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Optical power limiting is studied in multilayer systems where alternate layers exhibit nonlinear response. It
is shown that the existence of optical limiting depends on the sign of the coupling of the Kerr nonlinearity.
Approximate analytic results are found for single-layer systems, which suggest trends in the more complex
multilayer systems.

I. INTRODUCTION

It is well known that a variety of fascinating features arise
in the study of optical transmission through systems with
nonlinear response. For example, optical reciprocity breaks
down in nonlinear systems not having mirror symmetry.12

This means that transmission through the material in one
direction is not necessarily the same as the transmission in
the opposite direction. Multistability occurs, allowing a
given input to have more than one output, depending on how
the input intensity is reached, a hysteretic effect.1–6 Also,
optical limiting can occur, whereby the output intensity re-
mains at a nearly constant value as the magnitude of the
input intensity increases beyond a critical value. These fea-
tures, combined with the self-induced transparency and cha-
otic transmission, make nonlinear optical response a topic of
wide interest from both applied and fundamental perspec-
tives.

The first mention of optical power limiters was made by
Siegman in 1962.7 In that work, parametric subharmonic os-
cillators were suggested as optical limiters with the objective
of protecting instrumentation from overload. More recently,
Kozlouski8 and Edelstein, Wachman, and Tang8,9 have dis-
cussed optical limiters in the form of parametric oscillators.
The first demonstration of passive limiting by self-
defocusing was performed by Leite, Porto, and Damen in
1967.10 A number of recent papers have examined optical
limiting in semiconductors,11–15 organics,16–21

fullerenes,22–28 and ferroelectric liquid crystals.29 For semi-
conductors the dominant mechanisms are multiphoton ab-
sorption and self-defocusing, while for organics and
fullerenes reverse saturable absorption dominates. The ferro-
electric liquid crystals depend upon electrical linear feedback

to obtain optical limiting behavior. A review of optical lim-
iting mechanisms can be found in Ref. 30.

In this paper, we will take a different approach by mod-
eling materials that have periodic multilayer structures, and
examining the optical transmission that occurs when alter-
nate layers exhibit nonlinear response. The nonlinearity,
which will be represented by a Kerr nonlinearity, has the
effect that the transmission coefficient varies with the inten-

FIG. 1. Model of a periodic superlattice with layers of alternat-
ing linear and nonlinear response.

FIG. 2. ~a! Transmission vs scaled intensity (uE0u25uEi u2uTu2)
for the system modeled in Fig. 1. The linear dielectric constant
«L52.25 and the nonlinear dielectric constant«NL54.5, for a layer
thickness ofd5l ~vacuum wavelength! for a ten-bilayer structure.
~b! Transmission vs intensity (uEi u2) for the same parameters as in
~a!.
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sity of the input signal, as well as with its wavelength. A
multilayer structure has previously been explored by Yoo and
Alfano31 using an approximate scheme to represent nonlinear
effects. This work goes beyond their uniform-intensity ap-
proximation. We have found that a general feature of these
systems is optical limiting for a wide variety of parameters,
with parameter-dependent threshold intensities. The thresh-
old intensity is defined to be the minimum intensity for

which the output intensity saturates; that is the onset of op-
tical limiting. Understanding the frequency dependence and
magnitude of the threshold intensity will be the central aim
of this work.

The outline of the paper is as follows. In Sec. II, a math-
ematical review of the nonlinear formalism for multilayers is
given. In Sec. III, the application of the formalism to optical
limiting will be presented. In Sec. IV, a survey of results for

FIG. 3. Contour plot of transmission vs scaled
intensity and layer thickness~in units of vacuum
wavelength!, for a ten-bilayer system with alter-
nating layers with linear and nonlinear response.
The linear dielectric constant«L52.25 and the
nonlinear dielectric constant«NL54.5.

FIG. 4. Cross section of Fig. 3 for layer thicknessd50.5l,
wherel is the vacuum wavelength.

FIG. 5. Model falloff of transmission with input intensity; see
text.
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a variety of parameters describing optical limiting is given.
In Sec. V, a discussion of future work is presented.

II. BACKGROUND

We begin with an incident transverse electromagnetic
wave in the vacuum, impinging on the multilayer material
and propagating in a direction normal to the interfaces. Refer

to Fig. 1. The one-dimensional nonlinear equation for the
electric field that describes a Kerr nonlinearity is

d2E

dz2
1k0

2e~11guEu2!E50, ~2.1!

FIG. 6. Output intensity vs input intensity for the parameters in
Fig. 4. FIG. 7. The threshold intensity for optical limiting in the case of

a single-layer structure is shown as a function of the dielectric con-
stant. The solid line curve is for the approximate analytic solution
uE0u25121/«. The dot-dash curve displays the numerical results
for the full numerical model.

FIG. 8. uTu2 vs uE0u2 ~scaled intensity! andd
for a ten-bilayer system with alternating layers of
linear and nonlinear responses both of which
have a dielectric constant«54.5.
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whereE(z) is the position-dependent electric field,z the axis
perpendicular to the interfaces,v0 the frequency of the light,
k05v0 /c ~wherec is the velocity of light!, « is the dielec-
tric function in the basal plane, and the parameterg describes
the lowest-order nonlinear coupling. This consists of alter-
nating layers of linear and nonlinear materials. Therefore, the
nonlinear parameterg is nonzero in the nonlinear layer and
zero in the linear layer.~The selection ofg,0 in the nonlin-
ear material yields solitons at the bottom of the gap region,
while g.0 will give solitons at the top of the gap.! Letting
Ei be the incident field, we definej5E/Ei and rewrite Eq.
~2.1! in the form

d2j

dz2
1k0

2j5k0
2@12e~11guju2uEi u2!#j. ~2.2!

The boundary conditions, corresponding to the vacuum re-
gion, are given by

j5exp~ ik0z!1R exp~2 ik0z1 if!, z<0,

j5T exp~ ik0z!, z>L, ~2.3!

whereL is the length of the multilayer structure,R is a real
number describing the reflectivity, andT is the transmission
coefficient. At each interface the continuity of the tangential
E anddE/dz is maintained. After scaling,C5j/T and dis-
cretizing Eq.~2.2!, we arrive at

Cn2152cn2cn112K2e~11guEi u2uTu2ucnu2!cn . ~2.4!

Note thatC has real and imaginary parts, so that the iteration
expressed in Eq.~2.4! represents two equations. The vacuum
region boundary conditions corresponding to Eq.~2.4! be-
come

cn5R0exp~ iKn !1R1exp~2 iKn1 id!, n<0

cn5exp~ iKn1 if!, n>
L

D
, ~2.5!

whereK5k0D, D being the width of the interval in the basic
spatial grid. The interlayer boundary conditions are given by

cn5cn11 ,

cn2cn215cn112cn . ~2.6!

Equations~2.4!, ~2.5!, and ~2.6!, accompanied by the width
of layers in the material, represent the basic model which we
are concerned. This formalism readily lends itself to the
modeling of absorption by including an imaginary part to the
dielectric constant used in Eq.~2.4!.

The transmission coefficient is determined as described in
Ref. 2. The essentials are as follows. Equation~2.4! is inte-
grated from the output end, with the initial condition
uCnu51, uEi u2uTu25uE0u2, and the initial derivative of the

FIG. 9. uTu2 vs uE0u2 ~scaled intensity! andd
for a ten-bilayer system with alternating layers of
linear («L55.0) and nonlinear («NL52.25) re-
sponses.
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intensity with respect to position set equal to zero. At each
interface the boundary conditions of Eq.~2.6! are employed.
By integrating into the vacuum on the input side, the incident
intensity is determined from which the transmission coeffi-
cient is calculated@the transmitted intensity has unit magni-
tude, see Eq.~2.5!#. Sinceg andEi only appear as the prod-
uct guEi u2, we will choose g561 and only vary the
magnitude ofEi . The resultant information is in the form of
uTu2 vs uE0u2. It should be noted that this is a one-to-one
functional form; for eachuEi u2 one uTu2 is found. While this
format is convenient for viewing the results, it is important to
remember that to recover the transmission coefficient as a
function of the input intensity,uE0u2 must be divided by
uTu2. That is, the value of the abscissa must be rescaled by
the value ofuTu2 to recover the multivalueduTu2 vs uEi u2. In

Fig. 2 a comparison of the two methods of display is shown.
This more common format suffers from the disadvantage that
the value ofuEi u2 becomes extremely large for small values
of uTu2, resulting in the loss of resolution in the interesting
regions. In Sec. III we will apply this formalism to the prob-
lem of optical limiting.

III. OPTICAL LIMITING

What brought our attention to the question of optical lim-
iting was Fig. 3, which is a contour map ofuTu2 versus
uE0u2 and layer width. The layer width is denoted byd, and
measured in terms of the vacuum wavelengthl0 . This fig-
ure, presented in the scaled format, shows a rapid falloff of
uTu2 as uE0u2 is increased for all layer thicknesses shown~or
equivalently for all frequencies!. A cross section for
d/l050.5 is given in Fig. 4, highlighting the rapid drop in
uTu2. The ‘‘coastline’’ profile caught our attention and
aroused our curiosity. The similar nature of the threshold to
that studied for nonlinearities arising from antiferromagnetic
resonances was noted; however, in that case a seemingly
chaoticuTu2 appears after a comparable threshold.2

The difficulty of plotting this in the standard format is that
the point at the bottom of the drop in transmission corre-
sponds to an incident intensity,uEi u25uE0u2/uTu2@1012. We
can, however, extract what is happening in the threshold re-
gion through the use of the following approximation. As
shown in Fig. 5, we approximate the falloff in a linear fash-
ion, dropping fromuThu2 to uTl u2 in the regionuThu2uEhu2 to
uTl u2uEl u2. In the limit that uThu2uEhu2 approachesuTl u2uEl u2
~to represent the sharp falloff that is observed!, this model
leads to

uT~E!u25uThu2
uEhu2

uEu2
, ~3.1!

so thatuT(E)u2 is a smooth function ofuEu2, the input inten-
sity. The output intensity defined byuE0u25uT(E)u2uEu2 be-
comes the constantuE0u25uThu2uEhu2, after substituting for
uTu2. That is, after the threshold incident intensityuEhu2 is
reached, the output intensity becomes a constant. This is an
ideal realization of optical limiting.

A more informative way of plotting the results is as
uE0u2 vs uEi u2, as shown in Fig. 6. The horizontal line indi-
cates the constant output as a function of input. Technically
these lines have a slight slope, which in the example illus-
trated is 0.0001.

The origin of the threshold illustrated in Fig. 4 can be
understood if we look at the differential equation equivalent
to the discrete equation~2.4!,

d2c

dz2
52k0e~11guE0u2cu2!c. ~3.2!

At the thresholducu@1, and so this equation can be very
closely approximated by

d2c

dz2
52k0e~guE0u2ucu2!c ~3.3!

FIG. 10. Transmission vs scaled intensity and layer thickness for
a ten-bilayer system having«L52.25 and«NL51.25 for ~a! the
imaginary part of the dielectric functions equaling 0,~b! the imagi-
nary part of the dielectric functions equaling 0.01, and~c! the
imaginary parts of the dielectric functions equaling 0.05.
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near the threshold. The solution to this equation can be ex-
amined in the two casesg511 and g521. In the case
g521, the solutions are of the form

c5
1

a2bz
. ~3.4!

In this expressionb5A(k0«uE0u2/2), anda is determined
by the initial conditions. Fora.0, the solution clearly ex-
hibits a singularity in the region of interest (z.0), and is
found accurately to describe the electric field intensity for
values ofuE0u2 near the threshold when compared with nu-
merical solutions. Fora,0, the solution leads to a decaying
value ofuCu, for z.0, so that eventually the neglected term
in Eq. ~3.2! would become significant and the more common
oscillatory propagation would occur. The solution which re-
sults depends on the initial conditions. When Eq.~3.2! is
solved numerically, for a given initial condition such that the
part of the solution consistent with the singularity grows,
optical limiting occurs.

For g511, the solutions are of the form

c5A exp~2 iBz!,
~3.5!

c5A exp~ iBz!,

No singularity and, therefore, no optical limiting behavior is
seen for this case.

IV. OPTICAL LIMITING—EXAMPLES

While Fig. 3 is interesting in and of itself, practical appli-
cation of optical limiters necessitates the ability to control
the threshold intensity for a variety of frequencies. A single-
layer system offers an opportunity to examine the character-
istics that might be expected in more complex systems. In
our discussion, the single layer will always be at least two
vacuum wavelengths thick in order to insure that optical lim-
iting will not be masked by inadequate material thickness.
@As shown in Sec. III,C51/(a2bz) in the case of optical
limiting. If the material does not include the pointz5a/b,
optical limiting will be curtailed.#

In the single-layer case, as in the multilayer case@see Eq.
~2.5!#, the solution in the vacuum on the transmission side is
given byC5exp(ikz) with dC/dz5 ik exp(ikz). Inside the
material,C obeys

d2c

dz2
52k2e~12uE0u2ucu2!c, ~4.1!

where g521 has been introduced explicitly~recall that
g511 does not yield optical limiting!. The boundary con-
ditions require continuity ofC and dC/dz. Since in the
vacuumuCu251, continuity would imply thatuCu2>1 in the
material, near the interface. The numerical results can be
modeled analytically by making this substitution in Eq.~4.1!.
This results in the approximate equation

d2c

dz2
52k2e~12uE0u2!c, ~4.2!

FIG. 11. ~a! Same as Fig. 3, except that a smaller region in parameter space is chosen.~b! Same as~a!, but with 20 bilayers rather than
ten bilayers. Legends are the same as in Fig. 3.
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which has solutions

c5A exp@ ikzA~12uE0u2!e#

1B exp@2 ikzA~12uE0u2!e#. ~4.3!

On matching boundary conditions with the vacuum side, and
definingS5A@(12uE0u2)e#, we find

A5
1

2 S 11
1

SDexp@ ikL~12S!# ~4.4!

and

B5
1

2 S 12
1

SDexp@ ikL~11S!#. ~4.5!

Note that when

e~12uE0u2!51, ~4.6!

A51 and B50 yield a harmonic solution for which
uCu251, and no singularities are found. This is the boundary
between the optical limiting solutions and the regular solu-
tions in our analytical model.

If «(12uE0u2).1, then 1/2,uAu,1 and 1/2.uBu.0.
This results in solutions for whichuCu2<1 and a nonsingu-
lar behavior evolves. If «(12uEu2),1, then uAu.1,
uBu.0, anduCu2>1; a monotonic growing solution evolves

and the singular behavior described in Sec. III develops. No
dependence of the threshold intensity on the vacuum wave-
length is expected for a single-layer material.

These predictions can be compared with the numerical
results. Numerically, it is found thatuE0u2<121/« yields
regular transmission anduE0u2.121/« yields optical limit-
ing for nearly all values of«.1. The exception to this rule is
the region of small«,2.0, whereuE0u2,0.5. In this region,
the nonlinear term in Eq.~4.1! grows as the wave proceeds
into the material, but is dominated by the linear term. In the
case of«52.0, anuE0u2.0.54 is required as opposed to the
predicted value of 0.50, found from Eq.~4.6!. At smaller
values of«, the requireduE0u2 remains above the prediction
with uE0u250.35 for«51; Eq. ~4.6! would indicate that all
values ofuE0u2.0 would yield optical limiting. These results
are displayed in Fig. 7. No dependence on the vacuum wave-
length is seen numerically.

What is seen from this study of single-layer materials is
that, contrary to the naive expectation that a larger« would
yield a smaller requireduE0u2, a smaller« will have the
smaller thresholduE0u2. In the remaining part of this section
a numerical survey of multilayer systems is presented.

To take advantage of multilayer systems for optical limit-
ing, a system is needed which has more flexibility than the
frequency-independent single-layer system but not necessar-
ily having the complexity of the system illustrated in Fig. 3.
A survey of systems with varying dielectric functions indi-

FIG. 12. Same as Fig. 3, but with 80 bilayers
rather than ten bilayers.
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cates that the sharp drop in transmission as a function of
uE0u2, the signature of optical limiting, is a common occur-
rence, happening in all systems studied for values of
uE0u2,1. This value ofuE0u2 might have been expected from
the formula for single-layer systems@Eq. ~4.6!#. Further-
more, most multilayer systems had a transmission versus
uE0u2 andd ~see Fig. 3!, which was of intermediate complex-
ity.

Figure 8 showsuTu2 vs uE0u2 andd for a ten-bilayer sys-
tem with alternating layers of linear and nonlinear response,
both of which have«54.5. In the linear case, this system is
a single-layer system so that no gaps in the transmission are
seen. The single-layer threshold ofuE0u250.78 is not rel-
evant because the multiple layers have influence through the
periodicity of the nonlinearity. This type of contour occurs
whenever the two dielectric constants are equal. Note that the
layer thickness in Fig. 8 has a wider range than that of Fig. 3.

Figure 9 illustrates a multilayer system with a band struc-
ture, having stopgaps and transmission bands. In this case,
the linear-response layer has«55.0, and the layer with non-
linear response has«52.25. This figure shows that the
threshold value ofuE0u2 can be made arbitrarily small at
frequencies near the band edges. This result is typical of the
systems surveyed.

One of the concerns regarding the applicability of
multilayer structures for optical power limiting is the effect
that absorption would have. To examine this concern we
studied the ten-bilayer system having«52.25 ~linear! and
«51.25 ~nonlinear!, which has intensity-frequency regions
with nearly constant transmission of nearly 100%~see Fig.
10!. The effect of absorption is modeled with an imaginary
part added to the dielectric constants. When an imaginary
part equal to 0.01 is added to both dielectric constants, the
plateau region drops to a transmission of about 90%. At the
same time, the threshold intensity decreases by about 10%.
When the imaginary part is 0.05, the plateau transmission
value is 25%, and occupies a significantly smaller region in
intensity-frequency space. The threshold is not as sharp as in
the nonabsorptive case. A plot of output versus input shows a
more gradual approach to constant output. The slope of the
‘‘constant’’ output region is 0.001 as opposed to 0.0001 for
the nonabsorptive case. It should be noted that small varia-
tions (;5%! in individual layer thickness has an insignifi-
cant effect on the optical limiting properties~see Ref. 32!.

The ‘‘islands’’ which appear in contour maps, such as Fig.
3, also have some practical applications. These structures are
very sharp transmission resonances as a function of intensity
and wavelength. We were interested in determining how
these structures changed as the superlattice increased in
length, keeping the layer thickness constant. This was ac-

complished by zooming in on a region of Fig. 3, a ten-bilayer
system, and examining the same region for a 20-bilayer sys-
tem. The results are displayed in Figs. 11~a! and 11~b!. As
the number of layers are increased, the continuous structures
break into islands, while nearly all of the islands, from the
ten-bilayer structure, disappear. This is to be compared with
what happens in the full region of Fig. 3 when an 80-bilayer
structure is modeled in Fig. 12. In this case the ‘‘gulfs’’ pen-
etrate further ‘‘inland,’’ and many of the islands disappear. It
should be noted that these are nonlinear effects; doubling the
length of superlattice does not imply that the transmission
should be squared, as would be the case in a linear system.
Such a result would yield either perfect transmission or zero
transmission in the limit of an infinite superlattice.

V. CONCLUSIONS

We have surveyed a number of models of multilayer sys-
tems with the intent of determining the usefulness of such
systems as optical power limiters. Ideally, an optical limiter
would have an output intensity equal to the input intensity
~perfectly transmitting! and beyond a certain threshold the
output would be constant. It would be most advantageous if
the threshold intensity could be made frequency dependent.
We have modeled systems that have nearly ideal character-
istics. For the case considered in Sec. IV, with«52.25 and
1.25, nearly perfectly transmitting plateaus are seen. In cer-
tain regions ofd, which is equivalent to frequency, the
threshold rises monotonically from essentially zero, allowing
the layer thickness to be determined by the frequency of
radiation and the desired maximum output intensity.

Experimental tests of our model are needed to determine
the viability of devices built with these structures. As noted
earlier, defects and absorption, within limits, should not sig-
nificantly affect the optical limiting properties of the sys-
tems. The importance of the approximations used in this
model ~no power to higher harmonics, no effects of lattice
mismatches at interfaces, a one-dimensional system, and
only a Kerr nonlinearity! must be tested. Materials that can
be fabricated into layered systems, with appropriate dielec-
tric constants, must be determined. The frequency range will
be dependent on the layer thickness.

Should these experiments verify our model’s predictions,
these multilayer optical limiters would prove useful in pro-
tecting optical devices from harmful overloads. At the same
time, the nonlinear nature of these devices, with the inherent
nonreciprocity of transmission, suggests that layered systems
could be fabricated which would allow intense radiation to
pass in one direction but not in the other~at a given fre-
quency!. We hope that this work encourages experimentation
in this area.
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