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Determination of a distribution of relaxation frequencies based
on experimental relaxational data
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A possible explanation for the relaxation behavior of many phenomena, and in particular of dielectric
polarization phenomena, has been to assume the existence of a distribution of relaxation frequencies instead of
a single relaxation frequency. It has been demonstrated that the natural scale for the distribution of relaxation
frequencies is logarithmic in frequency axis. This assertion should be valid provided that there is both a
relationship, between the frequency and the activation energy, of an exponential type like in an Arrhenius
equation, and that a distribution exists in the domain of activation energies. These activation energies could
possibly correspond to the energy states of the relaxing entities. A theory is then here presented to show that
the product of the elapsed time by the depolarization current is a convolution of the distribution function of
relaxation frequencies by a weight function of an asymmetric bell shape. A similar relationship is also shown
to exist for the permittivity of a dielectric. Various consequences can be deduced from this theory, among them
the determination of a similar relationship to that of the Hamon approximation. In the second part of this paper
a deconvolution procedure has been proposed to find the distribution function of relaxation frequencies from
experimental data, based on the above theory. Tests for this deconvolution procedure and its associated theory
are reported, based on theoretical distribution functions as well as on data taken from previous published work.
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INTRODUCTION dipole moment, while the standard deviation can be associ-
ated to the degree of interaction and/or disorder between the
relaxing entities. We stress that this approach, of the distri-
The relaxation behavior in many systeri®., physical, bution function of relaxation frequencies, should be regarded
biological, chemical, etz where a quantity? brought out of  as one interpretation of the experimental data that is, by no
equilibrium relaxes toward its equilibrium value, can be de-means, the only possible of.
scribed by a first-order differential equation such as The dynamic behavior for the relaxation of the polariza-
tion can be probed equivalently either in the time or in the
1. ) frequency domain. In the time domain, one usually measures
,,_d P(t)+ P(t)=tl|an(t), @ the change in polarization with timg.e., the current This
- experiment is carried out by applying a voltayg to the

where 1b, is the relaxation time org is the relaxation fre- S@mple for a sufficiently long time,>1/v4, so that the

quency. The equilibrium value d® will depend in general SamMPle acquires a polarizatid®,. Po/V, is then the total
on the magnitude of the driving excitation. In this paper Wepo:anzatlon c?arge V;’]h'ch cz;mhbe as<|:_r|lcr;ed Ito the a;tbove di-
will be interested in the phenomena of dielectric polarizationP©!€ moment for each unit of the applied voltage. After per-

and thusP will denote the polarization of the material. forming the_ polarization, th? voltag_e ‘? §witched off while
the current(i.e., the change in polarizatipis recorded dur-

ing a timet, , such that, <t . In the case of a Debye relax-
Debye relaxation: The time and frequency domain ation the current is

The relaxation of polarization

In the context of the linear dielectric theory the above
type of equation bears the name of Debye relaxationgnd dP(t)
is then the relaxation frequency of a particular type of dipole ()= —57— = — vaPoeXA(— v4l) 2
moment! In general, for a material exhibiting different types
of dipole moments each of these have a characteristic relax- . . . .

. . ._corresponding to the followingelaxation functiorof the po-
ation frequency. From the study of the relaxation dynam|c§ o

> : ._larization:

one can get therefore an insight on the various mechanisms
of polarization present in the material under investigation.

In real materials however, it is a common finding that the P(t) = Poexp(— vqt), ()]
relaxation for a particular type of dipole moment proceeds as
if, rather than a single relaxation frequency, a distribution ofwhere the equilibrium value for the depolarization experi-
relaxation frequencies characterized by a mean value andraent was set to zero due to the absence of a driving voltage.
standard deviatidn® exists. Qualitatively, the mean value of Alternatively, in the frequency domain one measures the fre-
this distribution should be linked to the inertia of the relaxingquency dependence of the relative permittivity the fore-
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going relative permittivity is shortened to permittivity unless Relationship between dielectric constant
stated otherwige € (w), which for a Debye relaxation is and relaxation current
given by As was pointed out above there is an equivalence between
€(0)— e . the frequency and the time domain measurements. Itis thus a
& (w)— €= = (49  Mmatter of experimental convenience to make measurements
1t+iow/vyg 1+iwlvg in either domain. That is the main reason why low-frequency

measurementés1l MHz) are usually performed in the time
domain, while high-frequency measureme#$.01 H2 are
performed in the frequency domain. There is potentially a
region of overlap which could be used to adjust the data from
both domains.

wheree,, and €(0) are the infinite and the static permittivity,
respectively, whilew is the angular frequency, arg is what
will be called the relaxation strength of the dipole moment.
This latter quantity is related tBy/V, through

€= €(0)— €.= Py /(VoCo), (4b) An_other reason to make Iow-fre_que_ncy measurements in
the time domain through depolarization current measure-
whereC, is the geometric capacitance of the sample. ments is the fact that the dc conductivity also contributes to

A gquantity P;, normally referred to as the instantaneousthe imaginary part of the permittivity according tg,/i w,
polarization, has not been mentioned above both because itiscreasing its value as the frequency decreases. In the low-
not linked to a dipolar relaxation mechanism, and its timefrequency range, this contribution can be very large thus
constant is much shorter than the relaxation time of dipolacompletely masking its dynamical behavior.

relaxation.P; though is related to the infinite permittivit, Formally the relationship between the relaxation function
throughe,,= P;/(V,Cy). and the dielectric constant is given*by
Kohlrausch-Williams-Watts relaxation function = I(t) . X
) o e (w)—€,=— | = €e'“ldt. (7)
In order to account for the experimentally found deviation o CoVo

from the Debye behavior various modifications of the polar-

ization relaxation functiofiEq. (3)] have been proposed, the This expression shows that the current and permittivity are
most notable of which is the Kohlrausch-Williams-Watts linked through a truncated form of the Fourier transform.
(KWW) function>®

The dielectric constant for a given frequency depends

P(t)= POeXF[_(th)Bk]’ ©) on the relaxation current around a time corresponding

where vy, is the relaxation frequency ang} is a parameter to the reciprocal of the chosen frequency
between zero and one. The latter parameter is qualitatively The above expression implies that the dielectric constant

associated to the degree of interaction, between the relaxirfgr a given frequency depends on the depolarization current
entities, being closer to zero for strongly interacting dipolefrom zero to infinity. It is intuitive however, that the current

moments and to one for noninteracting ones. for a short elapsed time is strongly linked with the permit-
tivity at high frequencies, while the value of the current for
Kubo relations longer times reflects the permittivity behavior at lower fre-

Kubo®” has derived some of the properties for the polar_quenmes. This point will be brought up later.

ization relaxation function based on the fact that the value of _ o o

the polarization relaxation for time should equal the time Experimental determination of a distribution

average of its autocorrelation around the same tine this of relaxation frequencies

respect it should be noted that both the Debye and the KWW e determination of a distribution of relaxation frequen-

equations do not obegll of those properties, namely, that cjes from the experimental depolarization current measure-
the odd derivatives of the relaxing polarization should beéments has been studied by Kliem, Fuhrmann, and #rit.
null for t_zo-l provided the medium is thermodynamic equi- Thejr numerical method started from an assumed spectrum
librium, i.e., on a logarithmic scale of frequency. This spectrum was then
P+ 1) (= 0)=0 © adjusted based on a comparison between the data calculated
AR using the assumed spectrum and the measured data. Their
Thus, the depolarization current &0 should equal zero, method was demonstra_ttec_j to_be suitable both for broa_d and
which is clearly not the case for the Debye relaxation funcfor narrow spectra of distribution of relaxa_tlon frequencies.
tion. Similar methods have also been used in other works but
on noise-free data. Other methods also exist but they aim at
determining the total response as a combination of discrete
number of relaxation frequenciés.
The real and imaginary parts of the permittivity are not This paper presents, in its first part, a suitable theory for
independent of each other. In fact, in the frequency domairthe determination of a distribution function of relaxation fre-
a relaxation can be detected either as a peak in the imaginaguencies, discussing its various implications on the interpre-
part of the permittivity or as an inflexion in the curve of its tation of dielectric relaxation phenomena. A second part
real part. Formally, the equations connecting these quantitiesims at, using the latter theory, determining numerically the
are known as the Kramers-Kronig relatichs. distribution from experimental depolarization current data.

Kramers-Kronig relations
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THEORY quencies when expressed on a logarithmic scale of fre-

quency. This can be readily demonstrated using the

normalization equatiofi.e., Eq.(9)] by the change of vari-
We now assume that the polarization due to a particulagblev=In(v).

dipole moment relaxes according to a distribution of elemen-  Using Eq.(11) one now finds a simple relationship be-

tary Debye relaxation frequencieggv). In this case the tweenF(7) andg(E,),

modulus of the change in polarizatidre., the currentwill

Distribution functions

be given by[see Eq(2)] F(v)=kTg(E)) =kTg(kTv..—kTv), (13
d - which means that the functioR(7) has the same form as
T P(t)=I (t)=f vi(v)Poexp(— vt)dv that of the distribution of the activation energies, when plot-
0

ted on a logarithmic scale of frequency.

= f F(v)Poexp(—vt)dy, (8 Mean and standard deviation of the distributions
0

_ _ Using this latter equalityi.e., Eq.(13)] one can easily
where use was made off (v)=F(v). The functionf(v) is  deduce that when the mean of théE,) is E, that of the
normalized so that function F (%) will be

fxf(v)dvzl. (9) V=T~ Ea/kT, (149
0

as should be expected. Moreover, with respect to the stan-
dard deviations of these density distribution functions it can

Activation energy and relaxation frequency be deduced that

distribution functions

A relationship exists, which has been described earlier, Ok,
between a distribution of relaxation frequencies we are look- VT KT
ing for and that of activation energié%This will be outlined . ) _
now. It is often found that the relaxation frequency follows a These relations mean that as the temperature is raised the

(14b)

relationship such as mean of the distribution of relaxation frequencies shifts to
higher frequencies, while its width narrows and its maximum
v=rv, exp(—E,/kT), (10 increases. These conclusions apply provided that the distri-

bution of the activation energies remains constant with tem-
perature. It should be pointed out that a standard deviation of
one decade in the distribution of relaxation frequencies cor-

aHasponds in the activation energy domain to a standard de-
viation of just 0.06 eV at room temperature.

wherev,, is the so-called infinite relaxation frequendy, is
the activation energy is the Boltzmann constant, afdis
the absolute temperature. It should be pointed out that for
isothermal measurement EQ.0) includes the Arrhenius, the
Eyring, and the Williams-Landel-FerryWWLF) equations.
For the WLF equation however, the temperatlirbas to be
substituted by a so-called effective temperaflige

It is clear that, whenever such an expression as(Eg). The product time/current and its derivatives
holds, a distributiqn i_n th_e activation epergies will have asa \we now multiply both members of E¢L2) by timet to
consequence a distribution of relaxation frequencies. If W%et
denoteg(E,) as the distribution function of the activation

Time domain measurements

energies and using the normalization criterjae., Eq.(9)] +o0 ~ o~ o —
we arrive at the following equation relating both distribution H(Ot= J_w PoF(v)exdv+t—expv+t)]dv. (19
functions:

This is a very important expression because it tells us that the
vi(v)=F(v)=KTgE,=KT In(v/vg)], (1) product of the current by the time is proportional to the con-
volution of two functions. One which reflects the distribution
gf the relaxation frequencidse., F(7)] and the other, that

make the significance of this equation clearer to the reade}’y"::be ialled temporal-weight functiow, , which is plotted
we change the variableg andt in Eq. (8) by their loga- "M 19+ 4

rithms,_i.e.ﬁ;:In(v) an_dT=In(t). (Note: throughout_this pa- W, (X) = exp — x—exp(—x)]. (16)
per a tilde over a variable denotes thatural logarithm of ] ) ] o ]
the variable: This function has an asymmetric bell shape with its maxi-

mum located ax=0 (i.e., 7= —t ), while its integral is equal

+o0 _ _ - to unity.
I(t)= f_ PoF(v)exdv—exp(v+t)]dv. (12 From Fig. 1 it is now readily understood the way in which
an isothermal depolarization current proceeds in time. For a
The current for timet is now the integral of the product of given time, for examplgt=1 s; t=0), the It product is
F(v) with a function which depends on the logarithm of the equal to the integral of the shaded part which reflects the
relaxation frequency and on the elapsed time. The functionlistribution of relaxation frequencies around 1 Hz weighted
F(v) has the meaning of the distribution of relaxation fre- according to the temporal weight functioi,(—7). As time
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FIG. 1. Location of the temporal weight functiaki(t) () when
t=1 s(i.e.,t=0). As time progresses the weight function will slide
to the left of the graph.

FIG. 2. Normalized weight functions for thieé product W;),
the derivative real\(V;), and imaginary partW;) of permittivity.

. I . from which one can appreciate that now the convolution

Progresses j[he funCt.'dNt will slide to the "?ft thus probing takes place between the distribution functié@v) and the

theItdilsS E::?eljrzzgr:;r:gtlr?gt: E{Ag\;vzrsfirn?ﬁ::a Qg;frzlssion to that ofhyperbolic secant. This latter function is the frequency-
. . e . weight functionW; as depicted in Fig. 2.

Eq. (15) is obtained if, instead of the current, one deals with g ! P 9

its time derivative. It that ltiolving both b f For the real part it is more convenient to deal with its
IS ime gerivative. 1t that case muttiplying both MemDers Of yq iy ative with respect to the logarithm of angular frequency,
the resulting equation bi?, one gets an expression that in-

volves a convolution of (v) with another function, that in de’ o 1
this case will be e (w)= —f eF(v) 5 secB(@—p)dv. (22
W2 =ex —2x—exp(—x)]. (17)

In this case the frequency weight functidw is proportional

to the square of the hyperbolic secéste Fig. 2 In Table |

the integral, the mean, and the standard deviation of these
It is also interesting to mention what one gets when thayeight functions are listed.

KWW function is multiplied by the time:

t=Pof eXAB(nt D) Xl Ant O} (18 It is now easy to observe that a peak in the imaginary part
This expression has the same form as that of @) but  of the permittivity that could, for example, be associated to a
now its width will be a function of the value @, . The fact  peak of the distribution functioR (), will most probably be
that 8, can only take values from zero to one indicates thatassociated to a peak in the derivative of its real part because
this function will always be of equal width or wider than the of the similarity of the frequency weight function of these
temporal weight functioW,. For the particular case g8,  two quantities. As a maximum in the derivative of a function
equal to one, the Debye relaxation behavior is recovered anidplies an inflexion point in the value of that function we
this will correspond according to E@15) to a Dirac distri-  conclude that a peak in the imaginary permittivity will usu-
bution of relaxation frequencies at the frequengy ally be associated to an inflexion point in the curve of the

real part of the permittivity.

Application to the KWW relaxation function

Relaxation usually is a step i€’ and a peak in€’

Frequency domain measurements
Scaling and master curves
The relationship between the distribution of relaxation

frequencies and permittivity It is usual to refer to a scaling property of the imaginary

o o part of the permittivity. This consists of adimensionalizing a
Similar arguments can be applied in the frequency doset of curves taken at different temperatures, plotted on a
main, in line with those in the time domain. When there is ajggarithmic frequency scale, relative to an identifiable point
distribution of elementary Debye relaxation frequendies) i the curves which can be that of a peak in the imaginary
the imaginary and real parts of the permittivity are given,part of permittivity. Using this process a master curve for the

respectively, by permittivity is then obtained.
/ Within the framework of the above theofie., Eq.(21)],
o] w V . .
neoN f(v)dv, 19 and as long as the .relaxatlon strength of.the dipole moment
€(w) fo S 1+ (wlv)? (v)dv 19 remains constant with temperature, the width of the peaks of
® 1 TABLE I. Integral, mean, and standard deviations of the weight
€'(w)—€,= fo €s m f(v)dv. (20) functions.
If one replaces the variablesand» by their logarithms one JEZE(x)dx X Ox
gets for the imaginary part W, 1 —0.577 22 1.2825
W, 72 0 1.9687
W, 1 0 0.9069

=

+oo . 1 o
e'(w)= f_x eF(v) > sechw—v)dv, (21
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TABLE Il. Examples of distribution functions applicable to relaxation processes.

f(u)=f(Ty—7) Obs. T @ B2
Cole-Cole,C(7) sin(B.m) 0<B.<1 -5 0.5
2m{cosh{B.u)+cos B.m)]
Wagner,W(7) 1 u\2 B,>0 0 3
2B ex‘{‘ EV)
Fuoss-Kirkwood, Bi cog By2) cosh By L) 0<Bs=1 8 0.5
K(®) 7co2 Brerl2) + SN (Br)]

3Parameters used in Fig. 3.

the imaginary part of permittivity will depend on both the is apparent, however, that the smoother the distribution func-
width of the hyperbolic secant and on that of the distributiontion is the closer the approximation will be.

function. As the temperature is raised the standard deviation A similar result can be deduced relating the current to the
of the distribution function will be reduceld.e., Eq.(14b)]  derivative of the real part of permittivity,

as we have realized above. Consequently, a contraction of

the peak of the imaginary part of permittivity will be ob- de’(w) ——0 56146£ v 2 ")

served. This will make impossible the scaling proparty do ' o CyVy € 9h
lessthe temperature variation between the curves is not too

great. The scaling property however, will in general be ap- wt=0.56146. (25
parent if each of the curves is divided &y prior to their

adimensionalizatiofisee Eqs(13) and(21)]. Theoretical distribution functions: Wagner, Cole-Cole,

o and Fuoss-Kirkwood
Hamon approximation o .
Some distribution functions have been proposed before,

~ The Hamon apprommaﬂ&ﬁz is a very effective and \yhere most of them were deduced from proposed theoretical
simple way to calculate the imaginary part of permittivity permittivity curves. Examples of these distributions are the
from isothermal depolarization current data, Cole-Cole, the Fuoss-Kirkwood, the Wagner, as well as the
Davidson-Cole and the Hauvriliak-Negami distribution
functions® The first three have been selected in this paper as
working theoretical distribution models and they are listed in
Table Il and plotted in Fig. 3. They have in common the
Here, it should be emphasized that the Hamon approximatiofacts (1) of being distribution functions on a logarithmic
has implicitly built in the property that the values of the scale of frequency(2) of showing a symmetrical bell shape
current for short times are linked to the high-frequency specaround a mean frequendie., 7,,) and finally,(3) the exist-
tra of the permittivity and vice versa for the long-time cur- ence of a parametdi.e., 8) which controls the width of the

1 1(t)

aa
€ ((1) %Zm, wt=§=O.62832. (23)

rent values. distribution function.
Using the above theory, namely, E¢éb), (15), and(21),
we arrive at the conclusion that the imaginary part of the Deconvolution method

permittivity is related to the measured current through
General method

" 1 1(1) After defining a suitable relation between the current and
€'(w)~0.8819—~ CoVo' wt=056146. (24 e gistribution function through Eq15) it is necessary to
devise a way to extract the distribution of relaxation frequen-
This relationship was obtained using the following reason-ies from the experimental isothermal depolarization current
ing: both quantitiedi.e., thelt product and the imaginary
part of permittivity) are an average of the distribution func-
tion weighted according to two different functiond, and
Wi, . If the mean values of these functions are made to coin- g, 0 ce) W) K@)
cide in such a way that their bell shapes overlap each other in 015 T N /
the same part of the distribution spectrum, then the relation 01+ T
of Eq. (24) follows. '
It is apparent that the Hamon approximatifire., Eq. L
(29)] and Eq.(24) are quite similar. This enables us to un- ' - l
derstand better why the Hamon approximation has been so |
successful in the past. In fact to deduce E4) we have not FIG. 3. Examples of distribution functions. Curv@sW, andK
assumed any distribution at all and thus the Hamon approxirepresent a Cole-Cole, a Wagner, and a Fuoss-Kirkwood distribu-
mation is a quite general one, independent of the distributiofion, respectively. Refer to Table Il for values of the parameters
function and/or on the form of the depolarization current. Itused in the graph.

025 1

0.05 +

—
<
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data. This is best accomplished using itarative method /\m?
akin to that used by Kliem, Fuhrmann, and Atlafter suit- T Sw,;om;s)l
able modifications. The steps taken for this effect are as fol- (2
lows:

Step 1 Determ|ne the eXpefImental t|me/Current pI’OdUCt 3 11 25 43 67 77 77 69 72 83 95 100 95 86 82 89 98 102 95 77 55 33 17 T 2

y F+§

and condition the data file, @1 poiois)

step 2: perform a first estimate of the distribution of re-
laxation frequencies,

step 3: eliminate noise from the distribution function and
extend the data window,

step 4: calculate the current,

step 5: determine correction factors eliminating noise,

step 6: determine a new distribution functjon "

step 7: go to step 4 until error in the current computed ~ T~

S g P P9~ gve &), (27)

1 2 3 4 6 5§ 3|——>

FIG. 4. Schematic of a serial multiplication of vectors.

function aroundv=—1 (see Fig. 1 it is reasonable to as-
sume that the value for the distribution function at frequency
v is approximately

from the distribution function relative to the measured cur-
rent does not improve significantly,

step 8: calculate the permittivity. Thus, for example, the current measuret=al s(i.e.,t=0)
A further description of the more important of the aboveWi” thus reflect the value of the distribution function around
steps will now be provided. the frequency ofv=1 Hz (i.e., v=0). This argument also

implies that for a time window oftf,t;] the corresponding
Step 1: Determine the experimental time/current product frequency window, for the distribution function, will
and condition the data file bev=[—t;,—t].
Considering the experimentét product as a vector of
ngthN, arranged in reversed ordsf.e., from long to short
times one has

In order to obtain the experimental current one has first tqe
polarize the sample during a tintg much longer than the
time t; during which the depolarization current will be re-
corded. Because of the finite time response of the measuring It.
devices the monitoring of the current will begin at tirhe FO—_— ' —tf (28)
and be stopped &t thus setting thedata windowfor the ¢ CoVo
experiment.The aim in the subsequent steps will be the de- . , . .
termination of the distribution of relaxation frequencies Wherei refers to thath point from the appropriate vectors.
within the window defined around the interval [11t]. F: will then be a vector arranged from low to high fre-

The ideal way to monitor the current would be to sampleqUY€ncy-
the current logarithmically spaced in time. As this is not o ) o )
practical in many cases we propose here to sample linearly Stes 3 & 4: Ellmlnqte noise from the distribution functlop
within each time decade. After completing the experiment £nd extend the data W|_nd9w. _Calculatc_e the current from estimated
vectorfor the measurett product can then be created using distribution function
a logarithmic interpolation, with time increasing logarithmi-  This is a critical step. In the past, the existence of noise in
cally. The number of points of the new vector should be thehe measured data has prevented the deconvolution process
same as that of the experimental vector. due to the numerical instabilities it creates. In fact what is

The number of experimental points within each decadeeeded is a method of smoothing the estimated distribution
sets the resolution for the determination of the distributionfunction while retaining its main features. Various methods
function. A reasonable number has been found to be betwedtave been proposed in the literature to this end. The one used
20 and 30 points per decade. in the present work, which was found to be quite simple and

It should be noticed here that in a real experiment theeffective, resorts to a convolution process between the esti-
quantity one is looking for isssF(7) and notF(v). The  mated distribution function and a smoothing functi®n
former quantity is the product of the relaxation strength of |t is pointed out now that the calculation of theproduct
the dipole moment and a distribution function. To this effect[see Eq.(26)] using the estimated distribution function also

Eq. (15 must be rewritten using E¢4b) thus, involves a convolution between two functions, namely, the
it . estimated distribution function and the temporal weight func-
= * ~ ~ = ~ tion. Steps 3 and 4 have thus some common features and
t)= F +t— +t . 2 . .
COVO( ) J © esF(v)exily exp(v+1)]dv (26) they will be approached together. The convolution of two

. o . vectors, of which the two above cases are examples, can be
As the integral of the distribution function is equal to O”e'performed through a technique called serial muItipIicéﬁon

thg integral of the produd?EE: €;F(v) will equal the relax- that is schematically shown in Fig. 4.

ation strength of the dipole moment. The idea is to write the vectors to be convoluted onto two
strips of paper, one of them written in reverse order. The
convolution vector is then obtained by sliding one strip of
paper over the other while adding up the product of corre-

Given a frequency we must now estimate the distribu- sponding numbers as shown in Fig. 4.

tion function at that frequency. In view of the fact that the Thus, to calculate th& product a vector was created for
product at timet reflects a local average of the distribution the temporal weight function with the same spacing as that

Step 2: First estimate of the distribution
of relaxation frequencies
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of the estimated distribution function, centered at zero and Stes 5 & 6: Determine correction factors and a new
whose frequency range was on a natural logarithmic scale distribution function

[—6.91,6.91. It was found that this frequency range pro-
vided a good precision in the calculation of thteproduct.
The number of points was chosen to be an odd number, so
that the maximundi.e., 7=0) would be at the center of the
vector. It!

The smoothing vectoB was chosen to be a Gaussian with Step 5: q:‘=ﬁk. (31
its maximum lying in the middle of the vector and its role is i
to smooth out the noise in the estimated distribution funC-Vectoqu, of lengthN and whose values are centered around
tion. The length of this smoothing vector was chosen to bene, is then smoothed according to the same procedure used
the same as that of the temporal weight veci@.,n). The  for the first estimate of the distribution. The smoothing, how-
standard deviation of the Gaussian was usually of one unigver, was performed oveqk— 1. The values oﬁk were re-
in a natural logarithmic frequency scale. A larger or smallercovered afterwards by adding one. We thus obtain an ex-
standard deviation could also be used depending on the noisended smoothed vect@" of lengthN+n—1:
in the data.

The above smoothing operation of the estimated distribu-
tion vector, as it is, would not work properly at the edges of
the estimated distribution vectdsee Fig. 4. The reason is
that the smoothing operation is a kind of average of neigh- A new extended distribution vector is then computed us-
boring points weighted according to the smoothing vectoling
with the latter having the property that the sum of its points
is equal to unity. As one approaches the edges however, it Step 6: FS'=QFY. (33
ShOUId. be reahzed_ that the_ strip .Of paper in Fig. 4 COMe-rhis procedure which resembles that used by Kliem, Fuhr-
sponding to the estimated distribution vector will not Cont"’."nmann, and Ar proved to be convergent to the proper val-
the S.m°°“.““9 vector completely and thus' one must take Imﬂes of the distribution function throughout our work. It is
consideration that the average is taken with fewer and feweéls0 a fast and simple algorithm although its mathematical
points. Thus, a vectoW, was created equal to the convolu- justification has not been found
tion of the smoothing vecto6 with a unit vector whose '
length was the same as the estimated distribution véicéor Step 7
N). The vectorW; is then a kind of integral of the weights ) ]
used in the smoothing operation. The resulting smoothed dis- GO to step 4, until error in thét product computed from
tribution vector was then divided by the vecitt in order to the dIStI’Ib.Utlon func'tlor_1 'relatlve to the measurédoroduct
take this effect into consideration. Finally Nfis the number ~does not improve significantly. The error was calculated as
of points of the estimated distribution function ands the the standard deviation of the difference of the two vectors.
length of theS vector then the total number of points after
the smoothing operation will be equal kb+n—1.

In this step the computed product from the last step is
compared with the experimental vectaf to determine the
so-called correction factors

1-g¥*S
Step 5: Qk=1+¢. (32
W

Step 8: Calculate the permittivity

After obtaining the distribution function, the imaginary
o part of the permittivity can be calculated using E21) and
Sk, a serial multiplication procedure. From Eq&1) and(22) it
W, (29 can be realized that the angular frequency data window for
the permittivity will be equal to the frequency window of the
distribution function so that one has=[—1t;,—1]. Conse-

A related problem arises in step 4 to calculatelthproduct  guently the frequency window for the permittivity will be
from the estimated distribution vector. Near the edges and in

order to calculate thét product some extension of the dis- ’F:[_"ff_ In(27),—t;—In(2m)]. (34)
tribution function beyond the data window must be made. o o

This extended distribution vector was chosen to be preJ© calculate the real part of permittivity its derivative must
cisely the one which resulted from the smoothing operatiorP€ first computed from Eq22). Its value, less an arbitrary
which as was pointed out has extended the distribution vecconstant, can then be estimated through an integration opera-
tor from N to N+n—1 points. The calculation of thét tion. These values for the imaginary and real part of the
product proceeded through the convolution of the extende@€rmittivity can then be compared with those obtained using
distribution vector with temporal weight vector multiplied by the Hamon approximation or Eqf24) and (25).
the logarithmic frequency spacing.

Step 3: Fl=

RESULTS AND DISCUSSION

Step 4: Itk= FE*(Wt'A7). (30) Two sgts of tests for the above deconvolution procedure
were carried out.

(1) A distribution function consisting of a combination of
where k refers to thekth iteration. From the resultingt theoretical distribution functions has been used as the basis
vector only theN central points were then selected as thosdor the calculations.
corresponding to the experimentalproduct. (2) A comparison with previous results using the data
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FIG. 5. Graphs produced using a theoretical distribution function of relaxation frequencies.

from Kliem, Fuhrmann, and Aff and those of Mopsik
was also performed.

acquired from the deconvolution procedure was obtained us-
ing an arbitrary constant which was taken from the theoreti-
cal curve.

As can be noted from Fig.(B), the error between the
simulated distribution function and that resulting from the
deconvolution procedure is quite low inside the data win-

. L. . . . . A —102 ;
The theoretical distribution used in this test is the onedow. Clipping att=10"° s as was done in the present ex-
plotted in Fig. 3. It consists of a combination of a Wagner, a2MPle is an unfavorable situation in terms of extending the
Cole-Cole, and a Fuoss-Kirkwood distribution, with relax- data window into higher relaxation frequencies and conse-

the same listed in Table 1. region of the frequency spectrum. This problem would be of

The resultinglt product is plotted in Fig. @) and was O consequence if we were only interested on the distribution

calculated using Eq26) and a serial multiplication proce- of relaxation frequencies. On calculating the permittivity,
dure with 20 points per decade of frequency. It should pdowever, this extension will have implications especially on
noted that, in this phase, the length of the temporal weighthose frequencies closer to the edges of the data window.
vector used for convolution was made equal to that of therhe degree of impact of the assumed extension will be
distribution function. Using thet product the current was greater in the case of the imaginary part of the permittivity,
then calculatedlFig. 5(@)]. The current vector was afterwards which has a weight function of a large width, than for the
clipped betweert=10"2 s andt=10" s and a 5% error real part of permittivity, with a weight function that has the
incorporated into it. smallest of widths among the weight functioteee Fig. 2
This simulated current vector was then introduced into theand Table ). Consequently for the real part hardly any error
deconvolution program to determine the distribution of re-can be noticed in this case and indeed in most cases.
laxation frequenciefFig. 5b)], the imaginary and real part The choice of the smoothing function must be based both
of permittivity [Fig. 5(c)], as well as the Cole-Cole plot of on the noise present on tthe product and on the frequency
these latter quantitigéig. 5(d)]. The real part of permittivity —resolution, each of them imposing conflicting requirements

Determination of the distribution function
from simulated current spectra
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FIG. 6. Test and comparisons using data from Kleim, Fuhr-
mann, and ArltRef. 10, (a) current andt product,(b) distribution
function of relaxation frequencies, arid) Cole-Cole plot for the

ittivity. . . .
permitivily tained and the one resulting from the above deconvolution

over it. A broad smoothing function, for example, will elimi- procedure. In Fig. @ is shown the current density that was
nate a large noise but it will also smear sharp peaks presemeasured for dried polyimide over 11 decades on a logarith-
in the distribution function. The standard deviation of themic scale of time. The results for the distribution function
Gaussian smoothing function must be therefore as small aguoted in that paper are shown in Figb Based on these
possible compatible with the noise present in the data. Fifindings the authors pointed out the existence of two relax-
nally, it should be mentioned that the deconvolution is inations, one in the region #&»<10" and the othew~10"*
general a quite fast procedure. For the example presentddz.
here ten iterations had to be performed until the error in the In Fig. 6@) is also shown thét product calculated for
It product did not reduce between iterations by more tharthat experiment, from which can be observed an indication
5% and these iterations implemented usinyLAB ® took a  of relaxations on both extremes of the data window. Based
486 PC only about a minute of execution time. on thelt product a deconvolution was undertaken to deter-
mine the distribution function which is plotted in Figib. It
can be noticed that although not coincident both curves do
agree in general. It is apparent, furthermore, that a small
relaxation in the region of:810 2 Hz also exists, which can
be appreciated from Fig(€ representing the Cole-Cole plot
Data from the paper by Kliem, Fuhrmann, and Atvere  of the permittivity. In the latter graph the arbitrary constant
used in order to compare the distribution function they ob-of the real part of permittivity was set equal to zero.

COMPARISON WITH PREVIOUS RESULTS:
MOPSIK AND KLIEM

Kliem measurements of the distribution function
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Mopsik data for dielectric measurements the activation energy and the relaxation frequency is of an

Mopsik has developed a method to calculate the permitexPonential type like in an Arrhenius equation.
tivity from the measured time-dependent capacitance during
charging of a sample. This method is based on splines in
order to perform the Fourier transform of the current of Eq.
(7).° The width of the distribution function has been shown to

From the time-dependent capacitance quoted in that abe temperature dependent through Elatb). That equation,
ticle the current for each unit of the applied voltage wasaithough simple in formulation, is of a fundamental impor-
calculated which is shown in Fig(& together with the cor-  tance. It states that if the distribution in the activation ener-

respondinglt product. Using the deconvolution procedure gies remains constant, as the temperature increases the dis-
the distribution function was calculated that is shown in Fig.iipution in the relaxation frequencies, on a logarithmic

7(b), where it can be observed that a relaxation exists near 2g.ge tends to shrink. This is a common finding in the litera-

Hz. It is_ also apparent that in.the Iow—frequency end they o regarding the plots of the imaginary part of
distribution shows a very large increase. This can be due 8¢ mitivity 2 Based on that equation, a conjecture can also
the fact that the experiment was performed while charging ¢ enunciated regarding the width of the distribution of re-
sample. When the time during charging is large enough, sp,ation frequencies for a given temperature. Given two dis-
that the current begins to stabilize near its dc value, the disgjp tions in the activation energies the one with a higher
tribution function will tend to behave as it does in this case.jean value will generally have a lower relaxation frequency.
From Eq.(26) one can indeed conclude that if the current is¢ \ye syppose that the standard deviation increases with the
constant in time then the distribution function will have t0 ,aan energy, then polarization mechanisms with a lower re-
increase as the frequency decreases. . laxation frequencies will tend to show a broader peak both in
From the distribution function the real and the imaginaryq imaginary part of permittivity and in tHe product. This

parts have been calculated and compared with those of the \hat often is observed: the lower the relaxation frequency
Mopsik article[Fig. 7(c)]. The arbitrary constant for the real the broader are the peak?.

part of permittivity was found so that the correspondent
curves would coincide at the start of the data window.
From the analysis of Fig.(@) one can observe that both  the measurement of the distribution function as a function
the real and the imaginary part of the permittivity coincide of temperature
between these two methods. The observed discrepancy could ) o ) )
be attributed both to errors in the digitalization of the time-  1he experiments dealt with in this paper were of an iso-

dependent capacitance and/or to the following calculation of?€rmal kind. This theory however, when extended to the
its time derivative in order to calculate the current. measurement of the distribution function of relaxation fre-

guencies at various temperatures should enable the determi-
nation of some of the characteristics of the distribution of
FINAL REMARKS activation energies, through E¢L3). This topic, that is of
the utmost importance because it relates to the basic premise

in this paper, will be the subject of future work.
A new general approach has been presented for the deter-

mination of the distribution of relaxation frequencies from
depolarization data. In this approach thie product was Deconvolution
shown to play a pivotal role. Interestingly, this quantity is
equal to the time derivative of polarization with respect to
the natural logarithm of time,

The width of the distribution function

The It product

The deconvolution process proposed here is a very simple
and effective procedure. Higher numerical sophistication
however, could be used to this end.

For example, after step 7, the new-found distribution
ﬂf’: It (35) could be regarded now as a first estimate of the distribution

’ function, as was first performed with tieproduct in step 2,
and the process of iteration could restart again from step 3,
This quantity has been recognized since the work of Hamomvith the advantage of having a better estimate of the distri-
and others to have special properties, namely, in regard tbution both inside and outside of the data window.
the calculation of the imaginary part of permittivity from  This justifies the need of more work regardifiy a quan-
depolarization dat&!>'®Its importance lies in the demon- titative evaluation of the errors incurred in this deconvolu-
stration that for a given time its value corresponds to aion procedure(2) the determination of the minimum data
weighted average of the distribution of relaxation frequen-window which must be used for the deconvolution proce-
cies around 1/ It was moreover demonstrated that thedure, as well as th€S) interrelation between the width of the
weight function has an asymmetrical bell shape whose mattsmoothing function, the number of poirits and the resolu-
ematical expression is given by E{.6). tion of the deconvolution procedure. The generality of the

The basic premise in the theory however, is that the natuproposed deconvolution procedure allows, also, its applica-
ral scale for the distribution function of relaxation frequen-tion to the deconvolution of the imaginary permittivity data.
cies is logarithmic in the frequency axis. This property fol- The difference is that the relevant weight function would be
lows if there is both a distribution of activation energies of W; instead ofW,. This fact opens up the possibility of per-
the relaxing dipole moment and if the relationship betweerforming a complete spectroscopy for the distribution func-
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tion from very high frequencies down to very low frequen- block in this theory due to the Kubo restrictions it does not
cies by conjugating time and frequency domain techniquessatisfy.

Finally, as a note of caution, it should be stressed that the
distribution of relaxation frequencies method is just one pos- ACKNOWLEDGMENTS
sible approach to the phenomena of dielectric polarization, The author is grateful to J. N. Marat-MendgsNL-FCT-
and that alternative explanations and theories é%i¥here  SGAAF), D. K. Das-Gupta, and T. J. Lewis from University
is, indeed, still some fundamental doubts about whether thef Wales(SEECS-Bangor-UKfor the helpful and valuable
Debye type of relaxation should be taken as the elementargiscussions.
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