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A matrix-based mean-field theory for the paramagnetic susceptibility of disordered Heisenberg and Ising
magnets with conventional long-range order is outlined. The wave-vector-dependent static susceptibility is
expressed in terms of the eigenvalues and eigenvectors of a symmetrized exchange matrix. The resulting
expression is subsequently written as an integral involving a weighted eigenvalue distribution of the matrix.
The conditions under which the distribution can be approximated by a singled function are investigated, and
a criterion is established for the validity of thed-function approximation for the critical temperature. The
criterion and the position of thed function are written in terms of the moments of the distribution which are
expressed as products of the elements of the exchange matrix. An alternative approach in which the suscep-
tibility is expressed as the Laplace transform of a linear combination of functions obtained by integrating a set
of coupled first-order differential equations is outlined. The theory is applied to a dilute ferromagnet with
exponential exchange interactions. The limitations of the theory for strongly disordered systems are discussed,
and it is pointed out that when all of the eigenvectors are localized, there is no phase transition in the matrix
mean-field approximation.@S0163-1829~96!03421-2#

I. INTRODUCTION

For many years, mean-field theory has been a useful start-
ing point for characterizing the behavior of magnetic mate-
rials. In addition, it has served as a point of reference in
making comparisons with the predictions of more sophisti-
cated theories for the behavior near magnetic phase transi-
tions. In ferromagnets in which all spin sites are equivalent,
the paramagnetic susceptibility in the mean-field approxima-
tion is inversely proportional to the difference between the
ambient temperature and the critical temperatureTc with the
latter being given by a sum involving the exchange integrals
coupling the reference spin to its neighbors. In applying the
mean-field approximation to systems where the translational
symmetry is broken, what is done, typically, is to replaceTc
with the configurational average of critical temperature for
the corresponding ordered system. Thus, in the case of dilute
systems, the ‘‘naive’’ mean-field critical temperature is iden-
tified with xTc0, wherex is the fraction of occupied sites and
Tc0 is the mean-field critical temperature for the fully occu-
pied lattice.

The purpose of this paper is to develop a mean-field
theory for the paramagnetic susceptibility of disordered mag-
nets having conventional long-range magnetic order from a
more fundamental point of view in which variations in the
local fields from site to site are taken into account. In the
analysis presented here, which is referred to asmatrix mean-
field theory, the wave-vector-dependent susceptibility is ex-
pressed in terms of the eigenvectors and eigenvalues of an
exchange matrix.1 A criterion is established for the validity
of the naive mean-field approximation using the moments of
a weighted density of eigenvalues of the exchange matrix,
which, in turn, are expressed as configurational averages of
products of exchange integrals. The theory is applied to a
dilute Ising ferromagnet with an exponential exchange inter-
action. An alternative approach for calculating the suscepti-
bility which replaces the diagonalization of the exchange

matrix with the integration of a set of coupled first-order
differential equations is outlined. Dynamics and other exten-
sions of the theory as it applies to Ising systems are men-
tioned. It must be emphasized that the focus in this paper is
on the treatment of compositional disorderwithin the mean-
field approximation. No attempts are made to compare the
results of mean-field treatments of the paramagnetic behavior
of disordered magnets with results obtained from other ap-
proaches.

It should be noted that matrix mean-field concepts have
had some use in the analysis of spin glasses.2,3 To the best of
our knowledge, our work is the first explicit application of
the matrix mean-field approach to calculating the wave-
vector-dependent paramagnetic susceptibility of disordered
magnets with conventional long-range order.

II. CALCULATIONS

The starting point in the calculation is the set of mean-
field equations for the thermal averages of the local spinssi
in the presence of a spatially varying field,

kTsi /Ci
25gmH exp~ iq–r i !1(

j
Ji j sj , i51,...,N,

~2.1!

wherek is Boltzmann’s constant,T is the temperature,g is
the g factor, m is the Bohr magneton,N is the number of
spins, andJi j is the exchange integral connecting spinsi and
j . Ci51 for Ising systems andCi5[Si(Si11)/3]1/2 for
Heisenberg magnets~Si51/2,1, . . . ,etc.!. As in the usual
mean-field approach, these equations are valid for small
fields and temperatures near and aboveTc . Introducing the
variablev i[si /Ci , Eq. ~2.1! can be written in the form

kTv i5gmHCi exp~ iq–r i !1(
j
Ai jv j , ~2.2!
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whereAi j denotes the symmetrized exchange matrix defined
by

Ai j5CiCjJi j . ~2.3!

The solution to Eq.~2.2! can be written in terms of the
eigenvaluesLv and the orthonormal eigenvectors,fv i , of the
matrix Ai j . Introducing the transformations

Qv5(
i

fv iv i , ~2.4!

and

v i5(
v

~f!21
ivQv ,

5Svfv i* Qv , ~2.5!

one obtains the result

Qv5gmH(
i

fv iCi exp~ iq–r i !/~kT2Lv!. ~2.6!

The magnetic momentMq arising from the field
H exp~iq–r i! is expressed as

Mq5gm(
j
sj exp~ iq–r j !. ~2.7!

Using ~2.5! and ~2.6! to rewrite Eq.~2.7! we obtain an ex-
pression forM q which, when divided byH, yields a wave-
vector-dependent susceptibilityX~q! of the form

X~q!5g2m2(
v

U(
i

fv iCi exp~ iq–r i !U2Y~kT2Lv!.

~2.8!

Equation ~2.8! is the principal result of this section. It
expresses the susceptibility in terms of the eigenvalues and
eigenvectors which can be calculated by direct diagonaliza-
tion of the matrixAi j for a finite array of spins with, for
example, periodic boundary conditions. Prior to analyzing
Eq. ~2.8! in detail, it is appropriate to verify thatX~q! re-
duces to standard results in various limits. In the high-
temperature limit, the eigenvalues are all small in compari-
son with kT. Because of the orthonormal properties of the
fv i , the susceptibility has the Curie form

X~q!5~g2m2/kT!(
i
Ci
2. ~2.9!

The other case where a comparison can be made with exact
results is a translationally invariant array of equivalent spins.
In this situation, the eigenvectors are plane waves,
N21/2 exp~2ik–r j !, wherek is a vector in the Brillouin zone
of the lattice of spins. The corresponding eigenvalue is
Lk5( jAi j exp@ik–~r i2r j !#. The resulting expression for the
susceptibility takes the standard form

X~q!5g2m2C2N/~kT2Lq!, ~2.10!

whereCi5Cj[C.

III. NAIVE MEAN-FIELD THEORY AND Tc

In discussing the relation between the results presented
above and the ‘‘naive’’ mean-field theory mentioned in the
Introduction, it is useful to introduce a normalized, weighted
eigenvalue distributionr~q,l! by means of the equation

r~q,l!5(
v

U(
i

fv iCi exp~ iq–r i !U2d~l2Lv!Y(
i
Ci
2.

~3.1!

The susceptibility can then be written as

X~q!5g2m2S (
i
Ci
2D E

2`

1`

dlr~q,l!/~kT2l!. ~3.2!

In what follows, the moments ofr~q,l! play an important
role. They are defined by

^ln&q5E
2`

1`

dl lnr~q,l!,

5(
v

U(
i

fv iCi exp~ iq–r i !U2Lv
nY(

i
Ci
2.

~3.3!

In terms of these, the susceptibility can be written

X~q!5~g2m2/kT!S (
i
Ci
2D F11 (

n51

`

^ln&qY ~kT!nG .
~3.4!

Naive mean-field theory, as the term is used here, is
equivalent to the assumption that forq in the neighborhood
of q0, the wave vector characterizing the magnetically or-
dered state~i.e.,S j sj exp~iq0–r j !Þ0 forH50,T,Tc!, r~q,l!
can be approximated by a singled function; that is, one has
r~q,l!'d„l2lc~q!…. If this is the case, then
X~q!}„kT2lc~q!…21, and the critical temperature is identi-
fied with lc~q0!/k. For thed-function approximation to be
valid it is necessary that̂ln&'^l&n ~n.1!, in which case
kTc is identified with the first moment̂l&q0. A simple crite-
rion for the applicability of naive mean-field theory is ob-
tained from the ratio of the square root of the variance to the
mean: when@^l2&2^l&2#1/2/^l&,,1, the width of the peak in
the weighted density of states is small in comparison with its
position so that ad-function approximation is appropriate.

Using Eq.~3.3! and noting thatLv is an eigenvalue of the
matrix Ai j5CiCjJi j , one can write the first and second mo-
ments in the form

^l&q5(
i , j

Ci
2Cj

2Ji j exp~ iq–r i j ! Y(
i
Ci
2, ~3.5!

and

^l2&q5(
i , j ,k

Ci
2Cj

2Ck
2JikJjk exp~ iq–r i j !Y(

i
Ci
2 ~3.6!

where r i j5r i2r j . From Eq. ~3.5!, it is evident that for
q5q0, ^l&q is the configurational average of the mean-field
expression forkTc derived for the corresponding translation-
ally invariant system.
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The applicability of the single-d-function approximation,
and thus naive mean-field theory, can be inferred from the
variance ratio calculated using Eqs.~3.5! and ~3.6!. As an
example, we consider a lattice of identical spins where a
fractionx of the sites are occupied. Assuming ferromagnetic
nearest-neighbor interactionsJ, andz nearest neighbors, one
readily obtains the results ^l&05zxC2J and
^l2&05C4J2[zx1z(z21)x2] from which one obtains
@^l2&2^l&2#1/2/^l&5(12x)1/2/(zx)1/2. Thus, it is evident that
the naive mean-field theory is appropriate whenx'1 orz@1.

When the single-d-function approximation is not valid,
the question arises as to the ‘‘critical temperature’’ in the
matrix version of mean-field theory. We define the critical
temperatureTc to be the highest temperature at whichX~q0!
diverges in the thermodynamic limit, which, from Eq.~2.8!,
is equivalent to the largest eigenvalue for which
u(if ivCi exp~iq0–r i!u

2/N is finite in the limit N→`. This
definition implies that the eigenstate in question is extended
since localized states cannot give rise to a phase transition in
the thermodynamic limit.2,3 However, a more useful ap-
proach from the point of view of numerical studies of finite
arrays of spins, where the thermodynamic limit is difficult to
infer, is to identify the onset of a mean-field ‘‘critical re-
gion’’ with the upper cutoff ofr~q0,l!. For matrix mean-
field theory to be consistent, the localized states with eigen-
values lying above the largest extended-state eigenvalue
appearing inX~q0! must make no contribution to the suscep-
tibility in the thermodynamic limit.

IV. DIFFERENTIAL EQUATION APPROACH

The expression for the susceptibility given in Eq.~2.7!
involves the eigenvectors and eigenvalues of the exchange
matrix. Even with high-speed work stations, studies are lim-
ited to systems with'103 spins. If one is interested only in
X~q!, one can bypass the matrix calculation and evaluate the
susceptibility directly by integrating a system of coupled
first-order linear differential equations associated with the
exchange matrix.

Introducing the set of functionsG i
q(u) which obey the

equations

dGi
q~u!/du5(

j
Ai jGj

q~u!, u.0, ~4.1!

with the initial conditions

Gi
q~u501 !5Ci exp~ iq–r i !, ~4.2!

the susceptibility is given by the Laplace transform of a lin-
ear combination of theGi . That is, one has

X~q!5g2m2E
0

`

du e2kTu(
j
Cj exp~2 iq–r j !Gj

q~u!,

~4.3!

as can be verified by formally integrating Eq.~4.1! in terms
of the exponential of the matrixA and subsequently trans-
forming to a basis set involving the eigenvectors ofA. In the
differential equation approach, calculations can be carried
out for systems of 104–105 spins without undue demands on
computer time and memory.

V. MODEL CALCULATION

In this section, we present the results of a numerical study
of the mean-field equations for a dilute ferromagnet~q050!.
The exchange interaction was of the form«~a!exp~2ar !,
where« was adjusted so that the interaction between nearest-
neighbor spins was equal to one. The calculations were car-
ried out forN51006 spins randomly distributed on a face-
centered-cubic lattice supercell with periodic boundary
conditions and lattice constant equal to 1 so that«~a!
5exp~a/&!. The concentration of spins was held fixed at
x51024 corresponding to a fcc supercell of 431363136
3136 sites, anda was varied, 0.10<a<0.25. To avoid
double counting of sites, the interaction was cut off at one-
half of the fcc supercell lattice constant, i.e., atr5136/2.
Eigenvalues and eigenvectors were calculated by standard
methods.

Figure 1 shows the results for the weighted density of
states@Eq. ~3.1! with q50# for a50.10, 0.15, 0.20, and 0.25.
In calculating the curves, thed function in Eq.~3.1! has been
approximated by a Gaussian,~0.0025p!21/2 exp@2~l2Lv!

2/
0.0025#. For a<0.10, the weighted density of states can be
approximated by a singled function; with increasinga, the
single-d-function approximation breaks down, and the distri-
bution becomes multipeaked. The explanation for this behav-
ior can be found in the simple calculation outlined at the end
of Sec. III. If one identifiesa21 with the range of the inter-
action, then the number of ‘‘nearest neighbors’’ scales as
xa23. Thus, forx fixed, increasinga amounts to reducing
the number of nearest neighbors leading to an increase in the

FIG. 1. Weighted density of states,r~0,l! vs l for a50.10,
0.15, 0.20, and 0.25 for the model described in Sec. V. The data are
from a single configuration of 1006 spins distributed at random on
a fcc array of 4313631363136 sites~corresponding to a concen-
trationx51024! with periodic boundary conditions. The interaction
was taken to be of the form exp@a/&#exp[2ar ] with unit lattice
constant.
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ratio of the square root of the variance to the mean value of
the distribution.

It is beyond the scope of this study to inferTc from the
eigenvalue criterion mentioned in Sec. III since that would
require a detailed numerical study of the behavior of
uS if ivu

2/N asN→`. It can be stated, however, that for large
a, matrix mean-field theory fails in its prediction forTc .
Studies of the localization of the eigenstates of a system with
an interaction matrix identical to the one used here~apart
from an overall sign! have shown that all of the states are
localized fora>0.2320.25.4,5 Because extended states are
necessary for phase transitions,2,3 the conclusion is that there
is no phase transition for largea in the matrix mean-field
approximation. As a consequence, the theory does not repro-
duce the scaling behavior found in the extreme low-density
limit, ln Tc5a2ba(V/N)1/3, wherea and b are material-
dependent constants.6

VI. DISCUSSION

The purpose of this paper has been the systematic devel-
opment of a matrix mean-field theory of the paramagnetic
susceptibility in disordered magnets with conventional long-
range order. The mean-field ‘‘critical region’’ was associated
with the upper cutoff ofr~q0,l!, whereq0 is the wave vector
characterizing the magnetically ordered state. The critical
temperature was identified with the divergence of the suscep-
tibility X~q0! or equivalently, with the largest~extended-
state! eigenvalue for whichu( if ivCi exp~iq0•r i!u

2/N is finite
in the thermodynamic limit. It was pointed out that for the
theory to be consistent, any localized states with eigenvalues
lying above that eigenvalue must make no contribution to the
susceptibility in the thermodynamic limit. The criterion
based on the largest eigenvalue of the extended states which
have a finite overlap with exp~iq0•r i! is similar to the crite-
rion for the mean-field transition temperature in spin glasses,
except that in the latter, it is the largest extended-state eigen-
value without reference to projection.2,3,7 In situations where
r~q0,l! could be approximated by a singled function ~i.e.,
naive mean-field theory is appropriate!, Tc was given by the
first moment ofr, which is identified with a configurational
average of the mean-field critical temperature in the corre-
sponding system in the absence of disorder. A major limita-
tion of the theory comes about because the interaction matrix
will have only localized eigenvectors if the disorder is suffi-
ciently strong. When this is the case, there is no phase tran-
sition in the matrix mean-field approximation.

Up to this point, the analysis has been of the static sus-
ceptibility. In the case of Ising systems, dynamical effects
associated with the stochastic flipping of spins can be mod-

eled in a straightforward way. The equation of motion for the
spins takes the form

kTdv i /dt5gmHgCi exp~ iq–r i !exp~ ivt !

2gS kTv i2( j Ai jv j D , ~6.1!

whereg is identified with the single-spin flipping rate char-
acterizing the relaxation toward the local field. Assuming a
harmonic time dependence, exp(ivt), one obtains a gener-
alization of Eq.~2.6!:

Qn5gmH( i fn i exp~ iq–r i !/~kT1 ikTv/g2Ln!,

~6.2!

which leads immediately to the complex wave-vector and
frequency-dependent susceptibility

X~q,v!5g2m2(n u( i fn i exp~ iq–r i !u2/~kT1 ikTv/g

2Ln!. ~6.3!

As a final comment, we note that in the case of Ising
systems, one can improve upon the mean-field theory by
using the random local-field approximation.8–10 In this ap-
proach the exchange interaction in the matrixAi j is replaced
by an effective interactionAeff ij . In the case of dilute sys-
tems with long-range interactions, the effective interaction
matrix is defined by

Aeff i j5T2E
0

`

dr exp@2F1~r!#sin~Ji jr!/sinh~prT/2!,

~6.4!

where the functionF1 is given as

F1~r!5~N/V!E dr @12cos~J~r !#. ~6.5!

HereN/V is the spin density andJ(r ) the exchange interac-
tion between spins separated by a distancer . Note that the
effective interaction reduces toJi j in the limit T→`.
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