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Quasiperiodic long-range order is intermediate between spatial periodicity and disorder, and the excitations
in one-dimensional~1D! quasiperiodic systems are believed to be transitional between extended and localized.
These ideas are tested with a numerical analysis of two incommensurate 1D elastic chains: Frenkel-Kontorova
~FK! and Lennard-Jones~LJ!. The ground-state configurations and the eigenfrequencies and eigenfunctions for
harmonic excitations are determined. Aubry’stransition by breaking the analyticityis observed in the ground
state of each model, but the behavior of the excitations is qualitatively different. Phonon localization is
observed for some modes in the LJ chain on both sides of the transition. The localization phenomenon
apparently is decoupled from the distribution of eigenfrequencies since the spectrum changes from continuous
to Cantor-set-like when the interaction parameters are varied to cross the analyticity-breaking transition. The
eigenfunctions of the FK chain satisfy the ‘‘quasi-Bloch’’ theorem below the transition, but not above it, while
only a subset of the eigenfunctions of the LJ chain satisfy the theorem.@S0163-1829~96!07521-2#

There are surprisingly many examples of quasi-one-
dimensional~1D! quasiperiodic incommensurate systems, in-
cluding quasicrystals, charge-density waves, organic conduc-
tors, and various atomic monolayers adsorbed on crystalline
substrates. Even high-Tc superconductors show incommen-
surate 1D modulation. Although embedding these systems in
3D space may change the outcome, understanding the con-
ditions for localization of excitations of the underlying
model 1D systems is an essential beginning.

Both electron and phonon localization in 1D incommen-
surate systems have been studied rather extensively in recent
years. Despite considerable efforts and substantial success
with several specific models, the problem of formulating
necessary and sufficient conditions for localization is still far
from being solved. The underlying difficulty seems to be
related to the specific position quasiperiodic order takes
among various spatial orderings: it is intermediate between
periodicity and disorder.1 On the one hand, since quasiperi-
odic systems lack periodicity, conventional Bloch theory
does not apply. On the other hand, the degree of disorder in
quasiperiodic systems is not sufficient for Anderson’s argu-
ments about localization in 1D disordered systems2 to be
applied to the case. In fact Levitov showed3 in a rather gen-
eral way that the eigenfunctions of the Schro¨dinger equation
for a chain of atoms change from extended to localized when
the ‘‘complexity’’ of the atomic arrangements in the chain
evolves from periodicity to full-fledged disorder. Quasiperi-
odicity is the boundary between the two regimes, and the
eigenfunctions in a 1D quasiperiodic system may be local-
ized, extended, or neither of the two. In the latter case the
eigenfunctions are called critical. As described in the follow-
ing paragraphs, examples of all three behaviors are found in
various 1D quasiperiodic systems. That is, the outcome is
model and system dependent; even minor modifications to
model Hamiltonians or variations in parameters may cause
drastic changes in the eigenfunction behavior. Thus, charac-
terizing the solutions of a 1D Schro¨dinger equation with a
quasiperiodic potential is a difficult problem to solve analyti-
cally. In this paper we take a numerical approach to demon-

strating the dependence of localization on the model and on
the parameters. Since there is little difference in the formal
descriptions of electron and phonon localization, we study
the latter, because it is easier to adapt it to computer calcu-
lations without losing essential mathematical details.

An example of extended wave functions in a 1D quasi-
periodic system was given in the Dinaburg-Sinai theorem4

for the differential Schro¨dinger equation

2
d2c

dx2
1V~x!c5Ec, ~1!

whereV(x) is a weak analytic quasiperiodic potential. The
theorem states that~i! the spectrum is continuous and~ii ! the
wave functions are extended:

ck~x!5uk~x!eikx, ~2!

where the Wannier functionsuk(x) are quasiperiodic. Unfor-
tunately, mathematical constraints, mainly in the required
analyticity of V(x), do not allow applying the theorem to
many systems of practical interest. Another exactly solvable
example is the finite difference~discrete! Mathieu equation:

cn1122cn1cn211V~n!cn5Ecn , ~3!

V~n!5V cos~vn1a!, ~4!

with irrational v and arbitrary phasea. Aubry and Andre5

proved that forV,2 almost all the wave functions are ex-
tended and of the quasi-Bloch form Eq.~2!. These two ex-
amples indicate that sometimes the Bloch theorem may be
applicable and the states be extended even when the Hamil-
tonian lacks periodicity.

The discrete Mathieu equation, Eqs.~3! and ~4!, also
gives an example of localization in quasiperiodic systems:
for V.2 all wave functions are localized,5 and the spectrum
is discrete:

cn}e
2n/ l , n→`. ~5!
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Critical behavior, i.e., neither localized nor extended, can
be found in 1D quasicrystals. They are usually modeled by
the discrete Schro¨dinger equation Eq.~3! with a quasiperi-
odic crystal potential that takes only two values representa-
tive of two atomic species,A andB, constituting the quasi-
crystal:

V~n!5Ṽ~vn1a!,

Ṽ~x11!5Ṽ~x!,

Ṽ~x!5VA , if 0,x,v

VB , if v,x,1. ~6!

This equation was extensively studied by many authors6–8

who gave rather convincing arguments of critical behavior;
the mathematical proof was obtained by Bellisardet al.9 The
spectrum is singular continuous, a zero measure Cantor set
of nonzero fractal dimension. The wave functions are neither
localized nor extended; moreover, they are even divergent:

E @ uc~x!u2#2dxYFE uc~x!u2dxG2}Lg, ~7!

whereg is noninteger and eigenenergy dependent andL is
the length of the periodically repeated chain cells.

We believe that solving Eqs.~3! and ~6! does not consti-
tute a general solution for 1D quasicrystals. Equation~6!
with two undeformable atomic species,A andB, is too crude
a model even for a 1D quasicrystal chain. Since the hard-
sphere approximation leads to the potentialV(x) in Eq. ~6!
taking only two values, one for each species, this in itself
determines the absence of localization for the model. It is a
theorem that if a quasiperiodic potentialV(x) takes only fi-
nite number of values then localization is impossible.10 To
include the possibility of localization, an elastic atomic chain
should be examined.

A simple model embodying many of the features of the
above systems is the 1D Frenkel-Kontorova~FK! chain:11

H5(
n

F12 ~xn112xn2a!21V cos~2pxn!G . ~8!

Aubry and LeDaeron12 showed that the minimal energy con-
figurations are periodic when the interatomic distancea is
commensurate with the substrate period and quasiperiodic
whena is irrational. However, there are qualitatively differ-
ent configurations for the two types of incommensurate
states separated bythe transition by breaking of analyticity
predicted by Aubry. It is customary to display this transition
by plotting trajectories in the phase space (xn112xn ; xn
mod 1) as in Fig. 1. For each irrationala there exists a
critical value Vc of the substrate potential amplitude. If
V,Vc , the trajectory derived from the atomic configuration
$xn% is a smooth analytic Kolmogorov-Arnold-Moser
~KAM ! curve; if V.Vc , the atomic configuration$xn% is
discontinuous, and the trajectory is represented by a so-
called Cantor set torus or Cantorus. The critical valueVc
depends ona in a rather complicated manner.12,13However,
it is known that the largestVc50.02461 . . . is achieved
whena is equal to the golden mean:14

a5
1

2
~A511!. ~9!

We have restricted ourselves to this particular value ofa in
the numerical solutions.

The transition, despite its pure mathematical appearance,
has profound physical implications. The smooth KAM con-
figurations keep a vestige of translational symmetry: the
chain can slide without any change in energy. The discon-
tinuous configurations are, on the other hand, pinned by the
substrate: there is a nonzero Peierls-Nabarro barrier.15 Thus,
the transition by breaking of analyticity coincides with an
intrinsic pinning transition. The spectrum of harmonic exci-
tations also changes there: in the KAM regime the lowest
eigenfrequency is zero~there is a translational Goldstone
mode!, whereas in the pinned Cantorus regime it is
nonzero.15 In view of these facts, one is tempted to speculate
that some normal modes themselves evolve from extended to
localized when the system is driven over the transition by
breaking of analyticity. Our numerical results show only a
limited correlation between the threshold for localization of
the excitations and the analyticity-breaking transition: the
correlation does not hold for a chain with anharmonic cou-
plings and only a weak localization arises for the harmonic
FK chain, Eq.~8!.

We checked two chains for phonon localization: the
Frenkel-Kontorova~FK! and the nearest-neighbor Lennard-
Jones~LJ!. The former is described by Eq.~8!, the latter by
a similar Hamiltonian with only a modification of the inter-
atomic forces:16

FIG. 1. Phase space trajectories for the FK and LJ chains. The
connected KAM curves~small spots! and discontinuous Cantorus
curves~large spots! are the trajectories below and above the transi-
tion by breaking of analyticity, respectively. The Cantorus results
are shown for varying chain sizes and are offset from the KAM
curve for clarity. The only discernible difference, as a function of
the cell lengthL, is the addition of spots atxn mod 150.67 and
1.0 from L589 to 377 in both models.~a! FK chain with
V50.0207 andV50.0271 for the small and large spots, respec-
tively; ~b! LJ chain withVg5280 andVg52110, respectively,

and with positions normalized toRs53.25 Å.
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H5(
n

@J~xn112xn!12Vgcos~2pxn /Rs!#,

J~x!54e@~s/x!122~s/x!6#. ~10!

The results presented here are limited to the LJ chain with
nearest-neighbor interactions, but tests with the interaction
extended to second and third neighbors showed no signifi-
cant differences. Critical valuesVc for the LJ chain depend
on s as well as on the mean misfit.

The first step of the solution was to determine minimum
energy configurations for Fibonacci approximations to the
golden-mean misfit of both chains17 for various choices of
parameters. For the FK chain, a force-relaxation method was
used, following guidance by Aubry and co-workers12,15 on
how to avoid getting trapped in local minima: for an initial
configuration with equidistant atoms, with the first atom in
the ‘‘proper’’ place, the system relaxes to the absolute mini-
mum. For the LJ chain, both the force-relaxation and a gra-
dient search method were used to locate the minimum energy
configuration as there was an additional complication of pos-
sible fracturing of the chain.18,19 The transition by breaking
of analyticity is clearly observable for both the FK and LJ
chains, as shown in Fig. 1. We show the smooth KAM curve
for the largest unit cells,L5987 and 377 for the FK and LJ
chains, respectively. The clumping of the Cantorus is shown
there for several values ofL to demonstrate that its character
is well established at modest values ofL.

In the second stage, tridiagonal dynamical matrices were
constructed for small-amplitude vibrations about the ground-
state configurations$xn% obtained in the first stage. This
leads to the following eigenvalue problem for the FK chain
for unit cell modes of zero wave vector and atomic massm

cn1122cn1cn211V~n!cn52Ecn ,

V~n!5~2p!2V cos~2pxn!, E5mv2, ~11!

and to a similar result for the LJ chain, where the eigenen-
ergiesE are related to the frequency byE5mv2s2/4e.
Equations~11! are an example of a general quasiperiodic
Schrödinger equation. However, unlike the case of Eq.~6!,
the crystal potentialV(n) may take an infinite number of
values. Thus, possible localization is not immediately
evident.10 The eigenvalues and eigenvectors for the dynami-
cal matrices were obtained using standard~EISPAC! bisection
routines.

The minimal eigenvalue for both the LJ and FK chains
changes from zero to nonzero when the system is driven over
the transition by breaking of analyticity in accordance with
earlier observations by Aubry.15 For both models, the eigen-
value distribution also changes over the transition: at
V,Vc , the eigenvalues are evenly spaced, densely filling
the bands as in the periodic case; atV.Vc , however, the
distribution is more fragmented. The resulting integrated
density of states vs eigenenergyE ~i.e., squared frequency
v2) and the eigenvalue distribution over the energy scale are
qualitatively similar for the FK and LJ chains, as shown in
Fig. 2. However, the apparent bandwidths for the LJ case are
much narrower, and surprising differences arise upon exam-
ining the spatial character of the eigenfunctions.

Before presenting the results for localization, we review
some of the limitations of a numerical study of the problem.
Localization cannot be decided by examining the eigenvec-
tors of the dynamical matrix of one rational approximation to
the golden mean misfit. We followed the evolution of results
for a series of rational approximants converging to the
golden mean. Some properties of the eigenfunctions showed
strongly convergent behavior. There were also values of pa-
rameters and parts of the eigenvalue spectrum where limita-
tions of accuracy and slow convergence combined to leave
the situation undecided. This is the case of our rather weak
evidence for critical behavior in localization.

Generally, it is difficult to draw quantitative conclusions
about the localization of eigenfunctions by visual inspection
because of the volume of information involved and because
oscillatory behavior is sometimes mixed with the decay of a
weakly localized state. The data were first analyzed for evi-
dence of localization by computing participation ratios~PR!:

PR5
1

L

~(ncn
2!2

(ncn
4 . ~12!

If the eigenfunction is extended, PR tends to a finite limit as
L→`. If an eigenfunction is truly localized, as in Eq.~5!,
L3PR tends to a finite limit as the lengthL of the unit cell
tends to infinity. Critical states might have more bizarre scal-
ings, as in Eq.~7!.20

We present the results of our localization studies on the
Frenkel-Kontorova chain first; participation ratios are shown
in Fig. 3. In the KAM regimeV,Vc , i.e., when the ground
state is smooth and unpinned, the PR test shows that all

FIG. 2. Integrated density of states for a chain sizeL5377 for
~a! the FK chain and~b! the LJ chain. In~a!, the integers at the band
edges are the count of the eigenenergies plotted from left to right;
the right-most numbers of each band are Fibonacci numbers. This
coincidence with Fibonacci numbers also applies to~b!. Note the
narrow width of the bands in~b! for the LJ model as compared with
the bands in~a! the FK model. Potential parameters and labelings
are as in Fig. 1.
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eigenfunctions are extended. This is corroborated by demon-
strating that the eigenfunctions can be transformed to the
quasi-Bloch form Eq.~2!. More precisely, any quasiperiodic
function @e.g.,uk(n)# may be represented as

uk~n!5ũk~vn1a!,

ũk~x!5ũk~x11!. ~13!

The periodic generating functionũk(x) in Eq. ~13! is pre-
sented in Fig. 4 for three quasimomenta21 that bracket the

band shown in Fig. 3~c!. At V,Vc , the eigenvalues for
L→` become doubly degenerate, as in the usual application
of the Bloch theorem:E(k)5E(2k). We determined the
value of the quasimomentumk in Eq. ~2! by matching to the
eigenfunctions of the nearly degenerate eigenvalue pairs. We
were able to do this both below and above the transition.
Below, the functionũk is smooth. Above, the eigenvalue pair
typically differs in the fourth decimal place, butk values
could still be identified easily. The functionũk above the
transition has a clumping along the abscissa, as in Fig. 1, and
also in the ordinate. The departure from the quasi-Bloch
theorem becomes very pronounced at the band edge. Above
Vc , the participation ratios for states near the band edges
decrease with increasingL, as shown in Fig. 3, but true
exponential localization was not observed. There may be
critical behavior, but more detailed analyses would be re-
quired to establish that.

Participation ratios for part of the spectrum of the LJ
chain are shown in Fig. 5. The behavior is very different
from that for the FK chain, even though the behavior of the
eigenvalue distribution of the two chains is similar. There is
a pronounced high-frequency band of the LJ chain where all
eigenfunctions are exponentially localized regardless of the
smoothness of the underlying ground state, i.e., localization
occurs for bothV.Vc andV,Vc . The localized upper band
is by no measure small: the band contains~golden
mean! 22;38% of all states. The constructionL3PR in Fig.
5 converges with successive Fibonacci approximations to
distinct values that might be called localization lengths. In
fact, and in contrast to the results for the FK chain, exami-
nation of the corresponding eigenfunctions shows that the
probability distributionscn

2 are very narrow and sharply
peaked. They extend only a few atomic spacings and their
participation ratios seem well specified. The upper branch in
Fig. 5~b! is precisely a factor of 2 larger than the lower
branch and corresponds to eigenfunctions that are concen-
trated at two spatial locations rather than one. What we term
the upper band is itself a collection of smaller permitted and
forbidden bands with gaps at successively finer scales as the
golden mean is more closely approximated. The lower band
has more similarity to the FK case, both in the trends for the
participation ratios and in the behavior of the quasi-Bloch
functions, examples of which are shown in Fig. 6. However,

FIG. 3. Participation ratio as a
function of eigenenergy for the
FK chain. ~a! full spectral range
for L5377; ~b!–~d! over a se-
lected range of eigenenergies that
corresponds to the central band of
~a! for L589, 377, and 987. Note
the increase in the length of the
‘‘tails’’ of the disconnected Can-
torus curves as the length of the
chain cell increases. Potential pa-
rameters and labelings are as in
Fig. 1~a!.

FIG. 4. Quasi-Bloch functionsũk(x) for the FK chain for
L5377 for three quasimomentak and configurations below and
above the transition,V50.0207 and 0.0271, respectively. Param-
eters and labelings are as in Fig. 1~a!. The values ofk ~Ref. 21! and
the corresponding eigenenergies are~a! k51.95, E51.72 and
1.87; ~b! 2.57, 2.13 and 2.22; and~c! 3.11, 2.51 and 2.55. The
quasi-Bloch functions that are shown correspond to states from~a!
the left tail ~b! the middle peak and~c! the right tail of Fig. 3~c!.
Note the functions above the transition maintain the rough shape of
the corresponding functions below the transition but have a smear-
ing that is correlated with the trend of the participation ratios.
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there are some differences between the quasi-Bloch func-
tions of the two models: the LJ quasi-Bloch functions shown
for V,Vc have more oscillatory features than those of the
FK functions, and the clumping along the abcissa and ordi-
nate forV.Vc is so much more pronounced in the LJ chain
than in the FK chain that the remnant of the underlying func-
tions can barely be discerned.

In conclusion, true, strong, phonon localization is ob-
served in the upper band of the nearest-neighbor LJ chain. In

fact, the observation of a structure interpreted as a vibration
within a domain wall for a uniaxially modulated 2D lattice22

was a motivation for examining the 1D LJ chain. However,
this localization is present regardless of the changes in the
level statistics and pinning/unpinning of the chain, i.e., the
transition by breaking of analyticity. The behavior of a
closely related model, the FK chain, is strikingly different:
the transition by breaking of analyticity does affect localiza-
tion in the system. These results are in accord with the
widely held view that quasiperiodic chains lie on the border
between localization and delocalization and, thus, are very
sensitive to even minor perturbations. Not only is it inad-
equate to study localization in quasiperiodic systems with
models which correspond to hard-core interactions, modest
changes to compressible nearest-neighbor interactions may
have drastic effects on phonon localization behavior.
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