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Diffraction of atoms from stepped surfaces: A semiclassical chaoti&-matrix study
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The diffraction of atoms from stepped surfaces is treated using the semiclaSsitatrix theory. Two
different regimes of the behavior of the classical trajectories, regular and chaotic, are considered. For the latter
case, the diffraction order function presents a fractal structure, and there is an infinite number of trajectories
connecting the initial and final states. Using the scaling laws of the fractal, within the formalism of the
S-matrix theory, we have obtained diffraction and specular intensities, which are in fairly good agreement with
the experimental and quantum close-coupling res[8163-182@6)00221-4

[. INTRODUCTION the semiclassical theory, Connor, Marcus, and Miltevel-
oped uniform approximations and showed how these ap-
Presently, it is well accepted that diffraction patterns arisproximations reduce to the usual primitive semiclassical for-
ing in atom-surface scattering are exclusively the result ofula when the trajectories are far enough from the
the interference of each incident particle with itse@onse-  catastrophe. Berf§ studied the case of cusped rainbows in
qguently, this process can be best treated within a quantunscattering of atoms from a rippling-mirror surface.
mechanical formalism where the superposition principle Another problem which does not stem from a breakdown
holds. However the semiclassic@matrix theory, as devel- of the classicalS-matrix theory but is entirely due to the
oped independently in the early 1970’s by Marcus andextreme complexity of the dynamics of the system arises
Miller,? represents an alternative route, since it combinesvhen we have irregular or chaotic scatterfhin this case
classical mechanics with this quantum principle. The mairthere exist an infinite number of classical trajectories con-
advantage of this semiclassical analysis is the physical inRecting the initial and final states. This was observed by
sight gained since the dynamics of the process is explicithRankin and Miller for a gas-phase chemical reactiand
included. they proposed to divide th&-matrix sum over trajectories in
The validity of semiclassicaS-matrix theory for elastic two terms: a contribution from direct trajectoriésnly a fi-
atom-surface scattering was tested in the past by ¥9olic- nite numbey, plus a contribution coming from the complex
Cann and Cellf’ and Miller and co-worker$,and compari-  trajectories(a countable infinity, and computed statistically
son with other methods show®dthat the semiclassical this last part(random phase approximatiprOther authors
S-matrix calculations worked even better than other approxihave also considered this probléfi® The approaches
mate quantum methods. However the semiclassical theomange from just summing up a few contributions of complex
has several shortcomings that we want to discuss and addrefssming trajectories, such as in the work of Stine and
in this paper. Marcus!® to the use of some scaling properties to compute
The semiclassical theory can be viewed, in a very preciseontributions to the scattering cross sections in the more re-
sense, as the stationary phase approxima®&¥) to quan- cent work of Refs. 12b and 13b.
tum mechanics. The SPA is valid whenevers small with The chaotic region, also called the *“chattering” region,
respect to the total action of the system, and breaks doweaorresponding to complex forming trajectoriésapped tra-
when neighboring trajectories in coordinate space encountgectories in the case of atom-surface scatteripgesents a
a caustic. This usually occurs in the vicinity of a classicalfractal structure. This structure appears in all chaotic scatter-
turning point, and then Maslov's thednshould be used, ing problems*=*" In a recent paper, Tiyapan and Jaffe
which allows us to uniformize the semiclassical approxima-have studied the classical dynamics of collisional complexes,
tion. These are limits inherent to the SPA. formed in gas-phase Heg-kcattering, and made clear the
Another failure arises when the SPA is applied to find theself-similarity of the fractal structure. From initial phase
semiclassical limit of theS-matrix in scattering problems. angle-final action plots, they found the scaling laws, as well
The S-matrix elements are constructed using all the classicahs the fractal dimension of the Cantor set. More recently, a
trajectories connecting the desired initial and final states. Itlassical study of the elastic scattering of thtHe from the
two or more of the contributing trajectories give final stateshighly corrugated and stepped @47 surface has demon-
(as a function of the initial statgghat are close together, strated that the dynamics are chaotic for certain values of the
then the amplitude for th8-matrix element diverges. This is incident angle and scattering energy of the incoming atoms.
related to the well-known rainbow effect in scattering theory.The structure of the corresponding fractal has been analyzed
In this case catastrophe thebigan be applied to obtain the in detail!’” and we have also demonstrated that the onset of
appropriate uniform approximations. In the early stages othaos is intimately related to classical surface rainbows. The
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interest of this system stems from the fact that it has beepact parameter (8b=<1), and#; the initial incident angle.
extensively studied experimentaffy and close-coupling All trajectories are integrated until the He is once again in
result$® are available, and also a variety of other phenomenahe asymptotic regiofz>z,,,,) With sufficient energy to es-
apart from diffraction, such as surface rainbows and selectiveape from the surfaceH,(P,,z)>0], when all final values
adsorption resonances, occur. of various magnitudes are calculated. All calculations re-
In this paper we extend the work reported in Ref. 17 byported here are for a collision energy of 21 meV.
presenting a quantitative analysis of the chaotic scattering The diffraction intensities are constructed from the
processes taking place in the diffraction of atoms from veryS-matrix elements:
corrugated surfaces, CLL5 and Cy117), within the semi-

h . . . — 2
classical formalism. A comparison between experimental 13(E)=[Sy(B)[%, ©)
and theoretilcaQS'emchass,lcal and close-couplingsultsina  whereJ is an integer labeling the diffraction channel. The
chaotic regime is presented. semiclassical approximation to tH& matrix is given as a

The organization of the paper is as follows. In Sec. Il wesym over trajectories:
will briefly describe the system and the semiclassical
S-matrix theory for atom-surface scattering. Results for a
regular case will be presented, which can be taken as an SJ(E):;
illustration of the theory and also constitutes a test case of
the semiclassical calculation method for the case of atomthe diffraction order functiod(b) is defined by
stepped surface scattering. Section Il reviews the analysis of
the fractal structure appearing in the classical chaotic regime, (Px,— Pxo)a
and the scaling laws and fractal dimension are calculated. JI(b)= ot ®
The consequences of this structure for the clasSealatrix . )
theory are discussed, and results of diffraction intensities fofhe classical actio® by
different initial energies and incident angles are presented. t . _
These results are compared with quantum close-coupling and D(Py,Py,)=— f dt(xPy+2zP,), (6)
experimental results. Finally, we discuss the difficulties in- to
volved in our treatment and future developments. and w is the Maslov index.
The sum in Eq(4) is over all classical trajectories satis-
Il. SYSTEM DESCRIPTION AND SEMICLASSICAL fying the diffraction condition: this requires thatb) be an
S-MATRIX CALCULATIONS integer. The pre-exponential factors and the classical actions
in the terms of the sunt4) are evaluated at these points.
Clearly, all the information required for the evaluation of this

J —-1/2 o
= ex;{i(f— Wg””. (4)
b=b,,

The elastic collisions of‘He with two stepped Cu sur-
faces with an increasing degree of corrugati@hl5 and . ) .
(117), are studied in this paper. The corrugation of theseoUM €an be obtained in the construction of tes b plots.

surfaces lies primarily in the direction perpendicular to the Shown in Fig. 11is the diffraction order functial{b) as a
— . . function of the impact parametérfor two cases where only
[110] plane. Thus, we assume that the in-plane scatterin

predominates. This is confirmed experimentally for the5) gegular or direct scattering occurs: the dashed line is for the

(115 surface of Cu and initial scattering angle of 32°, and
surface and to a lesser degree for (h&7) surface. . s A
. ; the solid one for thé€117) surface and initial angle of 36°. As

Consequently, we can model this system with the two- . . o
deqrees-of-freedom Hamiltonian: seen here the diffraction order function is a smooth and well

g ' defined function. Consider first th@15 surface: classical
§+ pg trajectories satisfying the Bragg condition occur d6f — 5,
o +V(x,2), (D) —4,...,3. At each of these values there are two contributing

trajectories.

wherex andz are, respectively, the parallel and perpendicu- Observe that for thd= —5 andJ=3 diffraction channels
lar distances of the He patrticle to the Cu surface, ¥(xd z) the two contributing trajectories are close together. In these
a corrugated Morse function whose parameters have beaircumstances the primitive semiclassical approximation is
taken from the literaturé®°Note that the zero of the en- expected to fail and one must use an uniformized
ergy scale is defined as the He at infinite separation and approximatiorf, given in this case by
rest. ’ 272 ’ 2Ri2 ’
Classical trajectories are calculated using the following! J(E)=mVY'[(P1+P2)?AiP(—y") +(p1—p2)*Bi*(—y")],

H(Py,P,,x,2)=

initial conditions for the Hamiltonian’s equations of motion: (7)
7 =7 wherep, andp, are the pre-exponential factors defined in
07 “max: Eqg. (4), Ai(—y') andBi(—y') are the Airy functions of

Xo= — Zyofand; + ba, first and second kin&’ andy’ =[(3/4)(®,—®,)/4]?>.
Transitions to thel= — 6 and—7 diffraction channels are

P, =—\2mE cos; classically forbidden but energetically allowed, since they

0 are observed experimentally. The contribution from classi-

P, = 2mE sing; cally forbidden processes is accomplished by analytical
*o v continuatioR® of the diffraction order function at the rain-

wherez,,., represents a value afsufficiently large that the bow angle to find complex solutions satisfying the Bragg
coupling potential can be neglectdaljs the normalized im- condition. In the present casKb) was fitted to a quartic

)
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FIG. 1. Diffraction order functiod(b) vs im-

0 pact parameteb for the scattering ofHe atoms
-1 - at a total energy of 21 meV from two different
2 surfaces of Cu: a GQal5 surface at incident

J angle §;=32° (dashed lingand a C¢l17) sur-
-39 face for an incident anglé, = 36° (solid line). To
-4 - guide the eye we have included the lines corre-
5 sponding to channels where either a uniform ap-

proximation is needed or the contribution from
=6 7 forbidden trajectories are expected to be impor-
- tant (see text
-8
-9 LA U N L L I B L
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b

function in the neighborhood of the rainbow angle, and the Next we consider the scattering from tfl7) surface of
complex roots were found. Then the corresponding classi€u (solid line in Fig. 2. This surface is more highly corru-
cally forbidden trajectories were calculated in complex-gated and more diffraction channels are open. As a conse-
valued phase space. The primitive and uniform semiclassicauence, the intensity in the specular channel decreases in
approximations for the diffraction intensity becomes in thisfavor of the higher-order diffraction channels. In general, the
case interaction between the He atom and the surface is stronger
® and the experimentally observed diffraction pattern has more
) _ * N oscillations. In the present case there are four rainbow
L(B)=p ex;{ 21m ﬁ) (primitive), angles. Transitions to the diffraction channels labeled by
(8) -8, —7,...,3 are classically allowed, while transitions to the
| ,(E)=4p?mayY?Ai2(y) (uniform), J<-9 diffraction channels are energetically allowed but
o3 2 ) classically forbidden. For the two diffraction channels la-
where y=[(3/2)Im(®/A)]7", p=(dJ/db)"", and ® is the  pejledJ=2 andJ=3 we expect important contributions to
classical action of the classically forbidden trajectory.

. L . X the transition probabilities from the classically forbidden
The diffraction intensities for He scattering from 69  yrocesses associated with the rainbows in addition to the

surface of Cu are given in Table I. They are compared withy|5ssically allowed contributions. The semiclassical diffrac-

our close-coupling calculations and experimental result§ion intensities are compared with the close-coupling results
(note that the in-plane experimental results are normalized t@, Taple II. The semiclassical results given in the second

unity®). We see that the agreement between the semiclassiyjumn were obtained by simply adding the contributions

cal and close-coupling results is excellent for both the clasgrom the classically allowed and classically forbidden trajec-
sically allowed and the classically forbidden transitions. tories, that is, the interference between these two processes
has been neglected. The difference with the close-coupling
results is noticeable for the channdls 2 andJ=3. More-

over, when adding all calculated intensities, an important
loss of unitarity is found. This interference has been included

TABLE I. Diffraction intensities for the scattering dHe atoms
from a CY115 surface at 21 meV and,=32°.

Diffraction . . . Expt. in the results presented in the third column. The contribution
channel Semiclassical Close-coupling (Ref. 18 o o
from this interference is given by
3 0.137 0.148 0.125 _ _
2 0.228 0.219 0.234 4mqplL(p1+P2)AI(—y")Ai(y)cost
(l) 8:2236 8:2227 0.190 +(P1—P2)Bi(—y")Ai(y)sind], (9)
-1 0.059 0.059 0.060 whereq=(yy’)¥* and 6=(®,—,)/2h—Re(®+7/4). Now,
-2 0.022 0.022 0.019 the agreement of the semiclassical results with the close-
-3 0.148 0.148 0.116 coupling results is much closer, and the unitarity is fully
-4 0.149 0.149 0.153 achieved. To the best of our knowledge, the importance of
-5 0.073 0.072 0.099 the interference terms between the classically allowed and
—6? 0.023 0.022 the classically forbidden has not been widely recognized.
_7a 0.0062 0.0039 To this point in the discussion we have not addressed the

issue of the Maslov’s index. This number is an integer and is
&Classically forbidden transitions. related to the topology of the Lagrangian manifold on which
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TABLE II. Diffraction intensities for the scattering dfHe at-

oms from a C(l17) surface at 21 meV an€;=36°. 20 ]
Diffraction Semiclassical Semiclassical Close- Expt. 1o J
channel (@ (b coupling (Ref. 18 154
3 0.163 0.227 0.29 0.769 137
2 0.153 0.277 0.229 0.166 3
1 0.063 0.063 0.019 —~107
0 0.0048 0.0048 0.0077 :5 8]
-1 0.072 0.072 0.088 0.051 ® ]
-2 0.057 0.057 0.061 0.013 = 57
-3 0.0037 0.0037 0.0043 ]
—4 0.020 0.020 0.019 3_:
-5 0.071 0.071 0.070 05
—6 0.089 0.089 0.088 .
-7 0.068 0.068 0.066 -37
-8 0.043 0.043 0.036 -3
-5 0.019 0.019 0.021 10 5 0 5 10 15 20 25 30 35 40

—— — : _ x(a.u.)
®Results including the contribution from the direct scattering plus

classically forbidden transitions for channdts 2 and 3 which are

bgg;eetgégf gi;nit;lim%ﬁ]z T;lge. ?;lterference terms between CIaSSi_tories correqunding to different values of the impact parameter,

: - ] : for the scattering from the GLi15 surface at a total energy of 21
Ccally allowed and classically forbidden trajectories. meV and 6,=32°. At the first turning point the pre-exponential
Classically forbidden transitions. factor of the WKB wave function is singular, and the projection of

. . ) . . these singular points form a caustibick solid ling. Trajectories
the trajectory is confined. Each time the trajectory encountersiarting at different sides of the first rainbow in Fig. 1 also encoun-

a caustic the semiclassical approximation suffers a singulaters a second caustic.

ity. The semiclassical approximation on both sides of the

caustic can be joined by using Maslov’s thediy this man- ~ Where, at first sight, the trajectories appear to leave the sur-
ner one discovers that at each caustic one must add a phd@se with random values af. The evidence that the chatter-

to the primitive semiclassical results. This phase is given bynd region was not completely random or statistical was pre-
the Maslov's index. In the present example there are twented by Gottdiener for theH+H, reaction:®
types of caustics when we project the Lagrangian manifoldSubsequently, Noid, Gray, and Ri€eecognized the fractal

on the coordinate plane. These caustics are shown in Fig. gharacter of the chattering regions and calculated covering
Trajectories at different sides of a rainbow angle differ in thedimension by box counting. More recently, Tiyapan and
crossing of one caustic, which has the typical form of a CuspJafFé3 have analyzed the structure of these fractals in greater
However, we numerically determined that the encounter wittfetail. They have demonstrated the asymptotic self-similarity
this caustic do not cause additional phase change. Thus, d&f the chattering region and have determined the scaling pa-
trajectories contributing to a giveBrmatrix element have the rameters and the fractal dimension. In a subsequent paper
same Maslov’s index. Furthermore, since only differences othey have considered the extension of classigahatrix

the classical actions occur in the expressions for the diffractheory to chaotic scattering systems. In the present paper we
tion intensities, Maslov’s index plays no role at this level of Will follow, with minor modification, the procedures dis-
the theory. cussed there and apply them to the present problem.

In summary, we conclude that semiclassi@matrix The application of classicab-matrix theory to systems
theory as applied in this section yields diffraction intensitiesthat are chaotic is problematical. The major difficulty is that
that are in good agreement with C|ose_coup|ing results for théhere are an infinite number of trajectories that contribute to
scattering of atoms from stepped surfaces where the dynari?e sum in Eq(4). The manner in which to evaluate the sum
ics are regular, and the diffraction order function is a smoothis not obvious and requires a deep understanding of the
well-behaved function. In the next section the extension oftructure of the chattering region. If we expand the chattering
the classicals-matrix theory to the case that the diffraction regions seen in Fig. 3, we observe that they consist of a
order function is an ill-behaved function and the classicaiseries of smooth subdomains, called “icicles,” separated by
dynamics are chaotic will be discussed. gaps of more irregular behavior. Subsequent expansions
show that the same pattern can be seen at every scale, form-
ing a hierarchy of different generations.

The positions of the icicles within the chattering region

Shown in Fig. 3 are the diffraction order functions for the provide information concerning the dynamics of the system.
scattering of He from th€117) surface of Cu at incident In the present case, they correspond to trajectories for which
angles of 45° and 75°. Here, in contrast to the examples seensufficient amount of energy has been transferred from the
in the previous section](b) is not a smooth, well-behaved perpendicular to the parallel degree of freedom so that they
function. Rather, it shows ill-behaved chattering regionsare temporarily trapped in the attractive well close to the

FIG. 2. Projection on the coordinates plane of a series of trajec-

Ill. FRACTAL STRUCTURES AND SCALING LAWS
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FIG. 3. (a) Diffraction order functionJ(b) vs impact parameter FIG. 4. Gaps between(a) icicles [427] and [437], and (b)

b for the scattering of He atoms from a Q17 surface at a total icicles [437] and[44"], corresponding to the chattering region of
energy of 21 meV and for an incident angle=45°. Notice thatthe  Fig. 3(b), both drawn to the same scale. Tlasymptotig self-
third rainbow has turned into a chattering regiéin). Same aga) similarity of the fractal is evident.
but for §;=75°. Now the three rainbows have reached the trapping
conditions giving a much wider chattering region than in the previ-tion icicles for an initial scattering angle of 75°. In Figa#
ous case. is shown the gap between tf2™ ] and the[43™ ] icicles and

in Fig. 4b) is shown the gap between tid3"] and the
surface. All of the trajectories associated with a given icicle]44™] icicles. In our symbolic labeling scheme, these icicles
are characterized by the number of bounces with the surfaceorrespond to trajectories that are trapped on the surface for
and the number of unit cells traveled in each bounce. Thera jump and travel 42, 43, and 44 unit cells, respectively,
we can use a symbolic labeling to classify the icicles. Icicledduring the bounces. It is seen that both structures are virtu-
in the same generation have the same number of bouncedly identical. This same result is observed for any pair of
(two for the first generation, three for the second,)eind  gaps between icicles of any generation provided that their
they differ in the number of unit cells traveled in the last position(family) within the generation is sufficiently high. In
jump. A unigue labeling scheme along these lines is disother words, the fractal is asymptotically self-similar. This
cussed in detail in Ref. 17. In this scheme each icicle in themplies that the icicles posses an invariant shape. This is
nth generation is labeled hy signed integers. The values of illustrated in Fig. 5 where we have plotted superimposed
the integers are equal to the number of unit cells accumuimages, scaled to unit height and width, of fi@ ], [437],
lated up to each bounce and the sign of the number indicatemd thg/111 ] icicles. The existence of an invariant shape of
whether the icicle appears to the right or left of the centralthe icicles is quite clear. These results demonstrate the self-
feature in the previous generation. This labeling system wilkimilarity within a given generatiofintragenerational self-
be used throughout this paper. similarity).

The self-similarity exhibited by the chattering regions can The self-similarity between different generations of
be understood with expansions of irregular gaps far enouglticles can be demonstrated in the same manner, expanding
from the center. In Fig. 4 we present the expansions of théhe central gaps of consecutive generations, until we arrive at
irregular gaps between two consecutive pairs of first generaan invariant pattern. This suggests that, asymptotically, this
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as one approaches the asymptotic region. For this reason we
have developed a different approach based on the relation-
ship between the scaling parameters and the fractal dimen-
sion. Tiyapan and Jafté* have shown that

1.0

ad+2p9=1, (12)

whered is the fractal dimension. They have used this rela-
tionship to calculate the fractal dimension. The approach
taken here is to calculate first the fractal dimension and then
use Eq.(12) to calculate the intergenerational scaling param-
eter.

The method that we use to calculate the fractal dimension
is based on the existence of a Cantor set underlying the chat-
tering region. This Cantor set is present in all chaotic scat-
tering problems and include all of the trajectories that are
homoclinic to the trajectory at infinite separation with the He
atom traveling parallel to the surface. It will also include a
variety of other trajectories including both hetero- and ho-

FIG. 5. Icicles[107] (dots, [437] (dashed ling and [111°] mo_clir;izc orbits asso.ciated. with various unstab_le periodic
(solid line) corresponding to the chattering region of Figh Orbits™ The fractal dimension of this Cantor set in terms of
scaled to height and width unity. The convergence of the form ofthe Scaling parameters is given by Ej2) above.
the icicles to an invariant shape is clearly seen. This invariant shape The value of the fractal dimension can be determined us-
is the same for the right part of the fractal, and for other incidenting the well-known box-counting methdd.However this
angles. requires the use of an extremely large number of intervals as

the size of the intervals becomes smaller and is numerically
fractal can be characterized by two scaling ldWthe first ~awkward. In the present case we have used an alternative
one intragenerationale) and the second intergenerational procedure developed by Lau, Finn, and?®for the calcu-
(). If one is able to determine the two scaling parameterdation of the uncertainty dimension. The uncertainty dimen-
then, in principle, the fractal can be reprodudatileast as- sion is equal to the box-counting dimension for typical dy-
ymptotically) from the knowledge of a single icicle. namical systems and is much easier to compute. For our

There are several possible ways of determining the valuesystem, we implement this method as follows: We randomly
of the scaling parameters. For each scaling parameter wehoose an impact parameterwithin the chattering region.
chose the most convenient. Then we run two trajectories whose initial conditions corre-

We first consider the intragenerational scaling parameteispond to values of impact parameteandb+ €, wheree is
To obtain this parameter we compute the ratios of the width§ome small uncertainty. These two trajectories are followed

J 0.5 R

scaled R

0.0

0.0

scaled

of neighboring icicles in the first generation until the collision is over. At this point it is determined
whether or not the two trajectories are in the same icicle. If
W;}jl _ they are not, the pair of trajectories are said to be uncertain.
YV for i=1,2,.... (100 We repeat this process, for the same value of the uncertainty,
|

until we have found 100 uncertain pairs of trajectories and
The value of this ratio in the limit—c gives the value of then calculate the fraction of uncertain trajectori¢s). The
the intragenerational scaling parameter. In the present cade@ction of uncertain trajectories is expected to scale expo-
this was determined to be,=0.98. Note that this value is nentially with the fractal dimension, that is,
valid for both the right- and left-hand sides of the fractal.
The intragenerational scaling law is then given by

~Inf(e)
(1) T d=1-56=1—I|im .
WY =l Wy, (1D o Ine

(13

whereW{Y is the width of the central icicle. Care must be
taken when using this equation, as it is only valid in thePlotted in Fig. 6 is the logarithm of the fraction of uncertain
asymptotic region. It should be noted that this scaling paramtrajectoriesf(e) versus the logarithm of the uncertainty pa-
eter can also be obtained by considering other quantities, faametere for nine orders of magnitude. We observe that the
example, the height of the icicles, the positions of the iciclesuncertain fraction satisfies the relatiéte)=e’. The value
the width of the gaps between icicles, etc. Further it is ob-of the fractal dimension is then determined from the value of
served that the same value for this scaling parameter is fourttie slope and is given by=0.63*+0.01. Using this value of
for subsequent generations. the fractal dimension, the previously determined value of the
In principle, the intergenerational scaling paramegd@an  intragenerational scaling parameter and E®), we deter-
be found in a similar way. However it is very difficult to mine the value of the intergenerational scaling paramgter
obtain it in this manner due to the loss of numerical precisiorto be 0.0003:0.000 05.
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0.0 -
-0.5 — ¢
1.0
-1.5 —
—_ ] FIG. 6. Decimal logarithm of the uncertainty
L‘)o/ -2.0 fraction vs the uncertainty. From the slope of the
S0 ] p straight line the uncertainty dimension of the
2 2579 fractal Cantor set of singular points of tdevs b
3.0 . plots can be obtained. See text for details.
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At this point we have characterized the asymptotic fractal AD
. . . .. 1/2Ai2(_ ’)~Sin2 ——
properties of the chattering region. It is important to observe Ty y 2t on )

that these properties for a given crystallographic face are a
function of the energy alone and are independent on the in-
cident scattering angfe. Thi_s result_ has i_mporta_mt conse- 7yY2Bi2(—y')~cod Z+ ﬂ)

guences from the computational point of view. It implies that 4 2h

the scaling parameters need only be determined once for . i .

each energy, and more importantly, can be determined usingh€reA®==,—®,, into Eq.(7) and expanding to first or-
the most convenient incident angle. The invariance of th&'€'- Fr_om _th|s It Is determlneq that _the contrlbu_tlons to the
fractal properties with respect to the incident angle is relate(‘ij'ffr":mt'o'.1 intensities scale asin the intragenerational case
to the partition of phase spacactually the energy shelinto and asg in the intergenerational case.

volumes associated with each of the topologically different

families of trajectories. This partitioning represents an in-1V. SEMICLASSICAL S-MATRIX THEORY OF CHAOTIC
variant fractal tiling of phase spaceand can be constructed ATOM-SURFACE SCATTERING

from the intersections of the stable and the unstable mani- As we stated before, for chaotic scattering problems the
folds of the unstable trajectory at infinite separation and trav- '

eling parallel to the surface. Scattering at different incidemeX|stence of an infinite number of trajectories connecting the

angles explores different regions of this invariant fractal til-!nltlal and final states constitutes a great difficulty when try-

ing, and thus, while the diffraction order function will have ing to do the summation of Ed4). In an attempt, Rankin

different structures, the underlying fractal properties of theséde Miller® assumed that direct collisions and complex form-

structures are determined by the invariant fractal tiling. It can 9 collisions contributed independently to the transition

be demonstrated that the invariant shape of the icicles igrobability, and treated the complex part statistically. In this
) . ; . . -~ Section we will check the feasibility of this assumption.
identical to the shape of the direct region of the d|f1‘ract|onGra ce. Skodie. and Hutsbrconsidered only specific fami-
order function for an incident angle of 90° and that the self- yce, €, ysp

L ) . S lies of complex orbits to account for the oscillations in
similar pattern observed in the asymptotic region is in fact

) ; . : S - chemical reaction probabilities. Very recently, Tiyapan and
|de.nt|c.al to the che_lttermg region for an incident anglle of 90 ‘Jaffeé®® used the scaling laws of the fractal to extend the
This discussion will be the subject of a future publication. . . e
Y e : .. classicalS-matrix theory for the He-l collisions.
The self-similarity exhibited by these fractals is crucial in

the development of new analytical expressions for the In the present treatment of the classiamatrix theory

S-matrix theory in the chaotic regime. We conclude this Sec_apphed o chaotic atom-surface scattering, the basic assump-

tion with a discussion of the scaling properties of the quan:“On is that the direct and complex contributions to e

tities required to construct the contributions to the semiclas[namx (4) can be computed independently, and that inside

sical S:matrix element from each contributing trajectory. the chattering region each icicle contributes independently to

. . ) the scattering intensities, i.e., only the interference between
These are the slopes of the diffraction order function and the : ) N ;
) ; ; rajectories corresponding to the same icicle is considered.
classical actions for values of the impact parameter that sat: - . -
his is equivalent to assume that the interferences between

isfy the Bragg condition. Theoretical consideratibfidead ; L - .

. . gll trajectories in different icicles will cancel out on average.
one to expect that the slope and the difference of classic : o .

; . . he diffraction intensities thus take the form

actions®,—®, scale both a& for the intragenerational case
and asp for the intergenerational case. This has been con-
firmed numerically. The scaling of the contributions to the | gy direct; |chattering_ | gdirect =124 gicicle g2
diffraction intensities is obtained by substituting the asymp- AB=1; J IS5 E) ic%es| (B
totic expansions of the Airy functiofi$ (15)

(14)
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The contribution from the direct trajectories is evaluated in Let us conclude this part by making the remark that some
the usual waysee Sec. )| and the contribution from the pair further approximations have been made in the derivation of
of trajectories in each icicle with the uniform classical Eq.(20). In particular, it has been assumed that the intergen-
S-matrix expressiorn(7). However we still have a problem erational scaling law is valid for all generations, and that the
since the sum in Eq15) over icicles consists of an infinite intragenerational scaling law holds for all icicles of the sec-
number of elements. At this point we can take advantage oPnd and higher generations. However, it can be expected that
the fact that the individual probabilities obey asymptoticthe errors introduced in this way are very small since the
scaling laws, which can then be introduced in the secony@ue of the parameter and the individual probabilities for
term of Eq.(15), giving a geometrical series which has a ICiclés on high-order generations are very small. Also, it is
definite limit. For example, the contribution of the first gen- IMPOrtant to note that in the calculation of the intensity of

eration, if we separate the central and the asymptotic parts %ach icicle it is very important to use the uniform semiclas-
sical expressiort7), since in the asymptotic region the con-

M-1 tributing pair of trajectories are very close.
N _ X ; : .
IO=10E)+ > [ E)+ 1 ()] ~ Using expressiort20) we have calculated the diffraction
m=1 intensities for the elastic scattering 8He atoms from the

" Cu(117) surface at incident angles of 45° and 75°. The cor-
m+ m- responding diffraction order functions were presented in Fig.
+mZ'M (5" @)+ 1" B, (16) 3, where it can be observed that the chattering region for 45°
is much narrower than for 75°. Also these two irregular re-
where the first term is the contribution of the central icicle,gions look qualitatively different. However, as we discussed
the second the contribution of tHd —1 icicles in the re- in Sec. lll the asymptotic shape of the fractal structure is the
gions where the scaling laws do not hold, and the third termrsame for both incident angles, and we can use the same
is the asymptotic contribution of the fractal to the first gen-scaling parameters in both cases. Only the contributions of
eration. If we now make use of the scaling 14li), the third ~ the direct part and the central icicles in the chattering regions
term in Eq.(16) becomes will make the scattering intensities different.
In Table 1l the results corresponding th=45° are pre-
< . _ 1 N sented. The semiclassical calculations have been done at
> mE) +ImIE) )= —— 1M (E) three levels of approximation. In the second column we re-
m=M 1-a. port the result of considering the contribution from the direct
M ] scattering and the classically forbidden transitionsXer2.
+I57 A(B)]. (17) In the third column the contribution from the interference
Now making use of the intergenerational scaling parametef€Ms Wwith the classically allowed trajectories has been
the contribution of the second generation can then be e added. Finally, in the fourth column the contribution from

pressed in terms of the contribution of the first generation al'e Shaotic trajectories, computed using E20), has also
een considered. The agreement with the close coupling and

® 5 experimental results is rather good. Moreover, by comparing
@)(Ey= (€ i Bas (1) the different semiclassical results we can conclude that the
I57(E)=2B17(E) 2, a. I57(E), (18 T e
i=1 1-a, interference terms are quite important in this case, and on the
. ; , , contrary the importance of the chattering region is very
where the index runs over all of the gaps in the first gen- gmajl. Also our calculations show that within the fractal re-
eration. And, in general, the contribution from théh gen-  gjon the first generation gives the largest contribution.

eration is given by In Table IV the results corresponding &p=75° are pre-
no1 sented. In this case only two semiclassical values have been
|<n>(E): 2Ba I(l)(E) (19) computed. The first one corresponds to the contribution from
J 1-a, J ' the direct collisions plus the forbidden contributions for

) o ) ) channelsJ= -7, —8, and -9, and in the second one the
Finally, substituting this result in Eq15) we get contribution from the chattering region has been added. The
y agreement with the close-coupling results is globally accept-
_ | direc central _7 W able (in this case the experimental results have not been in-
|(E)=I15"HE) + 15 () + 1-vy I57(B), (20 cluded in the table since the in-plane unitarity is very poor
Here the contribution from the fractal is more important than
in the previous case. In the last column of Table IV we have
2Ba incl_ude.d the resultg which are obtained when the chattering
= * —0.0294. (21)  region s treated using a statisticMonte Carlg method? In
1-a., this case, the results obtained in this way are similar to those

The contribution from all of the central gaps has been calcupbtalned by the present semiclassical method. At first sight

. . X this is very surprising since the chattering region is highly
lated separately using the scalmgparamﬁﬁr0.0?QS Va!'d structured. We note that in the present conditions of energy
only for the central(nonasymptotit part of the chattering

‘ , . and incident angle the system is close to a selective adsorp-
region. This parameter scales the widths of the central gapg,n resonance conditio. a phenomenon where quantum-

where

Y

of successive generations, mechanical tunneling is crucial. It is possible that the formal-
B ism should be modified to take into account classically
|Seal ) = 0 I\V(E). (22)  forbidden processes inside the chattering region, a point

1= which is currently being investigated.
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TABLE lll. Diffraction intensities for the scattering dfHe atoms from a 0117 surface at 21 meV and

6,=45°.
Diffraction Semiclassical ~ Semiclassical  Semiclassical Expt.
channel @ (b) (c) Close-coupling (Ref. 18
2 0.2627 0.4637 0.464 0.464 0.781
1 0.0209 0.0209 0.0234 0.0365
0 0.0387 0.0387 0.044 0.0313 0.010
-1 0.0916 0.0916 0.0975 0.0581 0.124
-2 0.0355 0.0355 0.0402 0.0155 0.019
-3 0.0077 0.0077 0.0107 0.0086
-4 0.0402 0.0402 0.0402 0.0612 0.019
-5 0.0861 0.0861 0.0861 0.104 0.019
-6 0.0897 0.0897 0.0897 0.101
-7 0.0623 0.0623 0.0623 0.0661
—gd 0.032 0.032 0.032 0.033 0.025
-9 0.012 0.012 0.012 0.02

®Results including the contribution from the direct scattering plus classically forbidden transitions for chan-
nelsJ=2, -8, and—9.

bSame as(@) but including the interference terms between classically allowed and classically forbidden
trajectories, which are particularly important in this case.

¢Same agh) but including the contribution from the chattering regimee Fig. 8)] calculated using Eq.

(20). No interference cross terms between the direct and the chattering region were taken into account.
dClassically forbidden transitions.

Finally, a number of questions still remains to be studiedunderlying classical dynamics to correctly describe some of
Among them we can cite the role of the Maslov’s index. Inthe associated observables, and even incorporate properly
the present calculations we have set their differences to zerguantum effectgtunneling when the contribution of classi-
assuming that the conclusions obtained for the regular cage@lly forbidden trajectories is included. This was an impor-
(Sec. 1) also hold in the chaotic regime for each individual tant achievement of the classic&matrix theory two de-

icicle. However, a more systematic study needs to be donecades agé.The semiclassical approach gives much of the
physical insight lost when only the “correct” quantum treat-

ment is used. However, ti&matrix theory encounters seri-

ous problems when the classical trajectories of the system
Although the nature of atom-surface diffraction process isare chaotic. The dynamics of atom-surface scattering can be

guantum mechanical in nature, we can use information of theery complex, and it is important to recognize how this com-

V. CONCLUSIONS

TABLE IV. Diffraction intensities for the scattering dHe atoms from a C{117) surface at 21 meV and

0i = 75° .
Diffraction Semiclassical Semiclassical Monte Carlo
channel €)] (b) Close-coupling (c)
0 0.1149 0.212 0.0104 0.193
-1 0.003 0.1285 0.0296 0.117
-2 0.0373 0.110 0.149 0.1088
-3 0.1031 0.136 0.232 0.1367
-4 0.1265 0.198 0.23 0.1668
-5 0.1049 0.1098 0.17 0.1265
-6 0.0663 0.0679 0.101 0.0713
-7 0.034 0.034 0.0486
—gd 0.0198 0.0198 0.0199
-9 0.0079 0.0079 0.0105

®Results including the contribution from the direct scattering plus classically forbidden transitions for chan-
nelsJ=—7, —8, and—9. No interference between classically allowed and classically forbidden trajectories
need to be taken into accousee Fig. 8)].

bSame aga) but including the contribution from the chattering region.

“The contribution of the chattering region has been calculated here using a statidtose Carlg method,

as proposed in Ref. 9.

dClassically forbidden transitions.
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plexity comes out. For a wide range of paramet@nitial  with surfaces, such as the existence of selective adsorption
incident angle, total energy or the corrugation of the sujfaceresonances, sticking, or inelastic and diffusive scattering. It
the signatures of classical chaos can be found. In this cade our opinion that within the theoretical formalism devel-
the onset of chaos is always related to a loss of enougbped here that a very interesting view of those processes can
momentum in the perpendicular mode, due to the corrugatiope obtained. Also, we have found that the inclusion of the
of the surface, so that the atom cannot escape to the asympterference terms between classically allowed and classi-
totic region and gets trappéd.The occurrence of fractal cally forbidden processes is very important to get intensities
structures in chaotic Scattering pI’OblemS is now a well eStahNhich are unitary_ In th|s paper the inﬂuence Of the Vibra_
lished fact, and a considerable amount of information hasions of the surface and its temperature on the diffraction has
been provided in the pa8t™’ Analogous features to those not bheen taken into account. We have started some work
found in the present system, and the relation between thgiong this line, and preliminary results indicate that the trap-

dynamiCS and the structure Of the fractals is of Universabing probab”r[y is h|gh|y enhanced when the surface vibra-
nature and has been found in different systems, such afns, even at 0 K, are considered.

atom-molecule collision$; 11131516

In this paper we have followed most of the procedures
proposed in Ref. 13b to extend, making use of the self-
similarity of the fractal, the “standard” classic&-matrix
theory? to chaotic atom-surface scattering problems. The This work has been supported in part by DGIC{Spain
agreement found between the semiclassical results obtaineshder Contracts No. PB92-53 and PB92-181, and the NSF
with this method and the quantum close-coupling result§USA) Grant No. RII-8922106. C.J. and R.G. gratefully ac-
should stimulate the interest for carrying out similar studiesknowledge a sabbatical and doctoral grants, respectively,
for other elementary processes taking place in the scatterinfigom the Ministerio de Educacipy Ciencia(Spain.
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