel
pumping with two pattern-forming systems from fluid dy-
namics. The first system is theFaraday instabilityobserved
in 1831 by Faraday.9 It is a parametric resonance instability
of surface waves on a fluid which is driven by a vertical
oscillation of the fluid container. Squares, stripes, hexagons,
and spatially quasiperiodic patterns, as well as defects in
these patterns have been observed.1 The similarity to the out-
of-plane parallel pumping of a ferromagnetic film is evident
because of parametric resonance. Furthermore both systems
are in the ideal case translationally and rotationally symmet-
ric. The latter symmetry has the consequence that at the in-
stability threshold a continuous set of waves with the same
wavelength but propagating in different directions become
unstable at once. Nonlinear interaction between these waves
is responsible for the kind of patterns the system will select.
In the case of the Faraday instability this leads mainly to
squares.10 In the case of out-of-plane parallel pumping I have
predicted squares and three-wave patterns.11

The general behavior of a pattern forming system is
strongly influenced by symmetries. They are important
sources of universalities. From this point of view one recog-
nizes an essential difference between Faraday instability and
spin-wave instability. The fluid system has an additional
symmetry which is strongly broken in the magnetic system:
the reflection symmetry at an arbitrary plane perpendicular to
the surface. The reason for the symmetry breaking is the
magnetic field, more precisely, the dipolar field which is also
responsible for the parallel pumping instability.

For that reason I compare pattern formation in out-of-
plane parallel pumping also with another well-studied fluid
system where the reflection symmetry is also broken but
which is still translationally and rotationally symmetric. It is
the rotatedRayleigh-Bénard system. The rotation breaks the
reflection symmetry. When the angular velocity is below a
threshold, the system behaves like a nonrotated Rayleigh-
Bénard convection where convection rolls appear for Ray-
leigh numbers~i.e., for temperature differences! which are
larger than a critical value. But above the threshold these roll
patterns are unstable even at the onset of convection. This is
the Küppers-Lortz instability.12 In 1980 Busse and Heikes
analyzed the consequence of this instability based on the
investigation of a system of three coupled amplitude
equations.13 They found that when a new convection roll
grows due to the Ku¨ppers-Lortz instability the old roll dis-
appears simultaneously. Thus one roll pattern is switched off
and at the same time a new roll pattern, rotated by a finite
angle ~roughly 60°), is switched on. They also did experi-
ments which seemed to confirm this analysis. I have shown
that thispattern switchingshould also occur in out-of-plane

parallel pumping.14 From the general point of view the rea-
son for pattern switching in both systems is the lack of re-
flection symmetry.

The starting point of the present theoretical investigation
is the basic equation of motion of micromagnetism, i.e., the
Landau-Lifshitz equation. In a first step the stability of the
ground state is calculated. At the instability threshold of
parametric resonance nontrivial solutions bifurcate. In lead-
ing order these solutions are linear superpositions of the de-
stabilizing spin waves. In a second step a system ofampli-
tude equationsfor the amplitudes of the standing spin waves
is derived in the framework of multiple-scale perturbation
theory where the smallness parameter is the distance from
the threshold.

It is very common to investigate pattern formation in
terms of amplitude equations.1,15 The advantage is twofold.
First, from the point of view of bifurcation theory they are
normal forms and can therefore be rigorously derived. For
that reason they are universal which means that their form is
determined completely by symmetry and the kind of symme-
try breaking caused by the instability. All other properties of
the system are condensed into a few coefficients. The second
advantage is that pattern formation can be investigated even
though the coefficients of the amplitude equations are not
known explicitly either because the basic equation is not
known or because it is to difficult to derive the coefficients.

The approach presented in this paper is different from
approaches found in the literature of spin-wave instabilities.5

The most systematic one is theS theory.16,17 In the language
of pattern formation theS theory is a multiple-scale pertur-
bation theory. It starts from theundampedsystem. The
smallness parameter is the strength of the parametric driving.
The resulting equation of motion describes the dynamics of
the amplitudes of all spin waves~i.e., solutions of the linear-
ized, undamped, undriven system! fulfilling the parametric
resonance condition~i.e., frequency of spin waves equals
half the driving frequency!. Damping is introduced phenom-
enologically into the equations of motion. It is not related to
the Landau-Lifshitz damping. Amplitude equations can also
be derived from the equations of motion of theS theory.
Milner has successfully applied this two-step approach~i.e.,
basic equation of motions→ S theory→ amplitude equa-
tions! for the Faraday instability.10

The main reason for starting directly from the Landau-
Lifshitz equation is that theS theory is applicable only for
small damping constants, because the threshold for paramet-
ric resonance scales linearly with the damping constant. An-
other disadvantage is that theS theory does not include the
damping in a systematic way. But linear and nonlinear
damping terms have strong influences on pattern formation.10

An attempt to study pattern formation in high-power fer-
romagnetic resonance in terms of amplitude equations was
done by the author several years ago.18,19 A general discus-
sion of the possible forms of amplitude equations in terms of
symmetry was given by the author in Ref. 20. Very recently
Matthäus and Sauermann derived amplitude equations for a
ferromagnet with an uniaxial internal anisotropy field but
with dipolar field neglected.21 In the present work the dipolar
field is fully included. The amplitude equations are derived,
their coefficients are calculated, and their solutions are dis-
cussed. The main results have been previously published in
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two short communications.11,14

The paper is organized in the following manner. The basic
equations of motions are presented in Sec. II. In Sec. III the
stability of the ground state is calculated numerically as well
as in an analytical approximation. In Sec. IV the amplitude
equations are derived. The stationary solutions of the ampli-
tude equations as well as their stability are investigated in
Sec. V. The dynamical behavior of the amplitude equations
are discussed in Sec. VI. In the last section~Sec. VII! the
results are summarized and their relevance for experiments
are discussed. Also concluding remarks concerning exten-
sions of the theory in various directions are given.

II. THE BASIC EQUATIONS OF MOTION

Static magnetization patterns are very well described by
the theory of micromagnetism.2 They are local minima of the
free energyW. Micromagnetism assumes that the tempera-
ture is much below the Curie temperature and that typical
length scales of the patterns~e.g., the width of a domain
wall! are much larger than the atomic scale~e.g., the diam-
eter of the crystallographic unit cell!. The state of a ferro-
magnet is therefore determined by the magnetization field
M (r ). Its dynamics is governed by the Landau-Lifshitz~LL !
equation,

1

g
] tM52M3Heff2

g

M0
M3~M3Heff!, ~1!

whereg is the gyromagnetic ratio,M0 is the value of the
magnetization in thermal equilibrium,Heff(r ,t)52dW/dM
is the effective magnetic field at siter , andg is the relative
line width of the resonance line. The LL equation will be our
basic equation of motion like the Navier-Stokes equation for
fluid dynamics.

The damping term of the LL equation~i.e., the second
term on the right-hand side! is a phenomenological
one. In the literature other damping terms are also used.
The most common ones are~i! the Gilbert damping
(g/gM0)M3] tM , which is mathematically
equivalent to the Landau-Lifshitz damping and~ii !
the Bloch-Bloembergen damping G'Mxex1G'Myey
1G i(Mz2M0)ez , which is mainly used in connection with
ferromagnetic resonance. Only the Landau-Lifshitz and Gil-
bert damping leave the length of magnetization vector un-
changed~i.e., uM u5M05const).

In theories of parametrically excited spin waves, damping
is usually introduced in another phenomenological way.5,16,22

The magnetization is described by a superposition of spin
waves. The dynamics is governed by a equations of motion
for the amplitudes of the spin waves. They are derived from
the undampedLL equation. Damping is introduced by add-
ing phenomenological damping terms. Their coefficients are
assumed to depend on the wave number. The coefficient of
the linear term can be obtained from measurements of the
threshold of parallel pumping.22 These measurements are not
consistent with the coefficient one would get from the LL
equation. From this point of view the damping term in the
LL equation should be replaced by a spatial convolution
term. ButM5const and the correct wave-number depen-
dence of the linear damping term do not determine it

uniquely. Such a generalized damping term can be derived
only from a microscopic theory.23,24 Nevertheless we use in
this paper the LL equation~1! because we want to demon-
strate our method for a simple case. A second reason is that
the state of the art in visualization of a parametrically excited
spin-wave pattern is far from the point where an accurate
quantitative comparison between theory and experiment is
possible.

The LL equation has to be completed by the specification
of Heff,

Heff5~H1hcosṽt !ez1D¹2M2¹FM . ~2!

The first term is the external field; the second term comes
from the exchange interaction; the third term is the dipolar
field where electromagnetic wave propagation has been ne-
glected. The dipolar field is the gradient of the magnetostatic
potentialFM which obeys Poisson’s equation,

DFM5H 4p¹M , inside the sample,

0, outside the sample.
~3!

We assume a film of thicknessd infinitely extended in the
(x,y) plane. The boundary conditions are

u¹FMu~ uzu→`!5]zM uz505]zM uz5d50. ~4!

This Neumann-like boundary conditions for the magnetiza-
tion are caused by the fact that we assume free surface spins.
In the case of strong surface pinning the boundary conditions
would be Dirichlet-like.

Since the length of the magnetization vector is invariant
under the dynamics, the number of independent components
of M is two rather than three. The magnetization is defined
by a point on the sphere with radiusM0 . It is convenient to
project this sphere stereographically onto the (x,y) plane.
Interpreting each point in this plane as a complex number,
the magnetization reduces to a complex fieldm(r ,t) which is
defined by

m5
Mx1 iM y

M01Mz
. ~5!

The transformation back toM reads

M5
M0

11umu2 S m1m*

im*2 im

12umu2
D . ~6!

The LL equation in terms ofm reads25

] tm5~ i2g!F2 l 2Dm12l 2
m* ~¹m!2

11umu2
1
1

2
~]x1 i ]y!fM

2
m2

2
~]x2 i ]y!fM1m~vH1vhcosvt2]zfM !G .

~7!

We have introduced the following dimensionless time and
space units:

t→
t

4pgM0
, r→rd ~8!

and parameters
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l5
1

d
A D

4p
, fM5

FM

4pM0d
,

vH5
H

4pM0
, vh5

h

4pM0
, v5

ṽ

4pgM0
. ~9!

The Poisson equation~3! becomes

DfM5~]x1 i ]y!Sm*B~z!

11umu2D1~]x2 i ]y!S mB~z!

11umu2D
1]zF S 12umu2

11umu2DB~z!G , ~10!

whereB(z) is the box function

B~z!5H 0, for z,0,

1, for 0<z<1,

0, for z.1.

~11!

The advantage of writing the Poisson equation with the box
function is that we do not need to distinguish between inside
and outside of the sample. Furthermore the correct boundary
condition for the dipolar field at the surface is automatically
fulfilled. The boundary conditions~4! turn into

u¹fMu~ uzu→`!5]zmuz505]zmuz5150. ~12!

Note that the boundary condition form would be nonlinear
in the case of surface pinning of the spins.

Equations~7! and~10! together with the boundary condi-
tion ~12! represent the basic equations of motion from which
we will start our investigation. There are five independent
parameters: The exchange lengthl measured in units of the
film thickness, the damping constantg, the static fieldvH
and the pump fieldvh measured in units of the demagneti-
zation field ~i.e., 4pM0), and the frequency of the driving
field measured in units of 1/(4pgM0).

III. THE INSTABILITY OF THE GROUND STATE

The trivial stationary state of~7,10,12! is

mT50, fM
T 5

uzu2uz21u
2

, ~13!

where the magnetizationM is parallel to the external field.
The magnetostatic potentialfM

T causes the dipolar field
2¹fM

T 52ez which reduces the external static fieldvH .
This demagnetization leads to the well-known instability of a
uniformally magnetized sample against domain formations
for vH,1. In that case the trivial state~13! is not the ground
state. We are not further dealing with this case. Therefore we
assume that alwaysvH.1 holds. The trivial state~13! is
then the ground state of the undriven system.

It is well known that in the bulk the ground state becomes
unstable if the pump field exceeds some threshold. The de-
stabilizing modes are spin waves which fulfill the parametric
resonance condition~i.e., vk5v/2) and propagate perpen-
dicular to the external field.22 But the boundaries make the
subject more complicated. First they discretize roughly
speaking thez component of the wave number. But, as we

will see below, the bulk analysis is still correct in so far as
the waves which are roughly uniform inz direction cause the
instability. The only exception is related to the second effect
of the boundaries, namely thehybridization~i.e., the avoid-
ing of crossings of different branches! of waves with differ-
ent z components in the wave number. Near a hybridization
region the threshold of each wave will be increased which
may allow another wave to become the most unstable one.

In order to study the stability of the ground state~13! we
have to calculate whether an infinitesimally small deviation
increases in time or dies out. Therefore the linearized equa-
tions of motion for the deviationsm andf5fM2fM

T has to
be solved. They are

] tm2~ i2g!F2 l 2Dm1
1

2
~]x1 i ]y!f

1~vH211vhcosvt !m]50 ~14a!

and

Df2@~]x1 i ]y!m*1c.c.#B~z!50. ~14b!

The boundary conditions are still~12!.
Equation~14a!, its conjugated complex, and~14b! define

a system of partial differential equations form, m* , and
f. This system is invariant under translation symmetry in the
plane and rotation symmetry around thez axis. Since some
coefficients are time periodic due to the driving field we
make a Floquet ansatz:

S m

m*

f
D ~r ,t !5S eiam~z,t !

e2 iam* ~z,t !

2ic~z,t !/k
D eikr1lt, ~15!

wherek5kxex1kyey is an arbitrary in-plane wave number
with kx5kcosa and ky5ksina. The functionsm, m* , and
c are solutions of

] tm1lm2~ i2g!@2 l 2]z
2m1 l 2k2m

1~vH211vhcosvt !m2c#50, ~16a!

] tm*1lm*1~ i1g!@2 l 2]z
2m*1 l 2k2m*

1~vH211vhcosvt !m*2c#50, ~16b!

]z
2c2k2c2k2~m1m* !B~z!/250, ~16c!

with the boundary conditions

~m,m* ,c!~z,t12p/v!5~m,m* ,c!~z,t !,

c~ uzu→`!50, ~17!

]zmuz505]zmuz515]zm* uz505]zm* uz5150.

It is often convenient to eliminatec by integrating~16c!:

c~z,t !52
k

4E0
1

e2kuz2z8u@m~z8,t !1m* ~z8,t !#dz8.

~18!
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The imaginary part ofl is only determined up to integer
multiples ofv, similar to the wave vector in the Bloch an-
satz for the wave function of an electron in a crystal. We will
restrict ourself to the first Brillouin zoneuImlu<v/2.

Equations~16! and ~17! define an eigenvalue problem.
The real part of the eigenvaluesl will tell us whether the
ground state is stable or not. It is also important to know the
unstable eigenfunctions, because in leading order the pat-
terns emerging at the threshold are superpositions of these
eigenfunctions. We call these eigenfunctions ‘‘spin waves’’
although they are strictly speaking not spin waves because
they are the solution of the linearized butdriven LL equa-
tion. For small values ofg andvh the difference is not very
large but important. It is therefore instructive to solve the
eigenvalue problem forg5vh50.

A. Mode spectrum

We are looking for eigensolutions of theundamped~i.e.,
g50) andundriven ~i.e., vh50) eigenvalue problem~16!
with boundary conditions~17!. The eigenvaluel is purely
imaginary, i.e.,l5 ivk . Since the time-periodic term is ab-
sent, the eigenfunctions are constant int. Appendix A shows
the way to solve this eigenvalue problem exactly. But there
remains a transcendental algebraic equation forvk which
can be solved only numerically. Figure 1 shows the disper-
sion relation of several eigensolutions which are character-
ized by the number of nodes inz direction.

It is possible to get remarkably good results outside the
hybridization area from an analytic approximation which
works also very well for the stability thresholds. Furthermore
a generalization of this approximation becomes the basis of
the numerical treatment of the linear stability analysis and
the calculation of the coefficients of the amplitude equations.

The approximation can be divided into three steps. First,
we make the ansatz

~m,m* !5~m0 ,m0* !cos~Npz!, ~19!

whereN is an integer denoting the number ofnodesof the
eigenfunction inz direction. This ansatz fulfills the boundary
conditions~17!. It also reflects the symmetry of the eigen-
value problem under reflection at the planez51/2. Second,
we calculatec exactlyby using ~18!. Note thatc contains
terms of the form exp(6kz) caused by the boundaries. In the
third step weprojectc onto cos(Npz). That is, we multiply
~18! with cos(Npz), integrate overz from zero to one, divide
the result by*0

1cos2(Npz)dz, and multiply the result again
with cos(Npz). This leads to

c52bN~m01m0* !cos~Npz!

1terms orthogonal to cos~Npz!, ~20!

where

bN5
k

11d0N
E
0

1E
z

1

ek~z2z8!cos~Npz!cos~Npz8!dz8dz.

~21!

Hered i j is the Kronecker symbol. Calculating the integrals
leads to

b05
1

2 S 12
12e2k

k D5
k

4
1O~k2! ~22a!

and

bN5” 05
k2

2~k21N2p2!
2
k3@12~21!Ne2k#

~k21N2p2!2
. ~22b!

This approximation ofc inserted into~16! leads to the eigen-
frequency

vk
~N!5AaN

22bN
2 ~23!

with

aN5vH211 l 2~k21N2p2!1bN . ~24!

Sinceb05O(k) we get

vk
~0!5vH211

k

4
1O~k2!. ~25!

This nodeless mode is thedipolar modebecause in leading
order of k the dipolar interaction dominates. The other
modes~i.e., N.0) are ferromagnetic spin waves where the
exchange interaction and the dipolar interaction are equally

FIG. 1. Exact~solid lines! and approximate~dotted lines! dis-
persion relations forvH51.1 and~a! l 250.0025, ~b! l 250.007.
The numbers denote mode indices.
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important. Fork→` we get the well-known bulk dispersion
relation because 2bN→k2/(k21N2p2).

Figure 1 shows a very good agreement between the exact
dispersion relation and the approximate one. Of course the
approximation cannot reproduce the hybridization because
the ansatz~19! assumes independent branches. In the exact
spectra crossings between two even modes or two odd modes
are avoided by hybridization.26,27 But crossings between
even and odd nodes are possible because they belong to dif-
ferent irreducible representations of the inversion group. The
size of the hybridization region increases with decreasing
film thickness~i.e., increasingl ).

B. Linear stability analysis

In order to analyze the stability of the ground state we
have to discuss the eigenvalues of~16! with finite damping
~i.e., gÞ0) and finite driving~i.e., vhÞ0). The sign of the
real part ofl(k) decides whether the trivial solution is stable
~negative sign! or unstable~positive sign! against a particular
mode with wave numberk. The value ofvh where the real
part of l is exactly zero defines the instability threshold
above which this particular mode will grow exponentially.
This threshold is called theneutral curvevhNC(k). In the
case of parametric resonance it has local minima at values of
k where the parametric resonance conditionvk'nv/2, n
integer, is fulfilled.1 The lowest minimum belongs to the
first-order parametric resonance~i.e.,vk'v/2). The ground
state is only stable if the real parts ofl of all modes are less
than zero. The instability thresholdvhc is therefore given by
the absolute minimum of the neutral curve, i.e.,
vhc5minkvhNC(k). Thus the parametric resonance causing
instabilities is always of first order.28

Based on the approximation~19! made in Sec. III. A we
are able to calculate approximatively the neutral curve. In
accordance with the Floquet theory we make the ansatz

~m0 ,m0* !5~m1 ,m2!eivt/21~m2* ,m1* !e2 ivt/2. ~26!

This ansatz together with~20! is put into ~16a! and ~16b!.
We calculate the neutral curve directly by settingl50 in
~16a! and~16b!. This leads to a generalized eigenvalue prob-
lem withvh as the eigenvalue. The characteristic polynomial
can be solved because it is quadratic invh

2 ~for details see
Appendix B!. The minimum of the neutral curvevhNC

(N) in
leading order ofg is

vhc
~N!5gvA11

v2

4bN
2 ~27!

and takes place atvk
(n)5v/21O(g2). It can be shown that

vhc
(N),vhc

(N11) . Thus the dipolar mode~i.e., N50) causes
the instability. This result is consistent with the bulk calcu-
lation which leads to an instability of spin waves propagating
perpendicular to the static field.22

The numerical approach to calculate the neutral curve is
based on an extension of the approximations~19! and ~26!.
We make the ansatz

S m

m* D 5 (
n50

N

(
l51

2L S m2l22L21,n

m2l22L21,n* D ei ~ l2L21/2!vtcos~npz!.

~28!

The exact solution of~16! fits also into this ansatz but with
N5L5`. ThusL andN define numerical cutoffs int and
z, respectively, and~28! is therefore a Galerkin ansatz.15

Again c is eliminated by~18!. After projecting ~16a! and
~16b! onto ei ( l2L)vtcos(npz) we get a homogeneous system
of 4L(N11) linear algebraic equations for 4L(N11) un-
known coefficientsm2l22L21,n and m2l22L21,n* . Because
~16! is linear invh , it is a generalized linear eigensystem
wherevh is the eigenvalue. The characteristic polynomial is
a polynomial of order 2L(N11) in vh

2 because of symme-
try. The neutral curvevhNC is given by the smallest positive
solution of this polynomial. I have solved this generalized
eigensystem with a standard routine from theEISPACK sub-
routine package. It also yields the eigensolution (m,m* ,c)
which is the starting point for the derivation of the amplitude
equations in Sec. IV.

Figure 2 depicts several numerically obtained neutral
curves. Each relative minimum is related to the first-order
parametric resonance of a particular mode. For decreasing
damping g the minima get closer to zero and become
sharper. The distance to zero~i.e., the threshold! scales like
g whereas the curvature scales like 1/g2.

The v dependence of the relative minima of the neutral
curve is shown in Fig. 3. The left-hand part of the figure
looks almost identical to Fig. 1~a! because the deviation from
the parametric resonance conditionv52vk is of orderg2.

FIG. 2. Neutral curves for several values ofv around the hy-
bridization point in Fig. 1~a!. Parameters:vH51.1, l 250.0025,
g50.01,N54, andL52. An arrow denotes the absolute minimum
of the neutral curve; it defines the instability thresholdvhc and the
critical wave numberkc . Solid ~dotted! lines indicate points on the
neutral curve where spatially periodic solutions with wavelength
2p/k bifurcate super~sub!critically.
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The right-hand part of Fig. 3 shows the thresholds. The ana-
lytically obtained approximations are remarkable good ex-
cept near the hybridization area. Here the threshold increases
strongly. Therefore another mode becomes the most unstable
one ~usually the mode number one!. The width of the inter-
val in v where this is the case is roughlyindependentof the
damping constantg ~see Fig. 3!. At those values ofv where
kc switches from one mode to another a competition takes
place between two different instabilities. Such a point is
called acodimension 2point because it is defined by two
parameters of the system~herevh andv). All this does not
happen when the damping constantg is too large or the
coupling strength of the hybridized modes too low. There
will be no codimension-2 bifurcation either due to the com-
petition between the hybridized modes or between an addi-
tional mode. For example, the hybridization between the di-
polar mode and the second exchange mode in Fig. 1~b! is too
weak in order to change the qualitative behavior near this
point. There is only a very small and tiny peak in the thresh-
old vhc(v).

In the next section we derive the system of amplitude
equations governing the dynamics of the amplitude of the
most unstable modes. We do this only for the dipolar modes
which are the most unstable modes outside of hybridization
regions. The case near hybridization points will be treated
separately in a forthcoming paper.

IV. DERIVATION OF THE SYSTEM
OF AMPLITUDE EQUATIONS

In this section we describe in some detail how amplitude
equations can be derived in principle and how it is done
numerically.

The basic equations of motion~7! and~10! and the bound-
ary conditions~12! can be written in symbolic form as

F~u,vh!50 and B~u!50, ~29!

respectively, where of the pump fieldvh is thecontrol pa-
rameter, and

u~r ,t ![S m~r ,t !

m* ~r ,t !

fM~r ,t !
D ~30!

is theorder parameterwhich contains the magnetization de-
scribed bym andm* and the magnetostatic potentialfM .

From the previous section we know that the ground state
~13! becomes unstable atvh5vhc . Above the instability
threshold theamplitudesof the modes responsible for the
instability increase exponentially. The nonlinearities of the
equations of motion may eventually stop this growth. From
bifurcation theory it is expected that forvh→vhc the values
of the saturated amplitudes go to zero.29 In order to calculate
nontrivial solutions it is therefore natural to use a perturba-
tion theory withvh2vhc as the smallness parameter. The
perturbation theory we use is amultiple-scale perturbation
theory.15,30 Instead ofvh2vhc it is more convenient to in-
troduce a formal smallness parameterh which loosely
speaking is proportional to the amplitudes and which will be
set to one after the calculation. The order parameter as well
as the control parameter are expanded into power series of
h:

vh5vhNC~k!1vh1h1vh2h
21O~h3!, ~31a!

u5uT1u1h1u2h
21O~h3!, ~31b!

where uT denotes the ground state~13!. A multiple-scale
perturbation theory assumes that the amplitudes of the desta-
bilized modes vary slowly in time. It leads to a system of
equations of motion for these amplitudes calledamplitude
equationsor Landau equations. The latter name comes from
the similarity to Landau’s phenomenological theory of phase
transition. In the language of bifurcation theory these equa-
tions are normal forms.

We have expandedvh aroundvhNC(k) ~i.e., the neutral
curve at an arbitrary value ofk) instead ofvhc which is only
a special case~i.e., the minimum of the neutral curve!. This
means that we calculate the bifurcation of a spatially periodic
solutions from an arbitrary point on the neutral curve. After
that we will restrict ourselves to the physically relevant case
k5kc ~i.e., the absolute minimum of the neutral curve!.

Inserting the expansion~31! into the equation of motion
~29! and sorting out powers ofh we get a hierarchy of linear
equations and linear boundary conditions,

L@un#5fn , K@un#5bn for n51,2, . . . , ~32!

FIG. 3. Instability thresholdvhc and critical wave numberkc as
functions of v. Parameters:vH51.1, l 250.0025, N54, and
L52. Solid and dashed-dotted lines denote numerical values for
g50.001 andg50.01, respectively. Dotted lines denote approxi-
mate values. Bold lines denote the absolute minimum. The numbers
distinguish different modes.
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with f15b150. The operatorsL andK are defined by the
linearized equation of motion~14! for vh5vhNC and by the
boundary conditions~12!, respectively. The inhomogeneities
fn and bn depend on the solutionsuT, u1 , . . . ,un21 . Here
bn[0 because the boundary conditions~12! are linear. In the
case of~partially! pinned surface spins, the boundary condi-
tions are nonlinear andbnÞ0.

Since the first equation in this hierarchy is~14!, the gen-
eral solution is a linear combination of wave solutions~15!
propagating in different directions

u1~r ,t !5S (
j
eia j@Aj~Tn!e

ik j r1c.c.#m~z,t !

(
j
e2 ia j@Aj~Tn!e

ik j r1c.c.#m* ~z,t !

2

k(j @ iA j~Tn!e
ik j r1c.c.#c~z,t !

D ,

~33!

where

k j5k~cosa j•ex1sina j•ey…, ~34!

Tn5hnt, n51,2, . . . , ~35!

and wherem, m* , andc are solutions of~16! for l50 and
vh5vhNC(k). Note, that the amplitudes of counter-
propagating waves cannot be chosen arbitrarily because the
magnetostatic potential~i.e., the third component ofu) has to
be real. The solution~33! excludes all waves which are either
damped or growing on a time scale of orderh0. In the lan-
guage of bifurcation theory this means that we only want to
know what happens on the center manifold.

The amplitudesAj are assumed to depend slowly on time.
This is described by several time scales which are propor-
tional to inverse powers of the smallness parameterh. The
slow time dependence is formally established by introducing
new independent time variablesTn and by the replacement

] t→] t1 (
n51

`

hn]Tn. ~36!

This leads to additional terms in the inhomogeneitiesfn
which are proportional to time derivatives on slow scales.

In order to get nontrivial solutions of~32! the inhomoge-
neities have to fulfill a solvability condition becauseL is a
singular operator. For that reason we introduce the scalar
product

^uauub&5E E ~mamb1ma*mb*1fafb!d
3rdt. ~37!

We define a adjoint operatorL† by ^uauLub&[^L†uauub&.
The boundary conditionKu50 is in our case self-adjoint.
The solutionsu† of the adjoint problem can be obtained from
the solution~15! of the orginal problem by the transforma-
tion (y,t,m)→(2y,2t,(g2 i )m/2), i.e.,

uj
†~r ,t !5S e2 ia jm~z,2t !

i2g

eia jm* ~z,2t !

2 i2g

ic~z,2t !

k

D e2 ik j r. ~38!

The solvability conditions read

^u†ufn&50, n52,3, . . . . ~39!

It means thatresonant termsshould be zero. The inhomoge-
neities are build up from superpositions of terms of the form
c(z,t)exp(i(n51

n k j nr ). A term is resonant ifu(n51
n k j nu5k.

All inhomogeneities have two terms which are linear in
the amplitudesAj

fn115vhncosvtS ~ i2g!m1

~2 i2g!m1*

0
D 2]TnS m1

m1*

0
D 1O~A2!,

n51,2, . . . .

After the projection ontouj
† we get

St]TnAj5vhnShAj1O~A2! ~40!

with

St5E
0

1E
0

2p/vS m~z,2t !m~z,t !

i2g
1c.c.Ddtdz ~41!

and

Sh5E
0

1E
0

2p/v

@m~z,2t !m~z,t !cosvt1c.c.#dtdz. ~42!

Because of~36! and ~31a! the sum over all equations~40!
multiplied byhn yields

StȦj5~vh2vhNC!ShAj1O~A2!. ~43!

It is convenient to introduce the dimensionless control pa-
rameter,

e[
vh2vhNC

vh NC
5
h2hNC
hNC

. ~44!

It is negative~positive! below ~above! the threshold. After
dividing ~43! by vhNCSh we get the linear part of the ampli-
tude equations

t0Ȧj5eAj1O~A2!, ~45!

with

t05
St

vhNCSh
. ~46!

The characteristic time scale of the dynamics of the spin-
wave amplitudes are given byt0 /e. It diverges at the thresh-
old because ofe→0. This is the well-known critical slowing-
down at nonequilibrium phase transitions. For the
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approximation introduced in Sec. III we can calculatet0
analytically. Using the results from Appendix B we get for
the dipolar mode

t05
1

a0g
1O~g0!, ~47!

wherea0 is defined by~24!. Thus the time scale is, as ex-
pected, proportional to the inverse of the damping constant
g.

In order to get the nonlinear terms of~45! we first look at
the quadratic term off2 . It reads

2S ~ i2g!m1]zf1

~2 i2g!m1* ]zf1

2]z@ um1u2B~z!#
D , ~48!

whereB(z) is the box function~11!. The projection of this
term onto the adjoint solution~38! leads to the quadratic
term in~45!. From Sec. III we know that the modes are either
even or odd in thez direction. Therefore~48! is always odd.
From this it follows thatthe quadratic term in the amplitude
equations is absent for even modesbecause the adjoint mode
is also even and the projection is therefore zero.

Usually a quadratic term is absent since the most unstable
mode is the dipolar mode which is even. Only near hybrid-
ization points where an odd mode becomes the most unstable
one do we get a quadratic term. The dipolar mode is even
because we have assumed that the sample is symmetric un-
der reflection at the planez51/2. In a real sample this sym-
metry is often broken because the film is usually mounted on
a substrate which may have a different permeability than the
air above the film. Furthermore the substrate may change the
boundary conditions for the magnetization. In the following
we assume that the quadratic term is absent. The more gen-
eral case will be treated in a forthcoming paper.

In order to calculatef3 we need the solution of~32! for
n52. A general solution is the sum of a particular solution
and a solution of the homogeneous equation. The relevant
part of the latter one~i.e., the part on the center manifold! is
~33! where the amplitudesAj are replaced by some other
amplitudes. We omit this part because it leads only to a
renormalization of the amplitudesAj . From the quadratic
part ~48! of the inhomogeneityf2 we get terms like
c(z,t)AjAj 8exp@i(k j1k j 8)r # which lead to similar terms in
the solutionu2 . Actually the inhomogeneous version of~16!
should be solved forl50 and k5uk j1k j 8u. We do this
numerically by the Galerkin ansatz~28! wherec has been
eliminated by~18!. The nonlinear terms inf3 have the same
parity as the adjoint solutionuj

† . Thus the solvability condi-
tion leads always to a nonzero third-order term in the ampli-
tude equations~45!.

What is the general structure of this third-order term? We
can answer this question by looking at the possible reso-
nances off3 for kj . Since the nonlinear terms off3 are of the
form c(z,t)AjAj 8Aj 9exp@i(k j1k j 81k j 9)r #, nine different
combinations are possible~see Fig. 4!. Note that the ampli-
tude which belongs to2k j is Aj* . Three combinations lead
to a term of the formuAj u2Aj whereas six combinations lead
to a term of the formuAj 8u

2Aj with j 8Þ j . Thus the ampli-
tude equations up to third order read

t0Ȧj5eAj2cF uAj u21 (
j 8Þ j

a~a j2a j 8!uAj 8u
2GAj . ~49!

It can be shown that the coefficients of the nonlinear terms
are real. Thecoupling function a(a) has the following prop-
erties:

a~a→0!52, a~a1p!5a~a!, a~2a!Þa~a!.
~50!

The first property is caused by the fact that, e.g., the reso-
nances (j 8, j ,2 j 8) and (j , j 8,2 j 8) give the same contribu-
tions as (j , j ,2 j ) if k j 8→k j ~see Fig. 4!. The rotational sym-
metry is responsible for the second property.31 The last
property is caused by the fact that thedipolar field strongly
breaks the reflection symmetry at any plane perpendicular to
the film plane.

The broken reflection symmetry has strong consequences.
In order to see this we assume for a moment that it is not
broken which yields an even coupling functiona(a). In this
case the system of amplitude equations~49! can be written in
a variational form

t0Ȧj52
]L

]Aj*
, ~51!

where

L5(
j

F2euAj u21
c

2
uAj u41

c

2(
j 85” j

a~a j2a j8 !uAj 8Aj u2G
~52!

FIG. 4. All possible resonances which contributes to the third-
order term in the amplitude equation forAj . The notation,
j 1 , j 2 , j 3 means the resonancek j 11k j 21k j 3.
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is a real function calledLyapunov function. It corresponds to
the free energy in Landau’s phenomenological theory of
phase transitions. Itdecreases monotonicallyin time if the
amplitudes are solutions of~51!. Thus limit cycles or irregu-
lar oscillations are not possible fort→`. In systems like the
Faraday instability or the Rayleigh-Be´nard convection where
the reflection symmetry is not broken, Eq.~51! describes
therefore only stationary attractors. In our case the reflection
symmetry is broken, and the coupling function is not even.
In fact the odd part ofa(a) „i.e., @a(a)1a(2a)#/2… is usu-
ally quite large~see Fig. 5!. A Lyapunov function does not
exist. Therefore limit cycles or even chaotic motions are pos-
sible at the onset of the main instability. In Sec. VI we will
see that this is indeed the case.

The calculation oft0 , b, c, anda(a) is in general pos-
sible only numerically. The algorithm I have used is based
on the fact that all functions which are involved in the cal-
culation have the general form

F~r ,t !5(
j
A

1

nj
1

A
2

nj
2

cjexpF i S nj1k1r1nj
2k2r1nj

zpz

1nj
t v

2
t D1nj

funj
1k11nj

2k2uzG , ~53!

wherek65k(cos(a/2)•ex6sin(a/2)•ey), all n’s are integer,
cj is a complex number, andA6

2n[(2A6* )
n. The terms with

nj
fÞ0 are necessary to describe parts of the magnetostatic
potential which are obtained from exact integration~18!. It is
easy to write subroutines for such an integration and other
operations~multiplication, addition, scalar product, etc.! in
the function space defined by~53!. In order to construct the
solutionu2 four linear algebraic equations have to be solved
which I have done by using a standard routine from the
LINPACK subroutine package.

Of special importance is the coupling functiona(a). As
we will see in the next section, the functional dependence of
a on a tells us which patterns exist and which of them are
stable. In the limitkc→0 we can derive the functional form

of a analytically because the dipolar mode becomes uniform
in the z direction ~see Appendix C!:

a~a!5
4

3
1
2

3
cos 2a1assin 2a, ~54!

whereas is given by ~C5!. It can be calculated in general
only numerically. But forg→0 it is possible to do this ana-
lytically because the Galerkin ansatz~28! for L51 becomes
exact. We get

as5
kc
3vg

. ~55!

Thus, in leading order ofg the coupling function is an odd
function which reflects the strongly broken reflection sym-
metry. Nevertheless the even part of the coupling function,
although of higher order, will be important for the saturation
of the amplitude of the unstable spin waves.

Figure 5 shows a comparison between analytic and nu-
merical results for small values ofkc . The even part of
a(a) is quite well approximated by (412cos2a)/3. The er-
ror is not larger than one percent and is independent ofg.
The deviations in the odd part of the coupling function are at
least by a factor of 10 larger, and they strongly depend on
g.

The next order of the amplitude equations can be calcu-
lated in principle, but it would be an extremely tedious task
to do that. This is especially true for even modes where the
next term is of fifth order because the fourth-order term is
absent for the same reason as for the quadratic term~i.e., f4 is
always odd inz).

Higher-order terms are important ifc ~i.e., the overall
strength of the third-order terms! becomes small or negative.
Numerical calculations show thatc changes its sign near the
minima of the neutral curve~see Fig. 2!. At the minimum
c is always positive except near hybridization points. But the
point on the neutral curve wherec is equal to zero ap-
proaches the minimum forg→0. This behavior is typical for
parametric resonance because the resonance frequency usu-
ally depends on the amplitude which leads to a foldover of
the resonance line.32 In our case the demagnetizing field is
responsible for this frequency detuning.33

V. STATIONARY SOLUTIONS
OF THE AMPLITUDE EQUATIONS

In this section we investigate stationary patterns of~49!
and their stability. The general stationary pattern, called the
N-wave pattern, is built up fromN different standing waves,
i.e., N amplitudesAj are unequal zero whereas the rest is
zero.

It is more convenient to replace the amplitudes in~49! by

Aj5Rje
ix j , ~56!

which leads to

FIG. 5. The coupling functiona(a) for vH51.1, l 250.0025,
v50.22, andg50.001. The solid line is the numerical result for
N54, L52 whereas the dashed line is the analytical result~54!
with as given by ~55!. The insets depict the maximum of the rela-
tive deviation of the numerical result from the analytical result.
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t0Ṙj5eRj2cFRj
21 (

j 8Þ j

a~a j2a j 8!Rj 8
2 GRj , ~57!

t0Rj ẋ j50. ~58!

Thus x j5const for all waves. Two linear combinations of
x j are related to the translation symmetry in the (x,y) plane.
Assuminge,c.0 and introducing the scaling

t→
t0
2e

t, and Pj5
c

e
Rj
2, ~59!

we get

Ṗj5F12Pj2 (
j 8Þ j

a~a j2a j 8!Pj 8GPj . ~60!

Equation~60! does not contain the control parametere any
more. This fact has the important consequence thatthe dy-
namical behavior of the solutions is independent of the
strength of the control parameter. The control parameter
only determines the time scale on which the dynamics hap-
pens. Thus it is not possible to describe secondary instabili-
ties in the framework of a third-order amplitude equations
without quadratic terms. The dynamics is only determined by
the coupling functiona(a).

For a given set of angles$a1 , . . . ,aN% the stationary
N-wave pattern is uniquely given because it is determined by
a system of linear algebraic equations. But the solution does
not make sense for all possible angles because allPj ’s have
to be positive. Nevertheless solutions exist for a finite num-
ber of connected subsets in the angle space.

In order to investigate the stability of the stationary solu-
tions we linearize~60! around the solution. This leads to an
equation of motion for small perturbationsdPj which can be
solved by the ansatzdPj5Cje

lt. We get an eigenvalue
problem which separates into the nontrivial case

~Pj1l!Cj1Pj (
j 8Þ j

a~a j2a j 8!Cj 850, j51, . . . ,N,

~61!

and into infinitely many trivial cases where we immediately
get

l~a!512(
j51

N

a~a2a j !Pj , a¹$a1 , . . . ,aN%.

~62!

We define two kinds of stability.
Internal stability: A pattern will be internally stable if the

real parts of all eigenvaluesl of the nontrivial case~61! are
less than zero. Thus a perturbation of the amplitudes which
build the pattern decays to zero.

External stability: A pattern will be externally stable if
l(a) defined by~62! is less than zero for alla. External
stability means that the amplitudes which do not build the
pattern do not grow.

A pattern is stable if it is externally as well as internally
stable. If a pattern is externally unstable there will be at least

one interval ofa for which l(a) is positive. Figure 6 shows
l(a) for several types ofN-wave patterns. Using~60! and
~50! we get

l~a→a j !52Pj . ~63!

Thus the pattern is externally stable against waves with
angles from a finite interval arounda j . In the following we
calculateN-wave patterns and their stability for different val-
ues ofN.

A. One-wave patterns

The simplest pattern is built up from a single standing
wave, i.e.,P151 andPj5” 150. It is a stripe pattern similar
to the roll pattern in Rayleigh-Be´nard convection. From~61!
we find immediately that one-wave patterns are always inter-
nally stable becausel521. They are externally stable if
l(a)512a(a),0 for all a. This is true only if the mini-
mum ofa(a) is larger than one. In the limitkc→0 where the
coupling function has the form~54!, one-wave patterns are
always unstable becausel(p/2)51/3.0. In the general case
wherea(a) can be calculated only numerically, I have al-
ways found that the minimum of coupling functions is
strongly negative~see, e.g., Fig 5! due to the odd part of
a(a). The angle of the fastest growing wave is roughly
45° behind the stripe pattern~see, e.g., Fig. 6!.

This external instability of one-wave pattern is similar to
the Küppers-Lortz instability in rotated Rayleigh-Be´nard

FIG. 6. Examples of external instability. Parameters:vH51.1,
l 250.0025, g50.001, N54, L52, v50.25 yieldingkc50.117.
The nonvanishing amplitudes of a pattern are denoted by circles.
The radius of a circle is proportional to the amplitude. The growth
rate l(a) defined by ~62! is shown for a one-wave pattern, a
square, and a three-wave pattern (a2570° anda35102°).
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convection.12 This rotation breaks the reflection symmetry
and leads therefore to an odd contribution for the coupling
function a(a). But contrary to our situation the Ku¨ppers-
Lortz instability can be controlled by the angular velocity.
The odd part of the coupling function increases with the
angular velocity. If a threshold is exceeded the roll pattern
becomes unstable. The most unstable wave is roughly 60°
ahead of the roll pattern.

B. Two-wave patterns

Two-wave patterns are built by two standing waves with
amplitudes

P65
12a~6Da!

12a~Da!a~2Da!
, with Da5a12a2 .

~64!

SinceP6 should be positive two-wave patterns exist only if
either a(6Da),1 and a(Da)a(2Da),1 or
a(6Da).1. Thus they should always exist forDa near
zero becausea(0)52. For small values of the damping con-
stantg the odd part of the coupling functiona becomes very
large. Therefore the signs ofa(6Da)21 are always differ-
ent except forDa near zero and nearp/2. Because the odd
part ofa scales like 1/g the width of the interval of existence
scales likeg. Two-wave patterns aroundp/2 ~i.e., squares!
exist if a(p/2)11.0 which is the case forkc→0 since~54!
holds. Nothing changes qualitatively in the general case
where the coupling function can be calculated only numeri-
cally.

The analysis of the eigenvalue problem~61! leads to the
condition for internal stability which reads
a(Da)a(2Da),1. Thus patterns forDa near zero are al-
ways internally unstable. Squares are stable. This can be
proved in the limitkc→0 ~see Appendix D!. This seems to
be true also in the general case.

In order to study the external stability of square patterns
l(a) defined by ~62! has to be calculated. In the limit
kc→0 square patterns are stable~see Appendix D!. But in
the general case they become unstable ifkc exceeds some
threshold. An example is shown in Fig. 6. Figure 7 shows
that the threshold monotonically increases with the strength
vH of the static field. It is roughly independent of the ex-
change lengthl which means that the instability is mainly
caused by the dipolar interaction. On the other hand the
threshold strongly depends on the damping constantg. It
monotonically increases withg.

Also stable rhombic patterns exist. But their interval of
Da is aroundp/2. Its width scales with the damping con-
stantg and is therefore very small. Thus stable rhombic pat-
terns are practically indistinguishable from square patterns.
Figure 8~a! shows how a square pattern looks if it appears in
an experiment where Faraday rotation is used for visualiza-
tion.

C. Three-wave patterns

First we discuss regular three-wave patterns, i.e., hexa-
gons. Appendix D shows that forkc→0 they exist, they are
externally stable, but they are internally only marginally
stable. That is, an oscillating mode with frequencyas/2 ex-

ists which neither decays nor increases. From numerically
calculated coupling functions I found that the correction
terms to~54! are always such that hexagons are internally
unstable contrary to what is stated in Ref. 11.34 This is simi-
lar to what is found in a rotated Rayleigh-Be´nard system.13

The general stationary three-wave pattern is defined by
arbitrary anglesa j . Since thePj ’s have to be positive, not
all angles are allowed. In the limitkc→0 andg→0 where
the coupling functiona(a) is given by ~54! and where
as→` the set of possible angles can be calculated analyti-
cally ~see Appendix E!. It turns out that any combination of
angles has to be inside the region defined by

a22a1 , a32a1,90°,a32a1 . ~65!

Due to permutation symmetry and periodicity ofa(a) addi-
tional angles are allowed. All allowed angle combinations
can be most easily visualized by cutting the circle with three
lines into six pieces. The lines should go through the center
of the circle. They represent three pairs of wave vectors like
in Fig. 4. The circle has to be cut in such a way that the angle
of each wedge is less than 90°. For finite but largeas the
allowed region is inside the triangle defined by~65!. The
distance of the border to an edge of the triangle is of order
1/as

2 whereas in the corners it is of order 1/as . In the general
case wherekc is arbitrary butg still small the same region of
allowed angles has been found numerically.

Contrary to two-wave patterns where for small damping
only squares are allowed a whole variety of three-wave pat-
terns are possible. There is a dense set of periodic patterns. A
pattern is periodic if integersn1 , n2 , andn3 can be found
with

n1k11n2k21n3k350 ~66!

and with

n1
2,n2

21n3
2 , and cycl. perm. ~67!

FIG. 7. Stability of squares and quasiperiodic three-wave pat-
terns. For values ofkc above the solid~dotted! line squares~three-
wave patterns! are unstable. The thresholds are calculated for
g51023 andl 250.0025. Quantitatively almost the same values are
obtained forl 250.0001.
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The last condition is a consequence of~65!. Hexagons
(n15n25n3) are periodic patterns with the smallest unit
cell. Quasiperiodic patterns are patterns for which~66! can-
not be fulfilled for any set of integer. These are the generic
three-wave patterns because the measure of periodic patterns
is zero. In practice one cannot distinguish between periodic
patterns with large unit cells and quasiperiodic patterns be-
cause of finite extension of the sample in lateral direction.
Examples of a periodic and a quasiperiodic three-wave pat-
tern are shown in Figs. 8~b! and 8~c!, respectively.

All three-wave patterns are internally stable forkc→0
and g→0 ~see Appendix E!. But numerical hexagons are
unstable in this limit as already mentioned above. Figure 9
shows the regions of internal and external stability for three
different values ofkc . We see that for small values ofkc
indeed all patterns are internally stable except around
a22a15a32a2560°. This instability region grows with
increasingkc . The region of external stability does not fill

the whole existence triangle even in the limitkc→0 and
g→0 ~see also Fig. 1 in Ref. 11!. Thus there exist externally
unstable patterns. The region of external stability shrinks
with increasingkc and eventually disappears. Above a cer-
tain critical value ofkc all possible three-wave patterns are
either externally or internally unstable. Figure 7 shows that
this threshold increases with the external static fieldvH . The
threshold is always larger than the threshold of square pat-
terns. Again it is nearly independent of the exchange length
l and increases with the damping constantg.

D. N-wave patterns

Appendix D shows that regularN-wave patterns are ex-
ternally unstable ifN is larger than three. This is proved only
in the limit kc→0 where~54! holds but all numerically cal-
culated coupling functions share this property. Furthermore,

FIG. 8. Simulated photographs of a square pattern~a!, a periodic~b! and a quasiperiodic~c! three-wave pattern assuming Faraday rotation
as the appropriate visualization technique. Parameters:vH51.1, l 250.0025,g50.001,N54, L52, v50.22 ~i.e. kc50.043),a150°, ~a!
a2590°, ~b! a2575.5225°,a35104.4775°,~c! a2570°, a35100°. The angles for the periodic three-wave pattern are chosen in such a
way as to fulfill ~66! for n151 andn25n352. The grey scale denotes the temporal average ofMx

21My
2 where black means zero.
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in numerical simulations of the system of amplitude equa-
tions ~49! I have never found internally stableN-wave pat-
terns withN.3.

VI. TEMPORAL BEHAVIOR
OF THE AMPLITUDE EQUATIONS

In the previous section we have seen that above the
threshold not only one stable stationary pattern is possible
but large continuous families of patterns~squares and three-
wave patterns!. This multistability is very common in pattern
formation1 and raises immediately the questionwhich pat-

tern the system selects. This question can be answered for
thermal equilibrium systems where a free-energy functional
exists. This is also possible for some models of systems far
from thermal equilibrium where a Lyapunov functional ex-
ists which plays the role of a free energy. The absolute mini-
mum of the free energy or of the Lyapunov functional gives
the ground state. All relative minima define metastable
states. On a large time scale which is determined by the
barrier height and the strength of thermal noise the system
will eventually select the ground state.

In Sec. IV we have seen that the system of amplitude
equations~49! does not have a Lyapunov functional because
the coupling functiona(a) is not even. Thus regular and
irregular oscillations may occur which lead to a richer tem-
poral behavior than usual where the coupling is symmetric.
On the other hand, the lack of a Lyapunov function makes it
difficult to solve the problem of pattern selection.

In the previous section we have also seen that ifkc ex-
ceeds some threshold, all stationary patterns are unstable. In
that case we want to know the temporal behavior of the
system of amplitude equations.

Both questions can be attacked by numerical integration
of the amplitude equations~57!. By a rescaling similar to
~59! we can set formallyt05e5c51. I have done this in-
tegration for a set ofN equally distributed wave vectors~i.e.,
a j5p j /N) with N590. The selected pattern may depend on
the history of the system.1 For that reason I have assumed
that, like in most experiments, the pump field is suddenly
tuned from below threshold to above threshold. This situa-
tion can be simulated by an initial condition with randomly
chosen amplitudes with 0,Rj,0.01. The dynamical behav-
ior strongly depends on whether a noise term is added to the
equations of motion or not.

A. Dynamics without noise

First I present the result of the simulations without noise.
Figure 10 shows the typical behavior for three different val-
ues ofkc . Note that for each example the coupling function
is the same as for the corresponding part of Fig. 9. For clar-
ity, simulations withN536 are shown instead ofN590, but
the presented examples are typical forN590.

The behavior at the initial stage~roughly up to 20 time
units! is the same for all coupling functions. This is most
clearly seen in Fig. 10~a! because the time scale is by a factor
of 10 smaller than in Figs. 10~b! and 10~c!. At the beginning
all amplitudes grow exponentially because the nonlinear
terms in ~57! are small. When the amplitudes are large
enough the nonlinearities lead to an intermediate saturation.
After that, competition takes place, and only three ampli-
tudes survive whereas all other amplitudes die out exponen-
tially. Note that in general the surviving amplitudes do not
coincide with those which are initially the largest ones. For
example, att50 the three largest amplitudes in Fig. 10~a!
areR16, R30, andR10 in that order.

After this initial stage of the dynamics, the further tempo-
ral behavior depends on the coupling function. In the case
kc→0 there is a large probability that the initially selected
three-wave pattern is stable like in the example shown in Fig.
10~a!. By repeating the numerical experiment I found that
mostly three-wave patterns are selected. They are presum-

FIG. 9. Stability of three-wave patterns. Parameters:vH51.1,
l 250.0025, g50.001, N54, and L52. ~a! v50.22 yielding
kc50.043, ~b! v50.25 yieldingkc50.117. ~c! v50.30 yielding
kc50.272.
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ably distributed equally over the space of stable angle con-
figurations. Squares occur very rarely because it is very un-
likely that two amplitudes are selected with wave vectors
forming an angle from the small stable interval around
90°. Since the width of this interval scales with the damping
constantg, the probability for squares is presumably propor-
tional to g. Below we will see that in the presence of noise
the situation is reversed and squares are much more probable
than three-wave patterns.

In Sec. V C we have seen that the region of stable three-
wave patterns decreases for increasingkc ~see also Fig. 9!.
Thus the probability of the initially selected three-wave pat-
tern to be stable also decreases. The typical behavior for that
case is shown in Fig. 10~b!. At the beginning one of the large
number of internally stable three-wave patterns@see Fig.
9~b!# will be selected. But because it is externally unstable,
amplitudes which have died out after the initial growth be-
come unstable again and grow. Contrary to the initial stage

the growth rate now depends on the angle. It is given by
l(a) defined by~62!. The fastest growing amplitude even-
tually competes with the established amplitudes. Since four-
wave patterns are internally unstable this competition has
loosers which includes at least one of the established waves.
Thus the system switches from one internally stable but ex-
ternally unstable pattern to another one which is at least in-
ternally stable. Suchpattern switchingis mathematically
speaking aheteroclinic orbitbetween two internally stable
patterns.

In order to understand this pattern switching, we first dis-
cuss as the simplest example a system of three amplitude
equations corresponding to three equally spaced angles. This
system was investigated in ecology where it is a model for
the competition of three species.35 The internally stable so-
lutions are one-wave patterns whereas the hexagon pattern is
internally unstable. Starting with a slightly disturbed hexa-
gon the solution winds outward on a spiral. It does not reach
an ordinary limit cycle. Instead it approaches fort→` a
sequence of heteroclinic orbits. Each of them is a switching
from a one-wave pattern to another one-wave pattern rotated
by 60°. Because the heteroclinic orbits are approached closer
and closer, the waiting time between two switchings in-
creases. This gives rise to an unusual type of limit cycle with
a diverging period. Mathematically speaking this system of
equations is structurally unstable which means that a tiny
change in the equation of motion changes the behavior quali-
tatively. For example, the behavior is extremely sensitive to
noise. Busse and Heikes have used the same system of am-
plitude equations for rotated Rayleigh-Be´nard convection
above the Ku¨ppers-Lortz instability.13 From this sensitivity
on noise they conclude that weak turbulence occurs right at
the onset of convection.

The behavior of this simple system of three amplitude
equations occurs qualitatively also in the general case. For
example we clearly see in Fig. 10 an increase of the average
waiting time. The situation is more complicated because
there is a complex ‘‘net’’ of heteroclinic orbits which be-
comes denser and denser for an increasing number of ampli-
tude equations. The nodes of this net are the internally stable
N-wave patterns. Thus there are infinitely many. From each
externally unstable node heteroclinic orbits start which end
at other nodes. I never found heteroclinic orbits which do not
end at internally stable patterns. Patterns which are also ex-
ternally stable are terminating nodes in this net.

Starting with some random initial condition the system
relatively quickly approaches the net. After that it ‘‘travels’’
on it from node to node. Each transition corresponds to a
pattern switching. At the beginning the journey is still influ-
enced by the randomness of the initial condition. But for
increasing time the transition from one node to another one
becomes more and more predictable. The reason for that is
twofold. First, the angle-dependent growth ratel(a) selects
the fastest growing heteroclinic orbits. Second, the waiting
time increases because the system approaches the hetero-
clinic orbits closer and closer. Thus the amplitudes of exter-
nally stable anglesa @i.e., l(a),0# relax to extremely low
values @e.g., at t51000 all amplitudes in Fig. 10~b! have
values below 102100 except the three amplitudes defining the
pattern#. This increases the predictability of the selection

FIG. 10. The dynamical behavior of a system of 36 amplitude
equations. The anglesa j are equally spaced. On the left-hand side,
the absolute values of the amplitudes of the modesj51, . . . ,36 are
represented by the widths of the lines plotted against the verticalt
axis. The right-hand side shows the absorbed power in units of the
absorbed power of a one-wave pattern, which is given by( j Pj .
The parameters are the same as for Fig. 9.
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process because near the maximum ofl(a) the amplitudes
have a Gaussian distribution, i.e.,

Rj~T!'Rj~0!elmaxTexpS lmax9 T

2
~a j2amax!

2D , ~68!

where the maximum and the curvature of the growth rate at
a5amax is denoted bylmax.0 andlmax9 ,0, respectively,
T is the waiting time between two switchings, and the
Rj (0) are the values of the amplitudes after the last switch.
We clearly see that the sharpness of the Gaussian distribution
increases withT. For T→` the heteroclinic orbit is deter-
mined byamax. The dynamics on the net becomesdetermin-
istic because there is always one single maximum ofl(a)
which defines a unique heteroclinic orbit. The only excep-
tions are externally unstable squares because they have two
equally sized maxima@see Fig. 6~b!#. Thus the values of the
amplitudes at the angles of the maxima determine the hetero-
clinic orbit. I have found numerically that the heteroclinic
orbit ends in a square if these amplitudes are of the same
order. If a square pattern occurs the probability increases that
the next switching will lead also to a square.

The dynamics can be described by a map of the angle
space of the internally stable three-wave pattern onto itself.
Up to an arbitrary rotation three-wave patterns are character-
ized by angle differences. For example, one can use
a22a1 and a32a2 as in Fig. 9. Thus the map is two-
dimensional. Not every internally stable three-wave pattern
is mapped onto another internally stable three-wave pattern.
There are three other possibilities. In each of them the dy-
namics is terminated in the sense that the trajectory on the
net does not return to three-wave patterns. In the first case
the pattern is externally stable. Thus a stable fixed point of
the amplitude equations is reached. In the second case the
pattern leads to a square. If squares are externally unstable,
the system moves on the net from square to square. The
motion is similar to the simple behavior of the system of
three amplitude equation. Thus we get a quasiperiodic mo-
tion. In the third case, the three-wave pattern leads to a one-
wave pattern. Looking at Fig. 6~a! it is clear that a one-wave
pattern leads to another one-wave pattern rotated by roughly
45°.

I have numerically simulated this map. There are three
steps. In a first step the pattern is calculated for a point in the
plane (a22a1 ,a32a2) which belongs to an internally
stable three-wave pattern. In the second step the maximum
of the growth ratel(a) is searched. In the third step the
amplitude equations are integrated numerically for a four-
dimensional subspace defined by the amplitudes of the
anglesa1[0, a2 , a3 , and amax. For the initial value of
Rmax a small number, say 0.01, is chosen. This loop is re-
peated until one of the above-mentioned termination condi-
tions is reached.

For the coupling functions of Figs. 10~b! and 10~c! I have
often found very long transients~several hundred iterations!
until the dynamics of the map is terminated. These transients
are chaotic. I have seen this by looking at the distance be-
tween the trajectories of two slightly different initial condi-
tions. The distance clearly increases roughly exponentially as
long as it is much smaller than the possible maximum.

B. Dynamics with noise

In this subsection we investigate the amplitude dynamics
in the presence of Gaussian white noise, i.e.,

t0Ṙj5eRj2cFRj
21 (

j 85” j

a~a j2a j 8!Rj 8
2 GRj1nj j~ t ! ~69!

with

^j j~ t !&50, ^j j~ t !j j 8~ t8!&5d~ t2t8!d j , j 8. ~70!

In a system with a Lyapunov functional, noise is neces-
sary to bring the system from a metastable state to the
ground state. In our case where a Lyapunov potential does
not exist, a qualitatively similar behavior may occur. That is,
noise may drive the system into some preferred state. There-
fore I have integrated~69! for the coupling function of Fig.
9~a! wherekc is small and the number of stable three-wave
patterns is large. Forn,1022Ae3/c the system behaves
qualitatively as in the deterministic case discussed in the
previous subsection. Forn.1022Ae3/c the probability for
squares increases. The reason for that is twofold. First, some
of the squares are not genuine squares. They are rhombic
forming an angle which is not from the small interval around
90° mentioned in Sec. V B. These rhombic patterns are noisy
three-wave patterns located in the angle space near the
boundary of existence@see Fig. 9~a!#. One of the amplitudes
of such patterns is of the same order as the noise amplitude.
In the simulation shown in Fig. 11~a! an example of a rhom-
bic pattern appears fort between 600 and 800. One clearly
sees that the averaged noise level for the amplitudes
R1 , . . . ,R18 is larger than forR20, . . . ,R35. If we would
switch off the noise, one of the amplitudesR1 , . . . ,R18
would reach a nonzero value.

The second reason for a larger probability of squares is
that sometimes a noise-induced pattern switching occurs
which replaces the initial three-wave pattern by a three-wave
pattern which is closer to the border of existence in the angle
space. Thus noise drives the system in such a way that it
prefers squares or rhombic patterns which are almost
squares. Squares are more stable than rhombic patterns
which are more stable than three-wave patterns. For
n.0.1Ae3/c even squares becomes unstable. In Fig. 11~a!
we clearly see squares and rhombic patterns which are fol-
lowed by irregular noisy bursts where the noise is amplified.
After a burst there follows again a square or a rhombic pat-
tern. Note that these pattern changes are different from the
pattern switching discussed in the previous subsection. Here
the patterns perform a random walk on the circle whereas in
the case of pattern switching the pattern drifts in a well-
defined direction.

Nevertheless this drift is extremely sensitive to noise. In
the previous subsection we have seen that the pattern-
switching map becomes deterministic if the waiting timeT is
large. From~68! we see thatT is related to the values of the
amplitudes after the last switch. In the case of noise the
amplitudes cannot decay on average below a level which is
proportional to the noise amplitude. Thus the averaged wait-
ing time is proportional to the logarithm of the inverse noise
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amplitude. Pattern switching therefore disappears if the av-
eraged waiting time is of the same order as the averaged
switching time.

Figure 11~b! shows an example of a simulation with a
noise level which is by orders of magnitude smaller than the
noise level of the simulation shown in Fig. 11~a!. The cou-
pling function is the same as for Fig. 10~b!. Again we see
that the drift caused by pattern switching and, as expected,
the waiting time does not increase. Squares are much more
probable than in the noiseless case. On the other hand there
are noise-induced switchings from squares to three-wave pat-
terns, a process which is very unlikely in the deterministic
case. The stable three-wave patterns are robust against that
noise level. It is not clear whether the behavior shown in Fig.
11~b! is a transient or not. In simulations of the kind shown
in Fig. 11~b! I have never found a case in which the system
selects a stable pattern.

Figure 11~c! shows a simulation for the same coupling

function as for Fig. 10~c! and Fig. 9~c!. Here all stationary
patterns are unstable. The noise level is the same as in Fig.
11~b! but lmax is often larger. Thus in accordance with~68!
the averaged waiting time is smaller. It is almost of the same
order as the switching time. A careful inspection of Fig.
11~c! shows that a fuzzy square drifts very fast clockwise
around the circle. The anticlockwise rotation seen in Fig.
11~c! is an optical illusion caused by the finite number of
amplitudes.

VII. CONCLUSION

In this work a system of amplitude equations for the out-
of-plane parallel pumping has been derived@Eqs. ~49!#. In-
ternal anisotropy fields and surface pinning of spins have
been neglected, but the dipolar field has been fully included.
The dipolar field has two important consequences.~i! It is the
main factor determining the most unstable mode. Corrections
due to the exchange field are of second order.~ii ! It gives rise
to a strong odd contribution in the nonlinear coupling func-
tion a(a). In fact, without the dipolar fielda would be a
constant plus a very small even term caused by the exchange
interaction.

The coupling function has been calculated numerically
and analytically. It determines the dynamical behavior of the
system of amplitude equations. Squares and periodic as well
as quasiperiodic three-wave patterns are the only stable sta-
tionary patterns. Figure 8 shows how these patterns would
look if visualized by Faraday rotation. These patterns be-
come unstable if the critical wave numberkc determined by
the parametric resonance conditionv/25vk

(0)5vH21
1k/21O(k2) exceeds a threshold. Near and above this
threshold the dynamics is characterized by pattern switching.
That is, an internally stable pattern, e.g., a square, is
switched off and at the same time another internally stable
pattern is switched on. This process is extremely sensitive to
noise and leads to noise-induced weak turbulence.

Quadratic terms in the amplitude equation are absent be-
cause the system is symmetric against reflection at the
middle plane of the film. In a real film this symmetry is often
broken. Thus weak quadratic terms should be expected. Qua-
dratic terms also appear near hybridization points where due
to a strong coupling the threshold of the dipolar mode is
increased to values which are above the threshold of the
most unstable odd mode. Quadratic terms lead to hexagonal
patterns and to secondary instabilities where these patterns
become unstable.1

What may be expected if crystal-field anisotropies and
surface pinning are included in the theory? A uniaxial anisot-
ropy which does not destroy the rotational symmetry leaves
the system of amplitude equations unchanged. Only the cou-
pling function is slightly modified but still has the properties
~50!. This is also the case for surface pinning. If the spins pin
differently at the lower and the upper surface, quadratic
terms should appear. Cubic anisotropies destroy the rota-
tional symmetry. There are two special cases.~i! The film
surface is parallel to the (1,0,0) plane. Only in this case the
linearized equation of motion~14! is not changed andall
waves with an in-plane wave numberkc become still un-
stable simultaneously. But the coupling no longer depends
on the angle differences alone. This may lead to a preference

FIG. 11. The dynamical behavior of a system of 36 amplitude
equations with noise. The parameters are the same as in Fig. 10.
The noise levels are~a! n50.13Ae3/c and ~b! and ~c!
n5531027Ae3/c.
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of square patterns.~ii ! The film surface is parallel to the
(1,1,1) plane. The number of amplitude equations reduces to
three. The preferred pattern may be hexagonal.

Amplitude equations are very successful in order to un-
derstand pattern formation in systems with strong dissipa-
tion. In the case of parametric resonance where the damping
is relatively weak, amplitude equations may not be the opti-
mal way to treat these systems. This is due to the fact that the
third-order terms of the amplitude equations at the minimum
of the neutral curve are presumably of the same strength as
the fifth-order terms. The calculation of the fifth-order terms
is straightforward but extremely tedious. TheS theory does
not have this problem because it is a multiple-scale expan-
sion where the pump field is the expansion parameter. Thus
the relative control parametere should not be small. Only the
threshold has to be small which implies small damping. But
the main problem of theS theory is that the damping is
included only phenomenologically after the multiple-scale
expansion of the undamped problem. It is an open question
whether it possible to get the linear and nonlinear damping
terms of theS theory systematically.

An experimentalist wants to know whether such patterns
can be observed in a real experiment. In order to visualize
them it is important to know how strongly a pattern changes
the orientation of the polarization of the transmitted light.
Faraday rotation at normal incidence measures the time-
averagedz component of the magnetization integrated over
the film thickness. Thus thicker films are better than thin
films. Because the deviation ofM from M0ez will be small,
the deviation of the polarization of the light from its orien-
tation in the case of the undriven film is proportional to the
square of the opening angleu of the precession cone. For
YIG films of a few mm thickness precession cones with
u55° can be detected.8 In leading order of the amplitudes,
the precession angleu is given by

u~x,y!54^umu& t,zU(
j
eia jRjcos~k j r1x j !U, ~71!

where^ & t,z is the average with respect tot andz. For regu-
lar periodic patterns the maximum ofu can be calculated.
For small values ofkc the maximum scales with the square
root of kce.

In the Introduction I have already emphasized the impor-
tant role of pattern visualization in order to understand the
nonlinear behavior. Global information like the absorbed
power is ambiguous. This is illustrated in Figs. 10 and 11
where the evolution of each amplitude is compared with the
absorbed power which is proportional to the sum of the am-
plitudes squared. Sometimes it seems to be possible to iden-
tify from the absorbed power signal the pattern. For example
the absorption is stronger for squares than for three-wave
patterns@see Fig. 11~b!#. But this identification works only
after a learning process where, first, some pattern has been
identified and, second, a correlation between pattern and glo-
bal information has been found. The same is true for other
features of the dynamical process. For example, the absorbed
power sharply decreases during a pattern switching process.
A similar phenomenon occurs in Rayleigh-Be´nard convec-

tion during the appearance or disappearance of a defect
where the Nusselt number which measures heat flow also
sharply decreases.36

We do not know which patterns and pattern dynamics
lead to certain actually measured time behavior of the ab-
sorbed power. In the literature one often finds models which
are simplifications like the Lorenz equation which is a sim-
plification of Rayleigh-Be´nard convection. That is, a small
number of modes are assumed to be the most relevant de-
grees of freedom. Even though the models are often based on
the S theory they are often not derived systematically. For
example, the nonlinear coupling constants are not calculated.
They are chosen in such a way that the nonlinear dynamics
of the model fits at least qualitatively with the observed data.
A systematic calculation of the coefficients would improve
these models, but it would not help much because Lorenz-
like models neglect often important degrees of freedom.
From the theoretical point of view it is difficult to get them.
It is relatively easy only near the main-pattern forming insta-
bility.

I would like to strongly encourage experimentalists to
perform experiments where the patterns caused by parametri-
cally excited spin waves can be directly observed. This step
is absolutely essential in order to make progress in the un-
derstanding of the nonlinear dynamics of high-power ferro-
magnetic resonance. Theoretical works like the present one
hopefully lead to a strong motivation which is needed to
overcome the experimental difficulties of visualization.
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APPENDIX A: EXACT SOLUTIONS OF THE
LINEARIZED, UNDAMPED AND UNDRIVEN

EQUATION OF MOTION

The linearized equations of motion~16! without damping
and driving~i.e., g5vh50) reads

~vH211 l 2k22vk!m2 l 2m92c50,

~vH211 l 2k21vk!m*2 l 2m* 92c50, ~A1!

c92k2c2k2~m1m* !/250,

with

m8~0!5m* 8~0!5c8~0!2kc~0!50,

m8~1!5m* 8~1!5c8~1!1kc~1!50.
~A2!

The boundary conditions forc come from integrating~16c!
outside the interval@0,1# and matching the exterior values of
c andc8 with its interior values at the boundary.
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The general solution of~A1! is an arbitrary linear combi-
nation of the six eigenfunctions

S m

m*

c
D 5S m0

m0*

c0

D eiqz,
whereq is a solution of the characteristic polynomial

~k21q2!~@vH211 l 2~k21q2!#22vk
2!

2k2@vH211a~k21q2!#50. ~A3!

Because the general solution has to fulfill the six boundary
conditions~A2!, the coefficients of the eigenfunctions are the
nontrivial solutions of a linear homogeneous system of alge-
braic equations. The determinant of the corresponding matrix
has to be zero. This defines an implicit equation forvk . The
determinant factorizes because~A1! and ~A2! are invariant
under inversion atz51/2. Thus

S m

m*

c
D 5(

j51

3

Cj f j~z!S 1/Dv j
2

1/Dv j
1

1
D , ~A4!

with

Dv j
65vH211 l 2~k21qj

2!6vk , ~A5!

f j~z!5H qjcosqj~z21/2!, for even solutions,

sin qj~z21/2!, for odd solutions.
~A6!

The boundary conditions m8(0)5m* 8(0)5c8(0)
2kc(0)50 lead to

S 1/Dv1
2 1/Dv2

2 1/Dv3
2

1/Dv1
1 1/Dv2

1 1/Dv3
1

12kh1 12kh2 12kh3
D S C1f 18~0!

C2f 28~0!

C3f 38~0!
D 50,

~A7!

with

hj5H qj
21cot qj /2, for even solutions,

2qj
21tanqj /2, for odd solutions.

~A8!

The zeros of the determinant of the matrix on the left-hand
side of~A7! definevk which can be calculated numerically.

APPENDIX B: APPROXIMATED STABILITY ANALYSIS

The ansatz

m5~m1e
ivt/21m2* e

2 ivt/2!cosNpz,

m*5~m2e
ivt/21m1* e

2 ivt/2!cosNpz, ~B1!

together with Eq.~18! andl50 turns~16a,16b! into

S a2 bN vh/2 0

bN a1 0 vh/2

vh/2 0 a1* bN

0 vh/2 bN a2*
D S m1

m2

m2*

m1*
D 50, ~B2!

with

a65aN6
iv

2~ i6g!
, ~B3!

whereaN andbN are defined by~24! and~22!, respectively.
The neutral curve is the smallest positive real solution of the
characteristic polynomial invh :

vhNC
~N! ~k!52ApN2ApN22qN, ~B4!

with

pN5aN
21bN

22
12g2

~11g2!2 S v

2 D 2 ~B5!

and

qN5S aN
22bN

22
v2/4

11g2D
2

1
aN
2

~11g2!2
v2g2. ~B6!

The eigenvector is given by

m65vh
322~bN1a6* !vh

2

24@bN
22~a61a6* !bN1a6a7* #vh

18~bN
22a6* a7* !~bN2a6!, ~B7!

wherevh is defined by~B4!. The minimum of~B4! is

vhc
~N!5

vaN

bN
g1O~g2!. ~B8!

It occurs at

vk
~N!5

v

2
1O~g2!, ~B9!

which is the condition for first-order parametric resonance.
The eigenvector at the minimum is

m658vaNS aN2bN6
v

2 D ~11 i !g1O~g2!. ~B10!

APPENDIX C: CALCULATION OF THE NONLINEAR
COEFFICIENTS FOR kc˜0

In order to calculatea(a) we take in~33! only two am-
plitudes, say A6 with a656a/2 and
k65k(cos(a/2)•ex6sin(a/2)•ey). The projection off3 onto
u1
† defined by~38! with k j5k1 anda j5a/2 gives

^u1
† uf3&

ShvhNC
52c@ uA1u21a~a!uA2u2#A1 . ~C1!

In the limit k→0 the dipolar mode becomes independent
of z, i.e.,
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m~z,t !5m~ t ! and c~z,t !52
k

4
@m~ t !1m* ~ t !#.

~C2!

The last equation is obtained from~18!. The solution of~32!
for n52 becomes therefore simply

m25m2*50, ]zf2522um1u2B~z!. ~C3!

The nonlinear terms of the third-order inhomogeneityf3
reads

2S ~ i2g!Fm1
2

2
~]x2 i ]y!f122m1um1u2G

~2 i2g!Fm1*
2

2
~]x1 i ]y!f122m1* um1u2G

@~]x1 i ]y!m1* um1u21c.c.#B~z!

D . ~C4!

We have dropped the exchange terms because they contrib-
ute only in second order ofk. For the projection ontou1

† we
have to calculate only the term of~C4! which is proportional
to exp(ik1r ). After some tedious calculations we get

^u1
† uf3&56Rew@ uA1u21a~a!uA2u2#A1 ,

wherea is given by~54! with

as5
2Im w

3Rew
~C5!

and

w5^m2~ t !@2m~2t !m* ~ t !1m~2t !c~ t !1c~2t !m* ~ t !#& t ,
~C6!

where^ & t denotes the temporal average. Forc we get

c5
26Rew

Shvhc
. ~C7!

Using ~B10! one finds that at the minimum of the neutral
curvew is purely imaginary in leading order. This has two
consequences.~i! c changes its sign near the minimum of the
neutral curve.~ii ! as scales like 1/g. Calculating the next-
order terms we get~55! plus terms of orderg0.

APPENDIX D: REGULAR N-WAVE PATTERN

Regular N-wave patterns are characterized by equally
spaced evenly anglesa j . That is,

a j5
p

N
j . ~D1!

Furthermore all amplitudesPj are equal. Using~50! and~60!
we get

Pj5P[
1

( j51
N a~p j /N!21

. ~D2!

It is convenient to introduce the Fourier series of the cou-
pling functiona(a):

a~a!5 (
n52`

`

ane
2ina, with a2n5an* . ~D3!

The Fourier coefficients are given by

an5
1

pE0
p

a~a!e22inada. ~D4!

For kc→0 wherea(a) is very well approximated by~54!,
the Fourier components are

a05
4

3
, a15

1

3
2 i

as
2
, an.150. ~D5!

Using the identity

(
j51

N

aS p

N
j De22p i ~m/N! j5N (

n52`

`

am1nN , ~D6!

we can expressP also in terms of the Fourier components of
a(a)

P5
1

N(n52`
` anN21

. ~D7!

RegularN-wave patterns exist ifP is positive. In the limit
kc→0 all regular patterns exist because of

P5
3

4N23
.0, for N.1. ~D8!

In the general case regular patterns will exist at least for
largeN if a0 is positive anda(a) is a smooth function. In
fact it is sufficient that the coupling function does not have
steps which would lead touanu;1/n. For all numerically
calculated coupling functions I have always found that
a(a) is continuous anda0.0. Moreover, all regular
N-wave pattern exist becausea(a) is always smooth
enough.

In order to test the internal stability of the regular pat-
terns, the eigenvalue problem~61! has to be solved. This can
be done by the ansatz

Cj5e2p i ~m/N! j , m50,1, . . . ,N21. ~D9!

Using ~D6! we get the eigenvalues

lm5PS 12N (
n52`

`

am1nND . ~D10!

Because of~D7! l0521 holds for anyN. For continuous
coupling functions regularN-wave patterns become eventu-
ally unstable ifN gets large. In the long-wavelength limit
where only two Fourier components are nonzero all patterns
with N.3 are internally unstable. Hexagons~i.e.,N53) are
just marginal. That is,

l1,257 i
as
2
. ~D11!

Squares are stable becausel1521/5.
In order to test the external stability of regularN-wave

patterns we have to calculate~62! which yields
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l~a!512NP (
n52`

`

anNe
2inNa. ~D12!

By using ~D7! we immediately verify~63!. For kc→0 any
regular pattern is externally stable because only the Fourier
componentsa0 and a1 are nonzero. In the general case of
continuous coupling functions, regular patterns are externally
stable ifN is sufficiently large.

APPENDIX E: THREE-WAVE PATTERNS
FOR kc˜0 AND g˜0

We calculate the general three-wave pattern for the cou-
pling function ~54! with as→` ~i.e. g→0). We introduce
the abbreviations

u35assin 2~a22a1!, v35
4

3
1
2

3
cos 2~a22a1!

~E1!

and the cyclic permutations of them. The amplitudesPj are
solutions of

S 1 v32u3 v21u2

v31u3 1 v12u1

v22u2 v11u1 1
D S P1

P2

P3

D 5S 11
1
D , ~E2!

which are given by

P15
u1~u11u21u3!

D
1O~as

21! ~E3!

and its cyclic permutations. The denominatorD is the deter-
minant of the matrix in~E2!. In leading order ofas it is given
by

D5u1~u11u2v3!1cycl. perm. ~E4!

Becausev j is always positive, we immediately see that
Pj.0 for j51,2,3 is only possible if alluj ’s have the same
sign. Thus the basic region of allowed angles is given by
~65!.

The general three-wave pattern is internally stable if the
real part of each root of the characteristic polynomial defined
by the determinant of the matrix of~61! is negative. The
characteristic polynomial reads

l31c2l
21c1l1c050 ~E5!

with

c25P11P21P3 , c05P1P2P3D ~E6!

and

c15P2P3~12v1
21u1

2!1cycl. perm. ~E7!

In accordance with the well-known Rough-Hurwitz criterion
~see, e.g., Ref. 37! the real part ofl is always negative if and
only if

c2c1.c0.0. ~E8!

SincePj.0 the last inequality leads toD.0 which is in
leading order always fulfilled. Evaluatingc2c12c0 in lead-
ing order of as shows that the first inequality also holds.
Thus any possible three-wave pattern is internally stable.
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