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Higher-order elasticity of cubic metals in the embedded-atom method
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The higher-order elasticity of cubic metals in the framework of the embedded-atom m@Ehdd) is
investigated. Proper groupings of the second- and third-order elastic moduli are shown to yield expressions that
depend solely on either the electron density function or the pair potential and which therefore facilitate the
construction of EAM models. This formulation also makes evident some important restrictions on the EAM
functions and lattice summations. In order for the EAM to model the anharmonic properties acciaagly,
least the third-nearest-neighbor interactions must be included in the expressions for the cohesive energies of
both the body-centered-cubic and face-centered-cubic metaldpad electron density function of an inverse
power form, as has been employed previously, generally is not valid. Specific EAM models are constructed for
a diverse selection of metalge., aluminum, copper, sodium, and molybdenuifhese models identically
reproduce the respective second- and third-order elastic moduli, as well as the binding energy, atomic volume,
unrelaxed vacancy formation energy, and Rose’s universal equation of state. They also provide reasonable
phonon frequency spectra and structural energy differences

[. INTRODUCTION V). The empirical input data consist of the second-order elas-
tic moduli, third-order elastic moduli, lattice constant at zero
The semiempirical approach to atomistic modeling hagpressure, cohesive energy, unrelaxed vacancy formation en-
been widely used in the study of condensed matter. Mosérgy, and Rose’s universal equation of sfafénally, these
applications involve relatively large, complex, displacementanodels are shown to give relatively good descriptions of
of atoms from their equilibrium positions in the unstressedphonon frequency spectra.
perfect crystal. Phenomena of interest include the formations Initial attempts to model metals semiempirically made use
and configurations of crystalline defedtittice deformation  of pair potentials, which are particularly efficient computa-
and stability at finite straif,and bifurcations and structural tionally. While this approach has been found capable of re-
transitions of crystals under loddComputational results are producing the salient trends of the linear elastic behavior of
likely to be enhanced by use of an atomic model that dis€rystals(e.g., the algebraic signs of Poisson’s ratios and the
plays the appropriate harmonic and anharmonic, anisotropi@rderings of the magnitudes of the shear moduli, Young's
elastic behavior of the parent crystal, i.e., that accurately remoduli, and Poisson’s ratios associated with major crystallo-
flects both the second- and third-order elastic moduli of thegraphic symmetrie€ it is lacking in a strong theoretical
material under consideration. justification. In addition, any pair potential model yields cer-
The present work explores the higher-order elasticity oftain unphysical conditionge.g., the Cauchy symmetries
cubic metals in the framework of a particularly popular semi-among the elastic moduli and an unrelaxed vacancy forma-
empirical modeling technique, i.e., the embedded-atontion energy that is equal to the cohesive engrgy
method(EAM). Formulas are given for computing the third-  In recent years, considerable effort has been directed to-
order elastic moduliTOEM) in general EAM formulations; ward the development of atomistic models that retain much
expressions for the second-order elastic moduli have previef the essential simplicity and mathematical tractability of
ously appeared in the literatutélhe elastic moduli are then the pair potentials and also provide a more realistic and ac-
grouped in relations that are shown to depend solely on eieurate description of the relevant energetics. One example,
ther the electron density function or the pair potential func-which for simple metals finds justification in pseudopotential
tion. These expressions greatly facilitate the construction ofheory! is the addition of a purely volume-dependent term to
any EAM models that incorporate data of the TOEM of cu-the summation of pairwise potential interactions. While this
bic crystals. It is further demonstrated that the EAM is ca-approach is useful for the study of “bulk propertie§®'and
pable of exhibiting all of the second- and third-order elasticit removes the Cauchy symmetries, the explicit volume de-
moduli subject to certain restrictions upon the EAM func- pendence entails ambiguities at surfaces or near defects. Fur-
tions and lattice summations; e.¢af least the third-nearest- thermore, as noted by Cousins and Maftian energy ex-
neighbor interactions must be included in the expression fopression consisting of only a pair potential and a volume-
cohesive energy. As examples of the use of these relationdependent term still imposes physically unrealistic
specific models are constructed for the face-centered-cubi@strictions upon third-order elastic moduli.
(fcc) metals Al and Cu and the body-centered-cufiico Another computationally efficient approach that is ca-
metals Na and Mo. These metals were selected because egmble of circumventing such limitations is the embedded-
has a characteristically different elastic response to load, anatom method. Since its introductidhthe EAM has found
when considered as a group, their responses included thosemerous applications, including phonons, thermodynamic
that are typical of cubic metalghis is explained later in Sec. functions, liquid metals, defects, grain boundary structure,
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alloys, interdiffusion in alloys, segregation to surfaces andorocedure to the construction of specific EAM models for
grain boundaries, fracture, and mechanical properties; Refl, Cu, Na, and Mo, and use these models to calculate pho-
11 contains a comprehensive review. It has been observatbn frequency spectra and structural energy differences.
that the EAM deals with transition metals with nearly filled
or nearly emptyd bands quite well. In addition, a number of
EAM models have been proposed for the bcc transition
metals®~*° (although, as is often mentioned, with somewhat  For a crystal of cubic symmetry, there are six independent
less theoretical justification TOEM: Cy31, C112, Ci2ss C1a4, Ci66, andCysg. The defi-
The general expression for the configurational cohesivgjtion of elastic moduli widely used in the literature was
energy per atomz, in a homogeneous crystal according to given by Brugger-” Within the potential approximation, one

Il. THIRD-ORDER ELASTIC MODULI

the EAM is considers the elastic free energy per unit magéz), to
1 depend on only the Lagrangian strain matsix. The Taylor
E=F(p)+ _Z B(ri), (13 series expansion d&(#) about the unstressed state, which
27 will be referred to below as the reference state, results in
with
G(7n) G(0)+ !
po(71)=po 5 Cijkl 7ij Mkl
p=2, f(ry), (1b) 2
1
whereF(p) is the embedding functiom, is the total electron + gcijklmnnij M Pmnt -, 2

density at the reference atomic sity;;) is the electron

density function,é(rj;) is the pair potential function, and

rij is the distance between atomandj. In principle, EAM

functions can be determined from first principtéhut in

practice, they are invariably determined semiempirically.

Thus numerous EAM functions and fitting schemes for in-

corporating empirical data have appeared in the literature. In

this respect, it is important to note that the TOEM render 1

restrictions that are useful in “narrowing the field.” poG(7)=peG(0)+ 52 Cint+ 2 Camny
In modeling metals of cubic symmetry, on which this pa- =1 1=

per is focused, the physical properties to which most EAM

functions have been fitted are the lattice constant, the cohe- +

sive energy, the unrelaxed vacancy formation energy, and

the three second-order elastic moduli. In some cases, the em-

bedding functionF(p) is also made to conform to Rose’s + > Cukmmnkt . 3

universal equation of statgo improve the ability of the I<J<Kk

model to describe the volume-dependent anharmonic proper-

ties of the metalhowever, this approach does not incorpo- Correspondinglynth-order elastic modulCy;x,... are de-

rate empirical anisotropic anharmonic datihus, a typical fined as

EAM model is fitted to physical properties that depend on up

to second derivatives of the configurational energy with re- 1 "G

spect toarbitrary, homogeneous, lattice strains. Such proce- CuK-..:Q—( )

dures have yielded efficacious EAM models of metals; as 0

mentioned earlier, further enhancement attaches to modelsh 0. is th | ¢ t the ref tate. H

that also describe fully the physical properties that depend o Ereslo IS tne volume per atom at the relerence state. Here

the third derivatives of energy with respect to arbitrary ho-. e elastic energfs is simply the conf|gurat|onall engrg&

mogeneous lattice strains, i.e., the third-order elastic modul{” the EAM format. To evaluate the above derivatives, the

The following sections examine the roles of the compo-&/‘?”I are expressed In terms er’ V\."th r being the dis-
nent parts of the EAM in the description of the TOEM. Eance . bet\iveen& 'at“cf-‘ points in the crystal. If
These sections also comprise a formalism for incorporating (= X1i +Xz] +X3k) andr are lattice vectors in the strained
the TOEM in the EAM. Section Il contains the general for- @nd unstrained crystals, respectively, wiftrepresenting the
mulas for the elastic moduli within the EAM framework. Cartesian component af in the ith direction, then the dif-
Section Il shows how the proper groupings of the elasticference in their magnitudes is given by

moduli can lead to independent determinations of the pair

wherep, is the density at the reference state and the standard
summation convention is employed,ji,k,1=1,2,3). If we
now use the Voigt notation in replacingy;,, with C,
C112233With C123, 711 W|th 7]1, 2’)723 W|th m etC., then

6

6

1
> Cuin+ 52 Ciamn;
=1 e

0| =

— |, (4)
dmdnydng- - -

potentialé(r) and the electron density functidifr). In Sec. 6
IV, we suggest particular model functior&(r) and f(r), r2—r(2)=22 X7, (5)
which have the capability of yielding embedded-atom mod- =1

els with the correct elastic properties; the determination of

the remaining EAM functionF(p) is also discussed. Sec- whereX,=x;x; andl is the Voigt contraction ofj. Second-
tions II-1V constitute a methodology that can be applied toand third-order elastic moduli within the EAM framework
cubic metals in general. Finally, in Sec. V, we apply thisare then written as
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QOCIJ:F"(Z ﬁ)(E g)"": > XXJ(f” ! )"‘%2 XI)z(J(W’_i): (6)

r r r r
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r r r

X;f X X f’ X f' X X f’
L EJ_) > K(f!/ ) e 2K ) S J<f,, _”
r r? r r? r
X XX f” f’ 1 X XX !
+F' Y IrJ K(f'" 37132 +§E Ir; K(d’"’ 3(1: +3<rb : (7)

where the primes on thé andf functions represent derivatives with respecptandr, respectively. For a crystal of cubic
symmetry, the expressions for the three independent second-order elastic moduli are

2.|:/ 2 4 ’
QoCu:F"(Z X%) > %(f"—f—) —2 ( ‘/’), ®

2¢1\ 2 2,2 2,2
, xif ~ xaxe( o )l X, @
rolzZF(ET) +FET<f—T +§Er_2 "= €)
2 2 2,2
xpxo o f 1o X[ @
QCo=F' > = (f ——)+§ —rz—((b —7), (10)

and, for the six independent third-order elastic moduli,

2¢7

x3f\ 3 X2t X f!
roll]_: FW(E 1r ) +3F//(z 1 )|: 1(f/7__

r

”n !

f
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X2f! x2 2 £/
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ry
xif
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r (16)

QCuse=F' 2
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The summations in Eq$6)—(16) are understood to be taken TABLE |. Physical constants of Al, Cu, Na, and Mo used as
over atomg around the reference atoin(i #j); although a  input parameters; all data are experimental except forGfje of
cutoff is often employed after summing up to just the Na, which are from pseudopotential calculations. Lattice constants
second-nearest neighbors, it is essential to include more diéd) are from Ref. 23. Unrelaxed vacancy formation energig )
tant neighbors if the model is to avoid unphysical restrictionsr Al, Cu, Na, and Mo are from Refs. 24, 25, 26, and 27, respec-

on Cjjx . For example, if only the first- and second-neares
neighbors are included in a bcc crystaé., the summations
are over only the lattice points+3a,*3a,+3a), (+a,0,0),
(0,+£a,0), and (0,0+a)], Egs. (14 and (15 yield
C144=Cye6- Similarly, for the fcc lattice, inclusion of only
the sites (-2a,+32a,0), (+32a,0,+%a), (0,+3%a,*%a),
(£4a,0,0), (0*a,0), and (0,0;£a) results inC,ys56=0 in
Eq. (16).

[lI. CONTRIBUTIONS TO ELASTIC MODULI FROM
CENTRAL AND NONCENTRAL INTERACTIONS

If the configurational energy is represented by a pair po
tential aloneli.e., F(p)=0], inspection of the above equa-
tions reveals the Cauchy symmetriesC;,=Cyy4,
C110=Ci6, and Cigs=Ci25=Cyse. By employing the
EAM, these unrealistic conditions may be avoided. Further
more, the actual deviations from Cauchy symmetries, ofte

called “Cauchy discrepancies,” may be expressed solely in
terms of the noncentral or many-body interactions, which are

represented b¥ (p) andf(r). Johnson and G made use
of this fact in separatingy from F and f using the second-
order Cauchy discrepancy, i.e.,

) 2

x3f'

r

Qo(C1o—Cyy) = F"( > (17)

Because we now consider TOEM as well, we can utilize the
three third-order Cauchy discrepancies in the derivation of

three additional relations betwe&nhand f:

2¢1\ 3 2¢1
o X S Xaf
Qo(Ciz~Cied =F (2 —) +F 2 T)
4 2
X f’ x5f’
X[E r_;(fﬂ_T +F” E 17)
2,2
X7X f’
J2 (el
2¢1\ 3 2¢7
n le n 1f
Q0(C125~ Case) =F (2 —| +3F [ 2 T)
2,2
X7X f’
X[E %(f"—TH, (19
2¢7 2,2
, xif XXz o f
99(0144_C456):F (E T)[z r_z(f _T .
(20

With a little more algebraic manipulation, we separ&te
from f.

Equation (18) plus two times Eq.20) minus Eq.(19)
results in

tively. Cohesive energiesEg,y are from Ref. 28. Second-order
moduli (C;;) for all metals are from Ref. 29. Third-order moduli
(Cijx) for Al, Cu, Na, and Mo are from Refs. 30, 31, 32, and 33,
respectively.

Al Cu Na Mo
ay (A) 4.05 3.62 4.29 3.15
Ey (eV) 0.67 1.28 0.42 31
E o (€V) 3.34 3.50 113 6.81
C;1 (Mban) 1.08 1.69 0.0759 4.59
Ci, (Mban) 0.62 1.22 0.0633 1.68
C,4 (Mbar) 0.283 0.753 0.043 1.11
T,, (Mban  —10.76 —1271 —0935  —3557
Cy1, (Mban) -315  -814 -0.114 -1333
C 125 (Mban) 036  -050 -0230  —6.17
C 14 (Mbap) ~023  -003 -0298  —2.69
T 166 (Mban) -340  -7.8 -0172  -893
45 (Mbar) -030  -095 -0248  —555
Qo(2C 1441+ C115~ C166— C123— Cuse)
X2fr X4 £/
e

Divide each side of Eq(17) by the respective sides of Eq.
(20),

2¢7
xif

r
f/

(f”——

r

_ ClZ_ C44
) Cl44_ C456,

22
X2x5 (22)

popacs
and by the respective sides of HG1),
X2t/
e
Xl ¥
r2 r

_ C1o—Cus
) 2C 144+ C119~ C166~ C123— Cuse’

2>

(23

Equations(22) and (23) provide important information
about the character of the electron density funcfitr). For
example, it is evident that a monotonically decreasing func-
tion of the formf(r)«1/r# as used by Johnson and Bill
not, in general, satisfy both relations as this function limits
f’ andf” to negative and positive values, respectively, over
the entire range of. Such a function will therefore be re-
stricted to negative values in the left-hand sidebath Egs.
(22) and(23); apparently, these restrictions are often unreal-
istic for cubic metals. For example, for Mo and Cu, the ac-
tual ratios of second-order to third-order moduli in E(2)
and (23) are both positive; for Al, the ratio in Eq22) is
positive. (The elastic moduli are listed in Table Here we
have provided a strong theoretical justification for employing
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an oscillatory model function fof(r). It is interesting to A(r)=(r—r,)*[bo+bsr +bor2+bsr3+b,r#+bgr®
note that Wang and BoercKerjustify their use of such a .
function on the grounds that it improves the calculated pho- +bgr°], (31

non frequency spectra.
As for the contribution to the energy from the central

interaction, it turns out that the two second-order shear COMGyes at the cutoff distance. With a proper choicer gf, the
= — I = I 8 . i
stantsp=(Cyy—Cy)/2 and pu'=Cyq, Which Fuchs’ was itting parameterd; (i=0, . ..,6) may baletermined from

able to isolate using two special strains, and the three thir =qs. (24)—(30). As is indicated abover,, must be greater

order shear constantC{y;—3Cy1p+2C129)/8, Cyse, aNd 0 4o third-nearest-neighbor distance in order to avoid ar-

E:Coltj‘;;\scléésg)ézén(\Jllvglr(]:r:hewceerﬁtra?irr?'ltlear?étioa:wmvlﬁg airrgym_tificial restrictions on the calculated values of g, , e.g.,
! P P C144=Cqg6 for bcc andCy5=0 for fcc. Also mentioned

volving dF/dple, where the subsc/npt denotes the referenceabove is the importance of using an oscillatory form for the
state. If we choosé-(p) so thatF’ at the reference state

. . lectron density function; for thi r w
vanishes, then these five shear constants depend on only tﬁéECt on density function; for this purpose, we use

central interaction. The resulting EAM model is said to be of [1+a,co8 ar)+a,sin(ar)]
a normalized form; it is known that normalizing an EAM f(r)y= B , (32
formulation does not result in a loss of generafftythe five r

shear constants, together with the condition for zero pressuighere o and 8 are positive parameters. This expression is
in the reference state, give six basic elasticity equations tha§milar to the form representing Friedel oscillations. But in-

wherer,, is the cutoff distance. The factor £ r)* ensures
the continuities of the pair potential and its first three deriva-

depend on only the pair potentigi(r): stead of fixingB at 3, it is taken to be a free parameter, and
thus may be made large enough thét) converges rapidly;
022 re’ (24) here, B=10. With an appropriate choice of the parameter

«, the remaining parametees anda, may be determined
from Egs.(22) and (23). Both « and 8 are chosen so that
&' p(a), as defined in Eq(1lb), monotonically decreases with
@'~ T) (25  increasing lattice parameter. Physically, this means that the
electron density at a reference lattice site decreases as the
2.2 , lattice expands hydrostatically. This requirement ensures that
1 @( . ‘i) the embedding function is single valued. Although no sys-
QoCa=52 —7 | ¢ , (26) . ve
2 r r tematic attempt was made to optimize the valuesradnd
rm, several values of these parameters were tested for each
(x§—3x3x3+ 2x3x5x3) metal. Variation of these two parameters had some small
3 effect on the short-wavelength regions of the p_hpnon fre-
quency spectra; the values reported here gave “visibly pleas-
¢ P ing” phonon frequency spectra, in general.
¢"’—3T+3r—2), 27 Finally, following the suggestion of Foilest al.! we
make use of Rose’s universal equation of stiriedetermin-

)
Qo(Cu=Cr) =52 — 7 —

1
Qg(C111=3C11512C 109 = 52

X

ing the embedding functioR(p). Substitution of the energy

2,22 4,2

04(Cras—Coee) = }E (XpXpX3—X1X2) Ecos from Rose’s equation of stat&EQS for the configura-
0144 16607 2 r3 tional energyE in Eq. (1a) yields

n ¢,/ ¢/ 1
Rt F(p)=Eeoda*)~ 52 &(r), (333
2,22 " ’ where
X{XoX3 [ ¢ ¢
QOC456:§ _rr d) - ST + 3?2‘) . (29) R
Epoda*)=—E{1+a*+ka*3e ", (33b)
One additional property that also depends uniquelypois with
the unrelaxed vacancy formation eneigy; : 2°
a—aqp Ecoh
1 a*= and A= . 33c
Ev=—52 ¢. (30) 2o\ 9028 (339

The constantag, Ey,, g, andB are the lattice parameter,
the magnitude of the cohesive energy per atom, volume per
IV. MODEL EAM FUNCTIONS = ¢(r), f(r), AND F(p) atom, and bulk modulus, respectively, at the reference state.
In order to illustrate the construction of EAM models for The parametek depends on the pressure derivative of the
specific metals, based on the formalism outlined in the prebulk modulus at the reference state:
vious sections, we assume relatively simple forms of the ,
EAM functions ¢ andf. The pair potentialp(r) is taken to K= A(B'-1) _ l (343
be the polynomial 2 3’
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TABLE II. Parameters of model EAM functions. The unit lnf is eV/A“*+™,
Al Cu Na Mo
aA™h 4.0 5.0 6.0 4.6
B 10.0 10.0 10.0 10.0
a, (eV) 0.402 661 338 —0.290 692 473 —0.099 818 071 —0.388 754 990
a, (eV) 0.353 591 785 0.478 627 171 —0.006 156 837 0.594 091 434 8
rm (A) 6.60 6.92 7.15 5.40
by —0.323461 727 0.183919 102 —0.041 404 466 56.401 452 096
b, 0.618 464 061 —0.285 826 951 0.063 535 721 —105.785851 4
b, —0.468 980 915 0.182 623 033 —0.037 090 867 82.012 737 952
bs 0.182 033 437 —0.061 169 337 0.010 765 683 —33.607 360 49
b, —0.038 321 001 0.011 322 364 —0.001 640 843 7.670 6308852
bg 0.004 154 714 —0.001 104 809 0.000 120 858 —0.923 961 528
bg —0.000 181 240 0.000 044 742 —0.000 003 088 0.045855022 1
k 0.0064 0.0621 0.0401 0.0398
dB (C111+6C115+ 2C109) For this purpose we selected four metals that, when consid-
r— — . .
B ap o 3(Cyyt2C10) (34b) ered as an ensemble, provide a broad representation of the

V. CONSTRUCTION OF EAM MODELS

FOR Al, Cu, Na, AND Mo

In this section we examine the applicability of the met
odology presented above to the description of cubic metals>

characteristic elastic behaviors of cubic metals in general; as
a brief digression, this is explained in the remainder of this
paragraph. It has been observed that the general elastic re-
sponse of a metal will depend on the “subgroup” to which
h-the metal belongs. For cubic metals, there are three distinct
ubgroup$:21?2consisting of(i) face-centered-cubic metals,
in general, (ii) the body-centered-cubic alkali metals and
B-brasses, andiii) the body-centered-cubic transition met-

(])eff( I‘)/ E coh
o

als. For fcc metals, the shear moduli, Young’'s moduli, and

Poisson’s ratios, respectively, are ordered according to

001 110
' >p, B111>E110>Bioo, @and vyie> v190> v112> 0> vy,

whereEy, is the ratio of stress to strain for uniaxial loading
in the crystallographic directiophkl], and vy, (or vﬂ;(‘,‘"')

is the negative of the ratio of the transverse, isotropic, strain
(or, anisotropic, strain in the directigimn’k’l’]) to the axial

strain under the same loading; fcc metals also exhibit upward

concavity in their stress-strain relations f&00] loading, but
downward concavity if110] and[111] loading. Aluminum

is a notable exception, for which’= u and the stated rules
of upward concavity and negative Poisson ratj¢ are vio-

0.5 0.0
0.4 1 o024
§ 0. 5 04 Mo
w § VL
=0 g N
< & gl Na T —a T -
60—0, LL 0.6 ‘~L‘_‘;'_' '''' J | TTTT EEm et
0.0 4 08+  TTTmeeom T -
-0.1 ———t—t—t—F———— } 1.0 } i
0.5 1.0 1.5 0.25 0.50 1.00 2.00
r/ao plpe

FIG. 1. Variations of the effective pair potentials with inter-

FIG. 2. Variations of the normalized embedding functions with

atomic distance(a) fcc metals Al and Cub) bcc metals Na and electron densityp,, is the electron density in the reference state.

Mo.

The abscissa scale is logarithmic.
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P (Mbar)

5 5
Mo
4 4
T3 :
-Q =]
=
22T L
@
R e e e
1.0 0.9 0.8 0.7 0.6

FIG. 3. Compression behavior at 25 °C from Ref.(8Ben squares, experimental; solid line, theoreti¢a) Al, (b) Cu, (c) Na, and(d)
Mo. P is pressureV is volume, andV, is volume atP=0.

lated. The elastic response of the bcc alkali metals angig) can be considered a¢-body interactions. By perform-
B-brasses is also characterized by the orderings w (typi-  ing a Taylor series expansion &f(p) about the reference
cally, u/p'~0.1), E115>Eq16>Eqgo, andv396>v100> 111 electron density,, one can extract the two-body contribu-
>0> 110 but the uniaxial loading curves are concave up-tion to the embedding energy. The sum of this contribution
ward in[110] loading, and downward if100] and [111].  and the pair potential is known as the effective pair potential
Among the six bcc transition metal¥, Nb, Ta, Cr, Mo, and ~ ¢e(r). Since we setF =0, this becomes ¢peq(r)
W), with the exception of Ta, the linear elastic trends are=¢(r)+F2[p(r)]%, where the latter term is from the two-
“reversed,” i.e., u=u', E100>E1;1c>Eq1, and vijy  body contribution to the embedding energy. The effective
=1111= V1065 yg%>o (the equalities apply to W only pair potential thus characterizes interatomic interactions in
Thus, for modeling purposes, we have selected metals th@&h EAM model better than the pair potential alone. Each
are typical of each of the subgrou@=., Cu for fcc, Na from ~ function ¢en(r) has an intermediate minimum, as expected
among the bcc alkalis, and Mo for the bec transition metals for a stable crystalline form. Also, as expecteflu(r) be-
together with one metal that has anomalous elastic behavigiomes large and positive at smajldue to the ¥/ factor in
(i.e., Al). f(r), and it approaches zero asymptoticallyraisicreases.

The methodology was then used to construct EAM mod- Theoretical pressure-volume curves according to Rose’s
els of the four cubic metals with the empirical input data thatuniversal equation of state, with the valueskotalculated
are listed in Table I. The resultant theoretical model paramfrom Eqs.(348 and(34b), are compared with experiment in
eters are displayed in Table Il. The procedure is thus showfrig. 3. The curves for Al, Cu, and Na agree very well with
to provide EAM models that are capable of incorporating theexperiments, suggesting that the calculated valuels fofr
second- and third-order elastic moduli, as well as the binding
energy, lattice parameter, unrelaxed vacancy formation en-
ergy, and Rose’s equation of state. The models thus incorpo-

TABLE lll. Theoretical structural energy differences.

. - . Al Cu Na Mo
rate all of the appropriate, experimentally observed, elastic
responses described in the previous paragraph. Figures 1 agag.. (ev) —3.2574 —3.4714 —1.1300 -6.8100
2, respectively, show plots of the effective pair potentialsg, . (ev) —3.3400 —3.5000 -1.1297 -6.7181

de(r) and the embedding functions. As pointed out byg, —E,.(ev) +0.0826 +0.0286 —0.0003 —0.0919
Foiles3*the embedding energy part of the total energy in Eq
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FIG. 4. Experimental and theoretical phonon dispersion curves FIG. 6. Experimental and theoretical phonon dispersion curves
of Al. Squares represent experimental data at 300 K from Ref. 350f Na. Squares represent experimental data at 296 K from Ref. 37.

these metals are accurate. The greater discrepancy in the cd88Y implicitly contain third-order elastic moduli, although in
of Mo may result from some experimental error in the deter-Such cases it is generally difficult to judge whether the model
mination of the TOEM in Ref. 33. accurately reproduces all of the second- and third-order
To further explore the efficacy of the present methodol-moduli. For example, Ercolessi and Adathsietermined
ogy, the energy differences between competing cubic strudcAM _potentlals by a nonanalytical optimization method;
tures and the phonon dispersion curves are calculated a€y include numerous data, such as surface and stacking
presented in Table IIl and in Figs. 4—7, respectively. Thefault energies, thermal expansions, and defect energies, and
theoretical phonon frequency spectra are in generally gooaw_elr_ model yields values of thg second-order moduli that are
agreement with experiment. Also, it is satisfying to note thatVithin about 10% of the experimental values.
the theoretical cohesive energies are considerably lower for N summary, we have presented an EAM model for metals
Al and Cu in their fcc configurations and for Mo in its bee Of cubic symmetry. It allows exact fits to elastic moduli of
configuration, which are, of course, their experimentally ob-Second and third order, in addition to other empirical data,
served structures. The difference in the energies of the bd@r @ diverse selection of metals, and yields reasonable pho-
and fcc configurations of Na is very small, which again isnon frequency spectra and energy differences between com-
consonant with experiment, since Na is allotrogi@., it ~ Peting structures. This leads us to speculate that the method-

transforms from bcc to a faulted fce structure at low tempera®!0gy is able to describe the energetics of most cubic metals
ture and reverts back to bcc under pressure reasonably well. Notable except|0ns,.however, are the metals
The method presented here is apparently unique in it&f. Rb, and Ir, for whichC,,<Cy4. Since the curvature of
simplicity and its ability to fit accurately the three second-the embedding function is positiiéo ensure that the bond
order and six third-order elastic moduli of cubic crystals. ItStrength decreases with increasing coordindfionEAM
should be mentioned, however, that other authors have uségodels are applicable only whe@;,>Cy,, as is well
numerical or optimization techniques to fit EAM models thatknown[and may be seen from E¢L7)]. However, modifi-

10 10
Cu Mo
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FIG. 5. Experimental and theoretical phonon dispersion curves FIG. 7. Experimental and theoretical phonon dispersion curves
of Cu. Squares represent experimental data at 296 K from Ref. 3@&f Mo. Squares represent experimental data at 300 K from Ref. 38.
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cations to the EAM, such as the one used by Baskesay
be employed in the exceptional cases wh&g<C,,.

AND FREDERICK MILSTEIN
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