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We have analyzed the data of Clayholdet al. for the Nernst effect in the normal state of a high critical
superconductor, i.e., Tl2Ba2CaCu2O81d. This requested to derive a kinetic expression for the Nernst effect, an
expression able to take into account inelastic scattering and magnetic-field dependence. This was done along a
relaxation time formalism for the solution of the Boltzmann equation but leaving abackground termwhich can
be calculated by the most appropriate method. The final calculation leads to the evaluation of thebackground
term resulting from the thermoelectric field-free effect. In order to do this we have considered a model of
Livanov and Sergeev. The Nernst effect is explained by a simple two band model for electrons and holes with
different mobilities. The resulting fit to the experimental data looks rather convincing. Several predictions are
made thereafter.@S0163-1829~96!06921-4#

The Nernst effect~NE! is the off-diagonal term of the
thermoelectric power tensor in presence of a magnetic field.
NE is a very difficult property to measure, to calculate and to
interpret. It is not even a quantity much reported upon for
metallic systems. This is not totally surprising since the ther-
moelectric power@or Seebeck coefficient (S)# is already
something quite complicated to calculate, the more so for a
third rank tensor.

It is known, however, that the Nernst effect~represented
by the Nernst coefficientQ! is a quite challenging problem1

in high critical temperature superconductors~HTS’s! which
are furthermore anisotropic systems. It has been often exam-
ined below the critical temperature in the so-called mixed
state though only recently was the anisotropy of the coeffi-
cient put into evidence.2,3

The understanding of thebackground termin such coef-
ficients is, however, necessary before subtle physical effects
are considered. Thenormal, or high-temperature behavioris
thus of great interest. The most simple theory leads to
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when the metallic limit (kBT!«F) and a single type of car-
riers are assumed in standard notations, as recalled by Blatt.4

Some more general treatment based on linear response
theory can be found in the literature even including the role
of fluctuations near, e.g., the superconductivity transition.5

Very recently Clayholdet al.6 measured the Nernst effect
in the normal state. They discussed the great difficulty in
obtaining precisely signals of the order of nV for such sys-
tems. The measurements were made on a Tl2Ba2CaCu2O81d
sample. Such features were seen by Pekalaet al.7 also, but
were reported with less precision.

In the apparent absence of theory for the
Tl2Ba2CaCu2O81d Nernst effect, we give here a theoretical
work for such a multicarrier crossed heat and electrical cur-
rent transport at high fields. The comparison with experimen-
tal data of Clayholdet al. looks very fine for the limited and
reasonable set of assumptions used here.

The most simple method to determine a transport property
is through the solution of the Boltzmann equation within a
relaxation time formalism. However, the formal solution in
general avoids inelastic-scattering contributions~relaxation
time approximation! which are sometimes reintroduced later
even though the theory had first missed the contribution. In
principle, one should follow the formalism of Sorbello.8 An-
other method of great interest is through a variational solu-
tion as discussed by Kohler9 and Sondheimer,10 popularized
by Ziman,11 and often used when a thermal gradient has to
be taken into account. The method is much more compli-
cated, however, when one has to include magnetic-field ef-
fects. A supposedly well investigated quantity like the mag-
netoresistance was written in a one page formula in the
remarkable work of Garcia-Moliner.12

In fact, the relaxation time method is of interest for trans-
port properties measured in a finite magnetic field if one
notices that inelastic collisions are mainly relevant for the
coefficients and terms pertaining to the thermal current, and
leaving aside only the elastic collisions for the electric terms.
In so doing~see some details in Appendix A!, one can write
the Seebeck and the Nernst coefficients as
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whereB is the magnetic induction andS~0! is obviously the
Seebeck coefficient in absence of magnetic field. In the
above formula,x5qtB/m, q is the carrier electric charge,m
is the effective mass of the carriers, andt is the field-free
relaxation time~at the Fermi leveldF!. The above formulae
are for isotropic systems.

At low field ~x!1!, the Seebeck coefficientS(B) is very
mildly different from the zero-field caseS~0!—as always
observed in the normal state of HTS’s away from the critical
temperature. At high field~x@1!, neglecting quantum effects
~Landau levels!, the linear correction term adds itself to the
classical Mott dependence, i.e., is a sum of two terms. The
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Nernst effectQB at high field has a component proportional
to T/x. At high temperature, the inverse of the relaxation
time is linear in temperature andQB is thus expected to
behave likeT2 for electron-phonon scattering.

The normal-state Tl2Ba2CaCu2O61d. Nernst data6 can
now be analyzed. Let us recall that above the critical tem-
perature~'110 K! the Nernst coefficient is positive and de-
creasing. This is understood in terms of superconducting
fluctuations,5 not taken into account here, but known to exist
rather far fromTc . From 150 to 200 K the Nernst coefficient
becomes negative with a sharp variation. The coefficient
smooths out, remains negative, and decreases above 200 and
below 350 K.

We first take for granted that the conduction in HTS’s is
multiband. Several conduction models exist and we cannot
review them nor quote them all here. We limit, in fact, our
considerations to well-established models taking into ac-
count classical electrons and holes. One interesting case is to
consider a mixed conduction with conducting holes in the
CuO planes and electrons in the supposed semiconducting
TlO planes.13 We have attempted to use such a scheme for
the Clayholdet al. data,6 but the exponential behavior with
temperature arising from the semiconducting contribution
does not lead to a good fit.

Rather we will consider in a more phenomenological way
that the hole and electron mobilities are different. Whatever
the planes where they are, this is not in disagreement with
the fact that the Hall coefficient remains positive betweenTc
and 250 K.14 Indeed, in a mixed conduction model, the only
way to explain such a behavior is to consider that the elec-
tron concentration is much smaller than the hole concentra-
tion. This can be taken as the main assumption, though a
reasonable one, in the following. This in fact implies also
that the thermoelectric power is essentially due to the holes
according to the Kohler rule4,11and this is true in HTS’s. The
modeling of thermoelectric power in HTS’s for specific hole
transport Sh~0! has been, e.g., realized by Livanov and
Sergeev15 considering the electron-phonon-impurity interfer-
ence ~EPII! process. The mixed conduction Nernst coeffi-
cient can be easily written in the same framework and then
reads~see Appendix B!
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whereSh~0! is the hole thermoelectric power in absence of
magnetic field,mh(T) is the hole mobility at temperatureT,
« F
h and « F

e are, respectively, the hole and electron Fermi
energy andT0 is a temperature defined in terms ofmh and
ne/nh which is the relative electron/hole concentration~B2!.
We repeat thatne!nh . The Fermi energy« F

h is fixed by
band structure calculation to 2.4 eV.13 « F

e is unknown and
will be a fit parameter.Sh~0! can be deduced from the for-
mulae of Ref. 15. It depends on two free parameters:~i! S0
which is the classical Mott diffusion thermopower measured
at the Debye temperature taken here to be equal tou5400 K
so thatS054mV K21 and~ii ! l which is the electron-phonon
coupling constant. The parameterl has been chosen equal to
1.5 which is in the range of values~1–2.5! proposed by
Livanov and Sergeev. In Ref. 15 a chemical parameter must

be also given.DZ is the charge of scattering centers associ-
ated with ions O22 in the CuO planes,DZ522. With these
parameter values,Sh~0! behaves like 6.53102622.1631028

T V K21.
The main scattering process for the hole mobility is cer-

tainly the hole-acoustic phonon scattering. The correction
due to the EPII is expected to be negligible for the hole
mobility in the range of temperature that we consider.16 The
hole mobility can be then calculated from the Gru¨neisen for-
mula for the hole resistivityrh5r0(u/T)

5F5(T/u) where
F5(T/u) is the Fermi-Dirac integral. The electrical resistiv-
ity, r0 has been taken equal to 1.231023 V cm from experi-
mental data.17 With a hole concentration equal to 5.1021

cm23 ~Ref. 18! the mobility is then obtained easily from
mh51/(nerh).

One should notice that such parameter values only influ-
ence the magnitude of the relative terms. If the theory was
based on unphysical assumptions, the predicted behavior
would turn out to be way off from the data. We have used
the above values to calculate the normal-state NE coefficient
for the sample examined by Clayholdet al. ~Fig. 1!. The fit
is very good. This confirms that both the parameters are not
only good estimates and in agreement with the experimental
data of other authors, but also that the theoretical expression
makes sense. As a test of the main assumption, we obtain the
only free parameter, i.e., ne/nh53.231025 which is very
small, as expected. A prediction resulting from the above
data is that the Hall coefficient should be negative above 500
K. If the physical considerations that we have made stay
valid at such temperatures.
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FIG. 1. Normal-state Nernst effect of Tl2Ba2CaCu2O81d ; data
from Clayholdet al. ~Ref. 6!, fit from text.«F

e has been taken equal
to 0.3 eV.
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APPENDIX A

For independent electrons, the Boltzmann equation can be
solved using ana priori relaxation timet(kW ). In such a for-
malism the resolution of the Boltzmann equation is very
simple compared to the formalism of Garcia-Moliner and
Simons.19 It can be shown that this latter method implies the
existence of a relaxation time but different from the one de-
duced by the relaxation time approximation. A relaxation
time formalism method is therefore justified.

After some algebra we can write for an isotropic three-
dimensional system the following expressions for the On-
sager coefficients:
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Taking the metallic limit approximation through Sommer-
feld’s lemma and keeping only the first relevant term we
have
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The derivative of the relaxation time can be written in term
of the zero magnetic field transport coefficients,
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The Nernst and Seebeck coefficient can then be written, to
first order inkBT/«F
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The only relevantbackground termis S~0! which can be
calculated by any appropriate method for independent elec-
trons and for any relevant model according to the physical
interest.

APPENDIX B

According to the approximation made in the main text,
the Nernst coefficient can be written in the following form:
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We will define a temperatureT0 at which s xy
e 5s xy

h . We
found that the only simple way to explain the decrease of the
Nernst coefficient between 200 and 350 K is to consider that
over these limits of temperature the electron mobility is suf-
ficiently great so thatxe@1. Taking into account the relation
~A6! respectively forxe@1 andxh!1, one obtains the ratio
of electron/hole concentration

ne /nh5mh
2~T0!B

2. ~B2!

Using formulae~B2!, ~A5!, ~A6!, ~A7!, and ~A8!, one can
write the Nernst coefficientQ as
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To find the relative electron/hole concentration, the fit
gives us the value ofm h

2(T0)/mh(T) which allows us to de-
termine the temperatureT0. We can then find the relative
electron/hole concentration with relation~B2!.
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