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Matrix mean-field theory for the paramagnetic susceptibility of disordered magnets
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A matrix-based mean-field theory for the paramagnetic susceptibility of disordered Heisenberg and Ising
magnets with conventional long-range order is outlined. The wave-vector-dependent static susceptibility is
expressed in terms of the eigenvalues and eigenvectors of a symmetrized exchange matrix. The resulting
expression is subsequently written as an integral involving a weighted eigenvalue distribution of the matrix.
The conditions under which the distribution can be approximated by a ségiection are investigated, and
a criterion is established for the validity of th&function approximation for the critical temperature. The
criterion and the position of thé function are written in terms of the moments of the distribution which are
expressed as products of the elements of the exchange matrix. An alternative approach in which the suscep-
tibility is expressed as the Laplace transform of a linear combination of functions obtained by integrating a set
of coupled first-order differential equations is outlined. The theory is applied to a dilute ferromagnet with
exponential exchange interactions. The limitations of the theory for strongly disordered systems are discussed,
and it is pointed out that when all of the eigenvectors are localized, there is no phase transition in the matrix
mean-field approximationS0163-182896)03421-3

I. INTRODUCTION matrix with the integration of a set of coupled first-order
differential equations is outlined. Dynamics and other exten-
For many years, mean-field theory has been a useful starsions of the theory as it applies to Ising systems are men-
ing point for characterizing the behavior of magnetic matetioned. It must be emphasized that the focus in this paper is
rials. In addition, it has served as a point of reference irPn the treatment of compositional disordeithin the mean-
making comparisons with the predictions of more sophistifield approximation No attempts are made to compare the
cated theories for the behavior near magnetic phase trandgsults of mean-field treatments of the paramagnetic behavior
tions. In ferromagnets in which all spin sites are equivalentOf disordered magnets with results obtained from other ap-
the paramagnetic susceptibility in the mean-field approximaProaches. _ _
tion is inversely proportional to the difference between the It should be noted that matrix mean-field concepts have
ambient temperature and the critical temperafiyeith the ~ had some use in the analysis of spin glagseko the best of
latter being given by a sum involving the exchange integral®ur knowledge, our work is the first explicit application of
coupling the reference spin to its neighbors. In applying théhe matrix mean-field approach to calculating the wave-
mean-field approximation to systems where the translation{€ctor-dependent paramagnetic susceptibility of disordered
symmetry is broken, what is done, typically, is to repldge  Magnets with conventional long-range order.
with the configurational average of critical temperature for
the corresponding ordered system. Thus, in the case of dilute Il. CALCULATIONS
systems, the “naive” mean-field critical temperature is iden- ) o o
tified with X T, wherex is the fraction of occupied sites and _1he starting point in the calculation is the set of mean-
Teo is the mean-field critical temperature for the fully occu- field €quations for the thermal averages of the local sgins
pied lattice. in the presence of a spatially varying field,
The purpose of this paper is to develop a mean-field
theory for the param:_:tgnetic susceptibility of disordered mag- g /Ci2=g,uH explig-r) + E Jisi, i=1...N,
nets having conventional long-range magnetic order from a j
more fundamental point of view in which variations in the (2.1
local fields from site to site are taken into account. In the . , . .
analysis presented here, which is referred tonasrix mean-  Wherek is Boltzmann's constan is the temperatureg is
field theory the wave-vector-dependent susceptibility is ex-t€ 9 factor, u is the Bohr magnetonl\ is the number of
pressed in terms of the eigenvectors and eigenvalues of aiPNS: and; is the exchange integral connecting spiirEnd
exchange matrix.A criterion is established for the validity J: Ci=1 for Ising systems andC;=[S,(S+1)/3]"* for
of the naive mean-field approximation using the moments of'€iSenberg magneteS=1/2,1, .. . etc). As in the usual

a weighted density of eigenvalues of the exchange matri){nean—field approach, these equations are valid for small

which, in turn, are expressed as configurational averages Jelds and temperatures near and abdye Introducing the
products of exchange integrals. The theory is applied to daiablevi=s/C;, Eq.(2.1) can be written in the form
dilute Ising ferromagnet with an exponential exchange inter-

action. An alternative approach for calculating the suscepti- KTo;=guHC; expliq-r)+ > Ajv: 2.2
bility which replaces the diagonalization of the exchange ' ' o e
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whereA;; denotes the symmetrized exchange matrix defined

by

The solution to Eq(2.2) can be written in terms of the
eigenvalues\, and the orthonormal eigenvectots, , of the
matrix A;; . Introducing the transformations

U:Ei boivi» (2.4)
and
vi=2 (#)74,0,,
=3,4510,, (2.9
one obtains the result
@vzg,LLHZi b, Ci expliq-r)/(kT—A,). (2.6

The magnetic momentM, arising from the field
H explig-r;) is expressed as

qug,qu: sj exp(iq-rj). 2.7

Using (2.5 and (2.6) to rewrite Eq.(2.7) we obtain an ex-
pression forM ; which, when divided byH, yields a wave-
vector-dependent susceptibili¥(q) of the form

2

X<q>=gzu2§ Z $,iCi exp(iq-n)/

(KT—A,).
(2.9

Equation (2.8) is the principal result of this section. It
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Ill. NAIVE MEAN-FIELD THEORY AND T,

In discussing the relation between the results presented
above and the “naive” mean-field theory mentioned in the
Introduction, it is useful to introduce a normalized, weighted
eigenvalue distributiom(q,\) by means of the equation

2
5(>\—AU)/Z C?.
3.0

P(q,)\):; ‘E. ¢,iCi exp(iq-ry)

The susceptibility can then be written as

+ o0
X<q)=g%2(2i C?) fﬁxdxpmm)/(kT—A). 3.2

In what follows, the moments g#(q,\) play an important
role. They are defined by

W= | axnmoan),

2
A'J/Z C?.
I

In terms of these, the susceptibility can be written

1+ nzl <)\”>q/(kT)“

=§ Z $,iCi explig-ry)
(3.3
X(q)=(g?u?KT)

> ct

(3.9

Naive mean-field theory, as the term is used here, is
equivalent to the assumption that fgrin the neighborhood
of go, the wave vector characterizing the magnetically or-
dered statéi.e.,;s; expigo-r;)#0 for H=0,T<T,), p(q,\)
can be approximated by a singbfunction; that is, one has
p(QN)~8\N—\(q)). If this is the case, then
X(q)oc(kT—)\C(q))‘l, and the critical temperature is identi-

expresses the susceptibility in terms of the eigenvalues arfied with N\ (qo)/k. For the 5-function approximation to be
eigenvectors which can be calculated by direct diagonalizavalid it is necessary that\")~(\)" (n>1), in which case

tion of the matrixA;; for a finite array of spins with, for

kT, is identified with the first momer{)qo. A simple crite-

example, periodic boundary conditions. Prior to analyzingrion for the applicability of naive mean-field theory is ob-

Eqg. (2.8 in detail, it is appropriate to verify thaX(q) re-

tained from the ratio of the square root of the variance to the

duces to standard results in various limits. In the high-mean: whed(\%—(\)?]*%(\)<<1, the width of the peak in
temperature limit, the eigenvalues are all small in comparithe weighted density of states is small in comparison with its
son withkT. Because of the orthonormal properties of theposition so that a-function approximation is appropriate.

¢,i , the susceptibility has the Curie form

X(q)=(g?u?kT)>, C2. (2.9

The other case where a comparison can be made with exact

Using Eq.(3.3) and noting that\, is an eigenvalue of the
matrix Aj;=C;C,J;; , one can write the first and second mo-
ments in the form

jo

<)\>q:i§j: Cizcjz‘]ij expiq-rij) /Z C? (35

results is a translationally invariant array of equivalent spins.

In this situation, the eigenvectors are plane wavesand
N~"2exp(—ik-r;), wherek is a vector in the Brillouin zone

of the lattice of spins. The corresponding eigenvalue is

A =2 A;; exdik-(ri—r;)]. The resulting expression for the
susceptibility takes the standard form

where rj;=r;—r;. From Eg. (3.9, it is evident that for
d=do, (N)q is the configurational average of the mean-field
expression fok T, derived for the corresponding translation-
ally invariant system.

X(0)=g?u?C3N/(KT—Ay), (2.10

whereC;=C;=C.
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The applicability of the singlé-function approximation, 6
and thus naive mean-field theory, can be inferred from the
variance ratio calculated using Eq8.5 and (3.6). As an =025
example, we consider a lattice of identical spins where a '
fractionx of the sites are occupied. Assuming ferromagnetic e
nearest-neighbor interactiodsandz nearest neighbors, one
readily obtains the results (\)y=2zxCJ and =020
(A%)y=C*J?[zx+2z(z—1)x?] from which one obtains : '

[N =T =(1—x) Y4 (zX) Y2, Thus, it is evident that oL
the naive mean-field theory is appropriate wiesl orz>1. \

When the singles-function approximation is not valid,
the question arises as to the “critical temperature” in the 2 \h om0
matrix version of mean-field theory. We define the critical oL
temperaturdl . to be the highest temperature at whixto)
diverges in the thermodynamic limit, which, from EQ.8),
is equivalent to the largest eigenvalue for which 8
= i, Ci expligo:ri)[%N is finite in the limit N—oe. This 6
definition implies that the eigenstate in question is extended

p(0,A)

since localized states cannot give rise to a phase transition in ¢ 07010

the thermodynamic limif2 However, a more useful ap- 2

proach from the point of view of numerical studies of finite 0 e )
arrays of spins, where the thermodynamic limit is difficult to

infer, is to identify the onset of a mean-field “critical re- A

gion” with the upper cutoff ofp(qg,\). For matrix mean- , , 3
field theory to be consistent, the localized states with eigen- 1F'G'21' Wzlghzteoi derr:suty cc’jf fgateﬁ(%)‘é VS A forVaT—ho.ldo,
values lying above the largest extended-state eigenvalll®: 0-20, and 0.25 for the model described in Sec. V. The data are

Lo I _from a single configuration of 1006 spins distributed at random on
a'lp.pea.rlng inX(qp) must mal§e .no. contribution to the suscep a fcc array of 4136X136%x136 sites(corresponding to a concen-
tibility in the thermodynamic limit.

trationx=10"*) with periodic boundary conditions. The interaction
was taken to be of the form ej@'v2]exp[— ar] with unit lattice
IV. DIFFERENTIAL EQUATION APPROACH constant.

The expression for the susceptibility given in Eg.7)
involves the eigenvectors and eigenvalues of the exchange V. MODEL CALCULATION
matrix. Even with high-speed work stations, studies are lim-
ited to systems with=10® spins. If one is interested only in

X(qg), one can bypass the matrix calculation and evaluate th‘f’he exchange interaction was of the fort)exp(—ar)

susceptibility directly by Integrating a system of CO.UpIedwheres was adjusted so that the interaction between nearest-
first-order linear differential equations associated with thenei hbor spins was equal (o one. The calculations were car-
exchange matrix. g9 p q :

Introducing the set of function& %(u) which obey the ried out for N_:100§ spins randomly_distribqteql on a face-

equations centgr_ed-cublc Iattl_ce supercell with periodic boundary
conditions and lattice constant equal to 1 so théak)

=exp(a/v2). The concentration of spins was held fixed at
dqu(u)/du=2 AHGJG(U), u>0, (4.2 x=10"* corresponding to a fcc supercell ofx436x136
i X136 sites, ande was varied, 0.1&a<0.25. To avoid

double counting of sites, the interaction was cut off at one-
half of the fcc supercell lattice constant, i.e., rat136/2.

In this section, we present the results of a numerical study
of the mean-field equations for a dilute ferromagftgt=0).

with the initial conditions

du=0+)=C. —_— Eigenvalues and eigenvectors were calculated by standard
Gj'(u=0+)=C; expig-r;), 4.2 methods.
the susceptibility is given by the Laplace transform of a lin-  Figure 1 shows the results for the weighted density of
ear combination of th&; . That is, one has statedEq. (3.1 with q=0] for «=0.10, 0.15, 0.20, and 0.25.

In calculating the curves, th&function inlllgq.(&l) has bezen
o ) approximated by a Gaussiaf@).00257) ““exd —(A—A,)"/
X(Cl)zgz,uzf0 du e exp(—ig-rj)Gj(u), 0.0025. For <0.10, the weighted density of states can be
. 4.3 approximated by a singlé function; with increasingy, the
single-5-function approximation breaks down, and the distri-
as can be verified by formally integrating Eg.1) in terms  bution becomes multipeaked. The explanation for this behav-
of the exponential of the matriA and subsequently trans- ior can be found in the simple calculation outlined at the end
forming to a basis set involving the eigenvectorsfofin the  of Sec. Ill. If one identifies¥”* with the range of the inter-
differential equation approach, calculations can be carrie@ction, then the number of “nearest neighbors” scales as
out for systems of 18-10° spins without undue demands on xa 3. Thus, forx fixed, increasingr amounts to reducing
computer time and memory. the number of nearest neighbors leading to an increase in the
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ratio of the square root of the variance to the mean value oéled in a straightforward way. The equation of motion for the

the distribution. spins takes the form
It is beyond the scope of this study to infég from the ) )
eigenvalue criterion mentioned in Sec. Ill since that would kTdv; /dt=guHyC; expliq-r;)expi ot)
require a detailed numerical study of the behavior of
|2 ¢i,|%/N asN—. It can be stated, however, that for large — 9| kToi— 2 Aju; |, (6.1

a, matrix mean-field theory fails in its prediction far, .

Studies of the localization of the eigenstates of a system witliwvhere y is identified with the single-spin flipping rate char-
an interaction matrix identical to the one used h&part acterizing the relaxation toward the local field. Assuming a
from an overall sigh have shown that all of the states are harmonic time dependence, ekpf), one obtains a gener-
localized for @=0.23-0.25"° Because extended states arealization of Eq.(2.6):

necessary for phase transiticitsthe conclusion is that there

is no phase transition for large in the matrix mean-field

approximation. As a consequence, the theory does not repro- ©,=guH >, ¢, expliq-r)/(KT+ikTo/y—A,),

duce the scaling behavior found in the extreme low-density 6.2
limit, In T,=a—ba(V/N)¥3 wherea andb are material- '
dependent constans. which leads immediately to the complex wave-vector and

frequency-dependent susceptibility

VI. DISCUSSION

X(q,0) =212, | 20 bui expia-r) /(KT +ikToly
The purpose of this paper has been the systematic devel-

opment of a matrix mean-field theory of the paramagnetic —A). (6.3
susceptibility in disordered magnets with conventional long- .

range order. The mean-field “critical region” was associated As a final comment, we note that in the case of Ising
with the upper cutoff op(gy,A), whereqg is the wave vector  systems, one can improve upon the mean-field theory by
characterizing the magnetically ordered state. The criticaiising the random local-field approximati%‘ri‘.o In this ap-
temperature was identified with the divergence of the suscefproach the exchange interaction in the maﬂ(n( is replaced
tibility X(qo) or equivalently, with the largestextended- by an effective interactiomy;; . In the case of dilute sys-
statg eigenvalue for which=; ¢;,C; expligy-r;)|N is finite  tems with long-range interactions, the effective interaction
in the thermodynamic limit. It was pointed out that for the matrix is defined by

theory to be consistent, any localized states with eigenvalues

lying above that eigenvalue must make no contribution to the * . .

susceptibility in the thermodynamic limit. The criterion  Aeffii =T2J’0 dp exd —F1(p)]sin(Ji;p)/sinn(mpT/2),

based on the largest eigenvalue of the extended states which (6.4)
have a finite overlap with eXjmy-r;) is similar to the crite- ) o

rion for the mean-field transition temperature in spin glassesvhere the functior, is given as

except that in the latter, it is the largest extended-state eigen-

value without reference to projectiéri:’ In situations where Fi(p)= (N/V)f dr[1—cogJ(r)]. (6.5
p(go,\) could be approximated by a sing&function (i.e.,

naive mean-field theory is appropriat& . was given by the  HereN/V is the spin density and(r) the exchange interac-

first moment ofp, which is identified with a configurational tion between spins separated by a distanchlote that the
average of the mean-field critical temperature in the corregffective interaction reduces th; in the limit T—.

sponding system in the absence of disorder. A major limita-
tion of the theory comes about because the interaction matrix
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