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The higher-order elasticity of cubic metals in the framework of the embedded-atom method~EAM! is
investigated. Proper groupings of the second- and third-order elastic moduli are shown to yield expressions that
depend solely on either the electron density function or the pair potential and which therefore facilitate the
construction of EAM models. This formulation also makes evident some important restrictions on the EAM
functions and lattice summations. In order for the EAM to model the anharmonic properties accurately,~a! at
least the third-nearest-neighbor interactions must be included in the expressions for the cohesive energies of
both the body-centered-cubic and face-centered-cubic metals and~b! an electron density function of an inverse
power form, as has been employed previously, generally is not valid. Specific EAM models are constructed for
a diverse selection of metals~i.e., aluminum, copper, sodium, and molybdenum!. These models identically
reproduce the respective second- and third-order elastic moduli, as well as the binding energy, atomic volume,
unrelaxed vacancy formation energy, and Rose’s universal equation of state. They also provide reasonable
phonon frequency spectra and structural energy differences

I. INTRODUCTION

The semiempirical approach to atomistic modeling has
been widely used in the study of condensed matter. Most
applications involve relatively large, complex, displacements
of atoms from their equilibrium positions in the unstressed
perfect crystal. Phenomena of interest include the formations
and configurations of crystalline defects,1 lattice deformation
and stability at finite strain,2 and bifurcations and structural
transitions of crystals under load.3 Computational results are
likely to be enhanced by use of an atomic model that dis-
plays the appropriate harmonic and anharmonic, anisotropic,
elastic behavior of the parent crystal, i.e., that accurately re-
flects both the second- and third-order elastic moduli of the
material under consideration.

The present work explores the higher-order elasticity of
cubic metals in the framework of a particularly popular semi-
empirical modeling technique, i.e., the embedded-atom
method~EAM!. Formulas are given for computing the third-
order elastic moduli~TOEM! in general EAM formulations;
expressions for the second-order elastic moduli have previ-
ously appeared in the literature.4 The elastic moduli are then
grouped in relations that are shown to depend solely on ei-
ther the electron density function or the pair potential func-
tion. These expressions greatly facilitate the construction of
any EAM models that incorporate data of the TOEM of cu-
bic crystals. It is further demonstrated that the EAM is ca-
pable of exhibiting all of the second- and third-order elastic
moduli subject to certain restrictions upon the EAM func-
tions and lattice summations; e.g.,~at least! the third-nearest-
neighbor interactions must be included in the expression for
cohesive energy. As examples of the use of these relations,
specific models are constructed for the face-centered-cubic
~fcc! metals Al and Cu and the body-centered-cubic~bcc!
metals Na and Mo. These metals were selected because each
has a characteristically different elastic response to load, and
when considered as a group, their responses included those
that are typical of cubic metals~this is explained later in Sec.

V!. The empirical input data consist of the second-order elas-
tic moduli, third-order elastic moduli, lattice constant at zero
pressure, cohesive energy, unrelaxed vacancy formation en-
ergy, and Rose’s universal equation of state.5 Finally, these
models are shown to give relatively good descriptions of
phonon frequency spectra.

Initial attempts to model metals semiempirically made use
of pair potentials, which are particularly efficient computa-
tionally. While this approach has been found capable of re-
producing the salient trends of the linear elastic behavior of
crystals~e.g., the algebraic signs of Poisson’s ratios and the
orderings of the magnitudes of the shear moduli, Young’s
moduli, and Poisson’s ratios associated with major crystallo-
graphic symmetries!,6 it is lacking in a strong theoretical
justification. In addition, any pair potential model yields cer-
tain unphysical conditions~e.g., the Cauchy symmetries
among the elastic moduli and an unrelaxed vacancy forma-
tion energy that is equal to the cohesive energy!.

In recent years, considerable effort has been directed to-
ward the development of atomistic models that retain much
of the essential simplicity and mathematical tractability of
the pair potentials and also provide a more realistic and ac-
curate description of the relevant energetics. One example,
which for simple metals finds justification in pseudopotential
theory,7 is the addition of a purely volume-dependent term to
the summation of pairwise potential interactions. While this
approach is useful for the study of ‘‘bulk properties,’’7,8 and
it removes the Cauchy symmetries, the explicit volume de-
pendence entails ambiguities at surfaces or near defects. Fur-
thermore, as noted by Cousins and Martin,9 an energy ex-
pression consisting of only a pair potential and a volume-
dependent term still imposes physically unrealistic
restrictions upon third-order elastic moduli.

Another computationally efficient approach that is ca-
pable of circumventing such limitations is the embedded-
atom method. Since its introduction,10 the EAM has found
numerous applications, including phonons, thermodynamic
functions, liquid metals, defects, grain boundary structure,

PHYSICAL REVIEW B 1 JUNE 1996-IVOLUME 53, NUMBER 21

530163-1829/96/53~21!/14080~9!/$10.00 14 080 © 1996 The American Physical Society



alloys, interdiffusion in alloys, segregation to surfaces and
grain boundaries, fracture, and mechanical properties; Ref.
11 contains a comprehensive review. It has been observed
that the EAM deals with transition metals with nearly filled
or nearly emptyd bands quite well. In addition, a number of
EAM models have been proposed for the bcc transition
metals12–15 ~although, as is often mentioned, with somewhat
less theoretical justification!.

The general expression for the configurational cohesive
energy per atom,E, in a homogeneous crystal according to
the EAM is

E5F~r!1
1

2(iÞ j
f~r i j !, ~1a!

with

r5(
iÞ j

f ~r i j !, ~1b!

whereF(r) is the embedding function,r is the total electron
density at the reference atomic site,f (r i j ) is the electron
density function,f(r i j ) is the pair potential function, and
r i j is the distance between atomsi and j . In principle, EAM
functions can be determined from first principles,16 but in
practice, they are invariably determined semiempirically.
Thus numerous EAM functions and fitting schemes for in-
corporating empirical data have appeared in the literature. In
this respect, it is important to note that the TOEM render
restrictions that are useful in ‘‘narrowing the field.’’

In modeling metals of cubic symmetry, on which this pa-
per is focused, the physical properties to which most EAM
functions have been fitted are the lattice constant, the cohe-
sive energy, the unrelaxed vacancy formation energy, and
the three second-order elastic moduli. In some cases, the em-
bedding functionF(r) is also made to conform to Rose’s
universal equation of state5 to improve the ability of the
model to describe the volume-dependent anharmonic proper-
ties of the metal~however, this approach does not incorpo-
rate empirical anisotropic anharmonic data!. Thus, a typical
EAM model is fitted to physical properties that depend on up
to second derivatives of the configurational energy with re-
spect toarbitrary, homogeneous, lattice strains. Such proce-
dures have yielded efficacious EAM models of metals; as
mentioned earlier, further enhancement attaches to models
that also describe fully the physical properties that depend on
the third derivatives of energy with respect to arbitrary ho-
mogeneous lattice strains, i.e., the third-order elastic moduli.

The following sections examine the roles of the compo-
nent parts of the EAM in the description of the TOEM.
These sections also comprise a formalism for incorporating
the TOEM in the EAM. Section II contains the general for-
mulas for the elastic moduli within the EAM framework.
Section III shows how the proper groupings of the elastic
moduli can lead to independent determinations of the pair
potentialf(r ) and the electron density functionf (r ). In Sec.
IV, we suggest particular model functionsf(r ) and f (r ),
which have the capability of yielding embedded-atom mod-
els with the correct elastic properties; the determination of
the remaining EAM functionF(r) is also discussed. Sec-
tions II–IV constitute a methodology that can be applied to
cubic metals in general. Finally, in Sec. V, we apply this

procedure to the construction of specific EAM models for
Al, Cu, Na, and Mo, and use these models to calculate pho-
non frequency spectra and structural energy differences.

II. THIRD-ORDER ELASTIC MODULI

For a crystal of cubic symmetry, there are six independent
TOEM: C111, C112, C123, C144, C166, andC456. The defi-
nition of elastic moduli widely used in the literature was
given by Brugger.17 Within the potential approximation, one
considers the elastic free energy per unit mass ,G(h), to
depend on only the Lagrangian strain matrixh i j . The Taylor
series expansion ofG(h) about the unstressed state, which
will be referred to below as the reference state, results in

r0G~h!5r0G~0!1
1

2
ci jklh i jhkl

1
1

6
ci jklmnh i jhklhmn1•••, ~2!

wherer0 is the density at the reference state and the standard
summation convention is employed (i , j ,k,l51,2,3). If we
now use the Voigt notation in replacingc1122 with C12,
c112233with C123, h11 with h1; 2h23 with h4 , etc., then

r0G~h!5r0G~0!1
1

2(I51

6

CIIh I
21(

I,J
CIJh IhJ

1
1

6(I51

6

CIIIh I
31

1

2(IÞJ
CIJJh IhJ

2

1 (
I,J,K

CIJKh IhJhK1•••. ~3!

Correspondingly,nth-order elastic moduliCIJKL••• are de-
fined as

CIJK•••5
1

V0
S ]nG

]h I]hJ]hK•••
D , ~4!

whereV0 is the volume per atom at the reference state. Here
the elastic energyG is simply the configurational energyE
in the EAM format. To evaluate the above derivatives, the
]/]h I are expressed in terms of]/]r , with r being the dis-
tance between lattice points in the crystal. If
rW(5x1 iW1x2 jW1x3kW ) andrW0 are lattice vectors in the strained
and unstrained crystals, respectively, withxi representing the
Cartesian component ofrW in the i th direction, then the dif-
ference in their magnitudes is given by

r 22r 0
252(

I51

6

XIh I , ~5!

whereXI5xixj andI is the Voigt contraction ofi j . Second-
and third-order elastic moduli within the EAM framework
are then written as
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XIXJ
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r 3 S f-23
f 9

r
13

f 8

r 2D1
1

2(
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13

f8

r 2 D , ~7!

where the primes on theF and f functions represent derivatives with respect tor and r , respectively. For a crystal of cubic
symmetry, the expressions for the three independent second-order elastic moduli are

V0C115F9S ( x1
2f 8

r D 21F8(
x1
4

r 2 S f 92
f 8

r D 1
1

2(
x1
4

r 2 S f92
f8

r D , ~8!

V0C125F9S ( x1
2f 8

r D 21F8(
x1
2x2

2
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f 8

r D 1
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2(
x1
2x2

2

r 2 S f92
f8

r D , ~9!

V0C445F8(
x1
2x2

2

r 2 S f 92
f 8

r D1
1
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x1
2x2

2

r 2 S f92
f8

r D , ~10!

and, for the six independent third-order elastic moduli,

V0C1115F-S ( x1
2f 8
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The summations in Eqs.~6!–~16! are understood to be taken
over atomsj around the reference atomi ( iÞ j ); although a
cutoff is often employed after summing up to just the
second-nearest neighbors, it is essential to include more dis-
tant neighbors if the model is to avoid unphysical restrictions
on Ci jk . For example, if only the first- and second-nearest
neighbors are included in a bcc crystal@i.e., the summations
are over only the lattice points~61

2a,6
1
2a,6

1
2a!, ~6a,0,0!,

(0,6a,0), and (0,0,6a)], Eqs. ~14! and ~15! yield
C1445C166. Similarly, for the fcc lattice, inclusion of only
the sites (6 1

2a,6
1
2a,0), (6 1

2a,0,6
1
2a), (0,6 1

2a,6
1
2a),

(6a,0,0), (0,6a,0), and (0,0,6a) results inC45650 in
Eq. ~16!.

III. CONTRIBUTIONS TO ELASTIC MODULI FROM
CENTRAL AND NONCENTRAL INTERACTIONS

If the configurational energy is represented by a pair po-
tential alone@i.e., F(r)50], inspection of the above equa-
tions reveals the Cauchy symmetriesC125C44,
C1125C166, and C1445C1235C456. By employing the
EAM, these unrealistic conditions may be avoided. Further-
more, the actual deviations from Cauchy symmetries, often
called ‘‘Cauchy discrepancies,’’ may be expressed solely in
terms of the noncentral or many-body interactions, which are
represented byF(r) and f (r ). Johnson and Oh12 made use
of this fact in separatingf from F and f using the second-
order Cauchy discrepancy, i.e.,

V0~C122C44!5F9S ( x1
2f 8

r D 2. ~17!

Because we now consider TOEM as well, we can utilize the
three third-order Cauchy discrepancies in the derivation of
three additional relations betweenF and f :

V0~C1122C166!5F-S ( x1
2f 8

r D 31F9S ( x1
2f 8

r D
3F( x1

4

r 2 S f 92
f 8

r D G1F9S ( x1
2f 8

r D
3F( x1

2x2
2

r 2 S f 92
f 8

r D G , ~18!

V0~C1232C456!5F-S ( x1
2f 8

r D 313F9S ( x1
2f 8

r D
3F( x1

2x2
2

r 2 S f 92
f 8

r D G , ~19!

V9~C1442C456!5F9S ( x1
2f 8

r D F( x1
2x2

2

r 2 S f 92
f 8

r D G .
~20!

With a little more algebraic manipulation, we separateF
from f .

Equation ~18! plus two times Eq.~20! minus Eq. ~19!
results in

V0~2C1441C1122C1662C1232C456!

5F9S ( x1
2f 8

r D F( x1
4

r 2 S f 92
f 8

r D G . ~21!

Divide each side of Eq.~17! by the respective sides of Eq.
~20!,

(
x1
2f 8

r

(
x1
2x2

2

r 2 S f 92
f 8

r D 5
C122C44

C1442C456
, ~22!

and by the respective sides of Eq.~21!,

(
x1
2f 8

r

(
x1
4

r 2 S f 92
f 8

r D 5
C122C44

2C1441C1122C1662C1232C456
.

~23!

Equations~22! and ~23! provide important information
about the character of the electron density functionf (r ). For
example, it is evident that a monotonically decreasing func-
tion of the formf (r )}1/r b as used by Johnson and Oh12 will
not, in general, satisfy both relations as this function limits
f 8 and f 9 to negative and positive values, respectively, over
the entire range ofr . Such a function will therefore be re-
stricted to negative values in the left-hand sides ofbothEqs.
~22! and~23!; apparently, these restrictions are often unreal-
istic for cubic metals. For example, for Mo and Cu, the ac-
tual ratios of second-order to third-order moduli in Eqs.~22!
and ~23! are both positive; for Al, the ratio in Eq.~22! is
positive.~The elastic moduli are listed in Table I.! Here we
have provided a strong theoretical justification for employing

TABLE I. Physical constants of Al, Cu, Na, and Mo used as
input parameters; all data are experimental except for theCi jk of
Na, which are from pseudopotential calculations. Lattice constants
~a! are from Ref. 23. Unrelaxed vacancy formation energies (EIV)
for Al, Cu, Na, and Mo are from Refs. 24, 25, 26, and 27, respec-
tively. Cohesive energies (Ecoh) are from Ref. 28. Second-order
moduli ~Ci j ! for all metals are from Ref. 29. Third-order moduli
(Ci jk) for Al, Cu, Na, and Mo are from Refs. 30, 31, 32, and 33,
respectively.

Al Cu Na Mo

a0 ~Å! 4.05 3.62 4.29 3.15
EIV ~eV! 0.67 1.28 0.42 3.1
Ecoh ~eV! 3.34 3.50 1.13 6.81
C11 ~Mbar! 1.08 1.69 0.0759 4.59
C12 ~Mbar! 0.62 1.22 0.0633 1.68
C44 ~Mbar! 0.283 0.753 0.043 1.11
C111 ~Mbar! 210.76 212.71 20.935 235.57
C112 ~Mbar! 23.15 28.14 20.114 213.33
C123 ~Mbar! 0.36 20.50 20.230 26.17
C144 ~Mbar! 20.23 20.03 20.298 22.69
C166 ~Mbar! 23.40 27.80 20.172 28.93
C456 ~Mbar! 20.30 20.95 20.248 25.55
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an oscillatory model function forf (r ). It is interesting to
note that Wang and Boercker15 justify their use of such a
function on the grounds that it improves the calculated pho-
non frequency spectra.

As for the contribution to the energy from the central
interaction, it turns out that the two second-order shear con-
stantsm5(C112C12)/2 andm85C44, which Fuchs18 was
able to isolate using two special strains, and the three third-
order shear constants (C11123C11212C123)/8, C456, and
(C1442C166)/2, which were similarly arrived at by
Cousins,19 depend on the central interaction plus a term in-
volving dF/drue , where the subscript denotes the reference
state. If we chooseF(r) so thatF8 at the reference state
vanishes, then these five shear constants depend on only the
central interaction. The resulting EAM model is said to be of
a normalized form; it is known that normalizing an EAM
formulation does not result in a loss of generality.20 The five
shear constants, together with the condition for zero pressure
in the reference state, give six basic elasticity equations that
depend on only the pair potentialf(r ):

05( rf8, ~24!

V0~C112C12!5
1

2(
~x1

42x1
2x2

2!

r 2 S f92
f8

r D , ~25!

V0C445
1

2(
x1
2x2

2

r 2 S f92
f8

r D , ~26!

V0~C11123C11212C123!5
1

2(
~x1

623x1
4x2

212x1
2x2

2x3
2!

r 3

3S f-23
f9

r
13

f8

r 2 D , ~27!

V0~C1442C166!5
1

2(
~x1

2x2
2x3

22x1
4x2

2!

r 3

3S f-23
f9

r
13

f8

r 2 D , ~28!

V0C4565
1

2(
x1
2x2

2x3
2

r 3 S f-23
f9

r
13

f8

r 2 D . ~29!

One additional property that also depends uniquely onf is
the unrelaxed vacancy formation energyEIV :

20

EIV52
1

2( f. ~30!

IV. MODEL EAM FUNCTIONS f„r …, f „r …, AND F „r…

In order to illustrate the construction of EAM models for
specific metals, based on the formalism outlined in the pre-
vious sections, we assume relatively simple forms of the
EAM functionsf and f . The pair potentialf(r ) is taken to
be the polynomial

f~r !5~r2rm!4@b01b1r1b2r
21b3r

31b4r
41b5r

5

1b6r
6#, ~31!

whererm is the cutoff distance. The factor (r2rm)
4 ensures

the continuities of the pair potential and its first three deriva-
tives at the cutoff distance. With a proper choice ofrm , the
fitting parametersbi ( i50, . . . ,6) may bedetermined from
Eqs. ~24!–~30!. As is indicated above,rm must be greater
than the third-nearest-neighbor distance in order to avoid ar-
tificial restrictions on the calculated values of theCi jk , e.g.,
C1445C166 for bcc andC45650 for fcc. Also mentioned
above is the importance of using an oscillatory form for the
electron density function; for this purpose, we use

f ~r !5
@11a1cos~ar !1a2sin~ar !#

r b , ~32!

wherea andb are positive parameters. This expression is
similar to the form representing Friedel oscillations. But in-
stead of fixingb at 3, it is taken to be a free parameter, and
thus may be made large enough thatf (r ) converges rapidly;
here,b[10. With an appropriate choice of the parameter
a, the remaining parametersa1 anda2 may be determined
from Eqs.~22! and ~23!. Both a andb are chosen so that
r(a), as defined in Eq.~1b!, monotonically decreases with
increasing lattice parameter. Physically, this means that the
electron density at a reference lattice site decreases as the
lattice expands hydrostatically. This requirement ensures that
the embedding function is single valued. Although no sys-
tematic attempt was made to optimize the values ofa and
rm , several values of these parameters were tested for each
metal. Variation of these two parameters had some small
effect on the short-wavelength regions of the phonon fre-
quency spectra; the values reported here gave ‘‘visibly pleas-
ing’’ phonon frequency spectra, in general.

Finally, following the suggestion of Foileset al.,1 we
make use of Rose’s universal equation of state5 in determin-
ing the embedding functionF(r). Substitution of the energy
EEOS from Rose’s equation of state~EOS! for the configura-
tional energyE in Eq. ~1a! yields

F~r!5EEOS~a* !2
1

2( f~r !, ~33a!

where

EEOS~a* !52Ecoh~11a*1ka* 3!e2a* , ~33b!

with

a*5
a2a0
a0l

and l5A Ecoh

9V0B
. ~33c!

The constantsa0 , Ecoh, V0 , andB are the lattice parameter,
the magnitude of the cohesive energy per atom, volume per
atom, and bulk modulus, respectively, at the reference state.
The parameterk depends on the pressure derivative of the
bulk modulus at the reference state:

k5
l~B821!

2
2
1

3
, ~34a!
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B85
dB

dPU
P50

52
~C11116C11212C123!

3~C1112C12!
. ~34b!

V. CONSTRUCTION OF EAM MODELS
FOR Al, Cu, Na, AND Mo

In this section we examine the applicability of the meth-
odology presented above to the description of cubic metals.

For this purpose we selected four metals that, when consid-
ered as an ensemble, provide a broad representation of the
characteristic elastic behaviors of cubic metals in general; as
a brief digression, this is explained in the remainder of this
paragraph. It has been observed that the general elastic re-
sponse of a metal will depend on the ‘‘subgroup’’ to which
the metal belongs. For cubic metals, there are three distinct
subgroups.6,21,22consisting of~i! face-centered-cubic metals,
in general, ~ii ! the body-centered-cubic alkali metals and
b-brasses, and~iii ! the body-centered-cubic transition met-
als. For fcc metals, the shear moduli, Young’s moduli, and
Poisson’s ratios, respectively, are ordered according to

m8.m, E111.E110.E100, andn110
001.n100.n111.0.n110

11̄0 ,
whereEhkl is the ratio of stress to strain for uniaxial loading

in the crystallographic direction@hkl#, andnhkl ~or nhkl
h8k8 l 8)

is the negative of the ratio of the transverse, isotropic, strain
~or, anisotropic, strain in the direction@h8k8l 8#) to the axial
strain under the same loading; fcc metals also exhibit upward
concavity in their stress-strain relations for@100# loading, but
downward concavity in@110# and @111# loading. Aluminum
is a notable exception, for whichm8*m and the stated rules
of upward concavity and negative Poisson ration110

11̄0 are vio-

FIG. 1. Variations of the effective pair potentials with inter-
atomic distance:~a! fcc metals Al and Cu~b! bcc metals Na and
Mo.

FIG. 2. Variations of the normalized embedding functions with
electron density;re is the electron density in the reference state.
The abscissa scale is logarithmic.

TABLE II. Parameters of model EAM functions. The unit ofbn is eV/A
(41n).

Al Cu Na Mo

a ~Å21) 4.0 5.0 6.0 4.6
b 10.0 10.0 10.0 10.0
a1 ~eV! 0.402 661 338 20.290 692 473 20.099 818 071 20.388 754 990
a2 ~eV! 0.353 591 785 0.478 627 171 20.006 156 837 0.594 091 434 8
rm ~Å! 6.60 6.92 7.15 5.40
b0 20.323 461 727 0.183 919 102 20.041 404 466 56.401 452 096
b1 0.618 464 061 20.285 826 951 0.063 535 721 2105.785 851 4
b2 20.468 980 915 0.182 623 033 20.037 090 867 82.012 737 952
b3 0.182 033 437 20.061 169 337 0.010 765 683 233.607 360 49
b4 20.038 321 001 0.011 322 364 20.001 640 843 7.670 630 885 2
b5 0.004 154 714 20.001 104 809 0.000 120 858 20.923 961 528
b6 20.000 181 240 0.000 044 742 20.000 003 088 0.045 855 022 1
k 0.0064 0.0621 0.0401 0.0398
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lated. The elastic response of the bcc alkali metals and
b-brasses is also characterized by the orderingsm8.m ~typi-
cally, m/m8;0.1), E111.E110.E100, andn110

001.n100.n111
.0.n110

11̄0 , but the uniaxial loading curves are concave up-
ward in @110# loading, and downward in@100# and @111#.
Among the six bcc transition metals~V, Nb, Ta, Cr, Mo, and
W!, with the exception of Ta, the linear elastic trends are
‘‘reversed,’’ i.e., m>m8, E100>E110>E111, and n110

11̄0

>n111>n100>n110
001.0 ~the equalities apply to W only!.

Thus, for modeling purposes, we have selected metals that
are typical of each of the subgroups~i.e., Cu for fcc, Na from
among the bcc alkalis, and Mo for the bcc transition metals!,
together with one metal that has anomalous elastic behavior
~i.e., Al!.

The methodology was then used to construct EAM mod-
els of the four cubic metals with the empirical input data that
are listed in Table I. The resultant theoretical model param-
eters are displayed in Table II. The procedure is thus shown
to provide EAM models that are capable of incorporating the
second- and third-order elastic moduli, as well as the binding
energy, lattice parameter, unrelaxed vacancy formation en-
ergy, and Rose’s equation of state. The models thus incorpo-
rate all of the appropriate, experimentally observed, elastic
responses described in the previous paragraph. Figures 1 and
2, respectively, show plots of the effective pair potentials
feff(r ) and the embedding functions. As pointed out by
Foiles,34 the embedding energy part of the total energy in Eq.

~1a! can be considered asN-body interactions. By perform-
ing a Taylor series expansion ofF(r) about the reference
electron densityre , one can extract the two-body contribu-
tion to the embedding energy. The sum of this contribution
and the pair potential is known as the effective pair potential
feff(r ). Since we set Fe850, this becomesfeff(r )
5f(r )1Fe9@r(r )#2, where the latter term is from the two-
body contribution to the embedding energy. The effective
pair potential thus characterizes interatomic interactions in
an EAM model better than the pair potential alone. Each
function feff(r ) has an intermediate minimum, as expected
for a stable crystalline form. Also, as expected,feff(r ) be-
comes large and positive at smallr , due to the 1/r b factor in
f (r ), and it approaches zero asymptotically asr increases.
Theoretical pressure-volume curves according to Rose’s

universal equation of state, with the values ofk calculated
from Eqs.~34a! and~34b!, are compared with experiment in
Fig. 3. The curves for Al, Cu, and Na agree very well with
experiments, suggesting that the calculated values ofk for

TABLE III. Theoretical structural energy differences.

Al Cu Na Mo

Ebcc ~eV! 23.2574 23.4714 21.1300 26.8100
Efcc ~eV! 23.3400 23.5000 21.1297 26.7181
Ebcc2Efcc ~eV! 10.0826 10.0286 20.0003 20.0919

FIG. 3. Compression behavior at 25 °C from Ref. 23~open squares, experimental; solid line, theoretical!: ~a! Al, ~b! Cu, ~c! Na, and~d!
Mo. P is pressure,V is volume, andV0 is volume atP50.
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these metals are accurate. The greater discrepancy in the case
of Mo may result from some experimental error in the deter-
mination of the TOEM in Ref. 33.

To further explore the efficacy of the present methodol-
ogy, the energy differences between competing cubic struc-
tures and the phonon dispersion curves are calculated and
presented in Table III and in Figs. 4–7, respectively. The
theoretical phonon frequency spectra are in generally good
agreement with experiment. Also, it is satisfying to note that
the theoretical cohesive energies are considerably lower for
Al and Cu in their fcc configurations and for Mo in its bcc
configuration, which are, of course, their experimentally ob-
served structures. The difference in the energies of the bcc
and fcc configurations of Na is very small, which again is
consonant with experiment, since Na is allotropic~i.e., it
transforms from bcc to a faulted fcc structure at low tempera-
ture and reverts back to bcc under pressure!.

The method presented here is apparently unique in its
simplicity and its ability to fit accurately the three second-
order and six third-order elastic moduli of cubic crystals. It
should be mentioned, however, that other authors have used
numerical or optimization techniques to fit EAM models that

may implicitly contain third-order elastic moduli, although in
such cases it is generally difficult to judge whether the model
accurately reproduces all of the second- and third-order
moduli. For example, Ercolessi and Adams39 determined
EAM potentials by a nonanalytical optimization method;
they include numerous data, such as surface and stacking
fault energies, thermal expansions, and defect energies, and
their model yields values of the second-order moduli that are
within about 10% of the experimental values.

In summary, we have presented an EAM model for metals
of cubic symmetry. It allows exact fits to elastic moduli of
second and third order, in addition to other empirical data,
for a diverse selection of metals, and yields reasonable pho-
non frequency spectra and energy differences between com-
peting structures. This leads us to speculate that the method-
ology is able to describe the energetics of most cubic metals
reasonably well. Notable exceptions, however, are the metals
Cr, Rb, and Ir, for whichC12,C44. Since the curvature of
the embedding function is positive~to ensure that the bond
strength decreases with increasing coordination40!, EAM
models are applicable only whenC12.C44, as is well
known @and may be seen from Eq.~17!#. However, modifi-

FIG. 4. Experimental and theoretical phonon dispersion curves
of Al. Squares represent experimental data at 300 K from Ref. 35.

FIG. 5. Experimental and theoretical phonon dispersion curves
of Cu. Squares represent experimental data at 296 K from Ref. 36.

FIG. 6. Experimental and theoretical phonon dispersion curves
of Na. Squares represent experimental data at 296 K from Ref. 37.

FIG. 7. Experimental and theoretical phonon dispersion curves
of Mo. Squares represent experimental data at 300 K from Ref. 38.
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cations to the EAM, such as the one used by Baskes,41 may
be employed in the exceptional cases whereC12,C44.
While there are still many cubic metals for which the TOEM
have not yet been measured, it is hoped that studies such as
this will serve as an impetus for further experimental deter-
minations of the higher-order elastic moduli.
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