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The diffraction of atoms from stepped surfaces is treated using the semiclassicalS-matrix theory. Two
different regimes of the behavior of the classical trajectories, regular and chaotic, are considered. For the latter
case, the diffraction order function presents a fractal structure, and there is an infinite number of trajectories
connecting the initial and final states. Using the scaling laws of the fractal, within the formalism of the
S-matrix theory, we have obtained diffraction and specular intensities, which are in fairly good agreement with
the experimental and quantum close-coupling results.@S0163-1829~96!00221-4#

I. INTRODUCTION

Presently, it is well accepted that diffraction patterns aris-
ing in atom-surface scattering are exclusively the result of
the interference of each incident particle with itself.1 Conse-
quently, this process can be best treated within a quantum-
mechanical formalism where the superposition principle
holds. However the semiclassicalS-matrix theory, as devel-
oped independently in the early 1970’s by Marcus and
Miller,2 represents an alternative route, since it combines
classical mechanics with this quantum principle. The main
advantage of this semiclassical analysis is the physical in-
sight gained since the dynamics of the process is explicitly
included.

The validity of semiclassicalS-matrix theory for elastic
atom-surface scattering was tested in the past by Doll,3aMc-
Cann and Celli,3b and Miller and co-workers,4 and compari-
son with other methods showed4a that the semiclassical
S-matrix calculations worked even better than other approxi-
mate quantum methods. However the semiclassical theory
has several shortcomings that we want to discuss and address
in this paper.

The semiclassical theory can be viewed, in a very precise
sense, as the stationary phase approximation~SPA! to quan-
tum mechanics. The SPA is valid whenever\ is small with
respect to the total action of the system, and breaks down
when neighboring trajectories in coordinate space encounter
a caustic. This usually occurs in the vicinity of a classical
turning point, and then Maslov’s theory5 should be used,
which allows us to uniformize the semiclassical approxima-
tion. These are limits inherent to the SPA.

Another failure arises when the SPA is applied to find the
semiclassical limit of theS-matrix in scattering problems.
TheS-matrix elements are constructed using all the classical
trajectories connecting the desired initial and final states. If
two or more of the contributing trajectories give final states
~as a function of the initial states! that are close together,
then the amplitude for theS-matrix element diverges. This is
related to the well-known rainbow effect in scattering theory.
In this case catastrophe theory6 can be applied to obtain the
appropriate uniform approximations. In the early stages of

the semiclassical theory, Connor, Marcus, and Miller7 devel-
oped uniform approximations and showed how these ap-
proximations reduce to the usual primitive semiclassical for-
mula when the trajectories are far enough from the
catastrophe. Berry6a studied the case of cusped rainbows in
scattering of atoms from a rippling-mirror surface.

Another problem which does not stem from a breakdown
of the classicalS-matrix theory but is entirely due to the
extreme complexity of the dynamics of the system arises
when we have irregular or chaotic scattering.8 In this case
there exist an infinite number of classical trajectories con-
necting the initial and final states. This was observed by
Rankin and Miller for a gas-phase chemical reaction,9 and
they proposed to divide theS-matrix sum over trajectories in
two terms: a contribution from direct trajectories~only a fi-
nite number!, plus a contribution coming from the complex
trajectories~a countable infinity!, and computed statistically
this last part~random phase approximation!. Other authors
have also considered this problem.10–13 The approaches
range from just summing up a few contributions of complex
forming trajectories, such as in the work of Stine and
Marcus,10 to the use of some scaling properties to compute
contributions to the scattering cross sections in the more re-
cent work of Refs. 12b and 13b.

The chaotic region, also called the ‘‘chattering’’ region,
corresponding to complex forming trajectories~trapped tra-
jectories in the case of atom-surface scattering!, presents a
fractal structure. This structure appears in all chaotic scatter-
ing problems.14–17 In a recent paper, Tiyapan and Jaffe´13a

have studied the classical dynamics of collisional complexes,
formed in gas-phase He-I2 scattering, and made clear the
self-similarity of the fractal structure. From initial phase
angle-final action plots, they found the scaling laws, as well
as the fractal dimension of the Cantor set. More recently, a
classical study17 of the elastic scattering of the4He from the
highly corrugated and stepped Cu~117! surface has demon-
strated that the dynamics are chaotic for certain values of the
incident angle and scattering energy of the incoming atoms.
The structure of the corresponding fractal has been analyzed
in detail,17b and we have also demonstrated that the onset of
chaos is intimately related to classical surface rainbows. The
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interest of this system stems from the fact that it has been
extensively studied experimentally18 and close-coupling
results19 are available, and also a variety of other phenomena
apart from diffraction, such as surface rainbows and selective
adsorption resonances, occur.

In this paper we extend the work reported in Ref. 17 by
presenting a quantitative analysis of the chaotic scattering
processes taking place in the diffraction of atoms from very
corrugated surfaces, Cu~115! and Cu~117!, within the semi-
classical formalism. A comparison between experimental
and theoretical~semiclassical and close-coupling! results in a
chaotic regime is presented.

The organization of the paper is as follows. In Sec. II we
will briefly describe the system and the semiclassical
S-matrix theory for atom-surface scattering. Results for a
regular case will be presented, which can be taken as an
illustration of the theory and also constitutes a test case of
the semiclassical calculation method for the case of atom-
stepped surface scattering. Section III reviews the analysis of
the fractal structure appearing in the classical chaotic regime,
and the scaling laws and fractal dimension are calculated.
The consequences of this structure for the classicalS-matrix
theory are discussed, and results of diffraction intensities for
different initial energies and incident angles are presented.
These results are compared with quantum close-coupling and
experimental results. Finally, we discuss the difficulties in-
volved in our treatment and future developments.

II. SYSTEM DESCRIPTION AND SEMICLASSICAL
S-MATRIX CALCULATIONS

The elastic collisions of4He with two stepped Cu sur-
faces with an increasing degree of corrugation,~115! and
~117!, are studied in this paper. The corrugation of these
surfaces lies primarily in the direction perpendicular to the
@110# plane. Thus, we assume that the in-plane scattering
predominates. This is confirmed experimentally for the~115!
surface and to a lesser degree for the~117! surface.

Consequently, we can model this system with the two-
degrees-of-freedom Hamiltonian:

H~Px ,Pz ,x,z!5
Px
21Pz

2

2m
1V~x,z!, ~1!

wherex andz are, respectively, the parallel and perpendicu-
lar distances of the He particle to the Cu surface, andV(x,z)
a corrugated Morse function whose parameters have been
taken from the literature.18a,19Note that the zero of the en-
ergy scale is defined as the He at infinite separation and at
rest.

Classical trajectories are calculated using the following
initial conditions for the Hamiltonian’s equations of motion:

z05zmax,

x052zmaxtanu i1ba,
~2!

Pz0
52A2mE cosu i ,

Px0
5A2mE sinu i ,

wherezmax represents a value ofz sufficiently large that the
coupling potential can be neglected,b is the normalized im-

pact parameter (0<b<1), andu i the initial incident angle.
All trajectories are integrated until the He is once again in
the asymptotic region~z.zmax! with sufficient energy to es-
cape from the surface [Hz(Pz ,z).0], when all final values
of various magnitudes are calculated. All calculations re-
ported here are for a collision energy of 21 meV.

The diffraction intensities are constructed from the
S-matrix elements:

I J~E!5uSJ~E!u2, ~3!

whereJ is an integer labeling the diffraction channel. The
semiclassical approximation to theS matrix is given as a
sum over trajectories:

SJ~E!5(
n

U]J]bU
b5bn

21/2

expF i S Fn

\
2

pmn

2 D G . ~4!

The diffraction order functionJ(b) is defined by

J~b!5
~Pxf

2Px0
!a

2p\
, ~5!

the classical actionF by

F~Px0
,Pxf

!52E
t0

t f
dt~xṖx1zṖz!, ~6!

andm is the Maslov index.5

The sum in Eq.~4! is over all classical trajectories satis-
fying the diffraction condition: this requires thatJ(b) be an
integer. The pre-exponential factors and the classical actions
in the terms of the sum~4! are evaluated at these points.
Clearly, all the information required for the evaluation of this
sum can be obtained in the construction of theJ vs b plots.

Shown in Fig. 1 is the diffraction order functionJ(b) as a
function of the impact parameterb for two cases where only
regular or direct scattering occurs: the dashed line is for the
~115! surface of Cu and initial scattering angle of 32°, and
the solid one for the~117! surface and initial angle of 36°. As
seen here the diffraction order function is a smooth and well
defined function. Consider first the~115! surface: classical
trajectories satisfying the Bragg condition occur forJ525,
24,...,3. At each of these values there are two contributing
trajectories.

Observe that for theJ525 andJ53 diffraction channels
the two contributing trajectories are close together. In these
circumstances the primitive semiclassical approximation is
expected to fail and one must use an uniformized
approximation,2 given in this case by

I J~E!5pAy8@~p11p2!
2Ai2~2y8!1~p12p2!

2Bi2~2y8!#,
(7)

wherep1 and p2 are the pre-exponential factors defined in
Eq. ~4!, Ai(2y8) and Bi(2y8) are the Airy functions of
first and second kind,20 andy85[(3/4)(F12F2)/\]

2/3.
Transitions to theJ526 and27 diffraction channels are

classically forbidden but energetically allowed, since they
are observed experimentally. The contribution from classi-
cally forbidden processes is accomplished by analytical
continuation21 of the diffraction order function at the rain-
bow angle to find complex solutions satisfying the Bragg
condition. In the present caseJ(b) was fitted to a quartic
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function in the neighborhood of the rainbow angle, and the
complex roots were found. Then the corresponding classi-
cally forbidden trajectories were calculated in complex-
valued phase space. The primitive and uniform semiclassical
approximations for the diffraction intensity becomes in this
case

I J~E!5p2expS 22 Im
F

\ D ~primitive!,

~8!
I J~E!54p2py1/2Ai2~y! ~uniform!,

where y5@~3/2!Im~F/\!#2/3, p5(]J/]b)1/2, and F is the
classical action of the classically forbidden trajectory.

The diffraction intensities for He scattering from the~115!
surface of Cu are given in Table I. They are compared with
our close-coupling calculations and experimental results
~note that the in-plane experimental results are normalized to
unity18!. We see that the agreement between the semiclassi-
cal and close-coupling results is excellent for both the clas-
sically allowed and the classically forbidden transitions.

Next we consider the scattering from the~117! surface of
Cu ~solid line in Fig. 1!. This surface is more highly corru-
gated and more diffraction channels are open. As a conse-
quence, the intensity in the specular channel decreases in
favor of the higher-order diffraction channels. In general, the
interaction between the He atom and the surface is stronger
and the experimentally observed diffraction pattern has more
oscillations. In the present case there are four rainbow
angles. Transitions to the diffraction channels labeled byJ5
28, 27,...,3 are classically allowed, while transitions to the
J<29 diffraction channels are energetically allowed but
classically forbidden. For the two diffraction channels la-
belledJ52 andJ53 we expect important contributions to
the transition probabilities from the classically forbidden
processes associated with the rainbows in addition to the
classically allowed contributions. The semiclassical diffrac-
tion intensities are compared with the close-coupling results
in Table II. The semiclassical results given in the second
column were obtained by simply adding the contributions
from the classically allowed and classically forbidden trajec-
tories, that is, the interference between these two processes
has been neglected. The difference with the close-coupling
results is noticeable for the channelsJ52 andJ53. More-
over, when adding all calculated intensities, an important
loss of unitarity is found. This interference has been included
in the results presented in the third column. The contribution
from this interference is given by

4pqp@~p11p2!Ai~2y8!Ai~y!cosu

1~p12p2!Bi~2y8!Ai~y!sinu], ~9!

whereq5(yy8)1/4 andu5~F12F2!/2\2Re~F1p/4!. Now,
the agreement of the semiclassical results with the close-
coupling results is much closer, and the unitarity is fully
achieved. To the best of our knowledge, the importance of
the interference terms between the classically allowed and
the classically forbidden has not been widely recognized.

To this point in the discussion we have not addressed the
issue of the Maslov’s index. This number is an integer and is
related to the topology of the Lagrangian manifold on which

FIG. 1. Diffraction order functionJ(b) vs im-
pact parameterb for the scattering of4He atoms
at a total energy of 21 meV from two different
surfaces of Cu: a Cu~115! surface at incident
angleu i532° ~dashed line! and a Cu~117! sur-
face for an incident angleu i536° ~solid line!. To
guide the eye we have included the lines corre-
sponding to channels where either a uniform ap-
proximation is needed or the contribution from
forbidden trajectories are expected to be impor-
tant ~see text!.

TABLE I. Diffraction intensities for the scattering of4He atoms
from a Cu~115! surface at 21 meV andu i532°.

Diffraction
channel Semiclassical Close-coupling

Expt.
~Ref. 18!

3 0.137 0.148 0.125
2 0.228 0.219 0.234
1 0.0056 0.0037
0 0.149 0.152 0.190

21 0.059 0.059 0.060
22 0.022 0.022 0.019
23 0.148 0.148 0.116
24 0.149 0.149 0.153
25 0.073 0.072 0.099

26a 0.023 0.022
27a 0.0062 0.0039

aClassically forbidden transitions.
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the trajectory is confined. Each time the trajectory encounters
a caustic the semiclassical approximation suffers a singular-
ity. The semiclassical approximation on both sides of the
caustic can be joined by using Maslov’s theory.5 In this man-
ner one discovers that at each caustic one must add a phase
to the primitive semiclassical results. This phase is given by
the Maslov’s index. In the present example there are two
types of caustics when we project the Lagrangian manifold
on the coordinate plane. These caustics are shown in Fig. 2.
Trajectories at different sides of a rainbow angle differ in the
crossing of one caustic, which has the typical form of a cusp.
However, we numerically determined that the encounter with
this caustic do not cause additional phase change. Thus, all
trajectories contributing to a givenS-matrix element have the
same Maslov’s index. Furthermore, since only differences of
the classical actions occur in the expressions for the diffrac-
tion intensities, Maslov’s index plays no role at this level of
the theory.

In summary, we conclude that semiclassicalS-matrix
theory as applied in this section yields diffraction intensities
that are in good agreement with close-coupling results for the
scattering of atoms from stepped surfaces where the dynam-
ics are regular, and the diffraction order function is a smooth,
well-behaved function. In the next section the extension of
the classicalS-matrix theory to the case that the diffraction
order function is an ill-behaved function and the classical
dynamics are chaotic will be discussed.

III. FRACTAL STRUCTURES AND SCALING LAWS

Shown in Fig. 3 are the diffraction order functions for the
scattering of He from the~117! surface of Cu at incident
angles of 45° and 75°. Here, in contrast to the examples seen
in the previous section,J(b) is not a smooth, well-behaved
function. Rather, it shows ill-behaved chattering regions

where, at first sight, the trajectories appear to leave the sur-
face with random values ofJ. The evidence that the chatter-
ing region was not completely random or statistical was pre-
sented by Gottdiener for theH1H2 reaction.15

Subsequently, Noid, Gray, and Rice16 recognized the fractal
character of the chattering regions and calculated covering
dimension by box counting. More recently, Tiyapan and
Jaffé13 have analyzed the structure of these fractals in greater
detail. They have demonstrated the asymptotic self-similarity
of the chattering region and have determined the scaling pa-
rameters and the fractal dimension. In a subsequent paper
they have considered the extension of classicalS-matrix
theory to chaotic scattering systems. In the present paper we
will follow, with minor modification, the procedures dis-
cussed there and apply them to the present problem.

The application of classicalS-matrix theory to systems
that are chaotic is problematical. The major difficulty is that
there are an infinite number of trajectories that contribute to
the sum in Eq.~4!. The manner in which to evaluate the sum
is not obvious and requires a deep understanding of the
structure of the chattering region. If we expand the chattering
regions seen in Fig. 3, we observe that they consist of a
series of smooth subdomains, called ‘‘icicles,’’ separated by
gaps of more irregular behavior. Subsequent expansions
show that the same pattern can be seen at every scale, form-
ing a hierarchy of different generations.

The positions of the icicles within the chattering region
provide information concerning the dynamics of the system.
In the present case, they correspond to trajectories for which
a sufficient amount of energy has been transferred from the
perpendicular to the parallel degree of freedom so that they
are temporarily trapped in the attractive well close to the

TABLE II. Diffraction intensities for the scattering of4He at-
oms from a Cu~117! surface at 21 meV andu i536°.

Diffraction
channel

Semiclassical
~a!

Semiclassical
~b!

Close-
coupling

Expt.
~Ref. 18!

3 0.163 0.227 0.29 0.769
2 0.153 0.277 0.229 0.166
1 0.063 0.063 0.019
0 0.0048 0.0048 0.0077

21 0.072 0.072 0.088 0.051
22 0.057 0.057 0.061 0.013
23 0.0037 0.0037 0.0043
24 0.020 0.020 0.019
25 0.071 0.071 0.070
26 0.089 0.089 0.088
27 0.068 0.068 0.066
28 0.043 0.043 0.036

29c 0.019 0.019 0.021

aResults including the contribution from the direct scattering plus
classically forbidden transitions for channelsJ52 and 3 which are
close to the rainbows~see Fig. 2!.
bSame as~a! but including the interference terms between classi-
cally allowed and classically forbidden trajectories.
cClassically forbidden transitions.

FIG. 2. Projection on the coordinates plane of a series of trajec-
tories corresponding to different values of the impact parameter,b,
for the scattering from the Cu~115! surface at a total energy of 21
meV andu i532°. At the first turning point the pre-exponential
factor of the WKB wave function is singular, and the projection of
these singular points form a caustic~thick solid line!. Trajectories
starting at different sides of the first rainbow in Fig. 1 also encoun-
ters a second caustic.
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surface. All of the trajectories associated with a given icicle
are characterized by the number of bounces with the surface
and the number of unit cells traveled in each bounce. Then,
we can use a symbolic labeling to classify the icicles. Icicles
in the same generation have the same number of bounces
~two for the first generation, three for the second, etc.! and
they differ in the number of unit cells traveled in the last
jump. A unique labeling scheme along these lines is dis-
cussed in detail in Ref. 17. In this scheme each icicle in the
nth generation is labeled byn signed integers. The values of
the integers are equal to the number of unit cells accumu-
lated up to each bounce and the sign of the number indicates
whether the icicle appears to the right or left of the central
feature in the previous generation. This labeling system will
be used throughout this paper.

The self-similarity exhibited by the chattering regions can
be understood with expansions of irregular gaps far enough
from the center. In Fig. 4 we present the expansions of the
irregular gaps between two consecutive pairs of first genera-

tion icicles for an initial scattering angle of 75°. In Fig. 4~a!
is shown the gap between the@422# and the@432# icicles and
in Fig. 4~b! is shown the gap between the@432# and the
@442# icicles. In our symbolic labeling scheme, these icicles
correspond to trajectories that are trapped on the surface for
a jump and travel 42, 43, and 44 unit cells, respectively,
during the bounces. It is seen that both structures are virtu-
ally identical. This same result is observed for any pair of
gaps between icicles of any generation provided that their
position~family! within the generation is sufficiently high. In
other words, the fractal is asymptotically self-similar. This
implies that the icicles posses an invariant shape. This is
illustrated in Fig. 5 where we have plotted superimposed
images, scaled to unit height and width, of the@102#, @432#,
and the@1112# icicles. The existence of an invariant shape of
the icicles is quite clear. These results demonstrate the self-
similarity within a given generation~intragenerational self-
similarity!.

The self-similarity between different generations of
icicles can be demonstrated in the same manner, expanding
the central gaps of consecutive generations, until we arrive at
an invariant pattern. This suggests that, asymptotically, this

FIG. 3. ~a! Diffraction order functionJ(b) vs impact parameter
b for the scattering of4He atoms from a Cu~117! surface at a total
energy of 21 meV and for an incident angleu i545°. Notice that the
third rainbow has turned into a chattering region.~b! Same as~a!
but for u i575°. Now the three rainbows have reached the trapping
conditions giving a much wider chattering region than in the previ-
ous case.

FIG. 4. Gaps between:~a! icicles @422# and @432#, and ~b!
icicles @432# and @442#, corresponding to the chattering region of
Fig. 3~b!, both drawn to the same scale. The~asymptotic! self-
similarity of the fractal is evident.
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fractal can be characterized by two scaling laws:13a the first
one intragenerational~a! and the second intergenerational
~b!. If one is able to determine the two scaling parameters
then, in principle, the fractal can be reproduced~at least as-
ymptotically! from the knowledge of a single icicle.

There are several possible ways of determining the values
of the scaling parameters. For each scaling parameter we
chose the most convenient.

We first consider the intragenerational scaling parameter.
To obtain this parameter we compute the ratios of the widths
of neighboring icicles in the first generation

a i5
Wi11

~1!

Wi
~1! , for i51,2,... ,̀ . ~10!

The value of this ratio in the limiti→` gives the value of
the intragenerational scaling parameter. In the present case
this was determined to bea`.0.98. Note that this value is
valid for both the right- and left-hand sides of the fractal.
The intragenerational scaling law is then given by

Wi
~1!5a`

i W0
~1! , ~11!

whereW0
(1) is the width of the central icicle. Care must be

taken when using this equation, as it is only valid in the
asymptotic region. It should be noted that this scaling param-
eter can also be obtained by considering other quantities, for
example, the height of the icicles, the positions of the icicles,
the width of the gaps between icicles, etc. Further it is ob-
served that the same value for this scaling parameter is found
for subsequent generations.

In principle, the intergenerational scaling parameterb can
be found in a similar way. However it is very difficult to
obtain it in this manner due to the loss of numerical precision

as one approaches the asymptotic region. For this reason we
have developed a different approach based on the relation-
ship between the scaling parameters and the fractal dimen-
sion. Tiyapan and Jaffe´13a have shown that

ad12bd51, ~12!

whered is the fractal dimension. They have used this rela-
tionship to calculate the fractal dimension. The approach
taken here is to calculate first the fractal dimension and then
use Eq.~12! to calculate the intergenerational scaling param-
eter.

The method that we use to calculate the fractal dimension
is based on the existence of a Cantor set underlying the chat-
tering region. This Cantor set is present in all chaotic scat-
tering problems and include all of the trajectories that are
homoclinic to the trajectory at infinite separation with the He
atom traveling parallel to the surface. It will also include a
variety of other trajectories including both hetero- and ho-
moclinic orbits associated with various unstable periodic
orbits.22 The fractal dimension of this Cantor set in terms of
the scaling parameters is given by Eq.~12! above.

The value of the fractal dimension can be determined us-
ing the well-known box-counting method.23 However this
requires the use of an extremely large number of intervals as
the size of the intervals becomes smaller and is numerically
awkward. In the present case we have used an alternative
procedure developed by Lau, Finn, and Ott24 for the calcu-
lation of the uncertainty dimension. The uncertainty dimen-
sion is equal to the box-counting dimension for typical dy-
namical systems and is much easier to compute. For our
system, we implement this method as follows: We randomly
choose an impact parameterb within the chattering region.
Then we run two trajectories whose initial conditions corre-
spond to values of impact parameterb andb1e, wheree is
some small uncertainty. These two trajectories are followed
until the collision is over. At this point it is determined
whether or not the two trajectories are in the same icicle. If
they are not, the pair of trajectories are said to be uncertain.
We repeat this process, for the same value of the uncertainty,
until we have found 100 uncertain pairs of trajectories and
then calculate the fraction of uncertain trajectoriesf (e). The
fraction of uncertain trajectories is expected to scale expo-
nentially with the fractal dimension, that is,

d512d512 lim
e→0

lnf ~e!

lne
. ~13!

Plotted in Fig. 6 is the logarithm of the fraction of uncertain
trajectoriesf (e) versus the logarithm of the uncertainty pa-
rametere for nine orders of magnitude. We observe that the
uncertain fraction satisfies the relationf (e).ed. The value
of the fractal dimension is then determined from the value of
the slope and is given byd50.6360.01. Using this value of
the fractal dimension, the previously determined value of the
intragenerational scaling parameter and Eq.~12!, we deter-
mine the value of the intergenerational scaling parameterb
to be 0.000360.000 05.

FIG. 5. Icicles @102# ~dots!, @432# ~dashed line!, and @1112#
~solid line! corresponding to the chattering region of Fig. 3~b!
scaled to height and width unity. The convergence of the form of
the icicles to an invariant shape is clearly seen. This invariant shape
is the same for the right part of the fractal, and for other incident
angles.
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At this point we have characterized the asymptotic fractal
properties of the chattering region. It is important to observe
that these properties for a given crystallographic face are a
function of the energy alone and are independent on the in-
cident scattering angle.25 This result has important conse-
quences from the computational point of view. It implies that
the scaling parameters need only be determined once for
each energy, and more importantly, can be determined using
the most convenient incident angle. The invariance of the
fractal properties with respect to the incident angle is related
to the partition of phase space~actually the energy shell! into
volumes associated with each of the topologically different
families of trajectories. This partitioning represents an in-
variant fractal tiling of phase space22 and can be constructed
from the intersections of the stable and the unstable mani-
folds of the unstable trajectory at infinite separation and trav-
eling parallel to the surface. Scattering at different incident
angles explores different regions of this invariant fractal til-
ing, and thus, while the diffraction order function will have
different structures, the underlying fractal properties of these
structures are determined by the invariant fractal tiling. It can
be demonstrated that the invariant shape of the icicles is
identical to the shape of the direct region of the diffraction
order function for an incident angle of 90° and that the self-
similar pattern observed in the asymptotic region is in fact
identical to the chattering region for an incident angle of 90°.
This discussion will be the subject of a future publication.25

The self-similarity exhibited by these fractals is crucial in
the development of new analytical expressions for the
S-matrix theory in the chaotic regime. We conclude this sec-
tion with a discussion of the scaling properties of the quan-
tities required to construct the contributions to the semiclas-
sical S-matrix element from each contributing trajectory.
These are the slopes of the diffraction order function and the
classical actions for values of the impact parameter that sat-
isfy the Bragg condition. Theoretical considerations13a lead
one to expect that the slope and the difference of classical
actionsF12F2 scale both asa for the intragenerational case
and asb for the intergenerational case. This has been con-
firmed numerically. The scaling of the contributions to the
diffraction intensities is obtained by substituting the asymp-
totic expansions of the Airy functions20

py1/2Ai2~2y8!;sin2S p

4
1

DF

2\ D ,
~14!

py1/2Bi2~2y8!;cos2S p

4
1

DF

2\ D ,
whereDF5F22F1, into Eq. ~7! and expanding to first or-
der. From this it is determined that the contributions to the
diffraction intensities scale asa in the intragenerational case
and asb in the intergenerational case.

IV. SEMICLASSICAL S-MATRIX THEORY OF CHAOTIC
ATOM-SURFACE SCATTERING

As we stated before, for chaotic scattering problems the
existence of an infinite number of trajectories connecting the
initial and final states constitutes a great difficulty when try-
ing to do the summation of Eq.~4!. In an attempt, Rankin
and Miller9 assumed that direct collisions and complex form-
ing collisions contributed independently to the transition
probability, and treated the complex part statistically. In this
section we will check the feasibility of this assumption.
Grayce, Skodje, and Hutson11 considered only specific fami-
lies of complex orbits to account for the oscillations in
chemical reaction probabilities. Very recently, Tiyapan and
Jaffé13b used the scaling laws of the fractal to extend the
classicalS-matrix theory for the He-I2 collisions.

In the present treatment of the classicalS-matrix theory
applied to chaotic atom-surface scattering, the basic assump-
tion is that the direct and complex contributions to theS
matrix ~4! can be computed independently, and that inside
the chattering region each icicle contributes independently to
the scattering intensities, i.e., only the interference between
trajectories corresponding to the same icicle is considered.
This is equivalent to assume that the interferences between
all trajectories in different icicles will cancel out on average.
The diffraction intensities thus take the form

I J~E!.I J
direct1I J

chattering.uSJ
direct~E!u21 (

icicles
uSJ

icicle~E!u2.

~15!

FIG. 6. Decimal logarithm of the uncertainty
fraction vs the uncertainty. From the slope of the
straight line the uncertainty dimension of the
fractal Cantor set of singular points of theJ vs b
plots can be obtained. See text for details.
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The contribution from the direct trajectories is evaluated in
the usual way~see Sec. II!, and the contribution from the pair
of trajectories in each icicle with the uniform classical
S-matrix expression~7!. However we still have a problem
since the sum in Eq.~15! over icicles consists of an infinite
number of elements. At this point we can take advantage of
the fact that the individual probabilities obey asymptotic
scaling laws, which can then be introduced in the second
term of Eq. ~15!, giving a geometrical series which has a
definite limit. For example, the contribution of the first gen-
eration, if we separate the central and the asymptotic parts is

I J
~1!5I J

@0#~E!1 (
m51

M21

@ I J
@m1#~E!1I J

@m2#~E!#

1 (
m5M

`

@ I J
@m1#~E!1I J

@m2#~E!#, ~16!

where the first term is the contribution of the central icicle,
the second the contribution of theM21 icicles in the re-
gions where the scaling laws do not hold, and the third term
is the asymptotic contribution of the fractal to the first gen-
eration. If we now make use of the scaling law~11!, the third
term in Eq.~16! becomes

(
m5M

`

@ I J
@m1#~E!1I J

@m2#~E!#5
1

12a`
@ I J

@M1#~E!

1I J
@M2#~E!#. ~17!

Now making use of the intergenerational scaling parameter,
the contribution of the second generation can then be ex-
pressed in terms of the contribution of the first generation as

I J
~2!~E!52bI J

~1!~E!(
i51

`

a`
i 5

2ba`

12a`
I J

~1!~E!, ~18!

where the indexi runs over all of the gaps in the first gen-
eration. And, in general, the contribution from thenth gen-
eration is given by

I J
~n!~E!5F 2ba`

12a`
Gn21

I J
~1!~E!. ~19!

Finally, substituting this result in Eq.~15! we get

I J~E!5I J
direct~E!1I J

central~E!1
g

12g
I J

~1!~E!, ~20!

where

g5
2ba`

12a`
50.0294. ~21!

The contribution from all of the central gaps has been calcu-
lated separately using the scaling parameterb050.0795 valid
only for the central~nonasymptotic! part of the chattering
region. This parameter scales the widths of the central gaps
of successive generations,

I J
central~E!5

b0

12b0
I J

~1!~E!. ~22!

Let us conclude this part by making the remark that some
further approximations have been made in the derivation of
Eq. ~20!. In particular, it has been assumed that the intergen-
erational scaling law is valid for all generations, and that the
intragenerational scaling law holds for all icicles of the sec-
ond and higher generations. However, it can be expected that
the errors introduced in this way are very small since the
value of the parameter and the individual probabilities for
icicles on high-order generations are very small. Also, it is
important to note that in the calculation of the intensity of
each icicle it is very important to use the uniform semiclas-
sical expression~7!, since in the asymptotic region the con-
tributing pair of trajectories are very close.

Using expression~20! we have calculated the diffraction
intensities for the elastic scattering of4He atoms from the
Cu~117! surface at incident angles of 45° and 75°. The cor-
responding diffraction order functions were presented in Fig.
3, where it can be observed that the chattering region for 45°
is much narrower than for 75°. Also these two irregular re-
gions look qualitatively different. However, as we discussed
in Sec. III the asymptotic shape of the fractal structure is the
same for both incident angles, and we can use the same
scaling parameters in both cases. Only the contributions of
the direct part and the central icicles in the chattering regions
will make the scattering intensities different.

In Table III the results corresponding tou i545° are pre-
sented. The semiclassical calculations have been done at
three levels of approximation. In the second column we re-
port the result of considering the contribution from the direct
scattering and the classically forbidden transitions forJ52.
In the third column the contribution from the interference
terms with the classically allowed trajectories has been
added. Finally, in the fourth column the contribution from
the chaotic trajectories, computed using Eq.~20!, has also
been considered. The agreement with the close coupling and
experimental results is rather good. Moreover, by comparing
the different semiclassical results we can conclude that the
interference terms are quite important in this case, and on the
contrary the importance of the chattering region is very
small. Also our calculations show that within the fractal re-
gion the first generation gives the largest contribution.

In Table IV the results corresponding tou i575° are pre-
sented. In this case only two semiclassical values have been
computed. The first one corresponds to the contribution from
the direct collisions plus the forbidden contributions for
channelsJ527, 28, and29, and in the second one the
contribution from the chattering region has been added. The
agreement with the close-coupling results is globally accept-
able ~in this case the experimental results have not been in-
cluded in the table since the in-plane unitarity is very poor!.
Here the contribution from the fractal is more important than
in the previous case. In the last column of Table IV we have
included the results which are obtained when the chattering
region is treated using a statistical~Monte Carlo! method.9 In
this case, the results obtained in this way are similar to those
obtained by the present semiclassical method. At first sight
this is very surprising since the chattering region is highly
structured. We note that in the present conditions of energy
and incident angle the system is close to a selective adsorp-
tion resonance condition,19 a phenomenon where quantum-
mechanical tunneling is crucial. It is possible that the formal-
ism should be modified to take into account classically
forbidden processes inside the chattering region, a point
which is currently being investigated.
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Finally, a number of questions still remains to be studied.
Among them we can cite the role of the Maslov’s index. In
the present calculations we have set their differences to zero,
assuming that the conclusions obtained for the regular case
~Sec. II! also hold in the chaotic regime for each individual
icicle. However, a more systematic study needs to be done.

V. CONCLUSIONS

Although the nature of atom-surface diffraction process is
quantum mechanical in nature, we can use information of the

underlying classical dynamics to correctly describe some of
the associated observables, and even incorporate properly
quantum effects~tunneling! when the contribution of classi-
cally forbidden trajectories is included. This was an impor-
tant achievement of the classicalS-matrix theory two de-
cades ago.2 The semiclassical approach gives much of the
physical insight lost when only the ‘‘correct’’ quantum treat-
ment is used. However, theS-matrix theory encounters seri-
ous problems when the classical trajectories of the system
are chaotic. The dynamics of atom-surface scattering can be
very complex, and it is important to recognize how this com-

TABLE III. Diffraction intensities for the scattering of4He atoms from a Cu~117! surface at 21 meV and
u i545°.

Diffraction
channel

Semiclassical
~a!

Semiclassical
~b!

Semiclassical
~c! Close-coupling

Expt.
~Ref. 18!

2 0.2627 0.4637 0.464 0.464 0.781
1 0.0209 0.0209 0.0234 0.0365
0 0.0387 0.0387 0.044 0.0313 0.010

21 0.0916 0.0916 0.0975 0.0581 0.124
22 0.0355 0.0355 0.0402 0.0155 0.019
23 0.0077 0.0077 0.0107 0.0086
24 0.0402 0.0402 0.0402 0.0612 0.019
25 0.0861 0.0861 0.0861 0.104 0.019
26 0.0897 0.0897 0.0897 0.101
27 0.0623 0.0623 0.0623 0.0661

28d 0.032 0.032 0.032 0.033 0.025
29d 0.012 0.012 0.012 0.02

aResults including the contribution from the direct scattering plus classically forbidden transitions for chan-
nelsJ52, 28, and29.
bSame as~a! but including the interference terms between classically allowed and classically forbidden
trajectories, which are particularly important in this case.
cSame as~b! but including the contribution from the chattering region@see Fig. 3~a!# calculated using Eq.
~20!. No interference cross terms between the direct and the chattering region were taken into account.
dClassically forbidden transitions.

TABLE IV. Diffraction intensities for the scattering of4He atoms from a Cu~117! surface at 21 meV and
u i575°.

Diffraction
channel

Semiclassical
~a!

Semiclassical
~b! Close-coupling

Monte Carlo
~c!

0 0.1149 0.212 0.0104 0.193
21 0.003 0.1285 0.0296 0.117
22 0.0373 0.110 0.149 0.1088
23 0.1031 0.136 0.232 0.1367
24 0.1265 0.198 0.23 0.1668
25 0.1049 0.1098 0.17 0.1265
26 0.0663 0.0679 0.101 0.0713

27d 0.034 0.034 0.0486
28d 0.0198 0.0198 0.0199
29d 0.0079 0.0079 0.0105

aResults including the contribution from the direct scattering plus classically forbidden transitions for chan-
nelsJ527,28, and29. No interference between classically allowed and classically forbidden trajectories
need to be taken into account@see Fig. 3~b!#.
bSame as~a! but including the contribution from the chattering region.
cThe contribution of the chattering region has been calculated here using a statistical~Monte Carlo! method,
as proposed in Ref. 9.
dClassically forbidden transitions.
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plexity comes out. For a wide range of parameters~initial
incident angle, total energy or the corrugation of the surface!
the signatures of classical chaos can be found. In this case
the onset of chaos is always related to a loss of enough
momentum in the perpendicular mode, due to the corrugation
of the surface, so that the atom cannot escape to the asymp-
totic region and gets trapped.17 The occurrence of fractal
structures in chaotic scattering problems is now a well estab-
lished fact, and a considerable amount of information has
been provided in the past.8–17 Analogous features to those
found in the present system, and the relation between the
dynamics and the structure of the fractals is of universal
nature and has been found in different systems, such as
atom-molecule collisions.9–11,13,15,16

In this paper we have followed most of the procedures
proposed in Ref. 13b to extend, making use of the self-
similarity of the fractal, the ‘‘standard’’ classicalS-matrix
theory,2 to chaotic atom-surface scattering problems. The
agreement found between the semiclassical results obtained
with this method and the quantum close-coupling results
should stimulate the interest for carrying out similar studies
for other elementary processes taking place in the scattering

with surfaces, such as the existence of selective adsorption
resonances, sticking, or inelastic and diffusive scattering. It
is our opinion that within the theoretical formalism devel-
oped here that a very interesting view of those processes can
be obtained. Also, we have found that the inclusion of the
interference terms between classically allowed and classi-
cally forbidden processes is very important to get intensities
which are unitary. In this paper the influence of the vibra-
tions of the surface and its temperature on the diffraction has
not been taken into account. We have started some work
along this line, and preliminary results indicate that the trap-
ping probability is highly enhanced when the surface vibra-
tions, even at 0 K, are considered.
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