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Ab initio electronic-structure calculations, based on density-functional theory and a full-potential linear-
muffin-tin-orbital method, have been used to predict crystal-structure phase stabilities, elastic constants, and
Brillouin-zone-boundary phonons for iron under compression. Total energies for five crystal structures, bcc,
fcc, bct, hcp, and dhcp, have been calculated over a wide volume range. In agreement with experiment and
previous theoretical calculations, a magnetic bcc ground state is obtained at ambient pressure and a nonmag-
netic hcp ground state is found at high pressure, with a predicted bcc→ hcp phase transition at about 10 GPa.
Also in agreement with very recent diamond-anvil-cell experiments, a metastable dhcp phase is found at high
pressure, which remains magnetic and consequently accessible at high temperature up to about 50 GPa. In
addition, the bcc structure becomes mechanically unstable at pressures above 2 Mbar~200 GPa! and a meta-
stable, but still magnetic, bct phase (c/a . 0.875! develops. For high-pressure nonmagnetic iron, fcc and hcp
elastic constants and fcc phonon frequencies have been calculated to above 4 Mbar. These quantities rise
smoothly with pressure, but an increasing tendency towards elastic anisotropy as a function of compression is
observed, and this has important implications for the solid inner-core of the earth. The fcc elastic-constant and
phonon data have also been used in combination with generalized pseudopotential theory to develop many-
body interatomic potentials, from which high-temperature thermodynamic properties and melting can be ob-
tained. In this paper, these potentials have been used to calculate full fcc and hcp phonon spectra and corre-
sponding Debye temperatures as a function of compression.@S0163-1829~96!07221-9#

I. INTRODUCTION

There is growing experimental and theoretical interest in
the behavior of the earth’s core and the materials physics
associated with it. Data from seismology and mineral physics
suggest that the core is composed mainly of iron~Fe! or an
iron-dominated alloy, but the lack of knowledge of the elas-
tic and vibrational properties of solid iron at inner core pres-
sures~324 Mbar! and temperatures~400028000 K! have
made it hard to interpret the seismological data. Likewise,
the high-pressure, high-temperature phase diagram of iron is
not well established, with many conflicting experimental re-
sults, and not even the stable phase of the solid at inner-core
~IC! conditions is known with certainty. Also the high-
pressure melting of iron, which leads to the presence of a
liquid outer core~OC!, is not well understood, with a result-
ing uncertainty of at least 3000 K in the melting temperature
at the IC-OC boundary~see Fig. 1!. This has important im-
plications for both the temperature of the inner core and the
origin of the geomagnetic field, which is believed to origi-
nate from the freezing of the outer Fe core.

As a step towards an improved understanding of the high-
pressure physics of Fe, we have performed an extensive se-
ries ofab initio electronic-structure calculations on the struc-
tural, vibrational, and elastic properties of this metal as a
function of compression, and we report the results in this
paper. These are zero-temperature calculations and range in
pressure from ambient to over 4 Mbar. In the high-pressure

nonmagnetic limit, we have further used these results to de-
velop many-body interatomic potentials for iron, which can
be applied to the study of high-temperature structural and
thermodynamic properties, including melting. We also
present these potentials here together with some preliminary
applications.

Experimentally, there has been considerable recent work
on the high-temperature phase diagram and melting curve of

FIG. 1. Possible high-pressure phase diagram of Fe, including
established phasesa ~bcc!, g ~fcc!, d ~bcc!, ande ~hcp! as well as
proposed new phasese8 ~dhcp!, b ~unknown!, anda8 ~proposed
bcc!.
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iron,1 including indications of undetermined solid phases oc-
curring above 50 GPa~Ref. 2! and above 2 Mbar~200 GPa!,3

respectively, as shown in Fig. 1. The former has been re-
ferred to as theb phase, while the latter has been referred to
as thea8 phase and speculated to be a bcc structure.4 In very
recent laser-heated diamond-anvil-cell experiments, both
Saxenaet al.5 and Yoo et al.6 report yet another high-
temperature structure of iron near 40 GPa and 1500 K, which
they identify as dhcp. Saxenaet al.5 imply that this dhcp
structure is in fact theb phase, but Yooet al.,6 who previ-
ously presented evidence7 against the existence of theb
phase, refer to dhcp as ane8 phase existing onlybelow50
GPa. Motivated by these observations, we have studied the
phase stability of the bcc, fcc, bct, hcp, and dhcp crystal
structures of iron in detail as a function of pressure. In quali-
tative agreement with other recent calculations,8,9 we show
that the bcc structure is mechanically unstable above 2 Mbar
and thus not likely to exist as a high-pressure, high-
temperature phase. At the same time, we find that the mag-
netic bct structure into which bcc evolves at high pressure is
a possible candidate for thea8 phase. We further show that
below 50 GPa the observed dhcp structure is metastable and
accessible at high temperature due to its ferromagnetism, but
that its magnetic moment drops rapidly to zero at higher
pressure. Thus, in agreement with Yooet al.,6,7 we believe
that dhcp is much more likely to be the proposede8 phase
than the proposedb phase.

In addition to our study of crystal-structure phase stabili-
ties, we have investigated fcc and hcp elastic constants and
high-symmetry fcc phonons in Fe and their pressure depen-
dence. These results provide important information about the
mechanical behavior of iron at high pressure, as well as pro-
viding valuable data for developing interatomic potentials.
Recently, Stixrude and Cohen10 used tight-binding calcula-
tions of fcc and hcp elastic constants at a single compressed
volume in iron to argue that the inner core is elastically an-
isotropic and further showed that observed seismic travel-
time anomalies are consistent with a model of the inner core
composed of a nearly perfectly aligned aggregate of hcp
crystals. Qualitatively, our calculations support their conclu-
sions about elastic anisotropy in high-pressure fcc and hcp
iron, although quantitatively, there are some differences in
the calculated elastic constants.

The paper is organized as follows. Section II elaborates
the computational approach used in ourab initio electronic-
structure calculations. This section is followed by a presen-
tation of our results for crystal-structure phase stabilities in
Sec. III and our results for the elastic and vibrational prop-
erties of iron at high compression in Sec. IV. In Sec. V we
discuss the development of many-body interatomic poten-
tials for iron and our initial applications with them to full fcc
and hcp phonon spectra. Finally, we present our conclusions
in Sec. VI.

II. ELECTRONIC-STRUCTURE CALCULATIONS

The results presented below in Secs. III and IV on the
structural, vibrational, and elastic properties of Fe all derive
from accurate calculations of the electronic total energy for
assumed static configurations of the ions. For each configu-
ration considered, the total energy has been obtained from a

fully self-consistentab initio electronic-structure calculation.
Both nonmagnetic~non-spin-polarized! and magnetic~spin-
polarized with ferromagnetic ordering! treatments have been
considered. Nonmagnetic calculations have been used for the
elastic constants of fcc and hcp iron and also for the fcc
Brillouin-zone-boundary phonons, since our primary interest
here is the high-pressure region where ferromagnetism is
suppressed in the close-packed phases. Magnetic calculations
have been done for the bcc, fcc, bct, hcp, and dhcp crystal
structures of iron, however, because ferromagnetism plays an
important role in the overall phase diagram. All calculations
have been performed with a full-potential, linear-muffin-tin-
orbital ~FP-LMTO! method,11 which has previously been
used to calculate elastic constants for both cubic12 and
hexagonal13 d-transition metals. The present nonmagnetic
calculations have been done in a similar manner, and are
based on density-functional theory with the local-density ap-
proximation ~LDA ! to the exchange-correlation functional
suggested by von Barth and Hedin.14 All relativistic effects
have been taken into account except the spin-orbit interac-
tion for the valence electrons, where the scalar relativistic
equations have been solved. The full Dirac equation has been
solved for the core electrons. For the magnetic calculations,
we have applied gradient corrections to the LDA, according
to the generalized gradient approximation~GGA! developed
by Perdew and co-workers,15 since this improvement is es-
sential to obtain the correct ground state at low pressure.

The FP-LMTO method employs a minimal basis set of
muffin-tin orbitals16 to treat both the large pseudocore or
semicore states and the valence states. The calculations were
done with one, fully hybridizing, energy panel in which basis
orbitals corresponding to the semicore 3s and 3p states and
to the valence 4s, 4p, 3d, and 4f states were defined. Two
kinetic energy parameters (k2) appropriate for the tails of
the 3s, 3p, and the valence states were used, i.e., sixk
values in all. We found that this choice of a so-called double
basis set was generally important. We also found that ne-
glecting the semicore states in the basis set resulted, for in-
stance, in an almost 10% lowerX-point phonon (X phonon!
frequency at about 35% compression for fcc Fe. Furthermore
neglecting the 4f states in the valence energy bands in-
creased theX-phonon frequency by a similar amount.

Structural energies have been obtained on the basis of
GGA total-energy differences amongst the five solid phases
considered. The total energy of each phase has been calcu-
lated at 12 volume points between ambient density and about
twofold compression. In the case of the bct, hcp, and dhcp
structures, the variation of total energy withc/a axial ratio
has also been studied in certain regimes, as will be discussed
in Sec. III. For the hcp structure (c/a 5 1.585!, the pressure
P and bulk modulusB have also been calculated from vol-
ume derivatives of an analytic fit to the total-energy versus
volume curve. This has likewise been done for the nonmag-
netic LDA treatments of the fcc and hcp structures, where
the total energy has been calculated at a smaller number of
volumes. Figure 2 displays our GGA and LDA pressure-
volume relations for hcp Fe together with room-temperature
diamond-anvil-cell data17 for the hcp e phase, which has
been measured to about 3 Mbar. The latter shows good
agreement with our calculated GGA result, while our LDA
result systematically underestimates the pressure by about
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25–40 GPa. As a consequence of the latter, the LDA bulk
modulus at a given volume is also underestimated. This
shortcoming is not extended to the elastic constants in gen-
eral, however. In fact, test calculations on the fcc shear con-
stants,C8 and C44, demonstrate that the LDA and GGA
treatments give very similar results for these quantities.

Elastic constants and phonon frequencies have been ob-
tained from changes in the LDA total energy with applied
strain or lattice distortion. For fcc Fe, theC8 andC44 shear
elastic constants together with the longitudinal and trans-
verse phonons at theX and L symmetry points have been
calculated at three volumes: 9.70, 7.55, and 6.17 Å3. The
largest of these volumes represents an 18% compression
from ambient density, but is near the nonmagnetic equilib-
rium point as calculated in the LDA. For the hcp phase of
iron, we have evaluated the five elastic constants
C11 , C12 , C13 , C33 , and C44 at these same volumes.
Rigorous methods to calculate the cubic12 and hexagonal13

elastic constants have been well described in previous stud-
ies and we do not repeat those discussions here. The calcu-
lation of phonon frequencies is relatively recent in the con-
text of the FP-LMTO method, however, so in this case we
describe our actual procedure, with additional details given
in Appendix A. The phonon calculations employ the so-
called frozen-phonon method,18 in which the total energy is
calculated for static atomic displacements consistent with the
phonon mode under consideration. This technique has been
applied here to four zone-boundary phonons, the longitudinal
and transverseL andX phonons. For these modes, it suffices
to study a doubled unit cell for the fcc structure. One of the
two atom types in this cell is kept fixed while the other is
displaced according to a longitudinal or transverse phonon.
For sufficiently small displacements, the total energy in-
crease due to such a distortion,DE, is related to the zone-
boundary phonon frequencyvq by the harmonic relation

DE5 1
2M ~uqvq!

2, ~1!

whereM is the atomic mass for Fe anduq is the amplitude of
the displacement. Herevq is the angular phonon frequency
corresponding to normalized wave vectorsq5(1,0,0) (X
phonons! or q5( 12,

1
2,

1
2) (L phonons!. The X phonons arise

from vibrations of the ~100! planes in the fcc crystal,
whereas theL phonons arise from vibrations of the~111!
planes. In addition to the equilibrium configuration, the total

energy for three displacements were calculated for each pho-
non frequency and volume, so that the harmonic part of
DE could be accurately extracted. The phonon amplitudes
uq were chosen so thatDE was within an interval of about
0.0525.0 mRy/atom at all volumes. Since the phonon fre-
quencies increase as the metal is compressed, the displace-
ment amplitude was decreased for the smaller volumes and
the values foruq ranged from 0.1 to 2 % of the fcc lattice
parameter depending on the actual compression.

One of the most problematic issues in suchab initio total-
energy calculations is the convergence of each result with
respect to thek-point sampling used in performing required
sums over the Brillouin zone~BZ!. In this work, the energy
eigenvalues were calculated for various numbers ofk points
in the BZ and the sampling was done with the special
k-point method.19 When comparing the total energies for the
bcc, fcc, bct, hcp, and dhcp crystal structures, relatively few
k points were needed to converge the results. For the bcc,
fcc, and bct structures we used a total of 150k points in the
irreducible wedge of the BZ~IBZ; 1/16 of the full body-
centered-tetragonal BZ!, whereas for the hcp and dhcp struc-
tures the total energies were sufficiently converged for 162
k points in their IBZ~1/12 of the full simple-hexagonal BZ!.
For the calculation of the elastic constants and zone-
boundary phonons we used substantially morek points. In
our previous work on elastic constants,12 we found that a
larger number ofk points is needed to accurately obtain the
small differences in the total energy associated with the
small distortions involved. These earlier calculations12 were
done at ambient conditions whereas the present study con-
cerns iron under high compression and that makes it consid-
erably harder to converge the total energy with respect to the
number ofk points. This is true because as the real-space
volume is decreased upon compression, the reciprocal-space
BZ volume is increased and hence morek points are needed
to maintain the samek-point density in Fourier space. For
the fcc tetragonal shear constantC8, we have used up to
2119k points in the IBZ, whereas for theC44 elastic constant
the largest number ofk points ~for the most compressed
volume! was 2176 in the IBZ. Apart from the larger number
of k points used in the present calculations forC8 and
C44, they are similar to our previous studies of elastic con-
stants for cubicd-transition metals. The hcp elastic constants
were calculated for somewhat less number ofk points, but
never less than about 2000k points in the full BZ were used.

For the same reason as for the calculations of the elastic
constants, thek-point convergence of the phonon frequencies
was carefully examined for fcc Fe. This convergence was
never worse than about 4%, but mostly less than 2%. For the
longitudinal and transverseX phonons, the number ofk
points used in the IBZ was 936 and 1872, respectively. For
the L phonons a somewhat smallerk-point set was needed
and the number ofk points used in the IBZ was 1088 for the
longitudinal and 2048 for the transverseL phonons, respec-
tively.

III. CRYSTAL STRUCTURE PHASE STABILITIES

At low pressure, the crystallographic phase stabilities of
fcc, bcc, and hcp Fe have been studied theoretically by many

FIG. 2. Calculated GGA and LDA pressure-volume relations for
hcp Fe compared with room-temperature static compression data of
Ref. 17.
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previous workers, especially with regard to the role of mag-
netism in explaining the observed phase diagram.20,21 In par-
ticular, it is well known that the bcca phase is stabilized by
ferromagnetism at ambient conditions. It is also well known,
however, that magnetic electronic-structure calculations
based on the local-density approximation to exchange and
correlation predict the wrong ground state for Fe~fcc instead
of bcc!. Fortunately, this problem has recently been solved22

by the introduction of gradient corrections to the LDA and
our calculations of the crystal-structure phase stabilities pre-
sented below, therefore, incorporate a state-of-the-art GGA
version of this improvement.15,23

Figure 3 displays our calculated GGA total energies
for the bcc and hcp Fe structures as a function of volume. In
Fig. 4 we also show the energy differences between the fcc,
bct, hcp, and, dhcp crystal structures and bcc, such that the
bcc result defines the zero of energy on this plot. The bct,
hcp, and dhcp results in this plot are for assumedc/a axial

ratios of 0.875, 1.585, and 3.234, respectively, which mini-
mize the total energy for some or all of the volume range
considered, as discussed below. Notice that the hcp energy
crosses below the bcc energy just above 10 Å3. The corre-
sponding bcc→hcp transition pressure is calculated to be
about 10 GPa, in close agreement with both experiment and
other theoretical results.9,22Clearly, at zero temperature these
are the only two structures which are stabilized, and at high
pressure hcp is predicted to be the ground state to beyond 4
Mbar.

At high temperatures and pressures, such as in the earth’s
core, there might be others of these phases which are stabi-
lized by magnetic or phonon entropy effects, as suggested by
the recent experimental findings summarized in Fig. 1 and
discussed above. In particular, the discovery of a high-
temperature dhcp~Refs. 5 and 6! phase has encouraged us to
study the relationship between the dhcp and hcp structures in
more detail. In Fig. 5 we show the total energy for the dhcp
and hcp structures as a function of theirc/a ratios at a vol-
ume of about 9.8 Å3, which is representative of the observed
dhcp phase. The dhcp calculations were done for both ferro-
magnetic and anti-ferromagnetic ordering and in each case
the ferromagnetic calculation gave a lower total energy, so
these are the results plotted in Fig. 5. Only the dhcp structure
maintains a finite magnetic moment at this volume, however,
as the hcp ferromagnetic energies converge to the nonmag-
netic values. The hcp results show a single minimum in the
total energy for ac/a51.585, close to the value observed for
the e phase of iron (c/a51.60). The calculated dhcp total
energy is minimized for ac/2a51.617 and lies only about 2
mRy/atom~corresponding to 315 K! above the hcp energy
minimum. The calculated value of 3.234 for thec/a ratio in
dhcp Fe is also remarkably close to the value of 3.233 mea-
sured by Yooet al.6 at the same volume. In both structures
the c/a ratio is significantly lower than the ideal value,
which is 1.633 for hcp and 3.266 for dhcp.

The appearance of hcp and dhcp phases in Fe with non-
ideal values for thec/a ratio at high pressure is interesting
and has motivated us to also study the relationship between
the bcc and bct phases in some detail. The bct crystal struc-

FIG. 3. Calculated total energies for the bcc and hcp crystal
structures of Fe as a function of volume.

FIG. 4. Calculated total energies for the fcc, bct, hcp, and dhcp
structures of Fe relative to the bcc result, which defines the zero of
energy.

FIG. 5. Relative total energies for the hcp and dhcp crystal
structures of Fe calculated as a function ofc/a ~hcp! and c/2a
~dhcp!, at about 9.8 Å3 ~a volume representative for thee88 phase!.
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ture can be viewed as a tetragonal distortion, i.e., a shift in
the c/a ratio, of either the bcc (c/a51) or the fcc
(c/a5A2) structure. The transformation path defined by the
c/a parameter joining those structures is called the Bain
transformation path.24 In Fig. 6 we show this Bain path for
Fe in the vicinity of c/a51 at four separate volumes. At
large volumes (.9Å3), the bct energy is minimum for the
bcc structure and there is only one metastable phase, namely
the fcc structure (c/a5A2, not shown in Fig. 6!. However,
as the compression increases and the magnetic moment in
iron is suppressed, the bcc structure becomes unstable with
respect to a tetragonal distortion and a bct minimum with a
c/a.0.875 develops. This occurs above about 2 Mbar in
pressure. However, as can be seen in Fig. 4, even though the
bct energy becomes lower than the bcc energy at high com-
pression, it remains considerably higher than the fcc, hcp,
and dhcp energies.

Additional insight about high-pressure and high-
temperature phase stability of Fe is revealed by examining
the calculated magnetic moments. Figure 7 shows the mag-
netic moment for the five structures considered here as a
function of volume. It is clear that in the closed-packed
structures~fcc, hcp, and dhcp! the magnetism is already sup-
pressed at moderate pressures, whereas for the bcc and bct
structures the magnetic moment remains significant even at
high compression. Physically, this can be understood from
the pronounced double-peak feature in the electronic
d-density of states for these latter phases, which provides a
particularly favorable situation for retaining a magnetic mo-
ment. Comparing the magnetic moment in the dhcp and hcp
structures reveals that at volumes relevant to the observed
e8 phase of Fe~Ref. 6! ~about 9.3 to 10.1 Å3!, the dhcp
structure still has a substantial net magnetic moment
(;0.3mB/atom at 9.8 Å3!, while in the hcp structure it has
completely vanished. This suggests that thee8 phase may be
stabilized at high temperature by magnetic entropy and a
possible temperature-induced enhancement of the magnetic
moment in the manner discussed previously for the fccg
phase.21 Such a scenario is consistent with the intermediate

position of dhcp between hcp and fcc both in calculated en-
ergy and magnetic moment as well as in temperature location
on the observed phase diagram. This scenario is also consis-
tent with the observation of Yooet al.6,7 that the dhcpe8
phase vanishes at high pressure above 50 GPa, since the
calculated magnetic moment is reduced to near zero in that
regime. Finally, it is interesting to note that the metastable
bct phase displays the largest magnetic moment at very high
compression, corresponding to pressures above 2 Mbar. Thus
while we can probably rule out the bcc phase from the high-
pressure phase diagram of iron, the bct phase cannot be
so excluded and possibly thea8 phase in Fig. 1 is bct instead
of bcc.

IV. ELASTIC CONSTANTS AND PHONONS

In this section we next turn to the elastic and vibrational
properties of nonmagnetic fcc and hcp iron relevant to the
earth’s core. Comparatively little fundamental theoretical
work has been done on these properties outside of the recent
elastic constant calculations of Stixrude and Cohen.10 These
authors performed an elaborate tight-binding fit toab initio
GGA electronic structure and total-energy calculations on
compressed iron and then used the tight-binding parameters
in turn to calculate fcc and hcp elastic constants at a single
compressed volume near earth-core conditions. We, on the
other hand, have calculatedab initio LDA elastic constants
and phonons directly at a series of three volumes spanning
both low and high pressures in fcc and hcp Fe.

TABLE I. Calculated elastic constants and phonons for non-
magnetic fcc Fe under compression. Volumes are in Å3; pressures,
bulk moduli, and elastic constants are in Mbar; and phonon angular
frequencies~v! are in 1012 rad/s.

Volume P B C8 C44 L@100# T@100# L@111# T@111#

9.70 -0.02 3.30 1.18 2.86 39.8 40.0 56.1 30.7
7.55 1.43 8.92 2.06 5.80 84.2 63.3 100 45.2
6.17 4.06 17.6 3.36 9.50 123 85.6 138 60.1

FIG. 6. Calculated total energy for the bct crystal structure of Fe
along the Bain transformation path at four different volumes. For
c/a51 the bct structure is identical to the bcc structure. The ener-
gies are shifted so that the bcc energy is zero for each volume.

FIG. 7. Magnetic moment calculated as a function of volume for
five crystal structures of Fe.
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Our calculated fcc results are summarized in Table I and
Fig. 8, while our hcp results are elaborated in Table II and
Fig. 9. In the tables, we list the calculated pressureP and
bulk modulusB in addition to the elastic-constant and pho-
non data. For the hcp calculations, we have actually used the
ideal c/a axial ratio of 1.633 here instead of the theoretical
value of 1.585, but we do not believe that the difference is
significant. The calculated zone-boundary phonons in Table I
are the longitudinal and transverseX phonons,L@100# and
T@100#, andL phonons,L@111# andT@111#. Formally, our
elastic constants are the stress-strain coefficients defined by
Wallace,25 so that for the cubic-symmetry, fcc case, the fa-
miliar equilibrium relations

C85 1
2 ~C112C12! ~2!

and

B5 1
3 ~C1112C12! ~3!

continue to hold at all pressures andC8 andB alone deter-
mineC11 andC12. Qualitatively, there is reasonable overall
consistency between our calculated fcc and hcp elastic con-
stants and those of Stixrude and Cohen.10 When we interpo-
late our values to their volume~7.13 Å3!, we find quantita-
tive agreement to about 5–15%, with two exceptions. The
exceptions areC8 for the fcc structure andC12 for the hcp
structure for which our values are about 33% lower than
theirs. The reasons for the latter discrepancies are not under-
stood at present, but are possibly significant with respect to
quantitative modeling of the inner core.

Our calculated elastic constants are everywhere positive
and smoothly increasing functions of compression. This im-

plies full mechanical stability of the fcc and hcp structures
over the entire pressure range considered. For fcc Fe,B,
C8, andC44 all increase proportionally with the applied pres-
sure, withB increasing faster thanC44 andC8, as shown in
the upper panel of Fig. 8. Likewise,C44 increases more rap-
idly than C8 upon compression implying that fcc Fe is in-
creasingly anisotropic, with regard to the propagation of
elastic waves, as a function of pressure. The fact that the
earth’s core shows a large degree of elastic anisotropy has
indeed been suggested by both theory and experiment.10,26

It is also worthwhile to note that the tetragonal shear con-
stantC8 is defined by a small distortion of thec/a parameter
along the Bain path and consequently is proportional to the
local curvature on the path atc/a5A2 for the fcc structure
and atc/a51 for the bcc structure. Clearly, fcc Fe becomes
more stable with respect to such a distortion as the pressure
increases sinceC8 increases with pressure. This is in direct
contrast to the behavior of bcc Fe which becomes unstable
for a tetragonal distortion and hence displays negative Bain-
path curvature and a negativeC8 at sufficiently high pres-
sure, as can be seen from Fig. 6.

The lower panel of Fig. 8 shows the pressure dependence
of the zone-boundary phonons for nonmagnetic fcc Fe. The
longitudinal modes are seen to increase faster with increasing
pressure than the transverse modes, with an interesting cross-
ing of L@100# and T@100# at low pressure. Unfortunately,
there are no available experimental measurements or compa-
rable theoretical results with which to make comparison
here. To our knowledge similar calculations for high-
pressure Fe have not been done before.

FIG. 9. The calculated pressure dependence of the elastic con-
stants for nonmagnetic hcp Fe.

TABLE II. Calculated elastic constants for nonmagnetic hcp Fe
under compression. Volumes are in Å3 and pressures, bulk moduli,
and elastic constants are in Mbar.

Volume P B C11 C12 C13 C33 C44

9.70 -0.01 3.48 6.38 1.90 2.18 6.06 1.78
7.55 1.40 8.98 15.1 4.60 6.73 14.5 4.14
6.17 4.02 17.7 27.5 8.93 14.7 27.8 7.67

FIG. 8. The calculated pressure dependence of the elastic con-
stants~upper panel! and zone-boundary phonons~lower panel! for
nonmagnetic fcc Fe.L@100# andT@100# denotes the longitudinal
and transverseX phonons;L@111# andT@111# denotes the longitu-
dinal and transverseL phonons.
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V. INTERATOMIC POTENTIALS AND FULL
PHONON SPECTRA

In this section we turn our attention to the development of
corresponding many-body interatomic potentials for iron,
with which melting and other high-temperature properties
can be calculated. Our starting point here is first-principles
generalized pseudopotential theory~GPT! which provides a
rigorous real-space expansion of the total energy of a bulk
transition metal in the form27

Etot~R1 . . .RN!5NEvol~V!1
1

2 (
i , j

8 v2~ i j !

1
1

6 (
i , j ,k

8 v3~ i jk !1
1

24 (
i , j ,k,l

8 v4~ i jkl !,

~4!

whereR1 . . .RN denote the positions on theN ions in the
metal,V is the atomic volume, and the prime on each sum
over ion positions excludes all self-interaction terms where
two indices are equal. The leading volume term in this ex-
pansion,Evol , as well as the interatomic potentialsv2 , v3 ,
andv4 are volume dependent, butstructure independentand
thus transferableto all bulk ion configurations, ordered or
disordered. At constant volumeV, the radial-force pair po-
tential v2 is a one-dimensional function of the ion-ion sepa-
ration distanceRi j5uRi2Rj u:

v2~ i j !5v2~Ri j ;V!, ~5!

while the angular-force triplet potentialv3 and quadruplet
potentialv4 are, respectively, the three- and six-dimensional
functions

v3~ i jk !5v3~Ri j ,Rjk ,Rki ;V! ~6!

and

v4~ i jkl !5v4~Ri j ,Rjk ,Rkl ,Rli ,Rki ,Rl j ;V!. ~7!

The GPT total-energy expansion~4! has been developed
within the nonmagnetic LDA framework of density-
functional theory and our applications to iron are all confined
to this limit. Explicit ab initio expressions forE vol , v2 ,
v3 , andv4 have been obtained in terms of weak pseudopo-
tential andd-state matrix elements and are given in Ref. 27.
In the full GPT, however, these functionals are nonanalytic
quantities, so that the multidimensional potentialsv3 and
v4 cannot be readily tabulated and used for applications pur-
poses. This problem has been overcome by the development
of a companion model GPT or MGPT~Ref. 28! in which
canonicald bands and other simplifications are introduced in
order to achieve analytic forms for the potentialsv3 and
v4 , as well as analyticd-state components ofv2 . In the
MGPT both the formal character of Eqs.~4!–~7! and the
dominant physics of the full theory are retained, while the
more approximate nature of the potentials is compensated for
by allowing variable coefficients to thed-state components
of v2 , v3 , andv4 , which in turn can be adjusted toab initio
data. It is through this latter mechanism that we here use the
above LDA FP-LMTO elastic constant and phonon data in
developing MGPT potentials for iron.

In the following we consider a specific, representative
scheme for obtaining iron MGPT potentials. We have been
guided here by both past experience on bcc transition
metals28 and by our desire to produce potentials which will
be optimally effective for the melting calculation at high
pressure. We have also taken advantage of the availability of
additional LDA LMTO calculational data on nonmagnetic
iron8 obtained in the atomic-sphere approximation~ASA!.
The MGPT formalism provides a maximum of fived-state
potential coefficients which can be adjusted as a function of
volume. A sixth parameter can be made available by allow-
ing the volume termEvol also to be variable. This additional
freedom is used to enforce the rigorous compressibility sum
rule, which ensures that the bulk modulus is the same
whether calculated from volume derivatives ofEtot or from
position derivatives of the potentialsv2 , v3 , andv4 at con-
stant volume. We have determined the remaining five param-
eters by fitting them, as a function of volume, to a selected
blend of LMTO-ASA and FP-LMTO data for nonmagnetic
fcc iron. Two of these parameters have been constrained by
LMTO-ASA results for the bulk modulus and the bcc-fcc
energy difference.8 In this regard, the LMTO-ASA values of
the bulk modulus are preferred over the FP-LMTO values
because the ASA effectively compensates for the systematic
LDA underestimates of pressure and bulk modulus noted
above in connection with Fig. 2. As a consequence, the re-
sulting MGPT room-temperature isotherm obtained via Eq.
~4! for hcp iron is in good accord with experiment. At the
same time, the constraint of the bcc-fcc energy difference
ensures a qualitatively correct description of structural ener-
gies for the hcp, fcc, bct, and bcc phases in the nonmagnetic
limit. In particular, hcp is properly the ground state for all
volumes and bcc is unstable with respect to a tetragonal dis-
tortion, yielding a lower-energy metastable bct phase for
c/a.0.85. It should be noted, however, that the positive
fcc-hcp energy difference is quantitatively underestimated in
the MGPT due to its neglect of higher-order multi-ion
d-state contributions beyond four-body interactions. The fi-
nal three MGPT parameters have been constrained by the
present FP-LMTO elastic-constant and phonon data. This
has been done by exactly fitting the average fcc phonon fre-
quency (L@100#12T@100#1L@111#12T@111#)/6 as a
function of volume, while simultaneously maximizing the
agreement for the four individual phonon frequencies and
two elastic constants (C44 andC8). The idea here is that the
average phonon frequency should be approximately propor-
tional to the Debye temperature, which in turn controls the
melting temperature. Figure 10 compares the resulting
MGPT phonons and elastic constants with theab initio FP-
LMTO data. The MGPT readily accommodates all quantities
except theL@111# phonon frequency, which is systemati-
cally underestimated. As desired, however, the level of
agreement improves with increasing compression and the
maximum error is only 12% at the smallest volume consid-
ered.

The MGPT potentials so determined have been used to
calculate complete quasiharmonic phonon spectra, Debye
temperatures, and free energies for the nonmagnetic fcc, hcp,
and bct Fe phases as a function of compression. The fcc and
hcp structures are found to be everywhere mechanically
stable, with real phonon frequencies over the whole volume
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range considered~6.11 to 9.65 Å3!, while the bct structure
becomes mechanically unstable for volumes greater than
about 8.23 Å3. The latter outcome, however, is very sensitive
to the details of the potentials, and the mechanical stability of
the truemagneticbct structure of iron remains to be investi-
gated. Representative fcc and hcp phonon spectra at high
compression are displayed in Figs. 11 and 12, respectively.
For each phonon spectra considered, a Debye temperature
QD is defined in terms of the zero-point vibrational energy,

Eph
0 5

1

2N(
q

\vq , ~8!

by the Debye relationEph
0 59/8kBQD , where the sum in Eq.

~8! is over all phonon modes in the first Brillouin zone of the
lattice. The calculated volume dependence ofQD is illus-
trated in Fig. 13 for fcc, hcp, and bct Fe. Note that the Debye
temperatures of the fcc and hcp structures are almost the
same at all volumes, while that of the bct structure is con-
siderably higher. Corresponding phonon free energies have
been calculated to 17 500 K in temperature at each volume
considered for all three phases. The hcp structure maintains
the lowest free energy at all volumes and temperatures, so at
least in the nonmagnetic, quasiharmonic limit, we conclude
that iron will melt out of this structure.

VI. CONCLUSIONS

Five representative crystal structures for iron have been
studied as a function of compression by means ofab initio
FP-LMTO density-functional calculations, and the results
have some clear implications for the high-pressure, high-
temperature phase diagram of this metal. We find that the
recently observed dhcp structure is likely to be energetically
accessible at high temperature for pressures below about 50
GPa due to its ferromagnetic character. This conclusion is
consistent with dhcp as the proposede82Fe phase of Yoo
et al.,6,7 but not with dhcp being the proposedb2Fe phase2,5

above 50 GPa. We further find that as the magnetism in bcc

FIG. 10. Comparison of elastic constants and phonons for non-
magnetic fcc Fe calculated with the FP-LMTO and MGPT methods.
Upper panel:C44 andC8 elastic constants; central panel:X-point
phonons; lower panel:L-point phonons.

FIG. 11. Calculated MGPT phonon spectrum of nonmagnetic
fcc Fe at a volume of 6.82 Å3, corresponding to a zero-temperature
pressure of 2.8 Mbar.

FIG. 12. Calculated MGPT phonon spectrum of nonmagnetic
hcp Fe at a volume of 6.82 Å3, corresponding to a zero-temperature
pressure of 2.8 Mbar.

FIG. 13. Calculated MGPT Debye temperatures for nonmag-
netic fcc, hcp, and bct Fe as a function of volume.
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Fe is suppressed at high pressure above 2 Mbar, this phase
becomes mechanically unstable and a metastable bct phase is
developed in its place. Consequently, bcc is an unlikely can-
didate for the proposeda8 phase of iron at earth-core con-
ditions, and our calculations support other researchers’ con-
clusions in this regard.8,9 The bct phase, on the other hand, is
interesting and deserves more attention. Although this phase
is considerably higher in energy than the hcp ground state, it
retains a substantial magnetic moment even at megabar pres-
sures. A scenario where the bct is stabilized at high pressure
and high temperature by magnetic entropy effects cannot be
entirely ruled out at present, and it remains possible that this
is thea8 phase. It is, therefore, our intention to investigate
the elastic and vibrational properties of magnetic bct Fe in
the future.

For the nonmagnetic fcc and hcp phases of Fe, we
have also done a series ofab initio FP-LMTO calculations
in order to determine their elastic constants, and for the
fcc phase the zone-boundary phonons as well, as a func-
tion of compression. The elastic constants should be use-
ful in the future for detailed modeling of the inner core of
the earth. The fcc data has been used in the present paper
to develop multi-ion MGPT interatomic potentials, which
in turn have been applied to obtain complete fcc and
hcp phonon spectra and Debye temperatures. These same
potentials are currently being used in molecular dynamics
simulations aimed at determining the high-pressure melting
curve of iron, and these studies will be reported at a later
date.
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APPENDIX

In this appendix, we review some technical details regard-
ing the calculation of the zone-boundary phonons utilizing
the frozen-phonon method for a metal in the fcc crystal struc-
ture. The phonons of interest are theX andL phonons that
arise from vibrations of the~100! and~111! planes of the fcc
cell, respectively. For these phonons it suffices to study a
doubled unit cell, spanned by the Bravais lattice vectors for
theX phonons,

R5S 0 1
2

1
2

0 2 1
2

1
2

1 0 0
D , ~A1!

and for theL phonons

R5S 0 1
2

1
2

1
2 0 1

2

1 1 0
D , ~A2!

in units of the lattice constanta. The doubled cell has two
atoms with equilibrium positions (0,0,0) and (1

2,
1
2,

1
2) for the

X phonons whereas for theL phonons the positions are
(0,0,0) and (0,0,12). These atomic positions are here repre-
sented in their respective Bravais lattice coordinates. In the
frozen-phonon method the energy increase (DE) associated
with a phonon displacement,uq5uuqua, defined by the nor-
malized vectorq, is calculated and the corresponding angular
frequency can be obtained by means of Eq.~1!. In practice
we let one of the atoms be fixed and displace the other by an
amount 2u in the specific direction given byq ~in the Car-
tesian coordinates!. Table III shows theq’s corresponding to
the four phonon modes and also the~nonequilibrium! atomic
positions governed by those modes. By calculating total en-
ergies and extractingDE, the angular frequency can be ob-
tained from the harmonic relation

vq5A 2DE

Mu2uqu2a2
. ~A3!
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14 072 53PER SÖDERLIND, JOHN A. MORIARTY, AND JOHN M. WILLS


