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Theoretical studies of the electron-phonon coupling and carrier mobility for red mercuric iodide are pre-
sented. The electronic states are calculated by an empirical pseudopotential method, while the lattice vibrations
are described via a rigid-ion model. Effects due to the deformation potential and polar-optical scattering are
discussed. Carrier mobilities along battanda axes as functions of temperature are calculated and they are
in good agreement with the experimental da&0163-18206)03821-(

[. INTRODUCTION stant for Hgb. In Sec. V, we discuss our calculated results
for momentum relaxation rate and the carrier mobility. A
Red mercuric iodidgHgl,) is an important material for summary of the paper is given in Sec. VI.
- and x-ray detectors. The electronic and phonon properties
of Hgl, are known fairly well due to recent theoretical Il. ELECTRON-PHONON COUPLING
studiest™ A reliable description of the detailed electronic
structures of the system was given by Turner and Hafmon
via a relativistic linearized augmented plane-wéRe APW)
calculation. We have recently reported an empirical nonlocal
pseudopotential calculation of the electronic and optical 1 _ ‘
properties of Hgj including the effects of the spin-orbit  Hg _ph=—2 —2 que'q'R%(CJ)~VVa(Y—R—Ta),
interaction® The near-band-gap optical properties and effec- aR YNM,, a
tive masses obtained in this calculation are in good agree- @
ment with experimental dafa® whereN is the number of unit cells in the sample,labels
The lattice vibrations of Hgl were studied by a rigid-ion  the different ions in a unit celltwo Hg’s and four I's in the
model.3'4 The model includes the Iong-range Coulomb inter-present CaQe M, and Ty denote the mass and position
action and short-range force constants up to second-nearegfthin a unit cell of ione, q and&e)) denote the wave vector
neighbors. An excellent fit to the available inelastic neutronynq polarization vector at positiar, of phonon modé, and
scattering dal%‘fPF six low-lying phonon branches as well as \/ describes the pseudopotential for an electron interacting
Raman scattering!! and far-infrare® measurements for with ion «. Q is the normal mode coordinate of mogle
|

zone-center phonon modes was obtained. . o
. . hich takes the second quantization form
There have been a great deal of experimental studies o

transport properties of Hgl**~*"However, a theoretical un-
derstanding of them is still lacking. A thorough review of o
Qq=\/5—(al +a,),
j quj j j

In the rigid-ion model, the electron-phonon interaction is
given by®

carrier transport in Hgl can be found in Ref. 13. In this
paper, we present theoretical studies of carrier transport in
Hgl,. We have considered the scattering of electrons antherew, denotes the frequency of mogle

H ]
holes_fror_n all possible phonon modes. T_he electron-phon(_)n A schematic diagram of the unit cell of Hgtan be found
coupling is calculated based on the empirical pseudopotentigh Ref. 3. Note that the solid has inversion symmetry about
modef for the electronic states and the rigid-ion model forine midpoint between the two Hg atoms in a unit cell. If we
the phonon modeSit is found that polar-optical scattering is choose the point as the origin of the coordinate system, the
by far the strongest for low-energy carriers, and it is responziomic positons of the two Hg atoms are

sible for the low mobility observed experimentally. Our (—ald,—al4,—cl4) and @/4,a/4,cl4), and those of the four
theoretical prediction for the intrinsic mobility as a function | jtoms  are € ald.ald —b.li]c) ' (al4,—a/4,0.11T)

of temperature is in fairly good agreement with the experi-(_a/4 a/4,0.382), and (@/4,—al4,—0.38%). Here

4
mental data a=4.37 A andc=12.44 A. We adopt a coordinate system in
In Sec. Il, we present the theory for the electron-phonothiCh thez axis is parallel to the axis.

coupling of Hgl,. In Sec. lll, we describe the theoretical The local pseudopotentials of the mercury and iodine
predictions for the deformation potentials associated Witr’have the form

various phonon modes of Hgl In Sec. IV, we describe the

polar-optical scattering for noncubic crystals and examine 5

the angular dependence of the electron-phonon coupling con- Vi(g)=a;(q?—a,)/(e?sd 3+ 1), 2
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and the nonlocal pseudopotentials have the form where cog=K - -K'/KK', , is the atomic volumeP, is a
Legendre polynomialj, is a spherical Bessel function, and
V,(r)=Ae"("P? We useR=2.3a5, whereag is the Bohr
radius.a;(i=1,2,3,4) andA,(1=0,1) are adjustable param-
eters which are tabulated in Ref. 2.

The matrix element ofl ¢, between two electronic states
with wave vectork andk’ is given by

vNL(K,K'):4w§|) (21+1)P,(cosd)

x [ dreevicoi i ko, 3

. h G
(K Haplk)= =12 5o 2 A -k @& (K'=K)C (G)C(G)
“« @qj,G,G’

XIVIP(K = K) + VR (K, K Je ™ 710 7N, )

whereK=k+G and G denotes a reciprocal lattice vector.

C«(G) is the expansion coefficient for the electronic eigen- |(k"k)E% Cy/(G)C(G)
state of the pseudopotential Hamiltonian in terms of plane

waves.N, is the number of atoms per unit cell, denotes an overlap integral.

Comparing Eq(7) with Eq. (4), we can define the effec-
A(K'—k*q)= 8¢ k+q+G> tive coupling coefficient as

which means that the momentum is conserved with or with- _
out the help of a reciprocal lattice vecte. Since we are D(q)=DJ(q)I (k' k)
only concerned with transport properties Bfvalley elec-
trons(or holeg, the umklapp process3# 0) can be ignored.
The +(—) sign in the above equation denotes a phonon
absorption(emission process.

In a deformation potential model appropriate for acoustic XCk(G)[V(L“>(K’—K)
phonons, the electron-phonon interaction is described by

M I ~(j ’ ’
% M—ce > D (K'=K)C(G")

@j,GG

+VRL (KK )]0 7aNg ®
1 .
Hel-ph:—z_ que|q-r'é. =4, 5
VNMggy di whereK=k+G andq= = (k' —Kk).

In a scattering event, both energy and momentum should

where £ 4 is the deformation potential associated with pure .
be conserved, i.e.,

dilation andM ., denotes the total mass per unit cell. One
can generalize the above form to an optical phonon labeled
with j by defining a coupling coefficierﬁ)gj) such that k'=k=q

1 and

Herpr= 2 -=—==2, Qqe'"'Dy’(0). (6)
el-ph = \/ch" T q 0
For longitudinal optical-phononB (q) is approximately in-

dependent off for smallg, while for acoustical phonons, we WhereE, is the energy of electron at wave veckgrandg is
have the simple relation the wave vector of a phonon absorbed or emitted. For acous-

tical phonons whose deformation potentials are of primary
Dy(q)= 2= interest, the typical frequencies are less than 0.1 THz which
ol@)=€-a=q. correspond to energies less than 0.4 meV. Thus, the follow-
The matrix element between two electronic states in thidng relation approximately holds:
model can be written as

EerEKtﬁwq,

k'=—-k==gq/2, 9
) f :
(k' |Heprlk)y=—i WE Sk kDG (DI(K"K),  sinceE_,=E, as a consequence of time reversal. For optical
qiNMeel"q ) phonons, the frequencies are between 0.5 and 4.5(Wil
energies from 2 to 18 meMor Hgl,, and the above relation
where is not quite valid. However, since the electron-phonon cou-
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pling for high-frequency optical-phonons is insensitivekto ©

and g near the zone center, the result obtained this way is o~
still adequate.

To understand the behavior of these coupling constants,
we must first examine the symmetry properties of phonons in
Hgl,. The point group of the system i3, which contains

whereE is the identity,o; (o) is a reflection about thg-

z (x-z) plane,S; is a 90° rotation about the axis followed

by a reflection about the-y plane,S,=S7, and S;=S;.
The group theory analysis for Hglstructure has been re-
ported in Ref. 19. The phonon dispersion curves of all 18

—

- 2
elements E, oy, 05, S1, S, S5, 0,S;, and S;o5, %

Q

branches were shown in Fig. 3 of Ref. 4. The phonon
branches are labeled by their space group representations ac-
cording to the notation of Ref. 19. There are three irreducible
representations\;,A3,A5 for q along the[001] direction

(T" to Z). The A5 representation is two dimensional, indicat-

(a)C1

ing transverse modes, whereas thegandA 5 representations o
are one dimensional, indicating longitudinal modes. Eor o
along[100] (I" to X), there are four irreducible representa-

tions A;,A,,A3,A, (all one dimensional The A, and A4 |
modes contain symmetric and antisymmetric sumg dfs- T
placements associated with atoms related by inversion, -
namely, those labeled by 1 and 2, 3 and 6, or 4 aride® S o
Fig. 1 of Ref. 3; hence, they are transverse modes. Bhe é—’r -

modes contain admixture af— andz+ components, while
the A; modes contain admixture of symmetric sumxadlis-
placementgdenotedx+ component

The symmetries of zone-center modes are labeled accord-

ing to the point group representatiof®ef. 12. The E (E,

or E,) modes are twofold degenerate when the wave vector
approaches zero from theaxis. They correspond to vibra-
tions along thex andy directions. TheA (A4 or Ay,) and

B (B14 Or B,,) modes are singlefold, corresponding to vi-
brations along the axis. The subscriptg (gerade¢ and u
(ungeradgdenote even and odd parity modes with respect to
the inversion center. A schematic diagram for atomic dis-
placement in modes of various symmetries can be found in
Fig. 1 of Ref. 12.

In our calculation, the spin-orbit interaction is included -
for the electron band structures. Thus, each band is doubly
degenerate due to Kramers degeneracy. In our calculation,
we sum over the final spin index and average over the initial
spin index. Namely, we replace the intraband coupling ma-
trix element in Eqs(4) and (7) by

D (eV/A)

et
112

1
(' [He k)= 52 [k [Herplk.8)?|
S,S

wheres,s’ sum over the two Kramers degenerate states.
Using Egs.(8) and (9), we have calculated the effective

(= s
0.50 0.26

-—¢

coupling coefficient D(q) as a function of g. The
deformation-potential coupling is nonzero only for longitu-
dinal phonon modesi.e., with A; or A; symmetry forq
along[001] andA; or A, symmetry forq along[100]). At
the zone centerq=0), only theA;y mode(totally symmet-
ric with respect to all point operationkas nonzero coupling

FIG. 1. Electron-phonon coupling coefficients as a function of
phonon wave vector fai@) the lowest conduction bari€1), (b) the
heavy-hole bandHH), and(c) the light-hole bandLH).

symmetric mode. The results f¢a) the lowest conduction
band(C1), (b) the heavy-hole ban(HH), and(c) the light-
hole band(LH) are shown in Fig. 1. The three solidotted

coefficient. This is because we have only considered intracurves labeled 1-3 in the left panels are associated with the
band scattering here, in which case the initial and final statethreeA ; (A3) modes ordered according to their frequencies.
are the same and the electron can only scatter with a totallgimilarly, the six solid(dotted curves labeled 1-6 in the
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right panels are associated with the aix (A,) modes or-
dered according to their frequencies. The firs{ and
A,(A,) modes correspond to the longitudinal acoustical
branch along the anda axes, respectively.

The second\; mode and the fourtth; mode merge into
the A;; mode at the zone center. Thgy mode(a breathing
mode creates a lattice vibration that preserves the point
symmetry of the crystal; thus, the electronic energy will suf-
fer a change even wheag=0. As shown in Fig. 1D(q) is
finite at the zone center only for this mode. ~

_ (a)é1

(eV)

—
)
=

Ill. DEFORMATION POTENTIALS b

Since Hgb has six atoms per unit cell, there exist 15 o ¥ , , ,
optical branches in addition to the three acoustical branches. 0002 04 06 08 1.0
For acoustic branches and for some optical branches, the v (m/R)
effective electron-phonon coupling constangp{s linear in
g for small g. We then define effective deformation poten-
tials as

E*(64)=D(0a)/q,

where ¢, is the polar angle ofj with respect to the axis
(c axis). Due to the fact that the crystal is noncubic, there is
in general &, dependence in the deformation potential. We
examine the angular dependence of the deformation potential
by calculating=* (6,)=D(q)/q at q=0.02 A~! with 6,
varying from zero tom/2. The angular dependence is quite
complicated due to the mixing of several modes with similar
frequencies. However, for modes with similar frequencies,
we can simply add up their corresponding coupling coeffi- . ,
cients squared and use the square root of the sum to represent 0002 04 06 08 1.0
the net effect of all these nearly degenerate modes. v (m/2)

Following the elastic theory of Herring and Vogtthe
6, dependences of the acoustical-phonon deformation poten- ,
tialsg for anisotropic systems are fitted by polynomials of (c)LH
cog6,

15 20 25 3.0

(eV)

1.0

0.0 0.5

25

2.0

Et(0y)=E} +Efcosf,+E%codd, (10

1.5

for longitudinal modes and by

(eV)

1.0

ET(6g)=E] sing cosd, (11

for transverse modes. These expressions would allow the
scattering rates to be calculated analytically.

Figure 2 shows the angular dependence of the deforma-
tion potential Z* (6,) for the longitudinal acousticalLA) 00 02 04 06 08 1.0
and transverse acoustiddlA) modes. The solid curves are 9 (1/2)
calculated results and the dotted curves are fitted results ob-

tained by using Eq(10) for the LA mode and Eq(11) for . .
the TA modes. The paramete:?@ 'Eli’c ’ E;‘ ’ andEj used _ FIG. 2. Angular dependencg of the effective deformation poten-
for the fit are listed in Table | tial for (a) the lowest conduction ban@C1), (b) the heavy-hole

) band(HH), and (c) the light-hole bandLH). Solid curves: calcu-

From Fig. 2, we find that the angular dependence of th ,
effective deformation potentials for the LA mode are indeec%tg)d :: jf&;’ N Ed8). Dotted curves: calculated based on HEg,

well described by the simple analytic expressions given in
Eq. (10). For the TA mode, the fit to Eq11) is rather poor.  nificant. Furthermore, since average valuedf(6,) for the
Here, we choose the maximum values of fitB8(6,) to be  TA mode is much smaller than that for the LA mode, such a
the same as the actually calculated ones, with a displaceggbor fit will not alter the final acoustical-phonon scattering
peak positions ind,. Thus, when we integrate ovel; to  rate in which the LA mode dominates.

obtain the total scattering rate, the deviation becomes insig- As we mentioned in the previous section there is only one

0.0 05
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=* 'Z*

TABLE I. Effective deformation potential€} ,E7 , and 27} TABLE II. Effective massesin units of free electron masand
and the coupling coefficierd, for the optical-phonon for the con- their ratios for the conductiofC1), heavy-hole(HH), and light-
duction (C1), heavy-hole(HH), and light-hole(LH) bands. All de-  hole (LH) bands.
formation potentials are in units of eV am}, is in units of eV/A.

C1 HH LH
Band E* E* E* E* E* D
d ' s u ! 0 my 0.37 2.06° 0.60%
C1 4.95 0.376 -2.49 2.45 5.62 150 mf 0.29? 1.03° 0.607
HH 2.79 -2.29 2.25 2.74 0.404 1.49
LH 2.02 -1.16 1.33 1.59 177 0.87  Obtained by the empirical pseudopotential metfB®M) as de-

scribed in Ref. 2.

PBloch et al. (Ref. 6.

optical mode withA;; symmetry whose coupling coefficient

D(q) is finite atq=0. Thus it contributes to the zeroth-order find that the angular dependence of the effective deformation
optical-phonon scattering. If we approximate b@tfg) and  potentials for the LO1 modes is indeed well described by the
w(q) for the A;y mode by constant valud3, and wg Cor-  simple analytic expression given in Eq&l3). With this

responding to their respective valuesgat 0, we obtain the  simple expression, the scattering rate is given by
scattering rate &5

=2
W(Ey) = (7D3/ pwo){n(wo)N(Ey+7 wo) W, (k)= 8—21—f 2SI 4{n(w1) Sk kg

T pwy
+[N(wo) + LIN(Ey~fiwo)}, (12 X S(Exr— Er— o)
wherep is the mass density,

a2 o )2 +[N(w1)+1]6¢ k—q
RA(CHKD) 1K

= X O(Eyr—Er+hwq)}dk’dq. 14)
K o o (Ex —Ex 1} q (

is the carrier energyN(E)=(2m’ m¥2E)*%47?%° is the Carrying out the integral we obtain

carrier density of states for a given spin, amgog) is the E’l’szzw/me

phonon population given by Wy (k)= W{n(%)VEﬁﬁwl

n(w )= (eﬁwo/kBT_ 1)—1.
’ X[4 (Bt hay) +u]
For all other 14 optical branches, the deformation poten-
tial constant vanishes at=0. However, several modes have +n(wy) +1]VE—fioy
appreciable deformation potential at finife We shall add 2=
the contributions tgdD(q)]? for all modes with frequencies X5 (B frog) +uil}, (19
higher than 2 THz(which include theA, and A3 modes  wherem* andm} are the longitudinal and transverse effec-
labeled by 2 and 3 and th®, andA, modes labeled by 496  tie masses as listed in Table ukzﬁz(k§+k§)/2m§‘ and

and define the net contribution &g(qg). The net contribu- w,/2m=0.868 THz is the average frequency of the optical-
tion becomes even less dependent near the zone center.phOnons of interest.

Therefore, Eq(12) becomes a better approximation for de-
scribing optical-phonon scattering when we consider the net
effect of all optical branches with high frequencies. We shall

use Eq(12) to calculate the net contribution of these higher-  |n addition to deformation potentials, the ions with oppo-
lying optical modes to the scattering rate with the couplingsite charges vibrating against each other give rise to a long-

IV. POLAR-OPTICAL SCATTERING

coefficientD, given in Table | andvo/27=3.352 THz. range macroscopic electric field. The interaction of a carrier
~ For those optical branchége., the seven lower-lying op- with such field is known as the polar-optical scatteriog
tical mode$ with frequencies substantially lower thasy,  Frolich scattering.?® In Hgl,, there exist three optical

they also have appreciable contribution to the scattering ratgnodes(labeled byE. ,E2, andA},) which lead to a nonzero
The frequencies of these modes are ranging from 0.6 THz tgjpole moment. As a result, these modes are infrared active
show below that the angular dependence of the deformatioRef. 4). The electron-phonon interaction due to polar-optical

potential can be approximately written as scattering associated with mogiés given by
E1(6q)=E7sing,. (13 a() A
1( q) ' ! H _ 1 2 /Mcelli eifg)'q 4mq -e”“
The angular dependence of the effective deformation po-"¢-P"" M o M, ve =) |g?+q3 Qo™
tential representing the net effect of these mogenoted (16)

LO1) is plotted in Fig. 2 for(a) the lowest conduction band

(C1), (b) the heavy-hole ban@HH), and (c) the light-hole ~ Wheree is the free electron chargej, is the effective dy-
band (LH). The solid curves are calculated results and thenamic charge of iom, €() is the high-frequency dielectric
dotted curves are fitted results obtained by using &8§). constant,%g) is the polarization vectory, is volume of the
The parameteE’ used for the fit is listed in Table I. We unit cell, andqq is the reciprocal Debye screening length



53 THEORETICAL STUDIES OF CARRIER TRANSPORT IN Hgl 14 205

(which depends on the free carrier concentrgtide effec- ©
tive dynamic charge? is defined agoM/du|, whereu is -
the relative displacement amd is the corresponding electric
moment. For noncubic crystals;, should be different for

N
different directions of the applied electric field. The parallel -
and perpendicular components &f can be related to the N&‘
longitudinal and transverse phonon frequencies defined as ; P
zc;;gs and poles of(w) of the three infrared active modes @9 ©°
b —

(&)

ek?
477(N/V)§ M—:e(oo); (] — w?p).

0.4

Their values, determined by reflectivity measurements, are Q|
ef =2.27% and ef =3.06 for the Hg ion'? Here the sub- ©00 03 04 06 08 1.0
scriptl (t) indicates paralle{perpendicularto thec axis. For 9 (m/2)

the | ion, the charge neutrality gives®=—3ef};. In the
rigid-ion model® the anisotropy for both the dynamic charge  FIG. 3. Angular dependence of the coupling coeficient for polar-
and dielectric constant is ignored, and it is found treit?’  optical-phonon scattering for the three infrared-active modes. Solid
€(©)=0.266 for the | ion. Using €(>)=5.2 and curves: with isotropic dynamic charge as given in Ref. 4. Dotted
€(»)=5.45 and the experimental values fef and ef curves: with anisotropic dynamic charges as given in Ref. 12.
(see Ref. 12 we obtain ef?/¢(*)=0.248 and _

e¥2/ (=) =0.429 for the | ion. The rigid-ion model predic- constqnte(w)=5.2. The _dotted curves are results obtained
tion turns out to be quite close to the experimental result foPY USINg the anisotropic expressioid8) and the low-

the electric field along the axis. It should be pointed out temperature experimental valdésor ef'; and (). - _
here that the effective dynamic charge appears to be too large The scattering rate due to polar-optical-scattering associ-
compared with that inferred from the first-principles ated with modg is given by

calculation® If we write the total longitudinal polarization 2 2

. . L . 3 1 Ci(099
(including contribution from ions and valence electrpas Wj(k)= f i‘Yag

{n(@;(0)) bk’ k+q

s 87%p) wi(6)(d°+a3)

P=2, e u,,

I & Hla X 8(Exr — Ex—h0j(0))+[N(@)) + 118 k—q
whereu, denotes the displacement vector for atamthen X 8(Ey — Ex+hwj)}dk'dg. (19

ef,=e%/e(») corresponds to the effective charge introduced

by Callerf* in the diatomic case. This effective charge is aln this paper, we are only interested in low carrier concen-
measure of the ionicity and its value for | in Hgis around  trations so thatj, in Eq. (14) can be neglected. Féralong
—0.2%, indicating that the material is more covalent thana general direction, including the anisotropy of band struc-
ionic, consistent with the prediction given in Ref. 1. Com-ture and phonon dispersion is complicated. We therefore
paring Eq.(17) with Eq. (6), the effect of polar-optical scat- adopt a spherical approximation in which we ignore the an-
tering can be described by gdependent coupling coeffi- gular dependence of the phonon dispersig(é,), and we

cient with define new variables
* _ Mcen © ezgg)'(’i‘ 4mq ql*:\/gqI for i=x,y
D} (a)=| 2 — o
@ My ve  €() ‘ g°+dQp
and qg;=q,, where o=m/m{, and similarly for
—C.(8,) _9 17 Kr(k'™), so thatEy(Ey,) becomes a spherical function of
PP g%+ qf)” k* (k’*). Equation(19) becomes

Using the displacement vectors obtained by the rigid-ion
4 . ) 0

go%el, fwethcalr;lollzjgaln tgilanguﬁtr de1E)end(alnt(j C‘:Emmem%r polar-optical scatterings associated with g E2, and A},

) J( q) orthe &y, ur andAz, mo S§ii) 9 Inciu ? € AN modes calculated by the rigid-ion model and by using experimental

isotropy effect, we simply replace, e,’-0/€e(*) in EQs.  yajues for effective dynamic chargéim parentheses All coeffi-

TABLE llI. Spherical averages of the coupling coefficies

(16) and(17) by cients are in units of eV/A The optimum frequencies; used in
e* ey ox 2) Eq. (29) in units of THz are included in parentheses following the
wl ol | el -q (18)  band symmetry label
() €() .
1 2 1
In Fig. 3, we plot the angular dependent coupling coeffi-B‘r’mOI E,(1.078) Ey(8.549) A24(4.035)
cient C; for the three infrared active optical branchesci 0.4600.580 0.6260.832 1.1151.190
(EL,EZ, andA},). The solid curves are results obtained by HH 0.4270.539 0.5730.766 1.0891.153
using Eq.(17) and the isotropic effective dynamic charge Ly 0.4780.60)) 0.6550.869 1.1261.208

predicted by the rigid-ion modélnd a spherical dielectric
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CF(6q)
qu*z(sin20§/a+co§6§)

1
W;(k) = 8772pf
X{n(wj)ék*r’k* +q* 5(Ekr—Ek_ﬁwj)
+[n(wj)+l]5k*/yk*,q*
—Ext+ho))dg*dk* /o,

X S(Eys (20

where co§* =qs/q Furthermore, we  replace
C: (0q)/(sm29* +oco§0*) by a spherically averaged cou-
pllng constanlC2 deflned by

2
2 fl Ci(6q)

I ) _1sirt6; + ocos 6}

Carrying out the integral in Eq19) we obtairt*

L Ex
n(wj)sinh 1\/%

2
i
2mph o)y i

+[n(wj)+l]sinhl\/%—1], (22

j
=2E,/m’. The spherically averaged

dcosty /2. (21

W;(k) =

where v =fhk*/m’ =

7(E)

whereW(k’,k) denotes the scattering rate from stité¢o
k'
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TABLE IV. Coefficients for transport parameters for acoustical
phonons as given in Egs(2l) and (22). The abbreviations
C* = €11 C1o— 2C44, C1=Cypt 2C4u+ 5C*, and ©=(Cqqt 5¢*)(Cas
+%c*) have been used. The integrdls and J,, are the same as
defined in Ref. 20.

=fki(ki—ki’)W(k’,k)dk’é(E—Ek)dk /Jk?(S(E—Ek)dk,

& lo+(c*/c)(—0.18,+1.5,—1.79,)

yi 2|1+(C*/C|)(*O.3|1+3|2*3.5|3

4 l,+(c*/c))(—0.18,+1. 513—1 73.,)

& ¢(Cyat5C*/6)
““#(Il—lz)— — (I~ 15)

7 2l3+(c*/c)(— 0.3|3+3I4 3.95)

g 21,+(c*/c))(— 0.3 ,+315—3.5)

&yl

& aonl same as parallel cases above but wilh

replacing each,,

coupling constants as defined in Eg1) are listed in Table
Il

V. MOMENTUM RELAXATION RATES AND MOBILITY

To calculate the carrier mobility, we also need the mo-
mentum relaxation time, (the subscript denotes the direc-
tion of transport which is related to the scattering rate via
the expressidi?®®

(23

7(E)

3
=(2mlhe ) &5 + nESE}

The momentum relaxation rates for acoustical phonons

with deformation potentials described by E¢E0) and (11)

can be worked out analytically similar to the theory of Her-

ring and Vogt® and we obtain

1
+z.<~:2+z:s::>+§.':32

1k =k

+{EFEL+{EE%1kgTN(E) (24)

for transport parallel to the axis and

=% 2 =k Xk 1=%2 1=k =%
+§t —r +2'—'d'—'s)+§l'—'u +77t'—’r =s

+{{E¥?1ksTN(E) (25)

for transport perpendicular to tleeaxis. Herek is the energy

of the carrierc, =Cqp+2C4+ 2(C11— C1o— 2C4y) is the aver-
age elastic constankg is the Boltzmann constant, afdis

the temperatureé, 7+, £+, &+ 7, and{/, are con-
stants depending on the effective mass ratlem;/m; and

the elastic constants;;, Cq,, andc,,. Explicit expressions
for these constants are given in Table IV and their values for
Hgl, are listed in Table V. The elastic constants used(iare
units of 13* dyn cm™?) ¢,,=3.16(Ref. 9, ¢;,=0.559(Ref.

TABLE V. Transport parameters for acoustical phonons of Hgl

Band & il g & U 4 & Mt & & 7 &

C1 1.322 1.647 0.603 0435 1501 0.399 1.338 0.628 0.145 0.393 0.224 0.051
HH 1.297 1.797 0.724 0.376 1.829 0.478 1.343 0.783 0.203 0.420 0.353 0.083
LH 1.333 1.566 0.548 0.447 1.096 0.340 1.333 0.551 0.118 0.371 0.170 0.038
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27), andcy,=0.727 (Ref. 9. Note that in the above equa- 1 1 E;Zmﬁm
tions we have used the equipartition approximation, i.e., 2 7(E) = = = TpwlhS

T XN(w) VE+Aw 5 (E+fiw,)+ 2E]

N(wq)=(e"@a/eT— 1)1~ 2 , )
hiwg +[n(wq) +1]VE-fw5(E-fiw,)+ £ E].
(26)

This is a good approximation, since at room temperature, WRjote thatr, * is twice as large as; 1. This is due to the fact
havefiwg/kgT<1. that £ (q) = E7 sind, which suppressed the scattering along

For zeroth-order optical-phonon scattering, one can shojhe ¢ axis.
that 1/=W(k) as given in Eq(12) because the coupling  To calculate the momentum relaxation rate for polar-
coefficient is independent of and the a_ngula{ average of the optical scattering, we saj,=0. This is valid for the low
term proportional tdik; in Eq. (19) vanishes? For the first-  carrier concentration< 10 cm~3) considered here. Substi-

order optical-phonon scattering, we obtain tuting Eqg.(17) into Eq. (20) we obtain
1 343 Km ™ C2(6,)cosh* sing*
e 3,22f dkzsz d¢*f deo* '(. q)* i1
n(E) 16m?p(2mfE)*¥25 |\, 9Jo 79 w(si 6} + ocos b;)
X{=n(op[aPIR (M) +aP IR (q'P)]+[N(w) +11[qM/R_(qP) + 9P IR_(qP) 1}, (27)
1 343 Km w C2(6,)sint0* cosp*
e I e T K WL e i
™(E) 32m°p(2m[E)*“T ), 9)o 4 wj(S|n20q+UCO§0q)
x{=n(0)[qP/R(dP) +9?IR (@) ]+ [n(w) +1][aP/R_(q) +qP/R_(g™) 1}, (28)

wherekn= \2m{ E/f, R..(q) = (A2/m})|q= (k,cosf} +(K—K)2sing} cosgy)|. ) andq®?) are two positive real roots of
the equation

2

2mf

[92=2q(k,cos8} + (K5, —k2)%sing; cosp? ) |= +ho; .

Here 0:1‘ is the polar angle off* with respect to the axis and¢>; is the azimuthal angle betweegfi andk.
If we replacecjz(eq)/(sinzeg +oc0526§) by its spherically averaged value amg(6,) by its value at the angle where
Ci(6y) is peaked, the above results reduc# to

1 c? & /Hﬁw—j LTy [ E
= n(w; —— —sin —
7(E) Amphwjve . E E ho;

1 ﬁw_j+hw_"'h*1 = 29
VEETES NG ) @9

+{[n(Uj)+1]

wherevg=\2E/mf. The values ofw; [ = wj(w/2) for the being the strongest, since it has much lower phonon energy
Ea and Eﬁ modes andv;(0) for theA;, modd are listed in compared with the other two modes and- i inversely
Table Il proportional tow; [see Eq(29)]. In Fig. 5, both the heavy-
Using Egs.(24)—(29) and Tables 1-V, we can calculate hole and light-hole contributions are included. The light-hole
the momentum relaxation rates due to both deformationeontribution starts at hole energy of 0.2 eV which corre-
potential and polar-optical scatterings. Figure(Hig. 5 sponds to the heavy-hole and light-hole splitting at the zone
shows the results for the electréimole) at (a) 300 K and(b) center(see, Ref. 2 We note that the polar-optical scattering
77 K. For simplicity, the polar-optical scattering rates weredominates the other scatterings for carrier energies less than
calculated in the spherical modgtqg. (29)]. In Fig. 4, the 0.1 eV, and it becomes comparable to the sum of all other
three peak structures for the polar-optical scattering are duscattering rates at carrier energies around 0.5 eV. For carriers
to the onset of the optical-phonon emission at the phonomith energies higher than 0.5 eV, the deformation-potential
energies for mode&!, EZ, andA},, with the EL mode scattering becomes more important. However, for high-



14 208 YIA-CHUNG CHANG AND R. B. JAMES 53

(=] (=}
P ; =3 , .
~0 o (@) ) (a)300K
© o 8_
- s
g o’
[ ] (]
L L=
s L
o)) o«
Lo £
o )
= £ o
S «f ST
n n |
oV il , , ‘ ol "LO1
0.0 0.10 020 0.30 0.40 0.50 0.0 0.10 020 0.30 0.40 0.50
Electron energy (eV) Hole energy (eV)
10 N ; T
o~
T < (B)77K :,""; o (b)77K
© “o
Z At
9w 7 Q PO(x10) ¢
© PO(x10) ¢ ]
- LO1 , 0
S T c
= k=
(] E", <
E e
@ ©
o = O
(3] n N
I ol Lol
0.0 0.10 0.20 0.30 0.40 0.50 0.0 0.10 0.20 0.30 0.40 0.50
Electron energy (eV) Hole energy (eV)

FIG. 4. Momentum relaxation rates associated with various pho- FIG. 5. Momentum relaxation rates associated with various pho-
non branches gg) 300 K and(b) 77 K as functions of the electron non branches afa) 300 K and(b) 77 K as functions of the hole
energy for the lowest conduction band. The polar-optical-phonorenergy for the heavy-hole band. The polar-optical-phonon rates
rates have been scaled down by a factor 10. Solid curves: parallel tsave been scaled down by a factor 10. Solid curves: parallel to the
thec axis. Dotted curves: perpendicular to thexis. Dashed curve: ¢ axis. Dotted curves: perpendicular to theaxis. Dashed curve:

LO deformation potential scatteringsotropig. LO deformation potential scatteringsotropig.

energy carriers, the scattering with large-momentum

phonons becomes important, and the deformation potential :i (En(E))
approximation adopted here which assumesEnaf) is pro- al mf (E)
portional toq will be invalidated. In addition, the deforma-

tion potentials for interband scattering as well as intervalley

scattering also need to be considered. _ e (Er(E))

The anisotropy in the momentum relaxation rate due to '“t_m_;f (Ey
polar-optical scattering is also examined based on Ep.
and(28). The results for the electraimole) are shown in Fig.  where( ) denotes a thermal average with a Boltzmann dis-
6 (Fig. 7) for (@ T=300 K and(b) T=77 K. The solid tribution in the nondegenerate limit. To calculate the mobil-
(dotted curves are forr, 1(7-{ 1. Also shown in these fig- ity, we use the momentum relaxation rates for deformation
ures are the result&lash-dotted curvesbtained by using potential as obtained above. To simplify the calculation, we
the spherical-model expressipBq. (29)]. For both the elec- use the spherical-model expressidy. (29)] for the polar-
tron and hole, the anisotropy is quite large with larger  optical scattering, but scale it by appropriate factors to take
than 7(1 by about a factor between 1.5 and 2. We can un4into account the anisotropy for the electron. As shown in Fig.
derstand this behavior by examining Fig. 3 in which we find6, 7 * and =, * differ from the spherical results (dy ap-
that C; is zero atf#=0 (parallel toc axis) and large at proximately by an energy-independent factor. We find
0= /2 (perpendicular ta axis) for the Eﬁ and Eﬁ modes. T,‘l~0.82]r‘1 and 7{1%1.2817‘1 for the electron. For the
This enhances the scattering rates perpendicular to #xés.  hole, we findr, ~0.734-* and r; *~1.335-"1. Figures 8

Finally the mobilities are related to the momentum relax-and 9 show the mobility as a function of temperature for the
ation times vi&° electron and hole, respectively. The results are in fairly good
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FIG. 6. Momentum relaxation rates associated with polar-
optical scattering afa) 300 K and(b) 77 K as functions of the
electron energy for the lowest conduction band. Solid curves
7 1. Dotted curves:r, *. Dot-dashed curve:r ! (spherical

mode).

FIG. 7. Momentum relaxation rates associated with polar-
optical scattering ata) 300 K and(b) 77 K as functions of the hole
energy for the heavy-hole band. Solid curves®. Dotted curves:
7{1. Dot-dashed curvet™! (spherical model

agreement with the experimental data taken by Minder
et al,'** indicating that the intrinsic scattering mechanism
plays a major role in the observed mobility. Table VI shows
a comparison between our theoretical predictions and experi-
mental data for the mobilities at 200 and 300 K. The calcu-
lated mobilities are in general within a factor of 2 of the
experimental values. The discrepency may be attributed to
the uncertainty in the effective masses and dynamic charges
used. We predict that the electron mobility is higher for
transport parallel to the axis than that perpendicular to the

c axis for all temperatures, while the opposite is true for the
hole mobility. This qualitative difference is consistent with
experimental data and it can be explained with our theoreti-
cal analysis. For the electron transport, the polar-optical scat-
tering rate perpendicular the axis is about 1.6 times that
parallel to thec axis (see Fig. 7 and the longitudinal to
transverse effective mass ratio is 1.276; thus the combined ‘ .y
effect favors the mobility parallel to the axis. For the hole 100
transport, the polar-optical scattering rate perpendicular the Temperature (K)
c axis is about 1.8 times that parallel to thexis(see Fig. 7

and the logitudinal to transverse effective mass ratio is 2.0, FIG. 8. Electron mobilities as functions of temperature. Solid
which causes the mobility parallel to tleeaxis to be slightly  (dotted curve is for transport paralléperpendicularto thec axis.

1000

T TTT T

L[]

y(cm’/Vs)

Mobilit
100

50
BT TT7]

500



14 210 YIA-CHUNG CHANG AND R. B. JAMES 53

TABLE VI. Comparison between theory and experiment on the

(=4

= T T TTTT ‘ - carrier mobilities of Hg} (in units of cn?/V seg.
- ] Temperature wt ul wl o oul
s | 200 K Theory 88 72 8.2 9.3
g | Experiment 148  90° 102
o 300 K Theory 67 55 6.2 7.1
o’
g - Experiment 1006 65 42  23°
afd
'3 aMinder et al. (Ref. 14.
§° R bMinder et al. (Ref. 15.

- — ®Manfredottiet al. (Ref. 18.

| — ence is explained by the anisotropy in the momentum relax-

L 1'30 500 ation rate and the large anisotropy in the hole effective mass.
Temperature (K) The calculated results for both electron and hole mobilities
are in good agreement with the experiméntthin a factor

of 2) when the sample is sufficiently pure where the intrinsic
scattering dominates. The discrepency between theory and
transport data is most likely caused by the uncertainty in the
input values of effective masses and dynamic charges used in
the calculation. The uncertainty in the phonon polarization

about 1.4 for the electron and 0.5 for the hole for temperayeCtorS calculate_d by the rig!d—ion model can be anqther
tures below 200 K3 The corresponding values obtained hereSource of error, since the empirical phonon model contains a
is 1.2 and 0.85, respectively. The discrepency is most Iikel)}"’.lrge number of at_jjustable parameters. On the other hanq,
caused by the uncertainty in the values of effective massed 1c€ the:- polar-optical phonons dommgte transport and th?'r
used here. Had we used different hole effective masses Suag)larlzatlon vectors are largely det_ermlned by the dynamic
that the ratiom*/mf is 4.2 as suggested by the first- charges and symmetry, the error introduced by the nonu-

I . . -~ niqueness of short-range parameters should be small.
principles calculatior, then the calculated mobility ratio v th lar d d fthe el h
() /) would have been about 0.5, in good agreement withN‘.”lme y, the angular ependence o the e e_ctron-p onon cou-
data. It should be noted that I-Qlu,ndergoes 2 structural pling and hence the anisotropy in scattering rates obtained

phase transitioffrom « to g phase at a temperature around this way should be fairly reliable. By comparing the anisot-
427 K2 Thus, our theoretical predictions for the mobilities ropy in calculated and measured mobilities, we conclude that

X the longitudinal to transverse effective mass ratio for the hole
at temperatures beyond 427 K should not be taken Ser'ous%hould be around 4, in agreement with the first-principles

calculation of Ref. 1. Although the deformation-potential
VI. CONCLUSION scattering is found to be relatively unimportant in determin-
ing the mobility for Hgl,, it will play an important role in
e analysis of Raman and photoluminescence spectra of

Y
o

FIG. 9. Hole mobilities as functions of temperature. Sa¢tidt-
ted) curve is for transport paralléperpendicularto thec axis.

smaller than that perpendicular to thexis. Experimentally,
the ratio of longitudinal to transverse mobilitye(/w,) is

We have presented detailed theoretical studies of th
carrier-phonon scattering due to all possible phonon mode |
It is found that the polar-optical phonon scattering dominate glz.

the transport properties for low-energy carrigrs which are of ACKNOWLEDGMENT
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