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We have extended existing high-temperature-series expansions for the spin-1/2 Heisenberg ferromagnet, for
both the zero-field free energy and susceptibility. Series are obtained to order 13 for the simple cubic and
body-centered cubic lattices and to order 12 for the face-centered cubic lattice, an addition of three terms in
each case. The series are analyzed by a battery of methods and more precise estimates of the critical tempera-
tures and exponents obtained. We also obtain estimates of the specific heat and susceptibility of the standard
two- and three-dimensional lattices as functions of temperature, in the high-temperature region.@S0163-
1829~96!03418-2#

I. INTRODUCTION

In this paper, we consider the thermodynamic properties
of the spin-1/2 quantum Heisenberg ferromagnet, described
by the Hamiltonian

H522J(̂
i j &

Si•Sj2gmBH(
i
Si
z . ~1!

The model is defined on any regular lattice and the exchange
interaction is restricted to nearest neighbors. This is a generic
model for studies of magnetism in solids and, although the
simplest such model, has resisted exact solution except in
one dimension.

We derive high-temperature-series expansions for the
above Hamiltonian, for the zero-field free energy and suscep-
tibility, in powers of the variableK5J/kT. Series are ob-
tained through orderK12 for the triangular~tri! and face-
centered cubic~fcc! lattices, and through orderK13 for the
square~sq!, simple cubic~sc!, and body-centered cubic~bcc!
lattices. Our work extends by three terms the earlier classic
work on this subject by Baker and Rushbrooke and their
co-workers.1,2 It is, of course, well known that the Mermin-
Wagner theorem3 precludes any state of conventional long-
range order at finite temperatures in two dimensions. In three
dimensions it is generally believed that a conventional phase
transition occurs at finite temperature, although a rigorous
proof of such exists only for the classical spin-` case,4 and
for the antiferromagnet withS>1.5

Previous work1,2 for theS5 1
2 model has obtained values

of the critical exponentg51.4360.01. For S5` the
renormalization-group estimate ofg is6 g51.38660.004,
with the addition of a confluent singularity with correction
exponent D150.55. For this classical model McKenzie,
Domb, and Hunter7 derived 12th-order series for the sc and
fcc lattices and 11th-order series for the bcc lattice. Their
analysis appeared to be completely consistent with the field
theory predictions. However, more recent analyses give the
slightly larger valueg51.40 for both the fcc lattice8 and the
sc lattice,9 the latter based on a 14th-order series.10

It is believed, from general universality principles, that
critical exponents should be independent of the spin quantum
numberS, and hence that theS51

2 andS5` models should

have identical exponents. One of the motivations for the
present work was to see if extended series for theS51

2 model
would give an estimate ofg closer to the classical series and
field theory results, thus resolving an apparent discrepancy.

II. DERIVATION OF THE SERIES

We follow essentially the same steps as in the work of
Baker et al.1 Rushbrooke, Baker, and Wood based on a
finite-cluster method. For completeness, the main steps are
summarized below.

The logarithm of the partition function corresponding to
the HamiltonianH on an infinite latticeL can be written as a
sum over all connected clusters embeddable inL:

1

N
lnZ5(

G
CG

~L !FG~K,H !, ~2!

where the sum is over the set of clusters$G%, CG
(L) is the

usual ‘‘weak lattice constant’’ ofG in L, andFG(K,H) is
referred to as the ‘‘reduced partition function’’ forG. The
coupling constantK5J/kT, as usual.

The reduced partition function can be obtained in the fol-
lowing way. Denote byAG the logarithm of the partition
function of clusterG ~some examples are given in Appendix
A!. Then

FG5AG2 (
k51

G21

TGkFk , ~3!

where TGk is the number of ways in which the~smaller!
clusterk can be embedded in clusterG. In this way, theF’s
for all clusters are obtained recursively.

Standard methods exist for generating the clusters and
computing the lattice constants. For example, for the fcc se-
ries to orderK12 the list contains 19 859 distinct clusters. For
the loose-packed sc and bcc lattices to orderK13 a total of
6236 clusters needs to be considered. For each cluster in the
list, it is necessary to identify all subclusters and their em-
bedding factorsTGk . Again, standard methods exist for do-
ing this.

Finally, we need to consider how one calculates the clus-
ter partition functionsAG5lnZG. This can be done in various
ways2 but, for theS5 1

2 system, the most efficient approach
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uses group theoretical techniques, based on the theory of the
symmetric group. The Hamiltonian for clusterG can be writ-
ten in terms of Pauli matrices as

HG52 1
2 J(̂

i j &
si•sj2

1
2gmBH(

i
s i
z

52 1
2JP2 1

2gmBHM , ~4!

whereP[(^ i j &si•sj andM5( is i
z. The first sum is over all

bonds~edges! of clusterG while the second is over all sites
~vertices!. Because the two terms inHG commute, we can
write

ZG5Tr$e2bHG%

5Tr$ebJP/2ebgmBHM /2%

5(
r50

`
Kr

2r r !
Tr$PrebmBHM /2%. ~5!

The operatorP can be written asP5(^ i j &(2Pi j21) where
Pi j is the permutation which interchanges spins at sitesi and
j . Hence, if the basis states are chosen to belong to the irre-
ducible representations of the symmetric group of ordernG ,
wherenG is the number of sites in the cluster,P andPr will
be automatically block diagonalized. In this way,ZG be-
comes

ZG5(
r50

`
Kr

2r r ! H (
k50

@nG/2#

Tr~Tk
r ! (

m5k

nG2k

e~nG22m!yJ ~6!

with y5 1
2bgmBH. HereGk is the matrix representation ofP

in the irreducible representationk. Some further details about
the generation of these basis states and the dimensionalities
of the irreducible subspaces are given in Appendix B. De-
spite this simplification, the largest matrix is of dimension
1001, and calculation of the powers of these matrices is by
far the most time consuming part of the computation.

Since we only requireZG to orderH2, for the calculation
of the initial susceptibility, we expand

(
m5k

nG2k

e~nG22m!y5uk1
1
2vk~bgmBH !21•••

with

uk5nG1122k,

vk5
1
3 ~nG22k!~nG22k11!~nG22k12!

and obtain

ZG5ZG01
1
2 ~bhmBH !2ZG21••• ~7!

with

ZG05(
r50

`
m r0

2r r !
Kr , ZG25(

r50

`
m r2

2r r !
Kr ~8!

and

m r05 (
k50

@nG/2#

ukTr~Gk
r !, m r25 (

k50

@nG/2#

vkTr~Gk
r !. ~9!

Finally

AG5 lnZG5 lnZG01
1
2 ~bgmBH !2ZG2 /ZG01••• ~10!

gives the logarithm of the partition function for clusterG.
Combining these various steps finally yields series for the

zero-field free energy per site,

2b f ~K !5 ln21 (
n51

`
en
2nn!

Kn, ~11!

and for the dimensionless zero-field susceptibility,

x̄[
kTx

~gmB!2
511 (

n51

`
an

2nn!
Kn. ~12!

In Table I we give the integer coefficientsen andan for the
five lattices sq, tri, sc, bcc, and fcc. We add three new coef-
ficients to the previous series1 of each of the three-
dimensional lattices. Bakeret al. quote the value
750 651 187 968 fore10 for the fcc lattice, which is slightly
in error, due to two incorrect lattice constants. Our value is
750 412 309 248. We are unaware of previous tabulations for
the two-dimensional lattices.

From ~11! we can derive the specific heat series

C/k5 (
n52

`
en

2n~n22!!
Kn. ~13!

III. EVALUATION OF THERMODYNAMIC FUNCTIONS
AT HIGH TEMPERATURES

As no exact results for thermodynamic functions are
known, it seems worthwhile to use the expansion to estimate
values of the specific heat and susceptibility numerically as
functions of temperature. This is done by forming Pade´ ap-
proximants to the functionf (K),

f ~k![
PN~K !

QM~K !
,

and evaluating these approximants for anyK. For high tem-
peratures,K!1, all approximants give essentially the same
result. AsK increases the spread of estimates from different
approximants increases, giving rise to increasing error bars.
The procedure fails close to the radius of convergence of the
series, which may or may not correspond to a physical phase
transition.

In Fig. 1 we show the specific heatC/k versuskT/qJ for
the sq and sc lattices. For smallK ~highT! the approximants
are well converged and estimates are accurate to high preci-
sion ~1024–1026!. The error bars for lowerT are confidence
limits, based on the spread of a range of approximants. The
specific heat for the sq lattice appears to be exhibiting a
broad peak, as expected, atkT/J>0.6, although the series do
not converge well in the vicinity of the peak. For the sc
lattice the specific heat begins to rise sharply in the vicinity
of kT/J>1.7, consistent with the expected cusp atTc . This
is discussed further in the following section.

In Fig. 2 we show the susceptibility versuskT/qJ. Again
the series allow accurate estimates ofx to be obtained for
kT/J>0.8 for the sq lattice. BelowkT/J>1 the susceptibil-
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FIG. 1. Specific heat versus temperature for the square~sq! and
simple cubic~sc! lattices. The dashed vertical line is the estimated
critical temperature for the sc lattice.

FIG. 2. Susceptibility versus temperature for the square~sq! and
simple cubic~sc! lattices. The dashed vertical line is the estimated
critical temperature for the sc lattice.

TABLE I. High-temperature expansion coefficientsen andan for various lattices.

n en an n en an

sq 1 0 4 8 27 804 944 2 231 209 728
2 6 16 9 723 961 728 71 938 507 776
3 212 64 10 2 596 523 904 2 446 325 534 208
4 284 416 11 2856 142 090 496 92 886 269 386 752
5 1 200 4 544 12 6 383 648 984 832 3 995 799 894 239 232
6 3 120 23 488 13 1 356 696 930 401 280 180 512 165 153 832 960

7 2249 312 2207 616 bcc 1 0 8
8 920 928 4 205 056 2 12 96
9 86 274 816 198 295 552 3 224 1 664
10 21 232 035 584 22 574 439 424 4 168 36 800
11 240 970 012 160 2112 886 362 112 5 1 440 1 008 768
12 1 391 730 516 480 3 567 419 838 464 6 24 480 32 626 560
13 20 983 074 318 336 94 446 596 145 152 7 2297 024 1 221 399 040

tri 1 0 6 8 28 017 216 51 734 584 320
2 9 48 9 2533 681 664 2 459 086 364 672
3 18 408 10 41 156 316 672 129 082 499 311 616
4 2306 3 600 11 2503 287 538 688 7 432 690 738 003 968
5 23 240 42 336 12 53 001 415 916 544 464 885 622 793 134 080
6 49 176 781 728 13 21 839 416 689 004 544 31 456 185 663 820 136 448
7 1 466 640 13 646 016 fcc 1 0 12
8 213 626 000 90 893 568 2 18 240
9 21 172 668 032 21 798 204 416 3 108 6 624
10 75 256 704 70 794 720 768 4 180 234 720
11 1 392 243 773 184 7 538 546 211 840 5 25 040 10 208 832
12 18 426 692 664 576 63 813 109 782 528 6 162 000 526 810 176

sc 1 0 6 7 14 565 600 31 434 585 600
2 9 48 8 563 253 408 2 127 785 025 024
3 218 528 9 17 544 639 744 161 064 469 168 128
4 2162 7 920 10 750 412 309 248 13 483 480 670 745 600
5 2 520 149 856 11 56 646 776 913 408 1 237 073 710 591 635 456
6 33 192 3 169 248 12 4 973 976 625 190 400 123 437 675 536 945 410 048
7 21 019 088 77 046 528
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ity begins to rise sharply but the series become too irregular
to estimate the location of the peak or its height accurately.
For the sc lattice, asT approaches the transition temperature,
the susceptibility exhibits the expected divergence. This is
taken up in the following section.

The behavior of the specific heat and susceptibility for the
other lattices is broadly similar to the above, and we do not
display these. While the series results are only accurate for
moderate and high temperatures, they could be combined
with other techniques, such as low-temperature approxima-
tions or finite-lattice results, to provide accurate estimates of
thermodynamic properties over the entire range of tempera-
tures.

IV. CRITICAL POINT ESTIMATES

As mentioned above, the three-dimensional systems will
have a second-order phase transition at a critical temperature
Tc , which depends on the lattice. It is believed that the sin-
gularities of thermodynamic functions follow a conventional
power law, with universal exponentsg, a, etc.

Methods of extracting critical temperatures and exponents
from power series have been reviewed recently by
Guttmann.10 We have tried many of the methods, and sum-
marize our findings below. It is useful, in this context, to
consider also the corresponding series for the classical
spin-̀ cases.

A. fcc lattice

We start with the susceptibility series for the fcc lattice.
As usual series for this lattice appear to be the most regular.
A standard ratio plot is shown in Fig. 3, for bothS51

2 and
S5`. TheS51

2 series points show considerable residual cur-
vature indicating the presence of strong corrections to the
asymptotic scaling form. Two-point estimates ofKc and g
from the last four ratios give

Kc : 0.249 41, 0.248 99, 0.248 92,

g: 1.440, 1.4219, 1.4190.

With a degree of caution one might estimateKc>0.2488 and
g51.41. The classical series points are quite linear on this
scale. Neville-Aitken extrapolation, which allows for higher
powers of 1/n, does not lead to improved estimates.

If the function has an appreciable confluent term, so that

x~K !5C0S 12
K

Kc
D 2gF11bS 12

K

Kc
D D1G1••• , ~14!

then a modified analysis technique is required. We have used
a modified Neville-Aitken method10 with D50.5, as well as
five- and four-point fits as proposed by Ferer and
co-workers.8,11The modified Neville-Aitken extrapolants are
inferior to the direct method, and no consistent solution is
obtained from theN-point fits. These results suggest that a
confluent correction, if present, has a sufficiently small am-
plitude as to be unobservable.

We have used a number of Pade´ approximant methods.
Direct Pade´ analysis of the logarithmic derivative series
gives estimates ofKc andg as shown in Table II. The esti-
mates are quite regular and suggestKc>0.2491 and
g>1.425 with some uncertainty. It is noticeable that higher-
order approximants indicate a trend to lowerKc andg and
hence one should be cautious in assigning confidence limits.
It also needs to be borne in mind that the presence of any
additive term to the leading singularity is not well handled
by simpleD log Pade´ approximants.

A somewhat more sophisticated approach is to allow for a
correction term as in~14!. Adler and co-workers12,9 have
proposed two such methods based on Pade´ approximants.
Here we use their methodM2 in which the series is first
transformed to a variabley,

y512S 12
K

Kc
D D1

,

and the Pade´ approximants to

G~y!5D1~y21!
d

dy
lnx~y!

are evaluated aty51. These provide estimates ofg for given
estimates ofKc andD1. The optimum estimates are taken to
be where different approximants best coincide. In the present
case this occurs forKc>0.2490 and Fig. 4 shows estimates
of g versusD, for this value ofKc . We note that the conver-
gent region covers a rather broad range ofD1 values, which
includesD151.0, corresponding to an analytic correction,
but not the field theory predictionD150.55. The correspond-

FIG. 3. Ratio plot for the susceptibility series for the fcc lattice,
for bothS51/2 andS5`.

TABLE II. Estimates of critical temperatureKc5J/kTc and ex-
ponentg from poles and residues of Pade´ approximants to (d/
dK)ln X for the fcc lattice.

D/N 3 4 5 6 7

3 0.249 48 0.249 14 0.248 78 0.249 09
1.442 1.427 1.410 1.426

4 0.249 21 0.248 97 0.249 18
1.430 1.419 1.431

5 0.249 26 0.248 94 0.249 03 0.249 07
1.432 1.418 1.422 1.424

6 0.248 55 0.249 03 0.249 10
1.397 1.422 1.426

7 0.248 93 0.249 07
1.417 1.424
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ing g estimate is approx.g>1.42. Changing theKc estimate
worsens the convergence and in no case favors a smallerD1
value.

Finally, we have explored an alternative approach, based
on first-order differential approximants, in which the series
coefficients are fitted to

KPN~K !x81QM~K !x5RL~K !,

which defines a differential approximant [L/M ;N]. Singular
points ofx are represented by zeros ofPN(K) and estimates
of the exponent are given by

g5QM~Kc!/KcPN8 ~Kc!.

In Table III we show estimates ofKc and g from higher-
order approximants. As can be seen, these numbers are quite
widely scattered, and it is not clear with the present series
how one should choose final estimates.

In summary, none of the methods of analysis are particu-
larly successful. From the trend of the ratio plot and the
results given by Pade´ and differential approximants one
might state, rather conservatively,

Kc50.249060.0004, g51.4160.02,

with no indication of the confluent term predicted by field
theory.

The amplitude of the dominant singularity can be ob-
tained from Pade´ approximants to~Kc2K!x1/g or alterna-
tively from Pade´ approximants tox~12K/Kc!

l. These meth-
ods give, from the fcc lattice, the estimate

C0>1.13160.005.

The specific heat is expected to behave in the vicinity of
the critical point as

C5S KKc
D 2FA2BS 12

K

Kc
D aG ~15!

whereA andB are constant amplitudes. The series itself is
too irregular to allow direct estimates of the exponenta. The
field theory prediction isa50.115, which yields a cusp of
heightA at K5Kc . We have assumed this value ofa and
have attempted to estimate the amplitudesA andB by fitting
the values ofC obtained in the previous section to Eq.~15!.
Figure 5 shows a plot of~Kc/K!2C versus~12K/Kc!

0.115,
with a line of best fit which covers the interval
0.8,K/Kc,0.96. The estimates areA51.82 andB51.59,
somewhat larger values than given by Bakeret al.1

B. sc lattice

We consider the analysis of the susceptibility series for
the simple cubic lattice. The ratios show complex oscillatory
behavior and no sensible extrapolation seems possible. Table
IV shows estimates ofKc andg from poles of Pade´ approxi-
mants to the logarithmic derivative series. These are reason-
ably consistent and indicate

FIG. 4. Pade´ approximant estimates ofg versus D1 for
Kc50.2490, for the fcc lattice susceptibility, based on method M2
of Adler et al. ~Refs. 9 and 12!.

TABLE III. Estimates of critical temperatureKc5J/kTc and
exponentg from [L/M ;N] differential approximants toX for the
fcc lattice. Defective approximants are not shown.

L M N Kc g L M N Kc g

1 5 5 0.249 07 21.429 5 3 2 0.249 7621.490
2 4 5 0.249 66 21.466 7 1 2 0.247 4921.309
2 5 4 0.249 47 21.453

3 4 4 0.249 67 21.481 1 4 4 0.248 3621.372
4 3 4 0.248 29 21.216 2 3 4 0.248 9021.414
4 4 3 0.249 51 21.449 2 4 3 0.248 5521.386
6 3 2 0.249 13 21.397 3 3 3 0.248 7121.398
8 1 2 0.247 33 21.274 4 2 3 0.246 9921.278

4 3 2 0.248 51 21.384

1 4 5 0.250 40 21.529
1 5 4 0.250 09 21.504

FIG. 5. Specific heat for fcc lattice fitted to asymptotic form.
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Kc>0.596060.0005, g>1.42.

Consistent singularities are also observed atK>20.7, pre-
sumably corresponding to the antiferromagnetic critical
point, and atK>20.0860.51i . It is the presence of these
singularities that results in the complex oscillatory behavior
of the series. Differential approximants give estimates con-
sistent with the above.

We have also estimated the leading amplitude of the sus-
ceptibility and the specific heat amplitudes. These are given
in Table VI below, and discussed in the following section.

C. bcc lattice

We have repeated the above steps for the bcc susceptibil-
ity series. The ratios are again oscillatory but much less er-
ratic than for the sc lattice.D log Pade´ approximants show a
consistent physical singularity atK>0.3968 together with a
strong antiferromagnetic singularity atK>20.415. Esti-
mates ofKc andg are shown in Table V. Our overall esti-
mates are

Kc>0.396860.0002, g>1.415.

Again, differential approximants give very similar results.
Amplitudes forx andC have been estimated and are given in
Table VI.

V. DISCUSSION AND SUMMARY

We have computed the exact series expansions for the
susceptibility and specific heat for the spin-1/2 Heisenberg
ferromagnet for the standard two- and three-dimensional lat-
tices. The previous series have been extended by three addi-
tional terms.

Assuming an asymptotic form

x5C0S 12
K

Kc
D 2g

1••• ,

we have analyzed the series to obtain estimates of the critical
‘‘temperature’’ Kc5J/kTc , the exponentg, and the ampli-
tudeC0. These are shown in Table VI. Our estimate ofg,
based on all three lattices~fcc, sc, and bcc! and using a
variety of techniques, is

g51.4160.02.

The renormalization-group result is 1.38660.004. The most
recent series estimates from the classical spin-` model are
g51.40. The uncertainties in these estimates are such that
these should not be regarded as inconsistent. Nevertheless, it
is perhaps annoying that the series estimates, for bothS51/2
andS5`, seem higher than the field theory result, despite
allowances for confluent and analytic correctons. In all like-
lihood the series are simply too short to yield the correct
exponent. Analysis of the three-dimensional~3D! Ising
model series shows that estimates ofg continue to change
slowly when increasing the number of terms from about 12
to 20.14 Experience would suggest that the Heisenberg series
would not converge any more rapidly.

The additional three terms have allowed us to refine the
estimates of critical temperature considerably, and these are
shown in Table VI, together with the previous estimates. We
have also obtained considerably more precise estimates of
the susceptibility amplitudeC0.

These specific heat series are, as usual, considerably less
regular and are difficult to analyze for critical properties.
Assuming the scaling form

C5A2BS 12
K

Kc
D a

and the renormalization group estimate ofa, we have esti-
mated the amplitudesA and B, given in Table VI. These
differ considerably from previous work,1,2 which used
a50.2. The specific heat for the Heisenberg model is be-
lieved to have a cusp at the critical point and thus we esti-
mate the value of specific heat at this point to beC/Nk
51.21, 1.44, and 1.82, respectively, for the sc, bcc, and fcc

TABLE IV. Estimates of critical temperatureKc5J/kTc and
exponentsg for the sc lattice from poles and residues of Pade´ ap-
proximants to (d/dK)ln X.

D/N 4 5 6 7 8

4 0.5950 0.5949 0.5973 0.5962
1.411 1.408 1.453 1.430

5 0.5956 0.5949 0.5950 0.5965
1.420 1.408 1.411 1.438

6 0.5950 0.5955 0.5957
1.410 1.418 1.421

7 0.5948 0.5957
1.407 1.421

8 0.5968
1.443

TABLE V. Estimates of critical temperatureKc5J/kTc and ex-
ponentg for the bcc lattice from poles and residues Pade´ approxi-
mants to (d/dK)ln X. The asterisk denotes a defective approximant.

D/N 4 5 6 7 8

4 0.3971 0.3967 0.3969 0.3969
1.424 1.415 1.419 1.421

5 0.3958* 0.3968 0.3968 0.3970
1.396 1.417 1.418 1.423

6 0.3969 0.3968 0.3968
1.419 1.418 1.417

7 0.3968 0.3969
1.417 1.419

8 0.3968
1.418

TABLE VI. Estimated critical parameters from the three-
dimensional lattices.

sc bcc fcc

Kc5J/kTc 0.5960~5! 0.3968~2! 0.2490~4!

Kc ~Ref. 2! 0.595~3! 0.396~2! 0.249~1!

C0 1.25~2! 1.138~2! 1.131~5!

A 1.21 1.44 1.82
B 0.85 1.13 1.59
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lattices. It would be interesting to compare these with experi-
mental values but we are not aware of such results.

The computation of three additional series coefficients re-
ported here was carried out using the same algorithmic pro-
cedure as used by Bakeret al. 28 years ago, and has been
possible because of the enormous increase in computing per-
formance during this period. Nevertheless, it still required
substantial CPU time and memory. It is difficult to conceive
of any radically more efficient approach to this quantum sys-
tem, unlike classical systems where a variety of methods
exist. Therefore we are not optimistic about prospects to fur-
ther extend these series significantly in the short to medium
term.

We have recently received a report from Butera and
Comi15 in which they report an impressive increase in the
length of series for the classical spin-` Heisenberg model for
the sc and bcc lattices, in each case to orderK19. Analysis of
these series givesg51.403~6! and 1.396~3! from the sc and
bcc lattices. These results are slightly lower than previous
series estimates but still higher than the renormalization-
group results.

Note added in proof.Since submission of this paper we
have refined the algorithm used to derive series coefficients,
and have extended the series for the loose-packed lattices by
one term, to orderx14. The new coefficients are

e14521 798 371 774 277 632 ~sq!,
227 667 884 260 938 752~sc!,
246 102 905 022 713 856~bcc!

and

a14525 636 771 173 998 592~sq!,
8 443 006 907 441 565 696~sc!,
2 284 815 238 218 471 260 160~bcc!.

The analysis of the series is not affected significantly.
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APPENDIX A

We list in Table VII, for illustrative purposes, some low-
order clusters together with their partition functionsAG and
reduced partition functionsFG . In each case, the upper line
is for zero field and the lower line is theH2 term. To avoid
fractions the coefficient ofKr is multiplied by 2r r !. Note
the extensive cancellation which occurs in the reduced par-
tition functions. This can be used to eliminate some high-
order clusters from the list.

APPENDIX B

We provide here a summary of procedures involved in
generating basis states belonging to irreducible representa-
tions of the symmetric group, expanding on details given in
Ref. 2 and in standard books on group theory~e.g., Ref. 13!.

TABLE VII. Some low-order clusters with their partition func-
tionsAG and reduced partition functionsFG .

AG FG

r 1 2 3 4 5 1 2 3 4 5
1 3 26 26 120 3 26 26 120

2 24 24 80 2208 2 24 24 80 2208
2 6 212 236 480 224 240

4 24 232 224 544 4 224 64 960
3 9 0 2162 0 18 272 21080

6 0 2108 0 7 776 224 2432 5520
4 9 218 290 1 080 0~K6!

6 0 248 336 4 176 296 1920
5 9 218 266 840 0~K6!

6 24 284 256 1 616 12 2112 320
6 12 26 2216 360 2240

8 4 2136 2176 11 408 264 2640
7 12 224 248 960 72 2480

8 0 264 0 2 048 2128 22240

TABLE VIII. Dimensionalities of D(k) ~upper row! and D (k)

~lower row! for n52–14.

n/k5 0 1 2 3 4 5 6 7

2 1 2
1 1

3 1 3
1 2

4 1 4 6
1 3 2

5 1 5 10
1 4 5

6 1 6 15 20
1 5 9 5

7 1 7 21 35
1 6 14 14

8 1 8 28 56 70
1 7 20 28 14

9 1 9 36 84 126
1 8 27 48 42

10 1 10 45 120 210 252
1 9 35 75 90 42

11 1 11 55 165 330 462
1 10 44 110 165 132

12 1 12 66 220 495 792 924
1 11 54 154 275 297 132

13 1 13 78 286 715 1287 1716
1 12 65 208 429 572 429

14 1 14 91 364 1001 2002 3003 3432
1 13 77 273 637 1001 1001 429
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Consider a cluster withn sites. There are 2n basis states,
conveniently taken to be eigenstates of thez component of
total spin(s i

z and labeled (m1 ,m2 ,...,mn) with m1561.
This set may be sorted into orthogonal sectors labeled by
k50,1,2...,[n/2], wherek is the number of up spins, provid-
ing representationsD(k) of the symmetric groupS(n), of
dimensionalities

dimD~k!5S nkD .
These representations are, in general, reducible and can be
decomposed as

D~k!5D ~0!
%D ~1!

% ••• %D ~k!,

where theD (k) are irreducible representations~irreps! and

dimD ~k!5dimD~k!2dimD~k21!.

The irrepsD (k) correspond to Young tableaux,13 with two
rows withn2k andk squares, respectively.

Table VIII lists the dimensionalities ofD(k) andD (k) for
n52–14. The upper row in each case is the dimension of
D(k) and the lower is dimD (k). The largest irreducible sector
dealt with in this work has dimension 1001.

Each tableau of a given form has a number of distinct
realizations, equal to the dimensionality of the irrep. For
each realization we define a Young operator which, when
operating on a given function, yields a basis function belong-
ing to that irrep. Since all irreps are contained within the
maximal sector~@n/2# up spins!, we need only work within
this sector. The procedure is best illustrated by example.

We consider the simple casen53. The tableaux and
Young operators are

where (i j ) denotes a permutation ofi and j , etc.
We consider the three states with one up spin,u001&,

u010&, and u100&, where, for convenience, we denote down
spins by 0 rather than21. k50 is the symmetric~identity!
representation and the corresponding basis function is

1C0&5
1

)
$u001&1u010&1u100&%.

For k51 we construct

Y11u001&5u001&2u100&,

Y12u001&5u001&2u010&.

These are orthogonalized using the standard Gram-Schmidt
procedure to form a basis for thek51 irrep. These steps have
been computerized to give a program which generates an
orthonormal basis for any irrep.

*Permanent address: Physics Department, De La Salle Univer-
sity, Manila, The Philippines 2800.
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