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A possible explanation for the relaxation behavior of many phenomena, and in particular of dielectric
polarization phenomena, has been to assume the existence of a distribution of relaxation frequencies instead of
a single relaxation frequency. It has been demonstrated that the natural scale for the distribution of relaxation
frequencies is logarithmic in frequency axis. This assertion should be valid provided that there is both a
relationship, between the frequency and the activation energy, of an exponential type like in an Arrhenius
equation, and that a distribution exists in the domain of activation energies. These activation energies could
possibly correspond to the energy states of the relaxing entities. A theory is then here presented to show that
the product of the elapsed time by the depolarization current is a convolution of the distribution function of
relaxation frequencies by a weight function of an asymmetric bell shape. A similar relationship is also shown
to exist for the permittivity of a dielectric. Various consequences can be deduced from this theory, among them
the determination of a similar relationship to that of the Hamon approximation. In the second part of this paper
a deconvolution procedure has been proposed to find the distribution function of relaxation frequencies from
experimental data, based on the above theory. Tests for this deconvolution procedure and its associated theory
are reported, based on theoretical distribution functions as well as on data taken from previous published work.
@S0163-1829~96!00321-9#

INTRODUCTION

The relaxation of polarization

The relaxation behavior in many systems~i.e., physical,
biological, chemical, etc.! where a quantityP brought out of
equilibrium relaxes toward its equilibrium value, can be de-
scribed by a first-order differential equation such as

1

nd
Ṗ~ t !1P~ t !5 lim

t→`

P~ t !, ~1!

where 1/nd is the relaxation time ornd is the relaxation fre-
quency. The equilibrium value ofP will depend in general
on the magnitude of the driving excitation. In this paper we
will be interested in the phenomena of dielectric polarization
and thusP will denote the polarization of the material.

Debye relaxation: The time and frequency domain

In the context of the linear dielectric theory the above
type of equation bears the name of Debye relaxation andnd
is then the relaxation frequency of a particular type of dipole
moment.1 In general, for a material exhibiting different types
of dipole moments each of these have a characteristic relax-
ation frequency. From the study of the relaxation dynamics
one can get therefore an insight on the various mechanisms
of polarization present in the material under investigation.

In real materials however, it is a common finding that the
relaxation for a particular type of dipole moment proceeds as
if, rather than a single relaxation frequency, a distribution of
relaxation frequencies characterized by a mean value and a
standard deviation2–4 exists. Qualitatively, the mean value of
this distribution should be linked to the inertia of the relaxing

dipole moment, while the standard deviation can be associ-
ated to the degree of interaction and/or disorder between the
relaxing entities. We stress that this approach, of the distri-
bution function of relaxation frequencies, should be regarded
as one interpretation of the experimental data that is, by no
means, the only possible one.16

The dynamic behavior for the relaxation of the polariza-
tion can be probed equivalently either in the time or in the
frequency domain. In the time domain, one usually measures
the change in polarization with time~i.e., the current!. This
experiment is carried out by applying a voltageV0 to the
sample for a sufficiently long timetp@1/nd , so that the
sample acquires a polarizationP0 . P0/V0 is then the total
polarization charge which can be ascribed to the above di-
pole moment for each unit of the applied voltage. After per-
forming the polarization, the voltage is switched off while
the current~i.e., the change in polarization! is recorded dur-
ing a timet r , such thatt r!tp . In the case of a Debye relax-
ation the current is

I ~ t !5
dP~ t !

dt
52ndP0exp~2ndt ! ~2!

corresponding to the followingrelaxation functionof the po-
larization:

P~ t !5P0exp~2ndt !, ~3!

where the equilibrium value for the depolarization experi-
ment was set to zero due to the absence of a driving voltage.
Alternatively, in the frequency domain one measures the fre-
quency dependence of the relative permittivity~in the fore-
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going relative permittivity is shortened to permittivity unless
stated otherwise! e* ~v!, which for a Debye relaxation is
given by

e* ~v!2e`5
e~0!2e`

11 iv/nd
5

es
11 iv/nd

, ~4a!

wheree` ande~0! are the infinite and the static permittivity,
respectively, whilev is the angular frequency, andes is what
will be called the relaxation strength of the dipole moment.
This latter quantity is related toP0/V0 through

es5e~0!2e`5P0 /~V0C0!, ~4b!

whereC0 is the geometric capacitance of the sample.
A quantity Pi , normally referred to as the instantaneous

polarization, has not been mentioned above both because it is
not linked to a dipolar relaxation mechanism, and its time
constant is much shorter than the relaxation time of dipolar
relaxation.Pi though is related to the infinite permittivitye`

throughe`5Pi /(V0C0).

Kohlrausch-Williams-Watts relaxation function

In order to account for the experimentally found deviation
from the Debye behavior various modifications of the polar-
ization relaxation function@Eq. ~3!# have been proposed, the
most notable of which is the Kohlrausch-Williams-Watts
~KWW! function,5,6

P~ t !5P0exp@2~nkt !
bk#, ~5!

wherenk is the relaxation frequency andbk is a parameter
between zero and one. The latter parameter is qualitatively
associated to the degree of interaction, between the relaxing
entities, being closer to zero for strongly interacting dipole
moments and to one for noninteracting ones.

Kubo relations

Kubo1,7 has derived some of the properties for the polar-
ization relaxation function based on the fact that the value of
the polarization relaxation for timet should equal the time
average of its autocorrelation around the same timet. In this
respect it should be noted that both the Debye and the KWW
equations do not obeyall of those properties, namely, that
the odd derivatives of the relaxing polarization should be
null for t50,1 provided the medium is thermodynamic equi-
librium, i.e.,

P~2n11!~ t50!50. ~6!

Thus, the depolarization current att50 should equal zero,
which is clearly not the case for the Debye relaxation func-
tion.

Kramers-Kronig relations

The real and imaginary parts of the permittivity are not
independent of each other. In fact, in the frequency domain,
a relaxation can be detected either as a peak in the imaginary
part of the permittivity or as an inflexion in the curve of its
real part. Formally, the equations connecting these quantities
are known as the Kramers-Kronig relations.8

Relationship between dielectric constant
and relaxation current

As was pointed out above there is an equivalence between
the frequency and the time domain measurements. It is thus a
matter of experimental convenience to make measurements
in either domain. That is the main reason why low-frequency
measurements~&1 MHz! are usually performed in the time
domain, while high-frequency measurements~*0.01 Hz! are
performed in the frequency domain. There is potentially a
region of overlap which could be used to adjust the data from
both domains.

Another reason to make low-frequency measurements in
the time domain through depolarization current measure-
ments is the fact that the dc conductivity also contributes to
the imaginary part of the permittivity according tosdc/iv,
increasing its value as the frequency decreases. In the low-
frequency range, this contribution can be very large thus
completely masking its dynamical behavior.

Formally the relationship between the relaxation function
and the dielectric constant is given by9

e* ~v!2e`52E
0

` I ~ t !

C0V0
eivtdt. ~7!

This expression shows that the current and permittivity are
linked through a truncated form of the Fourier transform.

The dielectric constant for a given frequency depends
on the relaxation current around a time corresponding

to the reciprocal of the chosen frequency

The above expression implies that the dielectric constant
for a given frequency depends on the depolarization current
from zero to infinity. It is intuitive however, that the current
for a short elapsed time is strongly linked with the permit-
tivity at high frequencies, while the value of the current for
longer times reflects the permittivity behavior at lower fre-
quencies. This point will be brought up later.

Experimental determination of a distribution
of relaxation frequencies

The determination of a distribution of relaxation frequen-
cies from the experimental depolarization current measure-
ments has been studied by Kliem, Fuhrmann, and Arlt.10

Their numerical method started from an assumed spectrum
on a logarithmic scale of frequency. This spectrum was then
adjusted based on a comparison between the data calculated
using the assumed spectrum and the measured data. Their
method was demonstrated to be suitable both for broad and
for narrow spectra of distribution of relaxation frequencies.

Similar methods have also been used in other works but
on noise-free data. Other methods also exist but they aim at
determining the total response as a combination of discrete
number of relaxation frequencies.11

This paper presents, in its first part, a suitable theory for
the determination of a distribution function of relaxation fre-
quencies, discussing its various implications on the interpre-
tation of dielectric relaxation phenomena. A second part
aims at, using the latter theory, determining numerically the
distribution from experimental depolarization current data.

53 14 213DETERMINATION OF A DISTRIBUTION OF RELAXATION . . .



THEORY

Distribution functions

We now assume that the polarization due to a particular
dipole moment relaxes according to a distribution of elemen-
tary Debye relaxation frequenciesf (n). In this case the
modulus of the change in polarization~i.e., the current! will
be given by@see Eq.~2!#

d

dt
P~ t !5I ~ t !5E

0

`

n f ~n!P0exp~2nt !dn

5E
0

`

F~n!P0exp~2nt !dn, ~8!

where use was made ofn f (n)5F(n). The functionf (n) is
normalized so that

E
0

`

f ~n!dn51. ~9!

Activation energy and relaxation frequency
distribution functions

A relationship exists, which has been described earlier,
between a distribution of relaxation frequencies we are look-
ing for and that of activation energies.10 This will be outlined
now. It is often found that the relaxation frequency follows a
relationship such as

n5n` exp~2Ea /kT!, ~10!

wheren` is the so-called infinite relaxation frequency,Ea is
the activation energy,k is the Boltzmann constant, andT is
the absolute temperature. It should be pointed out that for an
isothermal measurement Eq.~10! includes the Arrhenius, the
Eyring, and the Williams-Landel-Ferry~WLF! equations.
For the WLF equation however, the temperatureT has to be
substituted by a so-called effective temperatureTe .

It is clear that, whenever such an expression as Eq.~10!
holds, a distribution in the activation energies will have as a
consequence a distribution of relaxation frequencies. If we
denoteg(Ea) as the distribution function of the activation
energies and using the normalization criterion@i.e., Eq.~9!#
we arrive at the following equation relating both distribution
functions:

n f ~n!5F~n!5kTg@Ea5kT ln~n/n0!#, ~11!

provided that the integral off (n) beyondn` is very small,
which constitutes a very reasonable assumption. In order to
make the significance of this equation clearer to the reader,
we change the variablesn and t in Eq. ~8! by their loga-
rithms, i.e.,ñ5ln~n! and t̃5ln(t). ~Note: throughout this pa-
per a tilde over a variable denotes thenatural logarithm of
the variable!:

I ~ t !5E
2`

1`

P0F~ ñ !exp@ ñ2exp~ ñ1 t̃ !#dñ. ~12!

The current for timet is now the integral of the product of
F( ñ) with a function which depends on the logarithm of the
relaxation frequency and on the elapsed time. The function
F( ñ) has the meaning of the distribution of relaxation fre-

quencies when expressed on a logarithmic scale of fre-
quency. This can be readily demonstrated using the
normalization equation@i.e., Eq.~9!# by the change of vari-
able ñ5ln~n!.

Using Eq. ~11! one now finds a simple relationship be-
tweenF( ñ) andg(Ea),

F~ ñ !5kTg~Ea!5kTg~kTñ`2kTñ !, ~13!

which means that the functionF( ñ) has the same form as
that of the distribution of the activation energies, when plot-
ted on a logarithmic scale of frequency.

Mean and standard deviation of the distributions

Using this latter equality@i.e., Eq. ~13!# one can easily
deduce that when the mean of theg(Ea) is Ēa that of the
functionF( ñ) will be

n̄̃ 5 ñ`2Ēa /kT, ~14a!

as should be expected. Moreover, with respect to the stan-
dard deviations of these density distribution functions it can
be deduced that

s ñ5
sEa

kT
. ~14b!

These relations mean that as the temperature is raised the
mean of the distribution of relaxation frequencies shifts to
higher frequencies, while its width narrows and its maximum
increases. These conclusions apply provided that the distri-
bution of the activation energies remains constant with tem-
perature. It should be pointed out that a standard deviation of
one decade in the distribution of relaxation frequencies cor-
responds in the activation energy domain to a standard de-
viation of just 0.06 eV at room temperature.

Time domain measurements

The product time/current and its derivatives

We now multiply both members of Eq.~12! by time t to
get

I ~ t !t5E
2`

1`

P0F~ ñ !exp@ ñ1 t̃2exp~ ñ1 t̃ !#dñ. ~15!

This is a very important expression because it tells us that the
product of the current by the time is proportional to the con-
volution of two functions. One which reflects the distribution
of the relaxation frequencies@i.e., F( ñ)# and the other, that
will be called temporal-weight functionWt , which is plotted
in Fig. 1,

Wt~x!5exp@2x2exp~2x!#. ~16!

This function has an asymmetric bell shape with its maxi-
mum located atx50 ~i.e., ñ52 t̃ !, while its integral is equal
to unity.

From Fig. 1 it is now readily understood the way in which
an isothermal depolarization current proceeds in time. For a
given time, for example~t51 s; t̃50!, the It product is
equal to the integral of the shaded part which reflects the
distribution of relaxation frequencies around 1 Hz weighted
according to the temporal weight functionWt(2 ñ). As time
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progresses the functionWt will slide to the left thus probing
the distribution function at lower frequencies.

It is interesting to note that a similar expression to that of
Eq. ~15! is obtained if, instead of the current, one deals with
its time derivative. It that case multiplying both members of
the resulting equation byt2, one gets an expression that in-
volves a convolution ofF( ñ) with another function, that in
this case will be

Wt
~2!5exp@22x2exp~2x!#. ~17!

Application to the KWW relaxation function

It is also interesting to mention what one gets when the
KWW function is multiplied by the time:

It5P0bk exp$bk~ ñk1 t̃ !2exp@bk~ ñk1 t̃ !#%. ~18!

This expression has the same form as that of Eq.~16! but
now its width will be a function of the value ofbk . The fact
thatbk can only take values from zero to one indicates that
this function will always be of equal width or wider than the
temporal weight functionWt . For the particular case ofbk
equal to one, the Debye relaxation behavior is recovered and
this will correspond according to Eq.~15! to a Dirac distri-
bution of relaxation frequencies at the frequencyñk .

Frequency domain measurements

The relationship between the distribution of relaxation
frequencies and permittivity

Similar arguments can be applied in the frequency do-
main, in line with those in the time domain. When there is a
distribution of elementary Debye relaxation frequenciesf (n)
the imaginary and real parts of the permittivity are given,
respectively, by2

e9~v!5E
0

`

es
v/n

11~v/n!2
f ~n!dn, ~19!

e8~v!2e`5E
0

`

es
1

11~v/n!2
f ~n!dn. ~20!

If one replaces the variablesv andn by their logarithms one
gets for the imaginary part

e9~v!5E
2`

1`

esF~ ñ !
1

2
sech~ṽ2 ñ !dñ, ~21!

from which one can appreciate that now the convolution
takes place between the distribution functionF( ñ) and the
hyperbolic secant. This latter function is the frequency-
weight functionWi as depicted in Fig. 2.

For the real part it is more convenient to deal with its
derivative with respect to the logarithm of angular frequency,

de8

dṽ
~v!52E

2`

1`

esF~ ñ !
1

2
sech2~ṽ2 ñ !dñ. ~22!

In this case the frequency weight functionWr is proportional
to the square of the hyperbolic secant~see Fig. 2!. In Table I
the integral, the mean, and the standard deviation of these
weight functions are listed.

Relaxation usually is a step ine8 and a peak ine9

It is now easy to observe that a peak in the imaginary part
of the permittivity that could, for example, be associated to a
peak of the distribution functionF( ñ), will most probably be
associated to a peak in the derivative of its real part because
of the similarity of the frequency weight function of these
two quantities. As a maximum in the derivative of a function
implies an inflexion point in the value of that function we
conclude that a peak in the imaginary permittivity will usu-
ally be associated to an inflexion point in the curve of the
real part of the permittivity.

Scaling and master curves

It is usual to refer to a scaling property of the imaginary
part of the permittivity. This consists of adimensionalizing a
set of curves taken at different temperatures, plotted on a
logarithmic frequency scale, relative to an identifiable point
in the curves which can be that of a peak in the imaginary
part of permittivity. Using this process a master curve for the
permittivity is then obtained.

Within the framework of the above theory@i.e., Eq.~21!#,
and as long as the relaxation strength of the dipole moment
remains constant with temperature, the width of the peaks of

FIG. 1. Location of the temporal weight functionW(t)( ñ) when
t51 s ~i.e., t̃50!. As time progresses the weight function will slide
to the left of the graph.

FIG. 2. Normalized weight functions for theIt product (Wt),
the derivative real (Wr), and imaginary part (Wi) of permittivity.

TABLE I. Integral, mean, and standard deviations of the weight
functions.

* 2`
1` f (x)dx x̄ sx

Wt 1 20.577 22 1.2825
Wi p/2 0 1.9687
Wr 1 0 0.9069
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the imaginary part of permittivity will depend on both the
width of the hyperbolic secant and on that of the distribution
function. As the temperature is raised the standard deviation
of the distribution function will be reduced@i.e., Eq.~14b!#
as we have realized above. Consequently, a contraction of
the peak of the imaginary part of permittivity will be ob-
served. This will make impossible the scaling propertyun-
lessthe temperature variation between the curves is not too
great. The scaling property however, will in general be ap-
parent if each of the curves is divided bykT prior to their
adimensionalization@see Eqs.~13! and ~21!#.

Hamon approximation

The Hamon approximation2,12 is a very effective and
simple way to calculate the imaginary part of permittivity
from isothermal depolarization current data,

e9~v!'
1

v

I ~ t !

C0V0
, vt5

p

5
50.62832. ~23!

Here, it should be emphasized that the Hamon approximation
has implicitly built in the property that the values of the
current for short times are linked to the high-frequency spec-
tra of the permittivity and vice versa for the long-time cur-
rent values.

Using the above theory, namely, Eqs.~4b!, ~15!, and~21!,
we arrive at the conclusion that the imaginary part of the
permittivity is related to the measured current through

e9~v!'0.8819
1

v

I ~ t !

C0V0
, vt50.56146. ~24!

This relationship was obtained using the following reason-
ing: both quantities~i.e., the It product and the imaginary
part of permittivity! are an average of the distribution func-
tion weighted according to two different functions,Wt and
Wi . If the mean values of these functions are made to coin-
cide in such a way that their bell shapes overlap each other in
the same part of the distribution spectrum, then the relation
of Eq. ~24! follows.

It is apparent that the Hamon approximation@i.e., Eq.
~23!# and Eq.~24! are quite similar. This enables us to un-
derstand better why the Hamon approximation has been so
successful in the past. In fact to deduce Eq.~24! we have not
assumed any distribution at all and thus the Hamon approxi-
mation is a quite general one, independent of the distribution
function and/or on the form of the depolarization current. It

is apparent, however, that the smoother the distribution func-
tion is the closer the approximation will be.

A similar result can be deduced relating the current to the
derivative of the real part of permittivity,

de8~v!

dṽ
'20.56146

1

v

I ~ t !

C0V0
'2

2

p
e9~v!,

vt50.56146. ~25!

Theoretical distribution functions: Wagner, Cole-Cole,
and Fuoss-Kirkwood

Some distribution functions have been proposed before,
where most of them were deduced from proposed theoretical
permittivity curves. Examples of these distributions are the
Cole-Cole, the Fuoss-Kirkwood, the Wagner, as well as the
Davidson-Cole and the Havriliak-Negami distribution
functions.3 The first three have been selected in this paper as
working theoretical distribution models and they are listed in
Table II and plotted in Fig. 3. They have in common the
facts ~1! of being distribution functions on a logarithmic
scale of frequency,~2! of showing a symmetrical bell shape
around a mean frequency~i.e., ñm! and finally,~3! the exist-
ence of a parameter~i.e.,b! which controls the width of the
distribution function.

Deconvolution method

General method

After defining a suitable relation between the current and
the distribution function through Eq.~15! it is necessary to
devise a way to extract the distribution of relaxation frequen-
cies from the experimental isothermal depolarization current

FIG. 3. Examples of distribution functions. CurvesC,W, andK
represent a Cole-Cole, a Wagner, and a Fuoss-Kirkwood distribu-
tion, respectively. Refer to Table II for values of the parameters
used in the graph.

TABLE II. Examples of distribution functions applicable to relaxation processes.

f (u)5 f ( ñm2 ñ) Obs. ñm
a b a

Cole-Cole,C( ñ) sin~bcp!

2p@cosh~bcu!1cos~bcp!#

0,bc<1 25 0.5

Wagner,W( ñ) 1

A2pbw

expF2S ubw
D2G bw.0 0 3

Fuoss-Kirkwood,
K( ñ)

bfk cos~bfkp/2!cosh~bfku!

p@cos2~bfkp/2!1sinh2~bfku!#

0,b f k<1 8 0.5

aParameters used in Fig. 3.
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data. This is best accomplished using aniterative method
akin to that used by Kliem, Fuhrmann, and Arlt10 after suit-
able modifications. The steps taken for this effect are as fol-
lows:

step 1: Determine the experimental time/current product
and condition the data file,

step 2: perform a first estimate of the distribution of re-
laxation frequencies,

step 3: eliminate noise from the distribution function and
extend the data window,

step 4: calculate the current,
step 5: determine correction factors eliminating noise,
step 6: determine a new distribution function,
step 7: go to step 4 until error in the current computed

from the distribution function relative to the measured cur-
rent does not improve significantly,

step 8: calculate the permittivity.
A further description of the more important of the above

steps will now be provided.

Step 1: Determine the experimental time/current product
and condition the data file

In order to obtain the experimental current one has first to
polarize the sample during a timetp much longer than the
time t f during which the depolarization current will be re-
corded. Because of the finite time response of the measuring
devices the monitoring of the current will begin at timet i
and be stopped att f thus setting thedata windowfor the
experiment.The aim in the subsequent steps will be the de-
termination of the distribution of relaxation frequencies
within the window defined around the interval [1/tf ,1/ti] .

The ideal way to monitor the current would be to sample
the current logarithmically spaced in time. As this is not
practical in many cases we propose here to sample linearly
within each time decade. After completing the experiment a
vectorfor the measuredIt product can then be created using
a logarithmic interpolation, with time increasing logarithmi-
cally. The number of points of the new vector should be the
same as that of the experimental vector.

The number of experimental points within each decade
sets the resolution for the determination of the distribution
function. A reasonable number has been found to be between
20 and 30 points per decade.

It should be noticed here that in a real experiment the
quantity one is looking for isesF( ñ) and notF( ñ). The
former quantity is the product of the relaxation strength of
the dipole moment and a distribution function. To this effect
Eq. ~15! must be rewritten using Eq.~4b! thus,

It

C0V0
~ t̃ !5E

2`

1`

esF~ ñ !exp@ ñ1 t̃2exp~ ñ1 t̃ !#dñ. ~26!

As the integral of the distribution function is equal to one,
the integral of the productFe5esF( ñ) will equal the relax-
ation strength of the dipole moment.

Step 2: First estimate of the distribution
of relaxation frequencies

Given a frequencyn we must now estimate the distribu-
tion function at that frequency. In view of the fact that theIt
product at timet reflects a local average of the distribution

function aroundñ52 t̃ ~see Fig. 1! it is reasonable to as-
sume that the value for the distribution function at frequency
n is approximately

Fe~ ñ !'
It

C0V0
~ t̃52 ñ !. ~27!

Thus, for example, the current measured att51 s ~i.e., t̃50!
will thus reflect the value of the distribution function around
the frequency ofn51 Hz ~i.e., ñ50!. This argument also
implies that for a time window of [t i ,t f ] the corresponding
frequency window, for the distribution function, will
be ñ5[2 t̃ f ,2 t̃ i ].

Considering the experimentalIt product as a vector of
lengthN, arranged in reversed order~i.e., from long to short
times! one has

Fe i
0 5

It i
C0V0

5It i
r , ~28!

wherei refers to thei th point from the appropriate vectors.
F e

0 will then be a vector arranged from low to high fre-
quency.

Steps 3 & 4: Eliminate noise from the distribution function
and extend the data window. Calculate the current from estimated

distribution function

This is a critical step. In the past, the existence of noise in
the measured data has prevented the deconvolution process
due to the numerical instabilities it creates. In fact what is
needed is a method of smoothing the estimated distribution
function while retaining its main features. Various methods
have been proposed in the literature to this end. The one used
in the present work, which was found to be quite simple and
effective, resorts to a convolution process between the esti-
mated distribution function and a smoothing functionS.

It is pointed out now that the calculation of theIt product
@see Eq.~26!# using the estimated distribution function also
involves a convolution between two functions, namely, the
estimated distribution function and the temporal weight func-
tion. Steps 3 and 4 have thus some common features and
they will be approached together. The convolution of two
vectors, of which the two above cases are examples, can be
performed through a technique called serial multiplication13

that is schematically shown in Fig. 4.
The idea is to write the vectors to be convoluted onto two

strips of paper, one of them written in reverse order. The
convolution vector is then obtained by sliding one strip of
paper over the other while adding up the product of corre-
sponding numbers as shown in Fig. 4.

Thus, to calculate theIt product a vector was created for
the temporal weight function with the same spacing as that

FIG. 4. Schematic of a serial multiplication of vectors.
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of the estimated distribution function, centered at zero and
whose frequency range was on a natural logarithmic scale
@26.91,6.91#. It was found that this frequency range pro-
vided a good precision in the calculation of theIt product.
The number of pointsn was chosen to be an odd number, so
that the maximum~i.e., ñ50! would be at the center of the
vector.

The smoothing vectorSwas chosen to be a Gaussian with
its maximum lying in the middle of the vector and its role is
to smooth out the noise in the estimated distribution func-
tion. The length of this smoothing vector was chosen to be
the same as that of the temporal weight vector~i.e., n!. The
standard deviation of the Gaussian was usually of one unit,
in a natural logarithmic frequency scale. A larger or smaller
standard deviation could also be used depending on the noise
in the data.

The above smoothing operation of the estimated distribu-
tion vector, as it is, would not work properly at the edges of
the estimated distribution vector~see Fig. 4!. The reason is
that the smoothing operation is a kind of average of neigh-
boring points weighted according to the smoothing vector
with the latter having the property that the sum of its points
is equal to unity. As one approaches the edges however, it
should be realized that the strip of paper in Fig. 4 corre-
sponding to the estimated distribution vector will not contain
the smoothing vector completely and thus one must take into
consideration that the average is taken with fewer and fewer
points. Thus, a vectorWs was created equal to the convolu-
tion of the smoothing vectorS with a unit vector whose
length was the same as the estimated distribution vector~i.e.,
N!. The vectorWs is then a kind of integral of the weights
used in the smoothing operation. The resulting smoothed dis-
tribution vector was then divided by the vectorWs in order to
take this effect into consideration. Finally, ifN is the number
of points of the estimated distribution function andn is the
length of theS vector then the total number of points after
the smoothing operation will be equal toN1n21.

Step 3: Fe
15

S*Fe
0

Ws
. ~29!

A related problem arises in step 4 to calculate theIt product
from the estimated distribution vector. Near the edges and in
order to calculate theIt product some extension of the dis-
tribution function beyond the data window must be made.

This extended distribution vector was chosen to be pre-
cisely the one which resulted from the smoothing operation
which as was pointed out has extended the distribution vec-
tor from N to N1n21 points. The calculation of theIt
product proceeded through the convolution of the extended
distribution vector with temporal weight vector multiplied by
the logarithmic frequency spacing.

Step 4: It k5Fe
k
* ~Wt•Dñ!, ~30!

where k refers to thekth iteration. From the resultingIt
vector only theN central points were then selected as those
corresponding to the experimentalIt product.

Steps 5 & 6: Determine correction factors and a new
distribution function

In this step the computed productIt k from the last step is
compared with the experimental vectorIt r to determine the
so-called correction factors

Step 5: qi
k5

It i
r

I t i
k . ~31!

Vectorqk, of lengthN and whose values are centered around
one, is then smoothed according to the same procedure used
for the first estimate of the distribution. The smoothing, how-
ever, was performed overqk21. The values ofqk were re-
covered afterwards by adding one. We thus obtain an ex-
tended smoothed vectorQk of lengthN1n21:

Step 5: Qk511
~12qk!*S

Ws
. ~32!

A new extended distribution vector is then computed us-
ing

Step 6: Fe i
k115Qi

kFe i
k . ~33!

This procedure which resembles that used by Kliem, Fuhr-
mann, and Arlt10 proved to be convergent to the proper val-
ues of the distribution function throughout our work. It is
also a fast and simple algorithm although its mathematical
justification has not been found.

Step 7

Go to step 4, until error in theIt product computed from
the distribution function relative to the measuredIt product
does not improve significantly. The error was calculated as
the standard deviation of the difference of the two vectors.

Step 8: Calculate the permittivity

After obtaining the distribution function, the imaginary
part of the permittivity can be calculated using Eq.~21! and
a serial multiplication procedure. From Eqs.~21! and~22! it
can be realized that the angular frequency data window for
the permittivity will be equal to the frequency window of the
distribution function so that one hasṽ5[2 t̃ f ,2 t̃ i ]. Conse-
quently the frequency window for the permittivity will be

f̃5@2 t̃ f2 ln~2p!,2 t̃ i2 ln~2p!#. ~34!

To calculate the real part of permittivity its derivative must
be first computed from Eq.~22!. Its value, less an arbitrary
constant, can then be estimated through an integration opera-
tion. These values for the imaginary and real part of the
permittivity can then be compared with those obtained using
the Hamon approximation or Eqs.~24! and ~25!.

RESULTS AND DISCUSSION

Two sets of tests for the above deconvolution procedure
were carried out.

~1! A distribution function consisting of a combination of
theoretical distribution functions has been used as the basis
for the calculations.

~2! A comparison with previous results using the data
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from Kliem, Fuhrmann, and Arlt10 and those of Mopsik14

was also performed.

Determination of the distribution function
from simulated current spectra

The theoretical distribution used in this test is the one
plotted in Fig. 3. It consists of a combination of a Wagner, a
Cole-Cole, and a Fuoss-Kirkwood distribution, with relax-
ation strengths equal to one, and whose other parameters are
the same listed in Table II.

The resultingIt product is plotted in Fig. 5~a! and was
calculated using Eq.~26! and a serial multiplication proce-
dure with 20 points per decade of frequency. It should be
noted that, in this phase, the length of the temporal weight
vector used for convolution was made equal to that of the
distribution function. Using theIt product the current was
then calculated@Fig. 5~a!#. The current vector was afterwards
clipped betweent51022 s and t5104 s and a 5% error
incorporated into it.

This simulated current vector was then introduced into the
deconvolution program to determine the distribution of re-
laxation frequencies@Fig. 5~b!#, the imaginary and real part
of permittivity @Fig. 5~c!#, as well as the Cole-Cole plot of
these latter quantities@Fig. 5~d!#. The real part of permittivity

acquired from the deconvolution procedure was obtained us-
ing an arbitrary constant which was taken from the theoreti-
cal curve.

As can be noted from Fig. 5~b!, the error between the
simulated distribution function and that resulting from the
deconvolution procedure is quite low inside the data win-
dow. Clipping att51022 s as was done in the present ex-
ample is an unfavorable situation in terms of extending the
data window into higher relaxation frequencies and conse-
quently there is a significant error in the extension into this
region of the frequency spectrum. This problem would be of
no consequence if we were only interested on the distribution
of relaxation frequencies. On calculating the permittivity,
however, this extension will have implications especially on
those frequencies closer to the edges of the data window.
The degree of impact of the assumed extension will be
greater in the case of the imaginary part of the permittivity,
which has a weight function of a large width, than for the
real part of permittivity, with a weight function that has the
smallest of widths among the weight functions~see Fig. 2
and Table I!. Consequently for the real part hardly any error
can be noticed in this case and indeed in most cases.

The choice of the smoothing function must be based both
on the noise present on theIt product and on the frequency
resolution, each of them imposing conflicting requirements

FIG. 5. Graphs produced using a theoretical distribution function of relaxation frequencies.
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over it. A broad smoothing function, for example, will elimi-
nate a large noise but it will also smear sharp peaks present
in the distribution function. The standard deviation of the
Gaussian smoothing function must be therefore as small as
possible compatible with the noise present in the data. Fi-
nally, it should be mentioned that the deconvolution is in
general a quite fast procedure. For the example presented
here ten iterations had to be performed until the error in the
It product did not reduce between iterations by more than
5% and these iterations implemented usingMATLAB® took a
486 PC only about a minute of execution time.

COMPARISON WITH PREVIOUS RESULTS:
MOPSIK AND KLIEM

Kliem measurements of the distribution function

Data from the paper by Kliem, Fuhrmann, and Arlt10 were
used in order to compare the distribution function they ob-

tained and the one resulting from the above deconvolution
procedure. In Fig. 6~a! is shown the current density that was
measured for dried polyimide over 11 decades on a logarith-
mic scale of time. The results for the distribution function
quoted in that paper are shown in Fig. 6~b!. Based on these
findings the authors pointed out the existence of two relax-
ations, one in the region 106<n<107 and the othern'1024

Hz.
In Fig. 6~a! is also shown theIt product calculated for

that experiment, from which can be observed an indication
of relaxations on both extremes of the data window. Based
on the It product a deconvolution was undertaken to deter-
mine the distribution function which is plotted in Fig. 6~b!. It
can be noticed that although not coincident both curves do
agree in general. It is apparent, furthermore, that a small
relaxation in the region of 331022 Hz also exists, which can
be appreciated from Fig. 6~c! representing the Cole-Cole plot
of the permittivity. In the latter graph the arbitrary constant
of the real part of permittivity was set equal to zero.

FIG. 6. Test and comparisons using data from Kleim, Fuhr-
mann, and Arlt~Ref. 10!, ~a! current andIt product,~b! distribution
function of relaxation frequencies, and~c! Cole-Cole plot for the
permittivity.

FIG. 7. Test and comparisons using data from Mopsik~Ref. 14!,
~a! current andIt product, ~b! distribution function of relaxation
frequencies, and~c! real and imaginary part of permittivity.
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Mopsik data for dielectric measurements

Mopsik has developed a method to calculate the permit-
tivity from the measured time-dependent capacitance during
charging of a sample. This method is based on splines in
order to perform the Fourier transform of the current of Eq.
~7!.9

From the time-dependent capacitance quoted in that ar-
ticle the current for each unit of the applied voltage was
calculated which is shown in Fig. 7~a! together with the cor-
respondingIt product. Using the deconvolution procedure
the distribution function was calculated that is shown in Fig.
7~b!, where it can be observed that a relaxation exists near 25
Hz. It is also apparent that in the low-frequency end the
distribution shows a very large increase. This can be due to
the fact that the experiment was performed while charging a
sample. When the time during charging is large enough, so
that the current begins to stabilize near its dc value, the dis-
tribution function will tend to behave as it does in this case.
From Eq.~26! one can indeed conclude that if the current is
constant in time then the distribution function will have to
increase as the frequency decreases.

From the distribution function the real and the imaginary
parts have been calculated and compared with those of the
Mopsik article@Fig. 7~c!#. The arbitrary constant for the real
part of permittivity was found so that the correspondent
curves would coincide at the start of the data window.

From the analysis of Fig. 7~c! one can observe that both
the real and the imaginary part of the permittivity coincide
between these two methods. The observed discrepancy could
be attributed both to errors in the digitalization of the time-
dependent capacitance and/or to the following calculation of
its time derivative in order to calculate the current.

FINAL REMARKS

The It product

A new general approach has been presented for the deter-
mination of the distribution of relaxation frequencies from
depolarization data. In this approach theIt product was
shown to play a pivotal role. Interestingly, this quantity is
equal to the time derivative of polarization with respect to
the natural logarithm of time,

dP

dt̃
5It . ~35!

This quantity has been recognized since the work of Hamon
and others to have special properties, namely, in regard to
the calculation of the imaginary part of permittivity from
depolarization data.2,15,16 Its importance lies in the demon-
stration that for a given time its value corresponds to a
weighted average of the distribution of relaxation frequen-
cies around 1/t. It was moreover demonstrated that the
weight function has an asymmetrical bell shape whose math-
ematical expression is given by Eq.~16!.

The basic premise in the theory however, is that the natu-
ral scale for the distribution function of relaxation frequen-
cies is logarithmic in the frequency axis. This property fol-
lows if there is both a distribution of activation energies of
the relaxing dipole moment and if the relationship between

the activation energy and the relaxation frequency is of an
exponential type like in an Arrhenius equation.

The width of the distribution function

The width of the distribution function has been shown to
be temperature dependent through Eq.~14b!. That equation,
although simple in formulation, is of a fundamental impor-
tance. It states that if the distribution in the activation ener-
gies remains constant, as the temperature increases the dis-
tribution in the relaxation frequencies, on a logarithmic
scale, tends to shrink. This is a common finding in the litera-
ture regarding the plots of the imaginary part of
permittivity.2 Based on that equation, a conjecture can also
be enunciated regarding the width of the distribution of re-
laxation frequencies for a given temperature. Given two dis-
tributions in the activation energies the one with a higher
mean value will generally have a lower relaxation frequency.
If we suppose that the standard deviation increases with the
mean energy, then polarization mechanisms with a lower re-
laxation frequencies will tend to show a broader peak both in
the imaginary part of permittivity and in theIt product. This
is what often is observed: the lower the relaxation frequency
the broader are the peaks.1,2

The measurement of the distribution function as a function
of temperature

The experiments dealt with in this paper were of an iso-
thermal kind. This theory however, when extended to the
measurement of the distribution function of relaxation fre-
quencies at various temperatures should enable the determi-
nation of some of the characteristics of the distribution of
activation energies, through Eq.~13!. This topic, that is of
the utmost importance because it relates to the basic premise
in this paper, will be the subject of future work.

Deconvolution

The deconvolution process proposed here is a very simple
and effective procedure. Higher numerical sophistication
however, could be used to this end.

For example, after step 7, the new-found distribution
could be regarded now as a first estimate of the distribution
function, as was first performed with theIt product in step 2,
and the process of iteration could restart again from step 3,
with the advantage of having a better estimate of the distri-
bution both inside and outside of the data window.

This justifies the need of more work regarding~1! a quan-
titative evaluation of the errors incurred in this deconvolu-
tion procedure,~2! the determination of the minimum data
window which must be used for the deconvolution proce-
dure, as well as the~3! interrelation between the width of the
smoothing function, the number of pointsN, and the resolu-
tion of the deconvolution procedure. The generality of the
proposed deconvolution procedure allows, also, its applica-
tion to the deconvolution of the imaginary permittivity data.
The difference is that the relevant weight function would be
Wi instead ofWt . This fact opens up the possibility of per-
forming a complete spectroscopy for the distribution func-
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tion from very high frequencies down to very low frequen-
cies by conjugating time and frequency domain techniques.

Finally, as a note of caution, it should be stressed that the
distribution of relaxation frequencies method is just one pos-
sible approach to the phenomena of dielectric polarization,
and that alternative explanations and theories exist.17 There
is, indeed, still some fundamental doubts about whether the
Debye type of relaxation should be taken as the elementary

block in this theory due to the Kubo restrictions it does not
satisfy.
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