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The concept of phonon scattering known as the umklapp process is generalized to quasicrystals. It is shown
that such processes in quasicrystals lead to a power-law temperature dependence of the mean free path of
delocalized quasilattice excitations, contrary to the exponential temperature dependence of the phonon mean
free path characteristic of periodically structured crystals at intermediate temperatures. This result provides a
plausible explanation for the plateau-type feature in the quasilattice thermal conductivitylph(T) of Al-Mn-Pd
quasicrystals.@S0163-1829~96!01921-2#

I. INTRODUCTION

One of the remarkable features of quasicrystals is the ap-
parent conflict between the high structure quality of these
materials and their transport properties, which are rather
reminiscent of those of highly disordered materials, such as
metallic or insulating glasses. The structure quality of quasi-
crystals, as revealed by x-ray structure analysis or electron-
microscope investigations, sets them among the best ordi-
nary crystals. For example, high-resolution x-ray diffraction
experiments performed on Al-Mn-Pd quasicrystals revealed
a mosaic full width at half maximum of less than 0.001° and
resolution-limited widths of the diffraction peaks.1 At the
same time, a high degree of structural perfection of icosahe-
dral Al-Mn-Pd has been confirmed by anomalous transmis-
sion of x rays through this material.1 On the other hand, both
the electrical and thermal conductivities of quasicrystals are
much lower than in periodic metallic crystals. Many trans-
port properties, namely, the temperature and magnetic-field
dependencies of the electrical and the thermal conductivity,
reveal features that are commonly observed in glassy mate-
rials. Nevertheless, it seemsa priori unjustified to claim that
the transport properties of quasicrystals are influenced by the
same mechanisms as those of metallic glasses. This is mainly
because the structures of quasicrystals, known in great detail,
differ from the structure of glasses in distinct ways.

When speaking about phonon~or electron! scattering in
quasicrystals one should clearly distinguish between the scat-
tering on defects and the structural scatteringstricto senso.
Defects are always present in quasicrystals. In view of a
general lack of ‘‘growth rules’’ for quasicrystals2 it is impos-
sible to grow a quasicrystal with a density of defects lower
than some intrinsic value. It has been suggested that at very
low temperatures the temperature dependence of the thermal
conductivity is most likely due to the resonant scattering of
phonons on pointlike defects~tunneling states!.3 In spite of
this problem and because of the fact that the structure quality
of many quasicrystals may be improved by annealing proce-
dures, it seems reasonable to investigate the transport prop-
erties of hypothetical perfect quasicrystals.

Here we shall concentrate on the scattering mechanisms
which are intrinsic to the structure of quasicrystals, i.e., those
that would bepresent even in a hypothetical defect-free ma-
terial. Because the problems of both single-electron eigen-
states and phonon eigenmodes lead to similar equations, it is
worth looking first at the results obtained in the study of the
behavior of noninteracting electrons in a quasicrystal. Al-
though this problem has been extensively investigated since
the very discovery of quasicrystals, there exist no reliable
results in the literature, except for the one-dimensional case,
for which one can solve the problem exactly.4,5 In the two-
and three-dimensional cases one can merely show that the
hypothesis of the existence of quasi-Bloch states is not al-
lowed for quasicrystals. In particular, if one tries the follow-
ing ansatz for the electron eigenfunction:
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where the vectorsej are the basis vectors of the reciprocal
lattice of the quasicrystal andD is the indexing dimension
~D56 for icosahedral quasicrystals!, which is a straightfor-
ward generalization of the Bloch wave-function form, one
immediately realizes6 that this function cannot be normalized
while keeping the coefficientscn finite. Physically this
means that while the true Bloch states in common crystals
are localized in momentum space and thus resemble states
occupied by free particles, the eigenstates in quasicrystals are
never localized ink space. These eigenstates are always af-
fected by an intrinsic decay rate, thus giving rise to nonzero
resistivity even of perfect quasicrystals.6 It is important to
note, however, that this intrinsic decay rate is exponentially
low in the limit of weak potentials. This property has impor-
tant consequences when we consider the phonon propagation
in quasicrystals instead of extended electronic eigenstates.

Although the equation of the phonon eigenmodes and the
Schrödinger equation for one-electron states are very similar,
there is one important difference. While the scale of mo-
menta of occupied electron states is given bykF and there-
fore cannot be chosen arbitrarily, in the case of phonons
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there is always the long-wavelength limit, where details of
the structure do not play a significant role. This limit thus
corresponds to the vanishing influence of the quasiperiodic-
ity of the potential, and that this is really the case we shall
demonstrate for the one-dimensional system.

II. PHONONS IN A ONE-DIMENSIONAL QUASICRYSTAL

As has already been mentioned, for the one-dimensional
model of quasicrystals~Fibonacci chain! an exact solution of
the one-particle Schro¨dinger equation and consequently of
the acoustic eigenmode problem has been found.6,7 This so-
lution emerges from using the very powerful transfer-matrix
formalism. Transfer matrices relate two independent solu-
tions of the Schro¨dinger equation, sayC andC8, or displace-
ments of two neighboring atoms in the case of acoustic
modes. The main result of the corresponding theory is that
the problem is almost universal, namely, there is only one
parameter whose value determines different universality
classes.5,8 The standard choice of this parameter is the half
trace of the multiplicative commutator of the transfer matri-
ces corresponding to the distinct sites of the Fibonacci chain.
This parameter is never smaller than 1 and the case when it
equals 1 corresponds to the universality class appropriate for
the periodic chain. As an example we give the explicit ex-
pression for this parameter in the case of acoustic oscilla-
tions. We suppose that the Fibonacci chain is made of atoms
with two different masses, but the elastic forces between
different atomic species are the same. Then the transfer ma-
trix relating the displacement vectorun5(un21,un), where
ui is the oscillation amplitude of a given atomi , with the
displacement vectorun115(un ,un11) for the mode with the
given frequencyv is

Tn5S 0 1

21 22mnk
21v2D . ~2!

Heremn stands for the mass of the atom on siten, andk is
the spring constant. Up to the leading term, the commutator
of the transfer matrices on two neighboring sites 1 and 2
reads
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Of particular interest in this equation is thev dependence of
J. First, as expected,J approaches 1 as the frequency de-
creases. This reflects the fact that the short-range details of
the quasiperiodic structure become less important in the
long-wavelength limit. From the exact solution for the Fi-
bonacci chain it is known that the widths of major gaps in
the spectrum behave asAJ21, or as v2 in the case
considered.5,8 Although the spectrum has zero measure as is
the case for the one-electron Schro¨dinger equation on the
Fibonacci chain, in thev→0 limit the spectrum appears as
continuous because the widths of gaps become smaller than
the separation of the eigenmodes of a chain of finite length.
In Fig. 1 we plot the frequencies of the eigenmodes of a
Fibonacci chain consisting of 233 atoms with two different
masses as a function of the pseudo-wave vectorq. Instead of
a wave vector, which strictly is an undefined quantity here
because of the instability of quasi-Bloch states, the density of

nodes of the eigenmode is used. This may be taken as a
natural generalization of wave vectors in the case of a qua-
siperiodic chain because the density of zeros is proportional
to the wave vector in the case of a periodic chain. In the
v(q) plot of Fig. 1 only major gaps are visible.

III. GENERALIZATION TO THREE-DIMENSIONAL
QUASICRYSTALS

For comparisons with experiments on real quasicrystals,
we have now to consider two- and three-dimensional sys-
tems. First, it is worth emphasizing that thev2 scaling of
major gaps in the acoustic spectrum may be understood with-
out recourse to the exact solution of the problem. The width
dv of the gap in the vibrational excitation spectrum formed
by a density wave with a wave vectorq and a relative am-
plitude a is of the order ofavsq, where vs is the sound
velocity. For quasiperiodic lattices there is a series of stron-
gest harmonics in the Fourier image of the density for which
the absolute value of the productqnq'n , whereq'n is the
component of the corresponding wave vector in the orthogo-
nal space, reaches its minimal value and is constant, i.e., it
does not depend onn. The series of the wave vectorsqn of
the strongest density harmonics is a geometrical series

qn}C
n, ~4!

with a common ratioC, i.e.,C5t21, wheret5(A511)/2
is the golden mean, for a Fibonacci chain as well as for face-
and body-centered icosahedral lattices andC5t23 for a
simple cubic icosahedral lattice.9 The amplitudes of these
harmonics scale likeq, which in the limit of smallq leads to
the expectedv2 scaling of the gap widths.

If at this point we assume that the use of wave vectors for
describing lattice eigenmodes in quasicrystals is legitimate,
then the same arguments may be applied to two- and three-
dimensional quasilattices. The strongest harmonics in the
Fourier image of the density are due to the faces of the
‘‘atomic surfaces,’’ used in the structure description of the
considered quasicrystal. The wave-vector dependence of the
amplitudes of these harmonics is determined by the structure
factor. For calculating the structure factor we need the Fou-

FIG. 1. Frequencies of phonon eigenmodes of a Fibonacci chain
composed of 233 atoms with two different masses. The mass ratio
is 1.5.
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rier transform of the step function, which is constant inside
the atomic surface and zero outside. The behavior of this
Fourier transform for largeq' is dominated by the effect of
the flat faces of the atomic surface~see Fig. 2!. For the wave
vectorsq' perpendicular to such faces, the Fourier transform
scales likeq'

21 and hence, for harmonics from the major
series, asq. Thus the same arguments as for the one-
dimensional case apply and one may expect again the same
v2 scaling of the major gap widths.

We now return to the conflict that we avoided so far.
Although we used the notion of wave vectors when speaking
about gaps in the spectrum it should be kept in mind that the
oscillatory eigenmodes in quasicrystals cannot be described
stricto sensoby this parameter. We note, however, that the
intrinsic decay rate of the quasi-Bloch states in quasicrystals
varies exponentially with the strength of the potential. There-
fore, in the long-wavelength limit, the decay process is so
slow that other decay mechanisms will certainly dominate
over the intrinsic decay. This is the important distinction
between the two problems of defining either electronic or
acoustic eigenstates, because the former cannot be treated in
such a long-wavelength limit.

In what follows, we shall consider the region in frequen-
cies where the intrinsic decay rate of oscillatory quasi-Bloch
states is insignificant. The phonons will never have enough
time to get completely delocalized in momentum space; in-
stead, they are scattered by other mechanisms. We shall con-
sider, as an example, the phonon-phonon scattering due to
the anharmonicity of the lattice oscillations, although other
mechanisms like, e.g., scattering on electrons are not ex-
cluded.

IV. UMKLAPP PROCESSES IN QUASICRYSTALS

The phonon scattering mechanism in quasicrystals to be
proposed below may seem exotic, but it is merely a gener-
alization of umklapp processes in the usual crystals.10 We
emphasize that the scattering phenomenon known as the um-
klapp process is a consequence of the interplay between two
scattering processes. In one of these processes, e.g., in mul-
tiphonon scattering, the momentum of lattice excitations, of-
ten called crystal momentum, is conserved. The other pro-

cess, i.e., a Bragg reflection or structural scattering, violates
the law of conservation of crystal momentum. The charac-
teristic time of energy transfer to the reflected acoustic wave
in this process may be estimated as\/Eg , whereEg is the
energy gap in the vibrational excitation spectrum. In periodic
crystalsEg is often of the order of\vmax,

11 wherevmax is the
maximum lattice frequency, and the Bragg reflection occurs
very fast. Nevertheless, for periodic crystals the important
point is that neither of the two scattering processes, if con-
sidered separately, will give rise to the same physical conse-
quences as the umklapp process does, i.e., finite thermal con-
ductivity, etc. This is all the more true for quasicrystals
where one expects a hierarchy of gaps with widths at any
scale of energy less than\vmax, and therefore the Bragg
reflections have to be considered as separate scattering pro-
cesses. In addition, in quasicrystals the momentum of vibra-
tional excitations can be transferred to the quasilattice in
small portions, not limited from below in magnitude. We
recall that the natural scale for umklapp processes in periodic
crystals is set by the reciprocal lattice, which does not exist
for quasicrystals. This also means that while in crystals the
rate of umklapp processes decreases exponentially at small
frequencies~temperatures!, in quasicrystals it should obey
some power law. As we shall see, this power-law behavior is
indeed indicated by experiment.

As a first step in introducing the generalized umklapp
process in quasicrystals, one may consider some intermedi-
ate case, namely, structurally modulated crystals. It is intu-
itively evident that although the size of the Brillouin zone
changes drastically at the very beginning of superstructure
formation, the rate of scattering at the superstructure wave
vectors increases only gradually because the scattering prob-
ability depends on the amplitude of the modulation. To dis-
cuss this important point in more detail, we consider a region
in the phonon spectrum where the density or, more precisely,
acoustic-impedance wave with a wave vectorq0 has led to
the formation of a gaplet atq5q0 ~see Fig. 3!.

Qualitatively, only the modes with wave vectors close to
q0 are affected by the structural scattering. More precisely,
only in the modes withuq2q0u,dv/vs is there a significant
fraction of backscattered waves. This gives the formal justi-
fication for the intuitive assumption that density modulations
with small amplitudes do not much affect the umklapp pro-
cesses. In the one-dimensional~1D! case only those phonons

FIG. 2. Schematic representation of an atomic surface with one
of its faces perpendicular toq' . The step in the density function
occurs atx'0. Shown here are only two components in the orthogo-
nal space.

FIG. 3. Schematic representation of a gaplet in the frequency
spectrum of lattice excitations in a periodic structure induced by a
structure modulation with wave vectorq0 .
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which are newly created in a multiphonon process and whose
wave vectors are in the resonance regionuq2q0u,dv/vs are
efficiently backscattered; in higher dimensions they are
merely scattered by the superstructure wave vectorq0 .

The situation is more complicated for quasicrystals. In-
stead of just one harmonic describing the density modulation
as in the case of a periodic superstructure, we now have to
deal with infinitely many of them. Their wave vectors
densely fill the reciprocal space so that no clear distinction
between resonance regions seems to be possible. As we have
pointed out above, there is a major series of density harmon-
ics described by Eq.~4!, set apart from all the other harmon-
ics by their strength. The harmonics from the major series
are due to the faces of the atomic surfaces shown in Fig. 2
and, as we have outlined above, at small wave vectors the
amplitudes of these harmonics scale asq. The series of their
wave vectors is a geometrical series. Therefore in the spheri-
cal layer betweenCqph andqph

Cqph,q,qph, ~5!

whereC is the common ratio of the geometrical series@see
Eq. ~4!#, there is always a constant number of these harmon-
ics as expected from self-similarity arguments.12 In the fol-
lowing discussion we assume that no other harmonics than
those from the major series have to be considered, an as-
sumption that will be justified below.

As in the case of superstructures, we have to estimate the
probability of anewly created phononto be scattered by the
structure. Suppose that the absolute value of the wave vector
q of this phonon lies in the spherical shell described by in-
equality~5!. We then have to estimate the total area~or vol-
ume! of the resonance regions in the reciprocal space as
shown in Fig. 4. From thev2 scaling of the major-series gap
widths it is clear that this probabilityP is proportional tov,
or more precisely,P5Av/vmax, whereA is a dimensionless
constant depending on the structure of the quasicrystal. In-
stead of the maximum lattice frequencyvmax one may also
introduce the Debye frequencyvD , which is close tovmax.
We briefly return to the problem of tiny gaplets not belong-
ing to the major series and to their influence on the structure
scattering. This question is closely related to the instability
of the quasi-Bloch states in quasicrystals. Indeed, the insta-
bility of quasi-Bloch states is due to the fact that the number

of states which are in resonance with any given one is infi-
nite. The divergence of this number, however, is only
logarithmic.6 This means that this divergence is entirely due
to the harmonics with tiny amplitudes. Therefore the same
argument which we have used above to justify the irrel-
evance of the intrinsic instability of quasi-Bloch states may
be applied to justify the irrelevance of harmonics not belong-
ing to the major series with respect to structural scattering.
Indeed, the scattering of an acoustic wave on a density
modulation is not instantaneous. For the particular modula-
tion giving rise to a gap in the acoustic spectrum of widthdv
~see Fig. 3!, the time of energy transfer to the scattered wave
is of the order of 1/dv. Thus, when the scattering is domi-
nated by a fast nonstructural mechanism as provided, for
instance, by anharmonicities, there is no time for an effective
influence of the resonances that are due to the small harmon-
ics in the structure factor.

V. THERMAL CONDUCTIVITY IN QUASICRYSTALS
AT ELEVATED TEMPERATURES

We are now ready to estimate the physical consequences
of the structure scattering in quasicrystals. As an example we
consider the ‘‘quasiperiodic’’ umklapp processes which in-
volve both phonon-phonon scattering and Bragg reflections.
Suppose that three-phonon processes are not prohibited by
the conservation laws. Then the frequency dependence of the
transport cross section averaged over the phonon wave vec-
tors within a spherical shell as defined in inequality~5! is
given by

^s transp&5A
v

vmax
s, ~6!

wheres represents the full phonon-phonon scattering cross
section. This formula does not depend on the particular
choice of the nonstructural scattering mechanism that is re-
sponsible for the value ofs. For three-phonon scattering the
full cross section is proportional tovT4, because the stan-
dard three-phonon matrix element is proportional to
Av1v2v3 and the phase volume rises asT2 ~six free com-
ponents minus four conservation laws!. Here it is supposed
that only one phonon in the three-phonon process has a low
frequency and that the two others are merely thermal ones
with their frequency proportional to the temperature. All in
all, the average transport cross section for the anharmonic
and quasiperiodic structural scattering, together denoted as
the quasiperiodic umklapp process, is proportional tov2T4,
i.e., not exponential in frequency or temperature as is valid
for umklapp processes in common crystals. In the limit of
low temperatures and assuming that quasiperiodic umklapp
processes are the main source for the quasilattice thermal
resistancelph

21(T), a Debye-type approximation leads to the
expectation thatlph}T

23.

VI. COMPARISON WITH EXPERIMENT

We now discuss possible implications of the existence of
quasiperiodic umklapp processes on the interpretation of ex-
perimentally determined temperature dependencies of the
thermal conductivity of quasicrystals. Even in periodic crys-
tals it is not trivial to experimentally verify the regime where

FIG. 4. The regions of resonant scattering due to the major
series of density harmonics overlapping the phonon wave-vector
spectrum in the shell betweenCqph andqph.
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lph(T) is dominated by umklapp processes by observing

lph~T!}TjexpS QD

bT D , ~7!

where j and b both are of the order of unity. For a clear
observation of this experimental relation the crystal needs to
be of high structural quality and isotopically pure. The rel-
evant temperature range is limited to approximately
0.03QD,T,0.1QD .

13 A crossover to the Casimir regime of
boundary-limited thermal conductivity at the lowest tem-
peratures leads to a maximum in thelph(T) dependence.
Defects and isotope inhomogeneities suppress this maximum
and they alter the exponential relation forlph(T). Even in
polycrystalline and impure samples a distinct maximum of
lph(T) is still observed, however.

As argued at the end of Sec. V, in the equivalent regime
for quasicrystals, dominated by quasiperiodic umklapp pro-
cesses, the thermal conductivity is expected to vary as
lph}T

23, i.e., the variation withT is substantially weaker
than in periodic crystals. At low temperatures, i.e., in the
range of 1 K,lph(T) of real quasicrystals is limited by pho-
non scattering involving tunneling states and it varies ap-
proximately asT2.3 This scattering mechanism typically re-
duceslph(T) to values an order of magnitude below the
Casimir limit. Above a few tens of degrees kelvin, quasilat-
tice vibrational modes responsible for the heat transport can-
not be described as propagating collective excitations14 and
lph slowly increases with increasing temperature in this
regime.3,14,15

As may be concluded from the discussion in the previous
sections, quasiperiodic umklapp processes in real quasicrys-
tals are expected to manifest themselves as a temperature
region with a negative slopedlph/dT. However, thelph(T)
variation in this region may be substantially weaker than
lph}T

23 or it may even be reduced to an extended plateau.
Below we describe and analyze in more detail the results of
lph(T) measurements of a bulk sample of icosahedral
Al70Mn9Pd21. Among thermodynamically stable quasicrys-
tals, icosahedral Al-Mn-Pd is a quasiperiodically ordered
material of the highest structural quality.1,16,17Some of these
results, including details of sample preparation, experimental
techniques, and low-temperaturelph(T) data, has been given
in a previous publication.3

In Fig. 5 the quasilattice thermal conductivitylph of
icosahedral Al70Mn9Pd21 is shown on logarithmic scales for
the temperature range between 0.06 and 297 K. Its evalua-
tion from the measured thermal conductivity is described in
Ref. 3. Below 1.6 K the temperature variation oflph is well
described bylph}T

2.06. This variation is compatible with a
dominant scattering of phonons by tunneling states, and our
values oflph are of the same order of magnitude as those
reported for insulating and metallic amorphous solids. A
saturation of thelph(T) dependence is evident above ap-
proximately 10 K. From 25 to 70 K,lph is almost tempera-
ture independent but increases again withT above 70 K.
Above 100 K, the magnitude oflph(T) is close to the pre-
diction of Einstein’s model,18 suggesting that the lattice vi-
brations in the THz frequency range are predominantly lo-
calized, and the energy transfer between them occurs via a
strong-coupling mechanism.14 Localization of the high-

frequency vibrational modes in Al-Mn-Pd quasicrystals has
previously been claimed by de Boissieu and co-workers16 by
analyzing the results of inelastic neutron scattering experi-
ments. They noted that true unbroadened acoustic modes are
observed only for wave vectorsq<qmax, whereqmax50.35
Å21.

This overall behavior is similar to that of amorphous sol-
ids, where generallylph monotonically increases with in-
creasing temperature and al plateau is observed between
approximately 2 and 10 K.19 Nevertheless, we note some
important differences in the plateau region. Thel plateau of
icosahedral Al70Mn9Pd21 is developed at higher temperatures
and it extends over a wider temperature range than in amor-
phous solids. Moreover,lph of the Al70Mn9Pd21 quasicrystal
in thel plateau range is higher than that of amorphous solids
in the corresponding regions.3

The lph(T) variation of amorphous solids has often been
described assuming a frequency-dependent phonon
mean free pathl ph~v! which does not explicitly depend on
temperature.19 At low temperatures, scattering of
phonons on tunneling states withl ph}v21 gives the
main contribution to the thermal resistance.20,21 The plateau
in the lph(T) data of amorphous solids has been claimed to
be caused by an abrupt decrease of the phonon mean free
pathl ph~v! with increasing phonon frequencyv.19 The avail-
able experimental evidence indicates that the mean free path
of phonons in amorphous materials has a frequency depen-
dence l ph}v2n, with n'3–4.22 The explicit relation
l ph}v24 does account for thel plateau in many amorphous
solids. It was argued, however, that this frequency depen-
dence may not arise from the scattering on mass density
fluctuations with a correlation length smaller than the pho-
non mean free path, i.e., Rayleigh scattering.19 Two assump-
tions are in use as to how the mean free path of vibrational
excitations in amorphous solids should be described at high
temperatures. Kittel23 has suggested that in this regimel ph is
a constant of the order of an average interatomic distance.
Alternatively, Einstein’s model of strongly coupled

FIG. 5. Quasilattice thermal conductivitylph of Al70Mn9Pd21
~open circles, Refs. 3 and 14! and Al70Mn10Pd20 ~open squares,
taken from Ref. 24! as a function of temperatureT. The solid line is
a power-law approximation to the data between 0.35 and 1.6 K. The
inset showslph(T) of Al70Mn9Pd21 between 10 and 100 K on an
expanded vertical scale.
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oscillators18 is compatible withl ph of the order ofpvsv
21,

i.e., half of the wavelength of the excitation.
In Fig. 6 we plot the frequency dependence of a

temperature-independentl ph~v! that follows from ourlph(T)
data. In this figure, parta of the solid line represents the
crossover region to a frequency-independent mean free path
of 0.025 cm determined as described in Ref. 3. Partb repre-
sents a phonon mean free pathl ph}v21 to account for the
nearly quadratic temperature variation oflph in theT range
between 0.35 and 1.6 K. Partc represents the strong decrease
of the mean free pathl ph}v28 that needs to be assumed for
describing the extended plateau region of thelph(T) data.
Partd is the minimum conceivable mean free path for high-
frequency nonpropagating quasilattice excitations of the or-
der of pvsv

21. The previously published suggestion of
l ph}v24 for various amorphous materials is by far not ad-
equate for fitting our data. The need of an exponent lower
than24 to fit our data arises from the extension of thel
plateau of icosahedral Al70Mn9Pd21 over a distinctly larger
temperature range compared to that observed for amorphous
solids.

On closer look, we note a shallow maximum in thelph(T)
variation in the plateau region at about 30 K, followed by a
minimum at 50 K~see inset to Fig. 5!. The appearance of the
maximum in thelph(T) curve implies that the mean free path
of phonons with a given frequency decreases with increasing
temperature. Although the theoretically predictedT23 tem-
perature dependence oflph is not really observed, we believe
that the decrease oflph with increasingT from 30 to 55 K
above the maximum is due to the quasiperiodic umklapp

processes introduced above. We interpret the maximum in
the lph(T) curve as a crossover from the regime of a domi-
nant scattering of phonons by tunneling states to the regime
where quasiperiodic umklapp processes are important.

Our interpretation of the appearance of a maximum and
the region of negative slopedlph/dT in the lph(T) data of
icosahedral Al70Mn9Pd21 gains further support from recent
lph(T) measurements on a single grain of an Al70Mn10Pd20
quasicrystal.24 These data are included in Fig. 5 as open
squares. The thermal conductivity of icosahedral
Al70Mn10Pd20 also shows an approximately quadraticT
variation below 1 K, characteristic of phonon scattering on
tunneling states~see Fig. 5!. The absolute values oflph(T)
are about a factor of 4 higher than for icosahedral
Al70Mn9Pd21, suggesting a lower concentration of tunneling
states. The lower rate of phonon scattering on tunneling
states leads to an enhancement of the height of thelph(T)
maximum and to an extension of the temperature range
where the slope oflph(T) is negative. For icosahedral
Al70Mn10Pd20 the region with a negative slopedlph/dT ex-
tends from 25 to 85 K at least andlph decreases by about
25% with increasing temperature in this range, in agreement
with our arguments above.

VII. CONCLUSIONS

On theoretical grounds we introduce the concept of gen-
eralized umklapp processes in condensed matter with quasi-
periodic but well-ordered structures. We argue that these
processes lead to a power-law dependence of the mean free
path of delocalized quasilattice excitations on temperature as
opposed to the exponential temperature dependence of the
phonon mean free path due to conventional umklapp pro-
cesses in periodically structured crystals. We compare this
concept with experimental data of the quasilattice thermal
conductivity lph(T) of a quasicrystalline material and find
that it provides a reasonable explanation for the plateautype
feature inlph(T) that seems to be a general observation for
quasicrystals. This puts the frequency and hence temperature
dependence of the mean free path in quasicrystals on a firm
theoretical ground, quite in contrast to the situation that still
prevails for amorphous materials.
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