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Theoretical studies of the electron-phonon coupling and carrier mobility for red mercuric iodide are pre-
sented. The electronic states are calculated by an empirical pseudopotential method, while the lattice vibrations
are described via a rigid-ion model. Effects due to the deformation potential and polar-optical scattering are
discussed. Carrier mobilities along bothc anda axes as functions of temperature are calculated and they are
in good agreement with the experimental data.@S0163-1829~96!03821-0#

I. INTRODUCTION

Red mercuric iodide~HgI 2) is an important material for
g- and x-ray detectors. The electronic and phonon properties
of HgI 2 are known fairly well due to recent theoretical
studies.1–4 A reliable description of the detailed electronic
structures of the system was given by Turner and Harmon1

via a relativistic linearized augmented plane-wave~RLAPW!
calculation. We have recently reported an empirical nonlocal
pseudopotential calculation of the electronic and optical
properties of HgI2 including the effects of the spin-orbit
interaction.2 The near-band-gap optical properties and effec-
tive masses obtained in this calculation are in good agree-
ment with experimental data.5–8

The lattice vibrations of HgI2 were studied by a rigid-ion
model.3,4 The model includes the long-range Coulomb inter-
action and short-range force constants up to second-nearest
neighbors. An excellent fit to the available inelastic neutron
scattering data9 for six low-lying phonon branches as well as
Raman scattering10,11 and far-infrared12 measurements for
zone-center phonon modes was obtained.

There have been a great deal of experimental studies of
transport properties of HgI2 .

13–17However, a theoretical un-
derstanding of them is still lacking. A thorough review of
carrier transport in HgI2 can be found in Ref. 13. In this
paper, we present theoretical studies of carrier transport in
HgI 2 . We have considered the scattering of electrons and
holes from all possible phonon modes. The electron-phonon
coupling is calculated based on the empirical pseudopotential
model2 for the electronic states and the rigid-ion model for
the phonon modes.4 It is found that polar-optical scattering is
by far the strongest for low-energy carriers, and it is respon-
sible for the low mobility observed experimentally. Our
theoretical prediction for the intrinsic mobility as a function
of temperature is in fairly good agreement with the experi-
mental data.14

In Sec. II, we present the theory for the electron-phonon
coupling of HgI2 . In Sec. III, we describe the theoretical
predictions for the deformation potentials associated with
various phonon modes of HgI2 . In Sec. IV, we describe the
polar-optical scattering for noncubic crystals and examine
the angular dependence of the electron-phonon coupling con-

stant for HgI2 . In Sec. V, we discuss our calculated results
for momentum relaxation rate and the carrier mobility. A
summary of the paper is given in Sec. VI.

II. ELECTRON-PHONON COUPLING

In the rigid-ion model, the electron-phonon interaction is
given by18

Hel -ph52(
aR

1

ANMa
(
qj

Qqje
iq–Rêa

~ j !
•¹Va~r2R2ta!,

~1!

whereN is the number of unit cells in the sample,a labels
the different ions in a unit cell~two Hg’s and four I’s in the
present case!, Ma and ta denote the mass and position
within a unit cell of iona, q andêa

( j ) denote the wave vector
and polarization vector at positionta of phonon modej , and
Va describes the pseudopotential for an electron interacting
with ion a. Qqj

is the normal mode coordinate of modej
which takes the second quantization form

Qqj
5A \

2vqj

~aqj
† 1aqj !,

wherevqj
denotes the frequency of modej .

A schematic diagram of the unit cell of HgI2 can be found
in Ref. 3. Note that the solid has inversion symmetry about
the midpoint between the two Hg atoms in a unit cell. If we
choose the point as the origin of the coordinate system, the
atomic positions of the two Hg atoms are
(2a/4,2a/4,2c/4) and (a/4,a/4,c/4), and those of the four
I atoms are (2a/4,a/4,20.111c), (a/4,2a/4,0.111c),
(2a/4,a/4,0.389c), and (a/4,2a/4,20.389c). Here,
a54.37 Å andc512.44 Å. We adopt a coordinate system in
which thez axis is parallel to thec axis.

The local pseudopotentials of the mercury and iodine
have the form

VL~q!5a1~q
22a2!/~e

a3~q22a4!11!, ~2!
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and the nonlocal pseudopotentials have the form

VNL~K,K 8!54p(
l

~2l11!Pl~cosu!

3E drr 2Vl~r ! j l~Kr ! j l~K8r !/Va , ~3!

where cosu5K•K 8/KK8, Va is the atomic volume,Pl is a
Legendre polynomial,j l is a spherical Bessel function, and

Vl(r )5Ale
2(r /R)2. We useR52.3aB , whereaB is the Bohr

radius.ai( i51,2,3,4) andAl( l50,1) are adjustable param-
eters which are tabulated in Ref. 2.

The matrix element ofHel-phbetween two electronic states
with wave vectorsk andk8 is given by

^k8uHel-phuk&52 i(
a
A \

2vqjNMa
(

qj ,G,G8
D~k82k7q!êa

~ j !
•~K 82K !Ck8

* ~G8!Ck~G!

3@VL
~a!~K 82K !1VNL

~a!~K ,K 8!#e2 i ~K82K !•ta/Na , ~4!

whereK5k1G andG denotes a reciprocal lattice vector.
Ck(G) is the expansion coefficient for the electronic eigen-
state of the pseudopotential Hamiltonian in terms of plane
waves.Na is the number of atoms per unit cell,

D~k82k7q!5dk8,k6q1G ,

which means that the momentum is conserved with or with-
out the help of a reciprocal lattice vectorG. Since we are
only concerned with transport properties ofG-valley elec-
trons~or holes!, the umklapp process (GÞ0) can be ignored.
The 1(2) sign in the above equation denotes a phonon
absorption~emission! process.

In a deformation potential model appropriate for acoustic
phonons, the electron-phonon interaction is described by

Hel-ph5
1

ANMcell
(
qj

Qqje
iq•r ê•qJd , ~5!

whereJd is the deformation potential associated with pure
dilation andM cell denotes the total mass per unit cell. One
can generalize the above form to an optical phonon labeled
with j by defining a coupling coefficientD0

( j ) such that

Hel-ph5(
a

1

ANMcell
(
qj

Qqe
iq•rD0

~ j !~q!. ~6!

For longitudinal optical-phononsD(q) is approximately in-
dependent ofq for smallq, while for acoustical phonons, we
have the simple relation

D0~q!5 ê•qJd .

The matrix element between two electronic states in this
model can be written as

^k8uHel-phuk&52 iA \

2vq jNMcell
(
q

dk8,k6qD0
~ j !~q!I ~k8,k!,

~7!

where

I ~k8,k![(
G

Ck8
* ~G8!Ck~G!

denotes an overlap integral.
Comparing Eq.~7! with Eq. ~4!, we can define the effec-

tive coupling coefficient as

D~q![D0
~ j !~q!I ~k8,k!

5U(
a
AM cell

Ma
(

j ,G,G8
êa

~ j !
•~K 82K !Ck8
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3Ck~G!@VL
~a!~K 82K !

1VNL
~a!~K,K 8!#e2 i ~K82K !•ta/NaU , ~8!

whereK5k1G andq56(k82k).
In a scattering event, both energy and momentum should

be conserved, i.e.,

k85k6q

and

Ek85Ek6\vq ,

whereEk is the energy of electron at wave vectork, andq is
the wave vector of a phonon absorbed or emitted. For acous-
tical phonons whose deformation potentials are of primary
interest, the typical frequencies are less than 0.1 THz which
correspond to energies less than 0.4 meV. Thus, the follow-
ing relation approximately holds:

k852k56q/2, ~9!

sinceE2k5Ek as a consequence of time reversal. For optical
phonons, the frequencies are between 0.5 and 4.5 THz~with
energies from 2 to 18 meV! for HgI 2 , and the above relation
is not quite valid. However, since the electron-phonon cou-
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pling for high-frequency optical-phonons is insensitive tok
and q near the zone center, the result obtained this way is
still adequate.

To understand the behavior of these coupling constants,
we must first examine the symmetry properties of phonons in
HgI 2 . The point group of the system isD4h which contains
elements E, s1 , s2 , S1 , S2 , S3 , s2S1 , and S1s2 ,
whereE is the identity,s1(s2) is a reflection about they-
z (x-z) plane,S1 is a 90° rotation about thez axis followed
by a reflection about thex-y plane,S25S1

2 , andS35S1
3 .

The group theory analysis for HgI2 structure has been re-
ported in Ref. 19. The phonon dispersion curves of all 18
branches were shown in Fig. 3 of Ref. 4. The phonon
branches are labeled by their space group representations ac-
cording to the notation of Ref. 19. There are three irreducible
representationsL1 ,L3 ,L5 for q along the@001# direction
(G to Z). TheL5 representation is two dimensional, indicat-
ing transverse modes, whereas theL1 andL3 representations
are one dimensional, indicating longitudinal modes. Forq
along @100# (G to X), there are four irreducible representa-
tions D1 ,D2 ,D3 ,D4 ~all one dimensional!. The D2 andD3
modes contain symmetric and antisymmetric sums ofy dis-
placements associated with atoms related by inversion,
namely, those labeled by 1 and 2, 3 and 6, or 4 and 5~see
Fig. 1 of Ref. 3!; hence, they are transverse modes. TheD4
modes contain admixture ofx2 andz1 components, while
theD1 modes contain admixture of symmetric sum ofx dis-
placements~denotedx1 component!.

The symmetries of zone-center modes are labeled accord-
ing to the point group representations~Ref. 12!. TheE (Eg
or Eu) modes are twofold degenerate when the wave vector
approaches zero from thec axis. They correspond to vibra-
tions along thex andy directions. TheA (A1g or A2u) and
B (B1g or B2u) modes are singlefold, corresponding to vi-
brations along thez axis. The subscriptsg ~gerade! and u
~ungerade! denote even and odd parity modes with respect to
the inversion center. A schematic diagram for atomic dis-
placement in modes of various symmetries can be found in
Fig. 1 of Ref. 12.

In our calculation, the spin-orbit interaction is included
for the electron band structures. Thus, each band is doubly
degenerate due to Kramers degeneracy. In our calculation,
we sum over the final spin index and average over the initial
spin index. Namely, we replace the intraband coupling ma-
trix element in Eqs.~4! and ~7! by

^k8uHel -phuk&5S 12(s,s8 u^k8,s8uHel -phuk,s&u2D 1/2,
wheres,s8 sum over the two Kramers degenerate states.

Using Eqs.~8! and ~9!, we have calculated the effective
coupling coefficient D(q) as a function of q. The
deformation-potential coupling is nonzero only for longitu-
dinal phonon modes~i.e., with L1 or L3 symmetry forq
along @001# andD1 or D4 symmetry forq along @100#!. At
the zone center (q50), only theA1g mode~totally symmet-
ric with respect to all point operations! has nonzero coupling
coefficient. This is because we have only considered intra-
band scattering here, in which case the initial and final states
are the same and the electron can only scatter with a totally

symmetric mode. The results for~a! the lowest conduction
band~C1!, ~b! the heavy-hole band~HH!, and~c! the light-
hole band~LH! are shown in Fig. 1. The three solid~dotted!
curves labeled 1–3 in the left panels are associated with the
threeL1 (L3) modes ordered according to their frequencies.
Similarly, the six solid~dotted! curves labeled 1–6 in the

FIG. 1. Electron-phonon coupling coefficients as a function of
phonon wave vector for~a! the lowest conduction band~C1!, ~b! the
heavy-hole band~HH!, and~c! the light-hole band~LH!.
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right panels are associated with the sixD1 (D4) modes or-
dered according to their frequencies. The firstL1 and
D1(D4) modes correspond to the longitudinal acoustical
branch along thec anda axes, respectively.

The secondL1 mode and the fourthD1 mode merge into
theA1g mode at the zone center. TheA1g mode~a breathing
mode! creates a lattice vibration that preserves the point
symmetry of the crystal; thus, the electronic energy will suf-
fer a change even whenq50. As shown in Fig. 1,D(q) is
finite at the zone center only for this mode.

III. DEFORMATION POTENTIALS

Since HgI2 has six atoms per unit cell, there exist 15
optical branches in addition to the three acoustical branches.
For acoustic branches and for some optical branches, the
effective electron-phonon coupling constant D(q) is linear in
q for small q. We then define effective deformation poten-
tials as

J* ~uq!5D~q!/q,

whereuq is the polar angle ofq with respect to thez axis
(c axis!. Due to the fact that the crystal is noncubic, there is
in general auq dependence in the deformation potential. We
examine the angular dependence of the deformation potential
by calculatingJ* (uq)5D(q)/q at q50.02 Å21 with uq
varying from zero top/2. The angular dependence is quite
complicated due to the mixing of several modes with similar
frequencies. However, for modes with similar frequencies,
we can simply add up their corresponding coupling coeffi-
cients squared and use the square root of the sum to represent
the net effect of all these nearly degenerate modes.

Following the elastic theory of Herring and Vogt,20 the
uq dependences of the acoustical-phonon deformation poten-
tials for anisotropic systems are fitted by polynomials of
cos2uq ,

JL* ~uq!5Jd*1J r* cos
2uq1Js* cos

4uq ~10!

for longitudinal modes and by

JT* ~uq!5Ju* sinuqcosuq ~11!

for transverse modes. These expressions would allow the
scattering rates to be calculated analytically.

Figure 2 shows the angular dependence of the deforma-
tion potentialJ* (uq) for the longitudinal acoustical~LA !
and transverse acoustical~TA! modes. The solid curves are
calculated results and the dotted curves are fitted results ob-
tained by using Eq.~10! for the LA mode and Eq.~11! for
the TA modes. The parametersJd* ,J r* , Js* , andJu* used
for the fit are listed in Table I.

From Fig. 2, we find that the angular dependence of the
effective deformation potentials for the LA mode are indeed
well described by the simple analytic expressions given in
Eq. ~10!. For the TA mode, the fit to Eq.~11! is rather poor.
Here, we choose the maximum values of fittedJ* (uq) to be
the same as the actually calculated ones, with a displaced
peak positions inuq . Thus, when we integrate overuq to
obtain the total scattering rate, the deviation becomes insig-

nificant. Furthermore, since average value ofJ* (uq) for the
TA mode is much smaller than that for the LA mode, such a
poor fit will not alter the final acoustical-phonon scattering
rate in which the LA mode dominates.

As we mentioned in the previous section there is only one

FIG. 2. Angular dependence of the effective deformation poten-
tial for ~a! the lowest conduction band~C1!, ~b! the heavy-hole
band~HH!, and ~c! the light-hole band~LH!. Solid curves: calcu-
lated based on Eq.~8!. Dotted curves: calculated based on Eqs.~9!,
~10!, and~14!.
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optical mode withA1g symmetry whose coupling coefficient
D(q) is finite atq50. Thus it contributes to the zeroth-order
optical-phonon scattering. If we approximate bothD(q) and
v(q) for theA1g mode by constant valuesD0 andv0 cor-
responding to their respective values atq50, we obtain the
scattering rate as21

W~Ek!5~pD0
2/rv0!$n~v0!N~Ek1\v0!

1@n~v0!11#N~Ek2\v0!%, ~12!

wherer is the mass density,

Ek5
\2~kx

21ky
2!

2mt*
1

\2kz
2

2ml*

is the carrier energy,N(E)5(2ml*mt*
2E)1/2/4p2\3 is the

carrier density of states for a given spin, andn(v0) is the
phonon population given by

n~v0!5~e\v0 /kBT21!21.

For all other 14 optical branches, the deformation poten-
tial constant vanishes atq50. However, several modes have
appreciable deformation potential at finiteq. We shall add
the contributions to@D(q)#2 for all modes with frequencies
higher than 2 THz~which include theL1 and L3 modes
labeled by 2 and 3 and theD1 andD4 modes labeled by 4–6!
and define the net contribution asD0(q). The net contribu-
tion becomes even lessq dependent near the zone center.
Therefore, Eq.~12! becomes a better approximation for de-
scribing optical-phonon scattering when we consider the net
effect of all optical branches with high frequencies. We shall
use Eq.~12! to calculate the net contribution of these higher-
lying optical modes to the scattering rate with the coupling
coefficientD0 given in Table I andv0/2p53.352 THz.

For those optical branches~i.e., the seven lower-lying op-
tical modes! with frequencies substantially lower thanv0 ,
they also have appreciable contribution to the scattering rate.
The frequencies of these modes are ranging from 0.6 THz to
1.1 THz near the zone center~see Fig. 4 of Ref. 4!. We shall
show below that the angular dependence of the deformation
potential can be approximately written as

J1* ~uq!5J1* sinuq . ~13!

The angular dependence of the effective deformation po-
tential representing the net effect of these modes~denoted
LO1! is plotted in Fig. 2 for~a! the lowest conduction band
~C1!, ~b! the heavy-hole band~HH!, and ~c! the light-hole
band ~LH!. The solid curves are calculated results and the
dotted curves are fitted results obtained by using Eq.~13!.
The parameterJ1* used for the fit is listed in Table I. We

find that the angular dependence of the effective deformation
potentials for the LO1 modes is indeed well described by the
simple analytic expression given in Eqs.~13!. With this
simple expression, the scattering rate is given by

W1~k!5
J1*

2

8p2rv1
E q2sin2uq$n~v1!dk8,k1q

3d~Ek82Ek2\v1!

1@n~v1!11#dk8,k2q

3d~Ek82Ek1\v1!%dk8dq. ~14!

Carrying out the integral we obtain

W1~k!5
J1*

2mt*
2A2ml*

prv1\
5 $n~v1!AEk1\v1

3@ 2
3 ~Ek1\v1!1uk#

1@n~v1!11#AEk2\v1

3@ 2
3 ~Ek2\v1!1uk#%, ~15!

whereml* andmt* are the longitudinal and transverse effec-
tive masses as listed in Table II,uk[\2(kx

21ky
2)/2mt* , and

v1/2p50.868 THz is the average frequency of the optical-
phonons of interest.

IV. POLAR-OPTICAL SCATTERING

In addition to deformation potentials, the ions with oppo-
site charges vibrating against each other give rise to a long-
range macroscopic electric field. The interaction of a carrier
with such field is known as the polar-optical scattering~or
Frölich scattering!.22 In HgI 2 , there exist three optical
modes~labeled byEu

1 ,Eu
2 , andA2u

1 ) which lead to a nonzero
dipole moment. As a result, these modes are infrared active
and possess angular dispersion atq near zero~see Fig. 4 of
Ref. 4!. The electron-phonon interaction due to polar-optical
scattering associated with modej is given by

Hel -ph5
1

ANMcell
(
q,a
AM cell

Ma

e

yc

ea* êa
~ j !
•q̂

e~`! S 4pq

q21q0
2DQqje

iq•r,

~16!

wheree is the free electron charge,ea* is the effective dy-
namic charge of iona, e(`) is the high-frequency dielectric
constant,êa

( j ) is the polarization vector,yc is volume of the
unit cell, andq0 is the reciprocal Debye screening length

TABLE I. Effective deformation potentialsJd* ,Ju* , andJ1*
and the coupling coefficientD0 for the optical-phonon for the con-
duction ~C1!, heavy-hole~HH!, and light-hole~LH! bands. All de-
formation potentials are in units of eV andD0 is in units of eV/Å.

Band Jd* J r* Js* Ju* J1* D0

C1 4.95 0.376 -2.49 2.45 5.62 1.50
HH 2.79 -2.29 2.25 2.74 0.404 1.49
LH 2.02 -1.16 1.33 1.59 1.77 0.87

TABLE II. Effective masses~in units of free electron mass! and
their ratios for the conduction~C1!, heavy-hole~HH!, and light-
hole ~LH! bands.

C1 HH LH

ml* 0.37a 2.06b 0.60a

mt* 0.29a 1.03b 0.60a

aObtained by the empirical pseudopotential method~EPM! as de-
scribed in Ref. 2.
bBloch et al. ~Ref. 6!.
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~which depends on the free carrier concentration!. The effec-
tive dynamic chargeea* is defined asu]M /]uu, whereu is
the relative displacement andM is the corresponding electric
moment. For noncubic crystals,ea* should be different for
different directions of the applied electric field. The parallel
and perpendicular components ofea* can be related to the
longitudinal and transverse phonon frequencies defined as
zeros and poles ofe(v) of the three infrared active modes
by28

4p~N/V!(
a

ea*
2

Ma
5e~`!(

j
~v jL

2 2v jT
2 !.

Their values, determined by reflectivity measurements, are
el*52.27e and et*53.06e for the Hg ion.12 Here the sub-
script l (t) indicates parallel~perpendicular! to thec axis. For
the I ion, the charge neutrality giveseI*52 1

2eHg* . In the
rigid-ion model,3 the anisotropy for both the dynamic charge
and dielectric constant is ignored, and it is found that4 e* 2/
e(`)50.266 for the I ion. Using e l(`)55.2 and
e t(`)55.45 and the experimental values forel* and et*
~see Ref. 12!, we obtain el*

2/e l(`)50.248 and
et*

2/e t(`)50.429 for the I ion. The rigid-ion model predic-
tion turns out to be quite close to the experimental result for
the electric field along thec axis. It should be pointed out
here that the effective dynamic charge appears to be too large
compared with that inferred from the first-principles
calculation.1 If we write the total longitudinal polarization
~including contribution from ions and valence electrons! as23

Pl5(
a

ela* ua ,

whereua denotes the displacement vector for atoma, then
ela* 5ea* /e(`) corresponds to the effective charge introduced
by Callen24 in the diatomic case. This effective charge is a
measure of the ionicity and its value for I in HgI2 is around
20.25e, indicating that the material is more covalent than
ionic, consistent with the prediction given in Ref. 1. Com-
paring Eq.~17! with Eq. ~6!, the effect of polar-optical scat-
tering can be described by aq-dependent coupling coeffi-
cient with

Dj* ~q!5U(
a
AM cell

Ma

e

yc

ea* êa
~ j !
•q̂

e~`! US 4pq

q21q0
2D

[Cj~uq!S q

q21q0
2D . ~17!

Using the displacement vectors obtained by the rigid-ion
model,4 we can obtain the angular-dependent coefficients
Cj (uq) for the Eu

1 ,Eu
2 , andA2u

1 modes. To include the an-
isotropy effect, we simply replaceea* êa

( j )
•q̂/e(`) in Eqs.

~16! and ~17! by

Fea,l* êa,l
~ j !

e l~`!
1
ea,t* êa,t

~ j !

e t~`!
G•q̂. ~18!

In Fig. 3, we plot the angular dependent coupling coeffi-
cient Cj for the three infrared active optical branches
(Eu

1 ,Eu
2 , andA2u

1 ). The solid curves are results obtained by
using Eq.~17! and the isotropic effective dynamic charge
predicted by the rigid-ion model4 and a spherical dielectric

constante(`)55.2. The dotted curves are results obtained
by using the anisotropic expression~18! and the low-
temperature experimental values12 for el ,t* ande(`).

The scattering rate due to polar-optical-scattering associ-
ated with modej is given by

Wj~k!5
1

8p2rE Cj
2~uq!q

2

v j~uq!~q
21q0

2!2
$n„v j~uq!…dk8,k1q

3d„Ek82Ek2\v j~uq!…1@n~v j !11#dk8,k2q

3d~Ek82Ek1\v j !%dk8dq. ~19!

In this paper, we are only interested in low carrier concen-
trations so thatq0 in Eq. ~14! can be neglected. Fork along
a general direction, including the anisotropy of band struc-
ture and phonon dispersion is complicated. We therefore
adopt a spherical approximation in which we ignore the an-
gular dependence of the phonon dispersionv j (uq), and we
define new variables

qi*5Asqi for i5x,y

and qz*5qz , where s[ ml* /mt* , and similarly for
k* (k8* ), so thatEk(Ek8) becomes a spherical function of
k* (k8* ). Equation~19! becomes

FIG. 3. Angular dependence of the coupling coeficient for polar-
optical-phonon scattering for the three infrared-active modes. Solid
curves: with isotropic dynamic charge as given in Ref. 4. Dotted
curves: with anisotropic dynamic charges as given in Ref. 12.

TABLE III. Spherical averages of the coupling coefficientsCj

for polar-optical scatterings associated with theEu
1, Eu

2 , andA2u
1

modes calculated by the rigid-ion model and by using experimental
values for effective dynamic charges~in parentheses!. All coeffi-
cients are in units of eV/Å2. The optimum frequenciesv̄ j used in
Eq. ~29! in units of THz are included in parentheses following the
band symmetry label.

Band Eu
1(1.078) Eu

2(3.549) A2u
1 (4.035)

C1 0.460~0.580! 0.626~0.832! 1.115~1.190!
HH 0.427~0.539! 0.573~0.766! 1.089~1.153!
LH 0.478~0.601! 0.655~0.869! 1.126~1.208!
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Wj~k!5
1

8p2rE Cj
2~uq!

v jq*
2
~sin2uq* /s1cos2uq* !

3$n~v j !dk* 8,k*1q*d~Ek82Ek2\v j !

1@n~v j !11#dk* 8,k*2q*

3d~Ek82Ek1\v j !%dq* dk* 8/s, ~20!

where cosuq*[qz* /q* . Furthermore, we replace
Cj
2(uq)/(sin

2uq*1scos2uq* ! by a spherically averaged cou-
pling constantC̄j

2 defined by

C̄j
25E

21

1 Cj
2~uq!

sin2uq*1scos2uq*
dcosuq* /2. ~21!

Carrying out the integral in Eq.~19! we obtain21

Wj~k!5
C̄j
2

2pr\v jyk
H n~v j !sinh

21A Ek

\v j

1@n~v j !11#sinh21A Ek

\v j
21J , ~22!

where yk5\k* /ml*5A2Ek /ml* . The spherically averaged

coupling constants as defined in Eq.~21! are listed in Table
III.

V. MOMENTUM RELAXATION RATES AND MOBILITY

To calculate the carrier mobility, we also need the mo-
mentum relaxation timet i ~the subscripti denotes the direc-
tion of transport! which is related to the scattering rate via
the expression20,25

1

t i~E!
5E ki~ki2ki8!W~k8,k!dk8d~E2Ek!dk YE ki

2d~E2Ek!dk, ~23!

whereW(k8,k) denotes the scattering rate from statek to
k8.

The momentum relaxation rates for acoustical phonons
with deformation potentials described by Eqs.~10! and ~11!
can be worked out analytically similar to the theory of Her-
ring and Vogt20 and we obtain

1

t l~E!
5~2p/\cL!

3

4
@j lJd*

21h lJd*J r*

1z l~J r*
212Jd*Js* !1j l8Ju*

2

1h l8J r*Js*1z l8Js*
2#kBTN~E! ~24!

for transport parallel to thec axis and

1

t t~E!
5~2p/\cL!

3

4
@j tJd*

21h tJd*J r*

1z t~J r*
212Jd*Js* !1j l8Ju*

21h t8J r*Js*

1z t8Js*
2#kBTN~E! ~25!

for transport perpendicular to thec axis. HereE is the energy
of the carrier,cL5c1212c441

3
5(c112c1222c44) is the aver-

age elastic constant,kB is the Boltzmann constant, andT is
the temperature.j l ,t ,h l ,t , z l ,t , j l ,t8 ,h l ,t8 , and z l ,t8 are con-
stants depending on the effective mass ratios[ml* /mt* and
the elastic constantsc11, c12, andc44. Explicit expressions
for these constants are given in Table IV and their values for
HgI 2 are listed in Table V. The elastic constants used are~in
units of 1011 dyn cm22) c1153.16~Ref. 9!, c1250.559~Ref.

TABLE IV. Coefficients for transport parameters for acoustical
phonons as given in Eqs.~21! and ~22!. The abbreviations
c*5c112c1222c44, cl5c1212c441

3
5c* , and c̄5(c441

1
2c* )(c44

1
1
3c* ) have been used. The integralsI n and Jn are the same as

defined in Ref. 20.

j l I 01(c* /cl)(20.15I 011.5I 221.75I 2)

h l 2I 11(c* /cl)(20.3I 113I 223.5I 3
z l I 21(c* /cl)(20.15I 211.5I 321.75I 4)

j l8 cl(c4415c* /6)

c̄
(I 12I 2)2

c* cl
c̄

(I 22I 3)

h l8 2I 31(c* /cl)(20.3I 313I 423.5I 5)

z l8 2I 41(c* /cl)(20.3I 413I 523.5I 6)

j t ,h t ,z t ,

j t8 ,h t8 ,z t8 same as parallel cases above but with1
2Jn

replacing eachI n

TABLE V. Transport parameters for acoustical phonons of HgI2 .

Band j l h l z l j l8 h l8 z l8 j t h t z t j t8 h t8 z t8

C1 1.322 1.647 0.603 0.435 1.501 0.399 1.338 0.628 0.145 0.393 0.224 0.051
HH 1.297 1.797 0.724 0.376 1.829 0.478 1.343 0.783 0.203 0.420 0.353 0.083
LH 1.333 1.566 0.548 0.447 1.096 0.340 1.333 0.551 0.118 0.371 0.170 0.038

14 206 53YIA-CHUNG CHANG AND R. B. JAMES



27!, and c4450.727 ~Ref. 9!. Note that in the above equa-
tions we have used the equipartition approximation, i.e.,

n~vq!5~e\vq /kBT21!21'
kBT

\vq
.

This is a good approximation, since at room temperature, we
have\vq /kBT!1.

For zeroth-order optical-phonon scattering, one can show
that 1/t5W(k) as given in Eq.~12! because the coupling
coefficient is independent ofq and the angular average of the
term proportional tokiki8 in Eq. ~19! vanishes.

21 For the first-
order optical-phonon scattering, we obtain

1

2t t~E!
5

1

t l~E!
5

J1*
2mt*

2A2ml*

prv1\
5

3n~v1!AE1\v1@
2
3 ~E1\v1!1 2

5 E#

1@n~v1!11#AE2\v1@
2
3 ~E2\v1!1 2

5 E#.

~26!

Note thatt t
21 is twice as large ast l

21 . This is due to the fact
thatJ1* (q)5J1* sinuq which suppressed the scattering along
the c axis.

To calculate the momentum relaxation rate for polar-
optical scattering, we setq050. This is valid for the low
carrier concentration (,1014 cm23) considered here. Substi-
tuting Eq.~17! into Eq. ~20! we obtain

1

t l~E!
5

3\3

16p2r~2ml*E!3/2(j E
2km

km
dkzkzE dfq* E

0

p

duq*
Cj
2~uq!cosuq* sinuq*

v j~sin
2uq*1scos2uq* !

3$2n~v j !@q1
~1!/R1~q1

~1!!1q1
~2!/R1~q1

~2!!#1@n~v j !11#@q2
~1!/R2~q2

~1!!1q2
~2!/R2~q2

~2!!#%, ~27!

1

t t~E!
5

3\3

32p2r~2ml*E!3/2(j E
2km

km
~km

2 2kz
2!1/2dkzE dfq* E

0

p

duq*
Cj
2~uq!sin

2uq* cosfq*

v j~sin
2uq*1scos2uq* !

3$2n~v j !@q1
~1!/R1~q1

~1!!1q1
~2!/R1~q1

~2!!#1@n~v j !11#@q2
~1!/R2~q2

~1!!1q2
~2!/R2~q2

~2!!#%, ~28!

wherekm5A2ml*E/\, R6(q)5(\2/ml* )uq6(kzcosuq*1(km
22kz

2)1/2sinuq*cosfq* )u. q6
(1) andq6

(2) are two positive real roots of
the equation

\2

2ml*
@q262q~kzcosuq*1~km

2 2kz
2!1/2sinuq* cosfq* !#56\v j .

Hereuq* is the polar angle ofq* with respect to thec axis andfq* is the azimuthal angle betweenq* andk.
If we replaceCj

2(uq)/(sin
2uq*1scos2uq* ) by its spherically averaged value andv j (uq) by its value at the angle where

Cj (uq) is peaked, the above results reduce to21

1

t~E!
5

C̄j
2

4pr\v̄ jyE
H n~v̄ j !FA11

\v̄ j

E
2

\v̄ j

E
sinh21A E

\v̄ j
G J

1H @n~v̄ j !11#FA12
\v̄ j

E
1

\v̄ j

E
sinh21A E

\v̄ j

21G J , ~29!

whereyE5A2E/ml* . The values ofv̄ j @ 5v j (p/2) for the
Eu
1 andEu

2 modes andv j (0) for theA1u mode# are listed in
Table III.

Using Eqs.~24!–~29! and Tables I–V, we can calculate
the momentum relaxation rates due to both deformation-
potential and polar-optical scatterings. Figure 4~Fig. 5!
shows the results for the electron~hole! at ~a! 300 K and~b!
77 K. For simplicity, the polar-optical scattering rates were
calculated in the spherical model@Eq. ~29!#. In Fig. 4, the
three peak structures for the polar-optical scattering are due
to the onset of the optical-phonon emission at the phonon
energies for modesEu

1 , Eu
2 , andA2u

1 , with the Eu
1 mode

being the strongest, since it has much lower phonon energy
compared with the other two modes and 1/t is inversely
proportional tov j @see Eq.~29!#. In Fig. 5, both the heavy-
hole and light-hole contributions are included. The light-hole
contribution starts at hole energy of 0.2 eV which corre-
sponds to the heavy-hole and light-hole splitting at the zone
center~see, Ref. 2!. We note that the polar-optical scattering
dominates the other scatterings for carrier energies less than
0.1 eV, and it becomes comparable to the sum of all other
scattering rates at carrier energies around 0.5 eV. For carriers
with energies higher than 0.5 eV, the deformation-potential
scattering becomes more important. However, for high-
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energy carriers, the scattering with large-momentum
phonons becomes important, and the deformation potential
approximation adopted here which assumes thatD(q) is pro-
portional toq will be invalidated. In addition, the deforma-
tion potentials for interband scattering as well as intervalley
scattering also need to be considered.

The anisotropy in the momentum relaxation rate due to
polar-optical scattering is also examined based on Eqs.~27!
and~28!. The results for the electron~hole! are shown in Fig.
6 ~Fig. 7! for ~a! T5300 K and ~b! T577 K. The solid
~dotted! curves are fort l

21(t t
21). Also shown in these fig-

ures are the results~dash-dotted curves! obtained by using
the spherical-model expression@Eq. ~29!#. For both the elec-
tron and hole, the anisotropy is quite large witht t

21 larger
than t l

21 by about a factor between 1.5 and 2. We can un-
derstand this behavior by examining Fig. 3 in which we find
that Cj is zero atu50 ~parallel to c axis! and large at
u5p/2 ~perpendicular toc axis! for theEu

1 andEu
2 modes.

This enhances the scattering rates perpendicular to thec axis.
Finally the mobilities are related to the momentum relax-

ation times via20

m l5
e

ml*
^Et l~E!&

^E&
,

m t5
e

mt*
^Et t~E!&

^E&
,

where^ & denotes a thermal average with a Boltzmann dis-
tribution in the nondegenerate limit. To calculate the mobil-
ity, we use the momentum relaxation rates for deformation
potential as obtained above. To simplify the calculation, we
use the spherical-model expression@Eq. ~29!# for the polar-
optical scattering, but scale it by appropriate factors to take
into account the anisotropy for the electron. As shown in Fig.
6, t l

21 and t t
21 differ from the spherical results (1/t) ap-

proximately by an energy-independent factor. We find
t l

21'0.821t21 andt t
21'1.281t21 for the electron. For the

hole, we findt l
21'0.734t21 andt t

21'1.335t21. Figures 8
and 9 show the mobility as a function of temperature for the
electron and hole, respectively. The results are in fairly good

FIG. 4. Momentum relaxation rates associated with various pho-
non branches at~a! 300 K and~b! 77 K as functions of the electron
energy for the lowest conduction band. The polar-optical-phonon
rates have been scaled down by a factor 10. Solid curves: parallel to
thec axis. Dotted curves: perpendicular to thec axis. Dashed curve:
LO deformation potential scattering~isotropic!.

FIG. 5. Momentum relaxation rates associated with various pho-
non branches at~a! 300 K and~b! 77 K as functions of the hole
energy for the heavy-hole band. The polar-optical-phonon rates
have been scaled down by a factor 10. Solid curves: parallel to the
c axis. Dotted curves: perpendicular to thec axis. Dashed curve:
LO deformation potential scattering~isotropic!.
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agreement with the experimental data taken by Minder
et al.,14,15 indicating that the intrinsic scattering mechanism
plays a major role in the observed mobility. Table VI shows
a comparison between our theoretical predictions and experi-
mental data for the mobilities at 200 and 300 K. The calcu-
lated mobilities are in general within a factor of 2 of the
experimental values. The discrepency may be attributed to
the uncertainty in the effective masses and dynamic charges
used. We predict that the electron mobility is higher for
transport parallel to thec axis than that perpendicular to the
c axis for all temperatures, while the opposite is true for the
hole mobility. This qualitative difference is consistent with
experimental data and it can be explained with our theoreti-
cal analysis. For the electron transport, the polar-optical scat-
tering rate perpendicular thec axis is about 1.6 times that
parallel to thec axis ~see Fig. 7! and the longitudinal to
transverse effective mass ratio is 1.276; thus the combined
effect favors the mobility parallel to thec axis. For the hole
transport, the polar-optical scattering rate perpendicular the
c axis is about 1.8 times that parallel to thec axis~see Fig. 7!
and the logitudinal to transverse effective mass ratio is 2.0,
which causes the mobility parallel to thec axis to be slightly

FIG. 6. Momentum relaxation rates associated with polar-
optical scattering at~a! 300 K and ~b! 77 K as functions of the
electron energy for the lowest conduction band. Solid curves:
t l

21 . Dotted curves:t t
21 . Dot-dashed curve:t21 ~spherical

model!.

FIG. 7. Momentum relaxation rates associated with polar-
optical scattering at~a! 300 K and~b! 77 K as functions of the hole
energy for the heavy-hole band. Solid curves:t l

21 . Dotted curves:
t t

21 . Dot-dashed curve:t21 ~spherical model!.

FIG. 8. Electron mobilities as functions of temperature. Solid
~dotted! curve is for transport parallel~perpendicular! to thec axis.
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smaller than that perpendicular to thec axis. Experimentally,
the ratio of longitudinal to transverse mobility (m l /m t) is
about 1.4 for the electron and 0.5 for the hole for tempera-
tures below 200 K.13 The corresponding values obtained here
is 1.2 and 0.85, respectively. The discrepency is most likely
caused by the uncertainty in the values of effective masses
used here. Had we used different hole effective masses such
that the ratioml* /mt* is 4.2 as suggested by the first-
principles calculation,1 then the calculated mobility ratio
(m l /m t) would have been about 0.5, in good agreement with
data. It should be noted that HgI2 undergoes a structural
phase transition~from a to b phase! at a temperature around
427 K.26 Thus, our theoretical predictions for the mobilities
at temperatures beyond 427 K should not be taken seriously.

VI. CONCLUSION

We have presented detailed theoretical studies of the
carrier-phonon scattering due to all possible phonon modes.
It is found that the polar-optical phonon scattering dominates
the transport properties for low-energy carriers which are of
common interest. For the electron, the mobility along thec
axis is slightly higher than that perpendicular to thec axis,
while for the hole the reverse is true. This qualitative differ-

ence is explained by the anisotropy in the momentum relax-
ation rate and the large anisotropy in the hole effective mass.
The calculated results for both electron and hole mobilities
are in good agreement with the experiment~within a factor
of 2! when the sample is sufficiently pure where the intrinsic
scattering dominates. The discrepency between theory and
transport data is most likely caused by the uncertainty in the
input values of effective masses and dynamic charges used in
the calculation. The uncertainty in the phonon polarization
vectors calculated by the rigid-ion model can be another
source of error, since the empirical phonon model contains a
large number of adjustable parameters. On the other hand,
since the polar-optical phonons dominate transport and their
polarization vectors are largely determined by the dynamic
charges and symmetry, the error introduced by the nonu-
niqueness of short-range parameters should be small.
Namely, the angular dependence of the electron-phonon cou-
pling and hence the anisotropy in scattering rates obtained
this way should be fairly reliable. By comparing the anisot-
ropy in calculated and measured mobilities, we conclude that
the longitudinal to transverse effective mass ratio for the hole
should be around 4, in agreement with the first-principles
calculation of Ref. 1. Although the deformation-potential
scattering is found to be relatively unimportant in determin-
ing the mobility for HgI2 , it will play an important role in
the analysis of Raman and photoluminescence spectra of
HgI 2 .
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