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In hydrogen-bonded crystals such as ice, it has been proposed that charge transport occurs through a process
involving two types of defects~the so-called orientational and ionic defects! in the proton sublattice. We have
investigated the formation and dynamics of the orientational defects through two approaches: a quantum-
chemical study of the barrier to rotation in finite chains of H2O molecules, and a study, based on an extended
tight-binding model, of the formation and motion of these defects. We find from the first part of this study that
the barrier to rotation may be nearly an order of magnitude lower than the barrier to proton hopping along the
chain. The subsequent construction of the modified tight-binding model allows us to simulate motion in a
uniform electric field of a pair of~charged! orientational defects. Calculated mobilities for the more mobile
positively charged defect are in the range 0.39–0.46 cm2/V s for a dielectric screening constant of 50, in
agreement with available experimental values.@S0163-1829~96!01022-3#

I. INTRODUCTION

Hydrogen bonding is of prime importance in a wide vari-
ety of systems, ranging from biological materials to some
ferroelectrics.1 The mechanisms involved in the dynamics of
charge transport in such systems have been the subject of
much recent study. The prototypical materials studied have
been either the hydrogen halides1–4 or ice.1,5 It has long been
accepted that in water, and even more so in ice, the hydroxyl
~OH2! and hydroxonium~H3O

1! ions propagate with mo-
bilities far in excess of those reported for any other ions.
Eigen and De Maeyer6 reported, for instance, a mobility of
!1028 cm2/V s for the Li1 ion in ice, while the mobilities of
protons in ice were found to be between 0.1–0.5 cm2/V s.
The latter mobilities are comparable to those of electrons in
a semiconductor such as TiO2. Ice is of course electronically
an insulator~with band gap;14 eV, based on our short-
chain Hartree-Fock calculations as described in the Results
section!; the mechanisms of such rapid ionic charge transport
are of obvious interest.

A single chain of molecules in a material such as ice is
shown schematically in Fig. 1. There are obviously two de-
generate ground-state phases of such a chain: one in which
covalent bonds link the backbone hydrogens with the oxy-
gens on their left, and one in which they link to the right. It
is believed that two types of chain defects are responsible for
the observed protonic transport: the ionic, or hopping, defect,
and the orientational defect~also called the Bjerrum defect7!.
Each type of defect can be thought of as a domain wall
mediating the transition from one ground-state phase to the
other. The ionic defect involves the displacement of protons
from one energetic minimum to the other between two oxy-
gen atoms along the backbone. A pair of ionic defects is
shown in Fig. 2~a!; it is evident that the leftmost will be
positively charged and constitute an H3O

1 ionic group, while
the rightmost is negative and is effectively an OH2. The
orientational defect, the subject of this study, involves a ro-
tation of H2O units from one orientational energetic mini-
mum to another, with the O-H covalent bond off the back-
bone ‘‘replacing’’ the one along the backbone, or vice versa.

A pair of charged orientational defects is shown in Fig. 2~b!.
The charges associated with the orientational defects are
more clearly illustrated in Fig. 2~c!. Proton transport is pos-
tulated to take place through sequential propagation of an
ionic and an orientational defect, after which the chain is
restored to its initial configuration and free to conduct a sub-
sequent injected proton.

A number of one-dimensional phenomenological
models8–13 have been constructed to explain proton motion
via the hopping defect in a hydrogen-bonded crystal. In ad-
dition, attempts have been made to model phenomenologi-
cally the combined hopping and rotational motion necessary
for sustained proton transport in a crystal such as ice.14–17

Although the physical ice crystal is obviously not one-
dimensional, the defect propagation process proceeds along a
path~a so-called Bernal-Fowler filament18! which can be ef-
fectively modeled as one-dimensional. In the phenomeno-
logical studies mentioned, the defects are modeled as solito-
nic modulations of the proton displacement pattern. In this
paper, we carry out a two-part study of orientational defects,
using ice as our prototypical material; the first part deals with
the relative height of energetic barriers to hopping and to
rotation in a finite chain of H2O molecules, while in the
second part we develop a model of the dynamics of motion
of the orientational defects, incorporating a classical lattice
and a quantum-mechanical electronic system with electron-
lattice coupling.

II. METHODS

We have used two approaches to study the formation and
dynamics of orientational defects in a hydrogen-bonded

FIG. 1. Schematic representation of a chain of molecules in a
crystal of ice. Large circles are oxygens, small circles hydrogens.
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chain. The first involved a set ofab initio Hartree-Fock
quantum-chemical calculations on a chain of five hydrogen-
bonded H2O molecules in a configuration corresponding to
that of a Bernal-Fowler filament18 in ice. On this chain, we
have carried out a series of calculations to estimate the height
of the double-well energy barrier associated with formation
of the orientational defect. Since both ionic and orientational
defects can exist in such chains, we have also estimated, for
comparison, the height of the double-well barrier for the for-
mation of the ionic defect. The calculations were performed
using theGAUSSIAN 92 package.19 Both the 6-31G* and
6-311G* bases were used for comparison, and calculations
were performed both at the unrestricted Hartree-Fock~UHF!
and fourth-order Moller-Plesset~MP4! levels,20 the latter
constituting a perturbative estimate of correlation effects.
The 6-31G* basis was initially chosen as a result of the
observation of Hehreet al.20 that this basis adequately pre-
dicted optimal geometry for the isolated H2O molecule.
Bonding was assumed to be tetrahedral, as in the cubicI c
phase of ice;21 the oxygen-oxygen distance accordingly was
taken to be 2.7497 Å. The initial calculation involved esti-
mating the barrier to proton hopping along the chain, as op-
posed to rotation of an H2O unit. This was accomplished by
stepping the displacement of all the ‘‘backbone’’ protons
simultaneously along the chain. This was followed by an
estimate of the rotational barrier, carried out by simulta-
neously rotating each H2O unit. Finally, to estimate the ef-
fects of interchain interaction, we considered two parallel
chains, hydrogen-bonded as in an ice crystal, and carried out
a simultaneous rotation of all H2O units on one chain only.
Neither the hopping process nor the rotational process, of
course, proceeds physically through simultaneous displace-
ment of all units along a chain. In the phenomenological
models cited above, the proton potential is usually written as
a sum of a double-well potential and a set of harmonic terms
coupling displacements of nearest-neighbor on-chain pro-

tons. Our calculations allow us to evaluate the double-well
part of the proton potential; for the rotational case, the cal-
culated barrier height will then be compared with that origi-
nating from the tight-binding dynamical calculations that fol-
low. Results of the initial set of quantum-chemical
calculations are presented in Sec. III A.

In the second approach to the problem, we constructed a
model for the formation and dynamics of orientational de-
fects in a chain of 100 H2O units, under circular boundary
conditions. This was based on a Hamiltonian~to be de-
scribed below in more detail! consisting of the sum of clas-
sical lattice terms and electronic terms arising from a modi-
fied tight-binding model.~We note that Springborg3 has used
a model similar in some respects to ours in his discussion of
ionic defects in HF.! The electronic Hamiltonian contained
off-diagonal terms incorporating an angle-dependent transfer
integral for each of the four occupied valence bands of ice,
and diagonal terms which included the angle-dependent ef-
fects of Coulomb interactions between an electron on a given
lattice site and the net charges on atoms in adjacent units.
Calculation of the dynamics then involved specifying the
initial angular configuration of the lattice, diagonalizing the
resulting electronic Hamiltonian, and using the resulting
eigenvectors to solve the lattice equations of motion~con-
taining coupled electron-lattice force terms! for a short time
step. The resulting lattice configuration was then used to
construct a new electronic Hamiltonian, and so forth. This
approach yielded angular displacements and velocities of the
lattice H2O units; electronic eigenfunctions, one-electron en-
ergies, and total energy, as a function of time. Imposition of
a uniform electric field was subsequently carried out by ad-
dition of terms linear in field strength to the diagonal ele-
ments of the Hamiltonian. For simplicity, the chain was ‘‘lin-
earized’’ to be two-dimensional, so that the H-O-H bond
angle in a single unit was 90°.

We now describe in more detail this second approach and
its parametrization. The lattice Hamiltonian was simply the
sum of Coulomb repulsions between all ionic cores on a
given site ~a site being an H2O unit! and all those on its
nearest-neighbor and some next-nearest-neighbor sites. The
charge associated with a core was taken to be16ueu for
oxygen and11ueu for hydrogen. In the simulations of mo-
tion in the presence of a field, these interactions were modi-
fied by different dielectric screening constants to vary the
barrier height in the double-well potential. The static dielec-
tric constant of ice is large; Bernal and Fowler18 quote it as
;88. However, over the interaction distances of concern
here, it is probably not reasonable to expect the full screen-
ing to apply; we tried screening constants between 1 and
100.

The electronic Hamiltonian used in the absence of the
field can be written as
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where the indexi sums over the four occupied valence bands
of the crystal,s sums over spins, andn sums over lattice
sites ~H2O units!. The transfer integral ist n11,n

i , and

FIG. 2. A pair of ionic ~a! and orientational~b! defects in a
chain of H2O molecules. In~c!, the charges associated with the
orientational defects are depicted. Here the first and third panels
show a section of chain in the ground state, while the second shows
a chain containing a negative defect~ten protons, six oxygens be-
tween the dashed lines! and the fourth, a chain with a positive
defect~12 protons, six oxygens between dashed lines!.
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f (n11,n,n21) is the modification of site energy on siten
due to the angular displacement of sitesn11, n, andn21.
The transfer integral is a function of the angular displace-
ment of adjacent lattice sites; we have parametrized it using
the results of theGAUSSIAN 92 runs described above. The
width Wi of each of the occupied valence bands (Wi54t i)
was calculated as a function of the simultaneous angle of
rotation of all the sites, and the bandwidths were then fitted
to a function of the form

Wi54tn,n11
i 5Ai cos~2un12un11!1Bi ~2!

with Ai andBi constants andun the angular displacement of
siten. In Eq. ~1!, the functionf (n11,n,n21) measured the
change in energy of an electron on siten due to Coulomb
interactions between the electron~assumed, due to the elec-
tronegativity of oxygen, to effectively sit at the position of
the oxygen atom! and adjacent atoms, taken out to next-
nearest-neighbor atoms. Thereforef was a function of the
rotational angles of the unitsn, n11 andn21. The adjacent
atoms were taken to have fixed net charges given by the
average Mulliken charges for that atom type from theGAUSS-

IAN 92 finite chain results at the energy minima. In the cases
where screening was applied to the core-core repulsions, it
was also applied here.

The equations of motion for the lattice sites included the
Coulomb forces resulting from the core-core interactions, the
electron-lattice forces computed from the negative gradient
of the expectation value of the electronic Hamiltonian, and a
phenomenological damping term proportional to the site an-
gular velocity. All O-H bond lengths were held constant, so
that rotational motion only was allowed. The equations of
motion were solved at each iteration for a time step of 10215

s, well below the time interval~;2.6310214 s! associated
with the zone-center optical mode of the lattice. Most of the
results presented in this paper were generated using simple
Euler integration for the equations of motion; use of the
fourth-order Runge-Kutta technique22 gave rise to minimal
changes in most results of interest, while greatly increasing
computational time.

A pair of orientational defects was added to the chain by
modulating the proton displacement pattern with two hyper-
bolic tangent functions, one centered at site 30, and the other
at site 70. Thus the chain ends were both in the same phase
of rotational displacement, corresponding to one of the de-
generate ground states, while the central section was in the
phase corresponding to the other minimum. The displace-
ment pattern so constructed was then allowed to relax under
the operation of the equations of motion.

Simulation of motion in a uniform electric field was ac-
complished, as mentioned above, by the addition of a set of
terms

(
n51

100

~n21!~ ueuEoa!cn
1cn ~3!

~wheren is site number,e is the electronic charge,Eo is the
field strength, anda is the intersite distance 2.7497 Å! to the
electronic Hamiltonian, and addition of the appropriate terms
to the equations of motion to represent torque exerted by the
field on the rigid H2O unit. Results of calculations carried out
with this model of the chain dynamics are presented in Sec.
III B.

III. RESULTS

A. Quantum-chemical calculations

In the initial set of unrestricted Hartree-Fock calculations
on the five-site chain, the backbone protons were simulta-
neously stepped from left to right along the direction be-
tween two oxygens to get an estimate of the hopping barrier.
Figure 3~a! shows the plot of total energy versus hydrogen
position at the UHF level. A double-well barrier in total en-
ergy of 7.78 eV, or 1.51 eV/site if the barrier is considered
on a ‘‘per site’’ basis, was found using the 6-31G* basis.
Including MP4 correlation corrections with the same basis,
we found barrier height decreased to 5.15 eV or 1.03 eV/site.

The rotational double-well barrier, found by simulta-
neously rotating each H2O unit in the finite chain, was found
to be 0.12 eV/site, an order of magnitude smaller than the
hopping barrier. Figure 3~b! shows the total energy versus
rotational angle using the basis set 6-31G*. The rotational
barrier was unaffected, to within a hundredth of an electron

FIG. 3. ~a! Total energy versus simultaneous proton displace-
ment along the backbone and~b! total energy versus simultaneous
angular displacement of H2O units, for a chain of five molecules as
described in the text. The solid line represents a fit to the data
resulting from UHF calculations with a 6-31G* basis; the zero of
displacement represents the midpoint between oxygens in~a!; rota-
tional angle in~b! is the projection onto two dimensions.
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volt, by using the larger 6-311G** basis set or by applying
MP4 correlation corrections. In the case of the parallel chain
model, the rotational barrier increased to 0.20 eV/site at the
UHF level with the 6-31G* basis. This is to be expected,
since for a H2O molecule to rotate in this case, it is necessary
that it break the hydrogen bond with the connected parallel
chain. Although the rotational barrier is higher in the latter
case, it is still considerably smaller than the hopping barrier.

The bandwidths of the four valence ‘‘bands’’ for our five-
site chain as a function of angle were computed and the
result for each valence band was separately fitted to the func-
tional form of Eq. ~2! in Sec. II; the results were used to
parameterize the off-diagonal terms of the electronic Hamil-
tonian.

B. Dynamical model

We first tested the tight-binding dynamical model to be
certain that it reproduced the rotational double-well poten-
tial. In doing this, we bypassed the equations of motion and
calculated the total energy during a sequential series of si-
multaneous rotations of all the rigid H2O units, as in the
finite-chain runs. Results for the lattice energy, total elec-
tronic energy, and total energy are seen in Fig. 4. Using a
screening factor of one, we found the rotational barrier to be
0.14 eV/site, which compares very nicely to the 0.12 eV/site
barrier found from the short-chain quantum-chemical calcu-
lations. We next allowed the equations of motion to operate,
and released the lattice from various initial nonequilibrium
configurations. The lattice always returned to the nearest
total-energy minimum, as expected. Thus the lattice is stable
within this model in both of the two degenerate ground-state
phases of angular displacement, which we have labeled the
0° phase and the690° phase.

We next formed orientational defects, as described above,
centered at sites 30 and 70, using a hyperbolic tangent enve-
lope function for the proton displacement pattern in the vi-
cinity of the defects. Figure 5 shows the angular site dis-
placement and site velocity as a function of site number and
time for a case where the screening is 100, with a damping
constant of 10215 eV s. This plot is based on an initial hy-
perbolic tangent envelope with a characteristic width of two
sites. These solitonic defects were stable, as can be observed
from the declining velocity over 5000 iterations. From the
displacement plot we see that in the final configuration, the
sites between 30 and 70 are sitting in the690° phase, while
all other sites remain in the 0° configuration. We tested a
number of different values of initial soliton width, from two
sites to ten sites. In all these cases, the soliton tended toward
a two-site width as we let the lattice relax in time. The sta-
bility of very narrow solitons in our model casts doubt on the
validity of a continuum model for proton transfer in similar
hydrogen bonded chains. In the remainder of our calcula-
tions, we began with a two-site-wide soliton. We found the
soliton formation energy~taken as the difference in total en-
ergy of the chain with and without a defect pair! to be ap-
proximately 0.05 eV/pair with a screening of 100. The for-
mation energy increased linearly with decreasing screening,
however.

A uniform electric field was then applied to a stable defect
pair. Figure 6 shows the rotational site displacement and site
angular velocity for an electric field of 436 kV/cm, a screen-

ing factor of 100, and a damping of 10215 eV s. We note that
the defect on the right~the positive defect!, moves toward
the right~in the field direction!, while the defect on the left,
the negative defect, moves to the left. Within 5 ps~5000
iterations! the two defects collide and recombine. The proton
rotational displacement pattern ultimately stabilizes in a con-
figuration such that the sites between one and 30, and those
between 70 and 100, are in a phase with alternating displace-
ments approaching63 rad~;6180°!, while the central por-
tion of the chain remains in the690° phase. We had ex-
pected that the initial central phase of690° displacement

FIG. 4. Lattice energy~a!, electronic energy~b! and total energy
~c! of the 100-site chain as a function of simultaneous site rotational
angle.
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would, under the external field, simply ‘‘spread’’ outward to
the ends of the chain. We note, however, that with the ex-
ception of a few sites, the angular displacement over the
length of the chain in this final configurationdoescorrespond
essentially to a single phase; the690° and6180° phases
denote identical sequences of physical site orientations, ex-
cept that the orientations of the odd sites in one phase cor-
respond to those of the even sites in the other phase. There-
fore, adjacent sites near site 30 and site 70—the initial defect
positions—have identical~rather than alternating! orienta-
tions, one site corresponding to a 90° displacement and the
next to 180°. We note that Tsironis and Pnevmatikos have
indicated that interconversion of defect pairs~from, for in-
stance, orientational to ionic! upon collision is possible for
some collision speeds.15 It is possible that if both ionic and
orientational defects were incorporated in our present model,
we might have observed a conversion from orientational to
ionic defects upon collision. It is also possible that if the
rotational displacement were followed long enough in time,
it might eventually damp out to a single690° phase, though
this seems unlikely.

Defect motion under a range of different electric field
values and screening constants was investigated. With a
screening constant of one and damping of 10214 eV s, no
defect motion was seen at fields below 18 MV/cm; for fields

between 18 and 47 MV/cm, positive defect motion only was
observed. Only at fields above 47 MV/cm did motion of both
defects occur. With a screening of 100, a threshold electric
field of ;436 kV/cm was necessary to see motion of both
positive and negative defects, as shown in Fig. 6. We note
that dielectric breakdown occurs for most insulators23 in the
range 101–104 kV/cm; therefore if the screening constant of
one were applicable, it is doubtful that defect motion could
occur.

Calculated velocities and mobilities as a function of ex-
ternal field, with screening factors of 50 and 100, are listed in
Table I. The data of Table I for positive defects are also
plotted in Figs. 7 and 8. We note that while velocity of the
positive defect increases as we increase the electric field, the
mobility decreases slightly with increasing field. It might be
thought that the mobility decrease is due to some extent to
chain length effects; that is, the positive defect may not have
reached its terminal velocity, which would have been higher
than that reported in Table I, before collision with the other
defect. Therefore in a longer chain, mobility might have been
more nearly constant over the range of fields. As a check of
this possibility, we performed calculations with a defect pair,
again initially centered on sites 30 and 70, on a 200-site

FIG. 5. Relaxation of lattice after insertion of defect pair with
two-site characteristic width at sites 30 and 70 of 100-site lattice. In
~a! and ~b! the angular displacement and angular velocity, respec-
tively, are shown over 5 ps~5000 iterations!.

FIG. 6. Angular displacement and angular velocity, respec-
tively, of sites accompanying defect motion in a field of 436 kV/cm,
with dielectric screening of 100. In~a! and~b! the rightmost~posi-
tively charged! defect begins to move in the field direction, the
leftmost ~negative! defect against it, until collision and recombina-
tion occur. Each panel represents 5 ps~5000 iterations!.

53 14 175ORIENTATIONAL DEFECTS ON A HYDROGEN-BONDED CHAIN



chain; the resulting positive defect mobility was unchanged
from its value on the 100-site chain.

Our calculated values for positive defect mobility vary
with field from 0.46 to 0.39 cm2/V s for screening of 50;
these values fall within the range of 0.1–0.5 cm2/V s, as
reported by Eigen and De Maeyer6 for the positive defect.
Screening of 100 results in a range of 0.91 to 0.56 cm2/V s
for positive defect mobility. For the negative defect, no mo-
tion, as mentioned above, was seen at fields below 436
kV/cm with a screening of 100; at this field value, the ratio
of positive to negative defect mobility was 2.68, somewhat
outside the range of 10–100 observed by Eigen and De
Maeyer.6

IV. CONCLUSIONS

We have explored the formation and propagation of ori-
entational defects on a hydrogen-bonded chain, from the
point of view of both short-chain quantum-chemical calcula-
tions and longer-chain calculations based on an extended
tight-binding model. In summary, our results from Hartree-
Fock quantum-chemical calculations indicate that the single-
chain barrier to rotations, 0.12 eV/site, is much smaller than
the hopping barrier, 1.51 eV/site~calculated at UHF level
with 6-31G* basis!. This is in disagreement with the suppo-
sition of some that the barrier to rotation is larger. Our bar-
rier heights for rotation were quite comparable from either
the quantum chemistry calculations on a five-site chain or the
longer-chain model~with a dielectric screening of one!.

Also, the rotational barrier was not much affected by varia-
tion in basis set, addition of correlation corrections, or the
presence of an additional parallel hydrogen-bonded chain.
An important point to note is that instead of using a phenom-
enological double well potential in our longer-chain model,
we generated the double well by superposition of core-core
repulsion energies and the sum over the one-electron eigen-
values of the occupied electronic states.

In the past, the continuum approximation has been widely
used in the analysis of the proton transport mechanism in
hydrogen-bonded chains; the present work indicates that a
discrete model may be more suitable for studying proton
transport in these chains, since the stable orientational de-
fects in the proton displacement pattern are very short~;two
sites long!. Under a uniform applied electric field, these
~charged! defects did propagate through the lattice. In order
to see motion in physically reasonable fields we had to use a
large screening factor, which reduces barrier height. Since
our calculated barrier height with a screening of one agrees
closely with that obtained from the quantum-chemical calcu-
lations, one possible conclusion is that coherent orientational
defect motion is not in fact physically feasible. However, we
note that the double-well potential calculated on the basis of
simultaneous rotation of all sites is not in fact the potential
seen by a proton in any situationother than simultaneous
rotation ~no double-well potential, for instance, exists for
rotation of a single site!. The range of our calculated mobili-
ties for the positive orientational defect agrees very well with
experimental values available in the literature.6 The ratio of

TABLE I. ~a! Defect saturation velocity and mobility for various electric-field values and screening of
100. Note that for fields above 436 kV/cm, the negative defect moves much more slowly than the positive
defect. ~b! Defect saturation velocity and mobility for various electric-field values and screening of 50.
Quoted values of velocities are the result of a fit by eye to density plots of lattice displacement versus site and
iteration number.

Electric field ~kV/cm! Velocity ~cm/s!3105 Mobility ~cm2/V s!

~a!
182 1.65 0.91
236 1.79 0.76
273 1.96 0.72
327 2.17 0.66
364 2.36 0.65
400 2.43 0.61
436 2.58~positive defect! 0.59 ~positive defect!

0.96 ~negative defect! 0.22 ~negative defect!
491 2.84~positive defect! 0.58 ~positive defect!

0.97 ~negative defect! 0.20 ~negative defect!
509 2.84~positive defect! 0.56 ~positive defect!

0.94 ~negative defect! 0.19 ~negative defect!

~b!

473 2.17 0.46
545 2.43 0.45
636 2.66 0.42
727 3.17 0.44
909 3.59~positive defect! 0.39 ~positive defect!

1.00 ~negative defect! 0.11 ~negative defect!
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positive defect mobility to negative defect mobility, 2.68 for
a field value of 436 kV/cm and screening of 100, is in ac-
cordance with Eigen and De Maeyer’s conclusion6 that the
negative defect mobility is much smaller than that of the
positive defect.

Obviously, our model presents a rather simplified picture
of the physical situation in a hydrogen-bonded chain. Our
approach can be made more realistic in many ways. If, for
instance, ionic defects, along with rotational defects, were
incorporated in our model, the complete proton transfer
mechanism in the physical chain could be represented. Tem-
perature and pressure effects could also be included. There
are, in addition, some indications that the defect’s effective
mass24 may be less than the mass of the proton. Therefore, it

may be advisable to incorporate a quantum treatment of the
protonic sublattice. Nonetheless, the present treatment repre-
sents, to our knowledge, the first dynamical model of the
orientational defects to incorporate a quantum-mechanical,
rather than phenomenological, treatment of the electronic
system of the hydrogen-bonded chain.
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