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Magnetic properties of three-dimensional~3D! and two-dimensional~2D! metallic antiferromagnets in the
spin-wave temperature region are investigated within thes-d( f ) exchange model. The spin-wave damping
owing to one- and two-magnon scattering processes is calculated. The electronic contributions to the sublattice
magnetization are obtained. AtT!T* andT@T* (T* is the threshold energy for one-magnon processes! the
leading nonanalytical terms are proportional forD53 to T4lnT and lnT, respectively. Peculiar logarithmic
contributions in the 2D case are derived. Nonanalytical corrections to the magnon spectrum and local moment
on a site are analyzed. A comparison with the case of a ferromagnet is performed.@S0163-1829~96!04418-9#

The problem of magnon-magnon interactions and of the
corresponding contributions to thermodynamic and magnetic
properties in the Heisenberg model has been investigated for
a long time~see, e.g., Refs. 1–4!. Recently interest in quan-
tum magnets, especially in two-dimensional~2D! and frus-
trated systems, has grown in connection with discovery of
high-Tc superconductivity. At the same time, a number of
anomalous metallic magnets~e.g., Kondo lattices, heavy-
fermion compounds! has been studied experimentally.

Unlike insulating ‘‘Heisenberg’’ magnets, magnetic prop-
erties of metals are determined to a considerable extent by
conduction electrons. There is a number of difficult problems
and interesting peculiarities for weak itinerant electron mag-
nets where spin waves possess a strong damping practically
in the whole Brillouin zone, and paramagnonlike excitations
play a dominant role.5 On the other hand, for metals with
localized magnetic moments~e.g., for rare earths and some
d and f compounds! the situation, although being simpler, is
not investigated in detail. It is usually accepted that these
substances may be described by thes-d( f ) exchange model.
To second order in thes-f parameterI the latter model is
reduced to an effective Heisenberg model, so that spin waves
are well defined unlike the case of itinerant magnets. How-
ever, there exist peculiar electronic contributions to spin-
wave spectrum characteristics of local-moment metallic
magnets. In particular, magnons possess finite damping at
zero temperature, which is owing to electron-magnon scat-
tering processes. Corresponding effects in thermodynamic
properties can lead to drastic differences in comparison with
insulating magnets.

For a ferromagnet~FM! higher-order corrections to the
magnon spectrum were treated in Refs. 6–8. In the present
work we consider the case of an antiferromagnet~AFM!. We
calculate the magnon damping, nonanalytical corrections to
the spin-wave frequency and related contributions to the su-
blattice magnetization and local moment.

We start from the Hamiltonian of thes-d( f ) exchange
model,
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wheretk is the band energy,Si andSq are spin-density op-
erators and their Fourier transforms, ands are the Pauli ma-
trices. For the sake of a convenient construction of perturba-
tion theory, we explicitly include the Heisenberg exchange
interaction with the parametersJq in the Hamiltonian. It
should be noted that similar results may be reproduced for a
Hubbard antiferromagnet provided that local moments are
well defined~cf. Refs. 8,9!.

To investigate the magnon spectrum we pass in the local
coordinate system from spin operators to the Bose spin de-
viation operatorsbi

† ,bi and calculate the corresponding re-
tarded Green’s function. Writing down the sequence of equa-
tions of motion and performing decouplings to accuracy of
I 2 @cf. the calculations for FM’s~Ref. 6! and AFM’s ~Ref.
10! we represent this in the form
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HereQ is the wave vector of the AFM structure~for sim-
plicity 2Q is supposed to be equal to a reciprocal lattice
vector! andS is the spin value. The terms that contain the
spin deviation correlation functions describe the magnon-
magnon interaction. Thes-d exchange contributions of first
order in the quasiclassical small parameter 1/2S correspond
to the RKKY approximation where
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@nk5n(tk) is the Fermi function#, the second summand in
~4! being thev-dependent RKKY indirect exchange interac-
tion. Unlike the standard canonical transformation method,
our approach permits one to calculate the spin-wave damp-
ing. The functionF, which determines the second-order cor-
rections, is given by
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where N(v) is the Bose function; note that
fpqv

1 52fpq2v
2 . The quantitiesCp ,Dp in the right-hand

side of ~3! should be substituted to zeroth order inI and
1/2S, (Cp2Dp) →0 at p→0, (Cp1Dp)→0 atp→Q, and

vp5~Cp
22Dp
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is the magnon frequency. We have taken into account in~3!
the expressions for the static correlation functions that oc-
curred in the equations of motion,
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These are obtained by calculating the corresponding retarded
Green’s functions and using the spectral representation.

Although the energy denominators in~4!, ~5! do not take
into account the splitting of the band by AFM ordering, we
have to separate the contributions of the transitions within
the AFM subbands and between them~cf. Ref. 9!. Generally
speaking, the latter contributions are more singular, but in
fact they are cut off owing to the AFM splittingD52uI uS̄, S̄
being the sublattice magnetization. The corresponding
threshold value of the magnon quasimomentum transfer is
estimated as minup2Qu5q0;D/vF (vF is the electron ve-
locity at the Fermi level!. This quantity determines a charac-
teristic temperature and energy scale

T*5v~q0!5cq0;~D/vF!TN , ~8!

with c being the magnon velocity. Note that for FM’s with
the quadratic dispersion law of spin waves one has
T*;(D/vF)

2TC .
8

Despite the absence of long-range magnetic ordering at
finite temperatures, the result~2! is valid also in the two-
dimensional~2D! case up toT;J ~i.e., TN→JS2) owing to
the strong short-range order. The quantityS̄ is replaced by
square root of the Ornstein-Cernike peak in the spin correla-
tion function and has in the spin-wave region a linearT
dependence~cf. Ref. 11!.

The spin-wave damping owing to one-magnon decay pro-
cesses, determined by the imaginary part of~4!, reads at
smallq

gq
~1!5pSFAL vq1Bc~q!G , ~9!

whereL52S(J02JQ), the functionc describes entering the
‘‘Stoner continuum,’’c(q,q0)50, c(q@q0)51, and
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tk being referred to the Fermi level. Generally speaking,A
depends on the direction of the vectorq ~see, e.g., Refs.
5,12!. For an isotropic electron spectrum one has atD53

A5cI2V0$4p2uk21]tk /]kuk5kF
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whereV0 is the lattice cell volume.
One can see that the one-magnon damping~9! is finite at

arbitrarily small q~in contrast with the FM case!, but be-
comes considerably larger when intersubband transitions be-
gin to work (q.q0). Unlike the FM situation (Q50), the
intersubband damping does not contain the factor ofq21.
However, such a dependence occurs in someq region pro-
vided that the electron spectrum approximately satisfies the
‘‘nesting’’ condition tk1Q52tk in a large part of the Fermi
surface.

The damping owing to two-magnon scattering processes
is determined by the imaginary part of the function~5!. The
intersubband transitions contribute at max(T,vq).T* . Using
the identity
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we obtain from~2! to leading order inv5vq
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Integration atT!v gives
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with B̃(v@T* )5B and B̃(v!T* )50. At v!T we find
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with B̃(T@T* )5B, B̃(T!T* )50 and z(z) the Riemann
function, z(3).1.2. As well as for the one-magnon damp-
ing, the intersubband contributions~terms with B̃) become
modified and increase considerably in the ‘‘nesting’’ situa-
tion. Although the two-magnon damping is smaller than the
‘‘Landau’’ damping~9!, the former can be picked up owing
to its strong temperature dependence.

Calculation of the two-magnon damping in a disordered
AFM ~the one-magnon damping is treated in Ref. 10,gq→0

(1)

}vq
2) can be performed by analogy with the case of the

ferromagnet.13 After averaging thed function over the Fermi
surface@see~14!# we have forD53 to replace as compared
to the ‘‘clean’’ limit

up2qu21→~2/p!b~ up2qu l !up2qu21, ~19!

b~z!5~111/z2!arctanz21/z,

with l being the electron mean free path. Then we obtain in
the hydrodynamic limitql!1, T!c/ l instead of~15!, ~17!,

gq
~2!5
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8p2T4/45, v!T ~20!

~at smallT,v only intrasubband transitions yield a contribu-
tion!. Thus the disorder in the electron subsystem leads to a
decrease of the two-magnon damping.

Electronic corrections to the sublattice magnetization
which are due to the one-magnon damping~9! are calculated
in terms of the averageŝbq

†bq& with the use of the spectral
representation for the Green’s function~2!,
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1

p(
p
E

2`

`

dv N~v!S ImCpv

v22vp
2 1

2Cpvgp
~1!

~v22vp
2!2

D .
~21!

The zero-point contributions owing to the first term in the
brackets yield a Kondo-type logarithmic correction to the
sublattice magnetization,14,15

@dS̄el~0!#1522~ Ir!2S ln~W/v̄ !, ~22!

with r being the electron density of states atEF ,
v̄5v(2kF), andW of order of the bandwidth. The tempera-
ture correction to~22! for D52 is

~dS̄el!152
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3c2L
pSBT2ln

v̄
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~23!

@the sense of the dependenceS̄(T) in the 2D case is dis-
cussed above#. ForD53 the intrasubbandT2lnT terms in the
staggered magnetization are canceled, as well as for the para-
magnetic susceptibility in the Fermi-liquid theory,17 and the
leading nonanalytical corrections owing to intrasubband
transitions are proportional toT4lnT. At T!T* the correc-
tion owing intersubband transitions from the second term in
~21! reads

~dS̄el!252
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6c2
SBL3H 4p2T4/15~T* !3c, D53,

p~T/T* !2, D52,
~24!

and nonanalytical terms are absent. ForD53, T.T* the
intersubband contribution takes the form

~dS̄el!252
V0

p2c3
SLBT* ln

T

T*
. ~25!

The correction of the form~25! can be obtained also for FM
@but at lowT, dS̄el;2(T/TC)

2 ~Ref. 8!#. Note the difference
in comparison with the case of weak itinerant magnets where
the damping in the denominators of~21! may not be ne-
glected. ThendS̄ is proportional toT4/3 andT3/2 at not too
low T ~aboveT* ) for FM’s and AFM’s, respectively.5,8

In the 2D case the second term in~21! yields the logarith-
mic contribution

~dS̄el!25
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2pc2
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v̄

max~T,T* !
. ~26!

For T50 this expression yields an increase ofS̄ and de-
scribes the suppression of zero-point magnon oscillations
owing to the spin-wave damping. Such corrections are spe-
cific for 2D antiferromagnets~and for 3D ‘‘nested’’ ones!
and are absent in the FM case. Thus we have a new class of
logarithmic divergences that depend essentially on the space
dimensionality, unlike the Kondo terms.15

The electronic contributions toS̄ owing to the two-
magnon damping yield only small corrections to the usual
spin-wave term~cf. the case of a ferromagnet7!.

Consider the square of the total momentum on a site,

^Si tot
2 &5K SSi1 1

2(ab
sabcia

† cibD 2L . ~27!

This quantity is an analog of square of local moment in a
Hubbard magnet. The spin-wave correction to~27! is given
by

d^Si tot
2 &SW52

]

]I
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wheredF is the free energy of magnons,

dFSW5T(
q
ln@11N~vq!#, ~29!

and theI dependence comes from the RKKY interaction~cf.
Ref. 9!. As well as standard spin-waveT2 corrections to
magnetization, corrections of the type~24!–~26! are canceled
in ~27! by transverse fluctuation contributions. ForD53 the
leading nonanalytical electronic corrections are proportional
to T4lnT. Using ~7! we obtain forD52
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~cf. Ref. 16!. TheT2lnT corrections occur also for a 3D FM
~see Ref. 8!. The ‘‘Kondo’’ correction todF is of the order
of (Ir)2v̄ ln(W/v̄).14

To calculate singular corrections to the spin-wave fre-

quency, i.e., to the pole of~2!, we substitutes-d contribu-
tions to the averageŝbq

†bq&,^b2qbq& , expandfpqv
6 in

v5vq , and use~13!. Integrating by parts we obtain for the
spin-wave velocity
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c
52 I 2(
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where we have accepted for simplicity the nearest-neighbor
approximationJq1Q52Jq . The first term in square brackets
yields at T50 the ‘‘Kondo’’ correction to the spin-wave
frequency,dvq /vq522(Ir)2ln(W/v̄) for arbitrary q ~cf.
Ref. 15 where only magnon-magnon anharmonicity terms
were treated!. The intrasubband (p→0) temperature correc-
tion reads forD53

~dc/c!152
V0

12c3
AT2ln

v̄

T
. ~32!

Note that in the 3D FM case the correction to the spin-wave
stiffness has the formdD /D52K(T/v̄)2ln(T/v̄) with
K(T!T* );1, butK(T.T* );(Ir)2 because of the strong
compensation of intra- and intersubband contributions.8 For
D52 the intrasubband nonanalytical corrections for AFM’s
are absent.

The intersubband transition (p→Q) temperature correc-
tion to dc arising from the same term in~31! is singular for
D52. We have (dc/c)155(dS̄el)1 /Swith (dS̄el)1 given by
~23!. More singular intrasubband contributions for AFM’s
are absent.

~dc/c!25~12T]/]T!~dS̄el!2/2S, ~33!

with (dS̄el)2 given by ~24!–~26!. For finite q we have at
D52
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so thatdvq}q lnq at q.q0 .
The obtained corrections tovq result in nonanalytical

terms in the Dyson expansion1 of the sublattice magnetiza-
tion,

dS̄mag52(
p

~Cp /vp!@]N~vp!/]vp#dvp . ~35!

At T!T* we havedS̄mag}T
4lnT ~for a ferromagnet the cor-

responding result has the formdS̄mag}T
7/2lnT).

To conclude, we have presented a detailed study of the
temperature and wave vector dependences of spin-wave
characteristics in AFM metals, especially of the nonanalyti-
cal terms. The electronic contributions lead to strong effects
which are absent in the insulating ‘‘Heisenberg’’ AFM
~where effects of magnon-magnon interaction are rather
weak2,3!. This difference is usually disregarded in experi-
mental investigations of magnetic and thermodynamic prop-
erties of metallic substances. Thus the search for the tem-
perature dependences predicted is of great interest.
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