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Structural scattering of phonons in quasicrystals
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The concept of phonon scattering known as the umklapp process is generalized to quasicrystals. It is shown
that such processes in quasicrystals lead to a power-law temperature dependence of the mean free path of
delocalized quasilattice excitations, contrary to the exponential temperature dependence of the phonon mean
free path characteristic of periodically structured crystals at intermediate temperatures. This result provides a
plausible explanation for the plateau-type feature in the quasilattice thermal conducti¢ity of Al-Mn-Pd
guasicrystals[S0163-182606)01921-2

[. INTRODUCTION Here we shall concentrate on the scattering mechanisms
which are intrinsic to the structure of quasicrystals, i.e., those
One of the remarkable features of quasicrystals is the aghat would bepresent even in a hypothetical defect-free ma-
parent conflict between the high structure quality of thesderial. Because the problems of both single-electron eigen-
materials and their transport properties, which are ratheptates and phonon eigenmodes lead to similar equations, it is
reminiscent of those of highly disordered materials, such a¥orth looking first at the results obtained in the study of the
metallic or insulating glasses. The structure quality of quasiPehavior of noninteracting electrons in a quasicrystal. Al-
crystals, as revealed by x-ray structure analysis or electroribough this problem has been extensively investigated since
microscope investigations, sets them among the best ordibe very discovery of quasicrystals, there exist no reliable
nary crystals. For example, high-resolution x-ray diﬁractionresmts_ in the literature, except for the one-dimensional case,
experiments performed on Al-Mn-Pd quasicrystals revealedor Which one can solve the problem exactfyin the two-
a mosaic full width at half maximum of less than 0.001° and@nd three-dimensional cases one can merely show that the
resolution-limited widths of the diffraction peaksAt the  hypothesis of the existence of quasi-Bloch states is not al-
same time, a high degree of structural perfection of icosahdoWed for quasicrystals. In particular, if one tries the follow-
dral Al-Mn-Pd has been confirmed by anomalous transmisind ansatz for the electron eigenfunction:
sion of x rays through this materialOn the other hand, both b
the electrical and thermal conductivities of quasicrystals are \Pk(r)=; Cnexr{i(k—jz njej)

r, )

much lower than in periodic metallic crystals. Many trans-
port properties, namely, the temperature and magnetic-field
dependencies of the electrical and the thermal conductivitywhere the vectorg, are the basis vectors of the reciprocal
reveal features that are commonly observed in glassy matdattice of the quasicrystal anD is the indexing dimension
rials. Nevertheless, it seemaspriori unjustified to claim that (D=6 for icosahedral quasicrystalsvhich is a straightfor-
the transport properties of quasicrystals are influenced by theard generalization of the Bloch wave-function form, one
same mechanisms as those of metallic glasses. This is mainlpmediately realizéthat this function cannot be normalized
because the structures of quasicrystals, known in great detaihile keeping the coefficients, finite. Physically this
differ from the structure of glasses in distinct ways. means that while the true Bloch states in common crystals
When speaking about phondor electron scattering in  are localized in momentum space and thus resemble states
quasicrystals one should clearly distinguish between the scatccupied by free particles, the eigenstates in quasicrystals are
tering on defects and the structural scattersitigcto senso  never localized irk space. These eigenstates are always af-
Defects are always present in quasicrystals. In view of dected by an intrinsic decay rate, thus giving rise to nonzero
general lack of “growth rules” for quasicrystdli is impos-  resistivity even of perfect quasicrystdldt is important to
sible to grow a quasicrystal with a density of defects lowernote, however, that this intrinsic decay rate is exponentially
than some intrinsic value. It has been suggested that at vetgw in the limit of weak potentials. This property has impor-
low temperatures the temperature dependence of the thermiaint consequences when we consider the phonon propagation
conductivity is most likely due to the resonant scattering ofin quasicrystals instead of extended electronic eigenstates.
phonons on pointlike defectsunneling states’ In spite of Although the equation of the phonon eigenmodes and the
this problem and because of the fact that the structure qualit$chralinger equation for one-electron states are very similar,
of many quasicrystals may be improved by annealing procethere is one important difference. While the scale of mo-
dures, it seems reasonable to investigate the transport propienta of occupied electron states is givenkyand there-
erties of hypothetical perfect quasicrystals. fore cannot be chosen arbitrarily, in the case of phonons
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there is always the long-wavelength limit, where details of 1.0 .
the structure do not play a significant role. This limit thus ™
corresponds to the vanishing influence of the quasiperiodic-
ity of the potential, and that this is really the case we shall MM
demonstrate for the one-dimensional system.

& @y,
(=1
o

IIl. PHONONS IN A ONE-DIMENSIONAL QUASICRYSTAL

As has already been mentioned, for the one-dimensional
model of quasicrystal@ibonacci chaihan exact solution of
the one-particle Schdinger equation and consequently of
the acoustic eigenmode problem has been féurthis so-
lution emerges from using the very powerful transfer-matrix 0.0% o5 1o
formalism. Transfer matrices relate two independent solu- on
tions of the Schidinger equation, say and¥’, or displace-
ments of two neighboring atoms in the case of acoustic
modes. The main result of the Corresponding theory is that FIG. 1. Frequencies of phonon eigenmodes of a Fibonacci chain
the problem is almost universal, namely, there is only oné:omposed of 233 atoms with two different masses. The mass ratio
parameter whose value determines different universalitys 1-°-
classes:® The standard choice of this parameter is the half ) ) .
trace of the multiplicative commutator of the transfer matri-nodes of the eigenmode is used. This may be taken as a
ces corresponding to the distinct sites of the Fibonacci chairlatural generalization of wave vectors in the case of a qua-
This parameter is never smaller than 1 and the case when $tPeriodic chain because the density of zeros is proportional
equals 1 corresponds to the universality class appropriate féP the wave vector in the case of a periodic chain. In the
the periodic chain. As an example we give the explicit ex-@(d) plot of Fig. 1 only major gaps are visible.
pression for this parameter in the case of acoustic oscilla-
tions. We suppose that the Fibonacci chain is made of atoms [1|. GENERALIZATION TO THREE-DIMENSIONAL

with two different masses, but the elastic forces between QUASICRYSTALS
different atomic species are the same. Then the transfer ma- ] ) ] ]
trix relating the displacement vector,= (u,_5,u,), where For comparisons with experiments on real quasicrystals,

u; is the oscillation amplitude of a given atomwith the ~We have now to consider two- and three-dimensional sys-
displacement vectar, , ;= (uy, U, ) for the mode with the ~€ms. First, it is worth emphasizing that thé scaling of

given frequencyw is major gaps in the acoustic spectrum may be understood yvith-
out recourse to the exact solution of the problem. The width
0 1 dw of the gap in the vibrational excitation spectrum formed
T,= ) by a density wave with a wave vectgrand a relative am-

_1 2]
-1 2=mke plitude a is of the order ofav.q, whereu, is the sound

Herem,, stands for the mass of the atom on siteandk is  Velocity. For quasiperiodic lattices there is a series of stron-

the spring constant. Up to the leading term, the commutatogest harmonics in the Fourier image of the density for which
of the transfer matrices on two neighboring sites 1 and Zhe absolute value of the produgtq, ,, whereq, , is the

reads component of the corresponding wave vector in the orthogo-

nal space, reaches its minimal value and is constant, i.e., it

1 1 (m;—my)? 4 does not depend om. The series of the wave vectogs of
J= 2 Tr(Ty Ty T 7)) =1+ kZ @ @ the strongest density harmonics is a geometrical series
Of particular interest in this equation is thedependence of < C", 4

J. First, as expected] approaches 1 as the frequency de-

creases. This reflects the fact that the short-range details ofith a common raticC, i.e., C=7"1, Whererz(\/§+ 1)/2

the quasiperiodic structure become less important in thés the golden mean, for a Fibonacci chain as well as for face-
long-wavelength limit. From the exact solution for the Fi- and body-centered icosahedral lattices abe 7 3 for a
bonacci chain it is known that the widths of major gaps insimple cubic icosahedral latti¢eThe amplitudes of these
the spectrum behave agl—1, or as ® in the case harmonics scale likg, which in the limit of smallq leads to
considered:® Although the spectrum has zero measure as ishe expected»? scaling of the gap widths.

the case for the one-electron Sdtlimger equation on the If at this point we assume that the use of wave vectors for
Fibonacci chain, in thev—0 limit the spectrum appears as describing lattice eigenmodes in quasicrystals is legitimate,
continuous because the widths of gaps become smaller thahen the same arguments may be applied to two- and three-
the separation of the eigenmodes of a chain of finite lengthdimensional quasilattices. The strongest harmonics in the
In Fig. 1 we plot the frequencies of the eigenmodes of aourier image of the density are due to the faces of the
Fibonacci chain consisting of 233 atoms with two different*atomic surfaces,” used in the structure description of the
masses as a function of the pseudo-wave vegttmstead of considered quasicrystal. The wave-vector dependence of the
a wave vector, which strictly is an undefined quantity hereamplitudes of these harmonics is determined by the structure
because of the instability of quasi-Bloch states, the density ofactor. For calculating the structure factor we need the Fou-
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FIG. 3. Schematic representation of a gaplet in the frequency
FIG. 2. Schematic representation of an atomic surface with onépectrum of lattice excitations in a periodic structure induced by a
of its faces perpendicular tq, . The step in the density function structure modulation with wave vectqp.
occurs ak, g. Shown here are only two components in the orthogo-
nal space. cess, i.e., a Bragg reflection or structural scattering, violates
the law of conservation of crystal momentum. The charac-
rier transform of the step function, which is constant insideteristic time of energy transfer to the reflected acoustic wave
the atomic surface and zero outside. The behavior of thiin this process may be estimated /e, whereEg is the
Fourier transform for large, is dominated by the effect of energy gap in the vibrational excitation spectrum. In periodic
the flat faces of the atomic surfatgee Fig. 2 For the wave  crystalsE, is often of the order O Wy, -t Wherewnayis the
vectorsqg, perpendicular to such faces, the Fourier transformmaximum lattice frequency, and the Bragg reflection occurs
scales likeq ! and hence, for harmonics from the major very fast. Nevertheless, for periodic crystals the important
series, asq. Thus the same arguments as for the onejpoint is that neither of the two scattering processes, if con-
dimensional case apply and one may expect again the sargi&lered separately, will give rise to the same physical conse-
o’ scaling of the major gap widths. guences as the umklapp process does, i.e., finite thermal con-
We now return to the conflict that we avoided so far.ductivity, etc. This is all the more true for quasicrystals
Although we used the notion of wave vectors when speakingvhere one expects a hierarchy of gaps with widths at any
about gaps in the spectrum it should be kept in mind that thecale of energy less thabw,,,,, and therefore the Bragg
oscillatory eigenmodes in quasicrystals cannot be describe@flections have to be considered as separate scattering pro-
stricto sensdby this parameter. We note, however, that thecesses. In addition, in quasicrystals the momentum of vibra-
intrinsic decay rate of the quasi-Bloch states in quasicrystaltional excitations can be transferred to the quasilattice in
varies exponentially with the strength of the potential. Theressmall portions, not limited from below in magnitude. We
fore, in the long-wavelength limit, the decay process is saecall that the natural scale for umklapp processes in periodic
slow that other decay mechanisms will certainly dominatecrystals is set by the reciprocal lattice, which does not exist
over the intrinsic decay. This is the important distinctionfor quasicrystals. This also means that while in crystals the
between the two problems of defining either electronic orate of umklapp processes decreases exponentially at small
acoustic eigenstates, because the former cannot be treatedfisquencies(temperatures in quasicrystals it should obey
such a long-wavelength limit. some power law. As we shall see, this power-law behavior is
In what follows, we shall consider the region in frequen-indeed indicated by experiment.
cies where the intrinsic decay rate of oscillatory quasi-Bloch As a first step in introducing the generalized umklapp
states is insignificant. The phonons will never have enouglprocess in quasicrystals, one may consider some intermedi-
time to get completely delocalized in momentum space; inate case, namely, structurally modulated crystals. It is intu-
stead, they are scattered by other mechanisms. We shall caitively evident that although the size of the Brillouin zone
sider, as an example, the phonon-phonon scattering due tthanges drastically at the very beginning of superstructure
the anharmonicity of the lattice oscillations, although otherformation, the rate of scattering at the superstructure wave
mechanisms like, e.g., scattering on electrons are not exsectors increases only gradually because the scattering prob-
cluded. ability depends on the amplitude of the modulation. To dis-
cuss this important point in more detail, we consider a region
in the phonon spectrum where the density or, more precisely,
acoustic-impedance wave with a wave veaggrhas led to
The phonon scattering mechanism in quasicrystals to bthe formation of a gaplet ai=q, (see Fig. 3.
proposed below may seem exotic, but it is merely a gener- Qualitatively, only the modes with wave vectors close to
alization of umklapp processes in the usual crystaM/e  q, are affected by the structural scattering. More precisely,
emphasize that the scattering phenomenon known as the uranly in the modes withg— go| < dw/v is there a significant
klapp process is a consequence of the interplay between twicaction of backscattered waves. This gives the formal justi-
scattering processes. In one of these processes, e.g., in mfitation for the intuitive assumption that density modulations
tiphonon scattering, the momentum of lattice excitations, ofwith small amplitudes do not much affect the umklapp pro-
ten called crystal momentum, is conserved. The other proeesses. In the one-dimensioiiaD) case only those phonons

IV. UMKLAPP PROCESSES IN QUASICRYSTALS
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of states which are in resonance with any given one is infi-
nite. The divergence of this number, however, is only
logarithmic® This means that this divergence is entirely due
to the harmonics with tiny amplitudes. Therefore the same
argument which we have used above to justify the irrel-
evance of the intrinsic instability of quasi-Bloch states may
be applied to justify the irrelevance of harmonics not belong-
ing to the major series with respect to structural scattering.
Indeed, the scattering of an acoustic wave on a density
modulation is not instantaneous. For the particular modula-
tion giving rise to a gap in the acoustic spectrum of widih
(see Fig. 3 the time of energy transfer to the scattered wave
is of the order of 1ldw. Thus, when the scattering is domi-
nated by a fast nonstructural mechanism as provided, for

FIG. 4. The regions of resonant scattering due to the majofnstance, by anharmonicities, there is no time for an effective
series of density harmonics overlapping the phonon wave-vectdinfluence of the resonances that are due to the small harmon-
spectrum in the shell betwee®q,, andqyy,. ics in the structure factor.

which are newly created in a multiphonon process and whose v, THERMAL CONDUCTIVITY IN QUASICRYSTALS

wave vectors are in the resonance regdipr go| < dw/v are AT ELEVATED TEMPERATURES
efficiently backscattered; in higher dimensions they are _ )
merely scattered by the superstructure wave veggor We are now ready to estimate the physical consequences

The situation is more complicated for quasicrystals. In-Of the structure scattering in quasicrystals. As an example we
stead of just one harmonic describing the density modulatiofonsider the “quasiperiodic” umklapp processes which in-
as in the case of a periodic superstructure, we now have tgolve both phonon-phonon scattering and Bragg reflections.
deal with infinitely many of them. Their wave vectors Suppose that three-phonon processes are not prohibited by
densely fill the reciprocal space so that no clear distinctiorth€ conservation laws. Then the frequency dependence of the
between resonance regions seems to be possible. As we ha{8nSport cross section averaged over the phonon wave vec-
pointed out above, there is a major series of density harmorfors within a spherical shell as defined in inequali$y is
ics described by Eq4), set apart from all the other harmon- 9iven by
ics by their strength. The harmonics from the major series
are due to the faces (_)f the atomic surfaces shown in Fig. 2 (Cransy =A
and, as we have outlined above, at small wave vectors the ®max
amplitudes of these harmonics scalega3he series of their
wave vectors is a geometrical series. Therefore in the sphe
cal layer betweer€dy,, andqpy,

w

o, 6

rWherea represents the full phonon-phonon scattering cross
Lection. This formula does not depend on the particular
choice of the nonstructural scattering mechanism that is re-
COph<q<Upn, (5) fsponsible for the \{alue af. F_or three—ehonon scattering the
ull cross section is proportional teT”, because the stan-
whereC is the common ratio of the geometrical seriesse  dard three-phonon matrix element is proportional to
Eq. (4)], there is always a constant number of these harmong/w, w,w; and the phase volume rises 85 (six free com-
ics as expected from self-similarity argumetft$n the fol-  ponents minus four conservation lawslere it is supposed
lowing discussion we assume that no other harmonics thathat only one phonon in the three-phonon process has a low
those from the major series have to be considered, an agequency and that the two others are merely thermal ones
sumption that will be justified below. with their frequency proportional to the temperature. All in
As in the case of superstructures, we have to estimate thgll, the average transport cross section for the anharmonic
probability of anewly created phonoto be scattered by the and quasiperiodic structural scattering, together denoted as
structure. Suppose that the absolute value of the wave vectgie quasiperiodic umklapp process, is proportionabfd*,
q of this phonon lies in the spherical shell described by in-i.e., not exponential in frequency or temperature as is valid
equality (5). We then have to estimate the total ateavol-  for umklapp processes in common crystals. In the limit of
ume of the resonance regions in the reciprocal space apw temperatures and assuming that quasiperiodic umklapp
shown in Fig. 4. From the? scaling of the major-series gap processes are the main source for the quasilattice thermal
widths it is clear that this probabiliti is proportional tow, resistancg\;hl(T), a Debye-type approximation leads to the
or more preciselyP = Ao/, WhereA is a dimensionless  expectation thakphocT*%
constant depending on the structure of the quasicrystal. In-
stead of the maximum lattice frequeney,,, one may also
introduce the Debye frequenayp , which is close towa.
We briefly return to the problem of tiny gaplets not belong- We now discuss possible implications of the existence of
ing to the major series and to their influence on the structurguasiperiodic umklapp processes on the interpretation of ex-
scattering. This question is closely related to the instabilityperimentally determined temperature dependencies of the
of the quasi-Bloch states in quasicrystals. Indeed, the instahermal conductivity of quasicrystals. Even in periodic crys-
bility of quasi-Bloch states is due to the fact that the numbetals it is not trivial to experimentally verify the regime where

VI. COMPARISON WITH EXPERIMENT
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Apr(T) is dominated by umklapp processes by observing

100
D

: 0

)\ph(T)OCT ex% ﬁ), (7)
~ 10!

where & and b both are of the order of unity. For a clear

observation of this experimental relation the crystal needs to &

be of high structural quality and isotopically pure. The rel- < 102

evant temperature range is limited to approximately <

0.039,<T<0.10, .1* A crossover to the Casimir regime of

09+

boundary-limited thermal conductivity at the lowest tem- 10 f
peratures leads to a maximum in thg(T) dependence. O'SL
Defects and isotope inhomogeneities suppress this maximum .| 4 o g 2
and they alter the exponential relation fiog(T). Even in = s = =

polycrystalline and impure samples a distinct maximum of T (K)
Apr(T) is still observed, however.
As argued at the end of Sec. V, in the equivalent regime . .
for quasicrystals, dominated by quasiperiodic umklapp pro- F'C- 5- Quasilattice thermal conductivitysy, of AlzgMngPd;

cesses, the thermal conduciny is expected 10 vary aPPe Il B 3 L o ope e
)\phocT‘s, i.e., the variation withT is substantially weaker : b

. L . . -l imation to the data between 0.35 and 1.6 K. The
than in periodic crystals. At low temperatures, i.e., in thel POWer-aw approxima

range of 1 K)\(T) of real quasicrystals is limited by pho- gf:;nsdheogv 2%((3 ;)(f;aAlgoMngP% between 10 and 100 K on an
non scattering involving tunneling states and it varies ap-
proximately asT2.2 This scattering mechanism typically re- frequency vibrational modes in Al-Mn-Pd quasicrystals has
duces\,(T) to values an order of magnitude below the previously been claimed by de Boissieu and co-workdry
Casimir limit. Above a few tens of degrees kelvin, quasilat-analyzing the results of inelastic neutron scattering experi-
tice vibrational modes responsible for the heat transport carments. They noted that true unbroadened acoustic modes are
not be described as propagating collective excitatfbaed  observed only for wave vectoy< g, Whereqm.=0.35
Apn Slowly increases with increasing temperature in thisA 2.
regime3141° This overall behavior is similar to that of amorphous sol-

As may be concluded from the discussion in the previousds, where generally\,, monotonically increases with in-
sections, quasiperiodic umklapp processes in real quasicrysreasing temperature and\aplateau is observed between
tals are expected to manifest themselves as a temperatuspproximately 2 and 10 K Nevertheless, we note some
region with a negative slopeé\ ,/dT. However, theh,(T) important differences in the plateau region. Thplateau of
variation in this region may be substantially weaker thanicosahedral AlgMngPd,; is developed at higher temperatures
)\phocT’E' or it may even be reduced to an extended plateauand it extends over a wider temperature range than in amor-
Below we describe and analyze in more detail the results ophous solids. Moreoveh,,, of the Al;gMngPd,; quasicrystal
Aor(T) measurements of a bulk sample of icosahedraln the\ plateau range is higher than that of amorphous solids
Al,MngPd,;. Among thermodynamically stable quasicrys- in the corresponding regioris.
tals, icosahedral Al-Mn-Pd is a quasiperiodically ordered The \,,(T) variation of amorphous solids has often been
material of the highest structural quality>'’Some of these described assuming a frequency-dependent phonon
results, including details of sample preparation, experimentahean free path,(w) which does not explicitly depend on
techniques, and low-temperatug(T) data, has been given temperaturé? At low temperatures, scattering of
in a previous publicatio. phonons on tunneling states withphocafl gives the

In Fig. 5 the quasilattice thermal conductivity,, of  main contribution to the thermal resistarf¢é’ The plateau
icosahedral AljMngPd,; is shown on logarithmic scales for in the \,(T) data of amorphous solids has been claimed to
the temperature range between 0.06 and 297 K. Its evalude caused by an abrupt decrease of the phonon mean free
tion from the measured thermal conductivity is described impathl ,(w) with increasing phonon frequenay’® The avail-
Ref. 3. Below 1.6 K the temperature variation)gf, is well  able experimental evidence indicates that the mean free path
described byh,.T#%, This variation is compatible with a of phonons in amorphous materials has a frequency depen-
dominant scattering of phonons by tunneling states, and outence |0 ™", with n~3-4% The explicit relation
values of\,, are of the same order of magnitude as thosd W<~ * does account for the plateau in many amorphous
reported for insulating and metallic amorphous solids. Asolids. It was argued, however, that this frequency depen-
saturation of the\,(T) dependence is evident above ap-dence may not arise from the scattering on mass density
proximately 10 K. From 25 to 70 K\, is almost tempera- fluctuations with a correlation length smaller than the pho-
ture independent but increases again witrabove 70 K. non mean free path, i.e., Rayleigh scattefift@wo assump-
Above 100 K, the magnitude 0f,(T) is close to the pre- tions are in use as to how the mean free path of vibrational
diction of Einstein’s modet® suggesting that the lattice vi- excitations in amorphous solids should be described at high
brations in the THz frequency range are predominantly lotemperatures. Kittéf has suggested that in this regimgis
calized, and the energy transfer between them occurs via @ constant of the order of an average interatomic distance.
strong-coupling mechanisi. Localization of the high- Alternatively, Einstein's model of strongly coupled
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processes introduced above. We interpret the maximum in
the \,(T) curve as a crossover from the regime of a domi-
nant scattering of phonons by tunneling states to the regime
where quasiperiodic umklapp processes are important.

Our interpretation of the appearance of a maximum and
the region of negative slopg\,/dT in the \,,(T) data of
icosahedral Al;MngPd,; gains further support from recent
Apr(T) measurements on a single grain of angn,,Pd,,
quasicrystaf* These data are included in Fig. 5 as open
squares. The thermal conductivity of icosahedral
Al;oMn;Pd,, also shows an approximately quadrafic
variation below 1 K, characteristic of phonon scattering on
tunneling stategsee Fig. $. The absolute values 0f;,(T)
are about a factor of 4 higher than for icosahedral
Al,MngPd,;, suggesting a lower concentration of tunneling

tates. The lower rate of phonon scattering on tunneling

ates leads to an enhancement of the height of\ther)
maximum and to an extension of the temperature range
where the slope of\,,(T) is negative. For icosahedral
Al70Mn;oPd,, the region with a negative slogb ,/dT ex-
tends from 25 to 85 K at least ang,, decreases by about
oscillators® is compatible withl ,;, of the order ofrvsw™, 250 with increasing temperature in this range, in agreement

102 |

108 - : :
1010 101! 1012 1013
o(s™)

FIG. 6. Frequency dependence of the phonon mean free pa
| pn(w) of icosahedral AlMngPd,; (solid ling) in comparison with
that following from A(T) of amorphous Si@ (broken ling. The
different parts(a,b,c,d are explained in the text.

i.e., half of the wavelength of the excitation. with our arguments above.
In Fig. 6 we plot the frequency dependence of a
temperature-independei(w) that follows from our,(T) VII. CONCLUSIONS

data. In this figure, para of the solid line represents the

crossover region to a frequency-independent mean free path Qn theoretical grounds we introduce the concept' of gen-
of 0.025 cm determined as described in Ref. 3. Badtpre- eralized umklapp processes in condensed matter with quasi-

sents a phonon mean free pdynocw’l to account for the periodic but well-ordered structures. We argue that these

nearly quadratic temperature variation)qf, in the T range processes Ieaq to a povyer-l_aw depen.dence of the mean free
between 0.35 and 1.6 K. Partepresents the strong Olecreasepath of delocalized quasilattice excitations on temperature as
of the mean free path)hocw_g that needs to be assumed for opposed to the exponential temperature dependence of the

describing the extended plateau region of Mg(T) data. phonon mean ffee path due to conventional umklapp pro-
Partd is the minimum conceivable mean free path for high_cesses in periodically structured crystals. We compare this

frequency nonpropagating quasilattice excitations of the orconcept V.V'th experimental d:.ita of t_he qua5|le_1tt|ce thgrmal
der of mv,w™!. The previously published suggestion of cr?nquctlwty Apr(T) of a qu?smryTtallln_e rr;ate;:al almd find
IphOCw_4 for various amorphous materials is by far not ag-thatit p'fo"'des a reasonable explanation for the p atgautype
equate for fitting our data. The need of an exponent |0weFeatu_re I\ (T) t_hat seems 1o be a general observation for
than —4 to fit our data arises from the extension of the quasicrystals. This puts the frequen(_:y and hence temperature
plateau of icosahedral AMngPd,; over a distinctly larger dependence of the mean free path in quasmrys;als ona f|.rm
temperature range compared to that observed for amorpho&eor?t'cal ground, quite in contrast to the situation that still
solids. prevails for amorphous materials.

On closer look, we note a shallow maximum in tg(T)
variation in the plateau region at about 30 K, followed by a
minimum at 50 K(see inset to Fig.)5 The appearance of the We are grateful to C. Janot, A. Yu. Kitaev, and L. S.
maximum in thex,,(T) curve implies that the mean free path Levitov for useful discussions. This work was in part sup-
of phonons with a given frequency decreases with increasingorted by the Schweizerische Nationalfonds zurdeoung
temperature. Although the theoretically predicfEd® tem-  der wissenschaftlichen Forschung. One of (@K, ac-
perature dependence Ry is not really observed, we believe knowledges financial support from the Swiss—East European
that the decrease of;, with increasingT from 30 to 55 K research program of the Schweizerische Nationalfonds zur
above the maximum is due to the quasiperiodic umklapg-orderung der wissenschaftlichen Forschung.
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