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Electronic contributions to spin-wave characteristics in antiferromagnetic metals
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Magnetic properties of three-dimensior{8D) and two-dimensional2D) metallic antiferromagnets in the
spin-wave temperature region are investigated withinsttf) exchange model. The spin-wave damping
owing to one- and two-magnon scattering processes is calculated. The electronic contributions to the sublattice
magnetization are obtained. AT* andT>T* (T* is the threshold energy for one-magnon processes
leading nonanalytical terms are proportional @3 to T4InT and IfT, respectively. Peculiar logarithmic
contributions in the 2D case are derived. Nonanalytical corrections to the magnon spectrum and local moment
on a site are analyzed. A comparison with the case of a ferromagnet is perf¢80463-182006)04418-9

The problem of magnon-magnon interactions and of thevheret, is the band energys andS; are spin-density op-
corresponding contributions to thermodynamic and magnetierators and their Fourier transforms, andre the Pauli ma-
properties in the Heisenberg model has been investigated fdtices. For the sake of a convenient construction of perturba-
a long time(see, e.g., Refs. 134Recently interest in quan- tion theory, we explicitly include the Heisenberg exchange
tum magnets, especially in two-dimensiofaD) and frus- interaction with the parameterd,; in the Hamiltonian. It
trated systems, has grown in connection with discovery ofhould be noted that similar results may be reproduced for a
high-T. superconductivity. At the same time, a number of Hubbard antiferromagnet provided that local moments are
anomalous metallic magnete.g., Kondo lattices, heavy- Well defined(cf. Refs. 8,9. .
fermion compoundshas been studied experimentally. To investigate the magnon spectrum we pass in the' local

Unlike insulating “Heisenberg” magnets, magnetic prop- cpordlnate system from spin operators to the Bose spin de-

erties of metals are determined to a considerable extent b\gatlon operatorsp; ,b; and calculate the corresponding re-

conduction electrons. There is a number of difficult problemd@rded Green’s function. Writing down the sequence of equa-

and interesting peculiarities for weak itinerant electron mag-t'gr[‘sf thg(?é?gug?%rff;?r”:;\rﬂ]%ggfog)pgzgs;\tg N?gc(lngy of

nets where spin waves possess a strong damping practical| o
in the whole Brillouin zone, and paramagnonlike excitationsi ) we represent this in the form

play a dominant rol8.On the other hand, for metals with
o+Cq_,

localized magnetic momentg.g., for rare earths and some <<bq|ba>>w: >, 2)
d andf compoundsthe situation, although being simpler, is (0= Cqu)(@+Cq-0) +Dg,
not investigated in detail. It is usually accepted that these
substances may be described by ska(f) exchange model. Cqo=S(I8} g0 o= 2350
To second order in the-f parametell the latter model is
reduced to an effective Heisenberg model, so that spin waves —(C. — + -
are well defined unlike the case of itinerant magnets. How- +§p: [CopPo0=(Co=Dp) Pooo Ppge* Ppge]
ever, there exist peculiar electronic contributions to spin-
wave spectrum characteristics of local-moment metallic +2 [(239+ 2Jq-p—23p=Jg1q—Jg)(b}by)
magnets. In particular, magnons possess finite damping at p
zero temperature, which is owing to electron-magnon scat-
tering processes. Corresponding effects in thermodynamic —2J5(b—pbyp)], ©
properties can lead to drastic differences in comparison with
insulating magnets. Dgo=Dg-0=SJgs =I5 q.0)
For a ferromagnetFM) higher-order corrections to the
magnon spectrum were treated in Refs. 6—8. In the present + + — T
work we consider the case of an antiferromag@é¢iM). We % Do % [Ua+g Jq)<bpbp>
calculate the magnon damping, nonanalytical corrections to 23, o(b_bo)]
the spin-wave frequency and related contributions to the su- a=pAE=pERi
blattice magnetization and local moment. Here Q is the wave vector of the AFM structui@r sim-
We start from the Hamiltonian of the-d(f) exchange pjicity 2Q is supposed to be equal to a reciprocal lattice
model, vectop and S is the spin value. The terms that contain the

spin deviation correlation functions describe the magnon-
magnon interaction. The-d exchange contributions of first

H=> tef o +3 15 5| clen @ order in the quasiclgssic_al small parameterSl¢drrespond
kZU' K-koko Eq 05-a% % SOupCiaCip (1) to the RKKY approximation where
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[ng=n(ty) is the Fermi functiofi the second summand in whereL =2S(J,—Jg), the functionys describes entering the
(4) being thew-dependent RKKY indirect exchange interac- “Stoner continuum,” ¢(q<go) =0, ¥(q>qg)=1, and
tion. Unlike the standard canonical transformation method,

our approach permits one to calculate the spin-wave damp-
ing. The function®, which determines the second-order cor- A=cl (L'TOqE A(ti) 3(tc—g), (10
rections, is given by
D 0= Ppg0— Ppgu) @p> (5) B=LIZY, 8(t)8(t_o), (11)
k
b= B> n"(l_nk+p‘q)+N(iwp)(nk_nkﬂ‘q)' t, being referred to the Fermi level. Generally speakifg,

o+t =t pg+ @p depends on the direction of the vectgr(see, e.g., Refs.

. . 5,12. For an isotropic electron spectrum one ha®at3
where N(w) is the Bose function; note that 2 P P

¢;qw=—¢>,;q,w. The quantitiesC,,D,, in the right-hand A=CIZQO{4ﬂZ|k‘18tk/ak|ﬁ,k 11 (12)
side of (3) should be substituted to zeroth order lirand F
1/2S, (Cy—Dp) —0 atp—0, (Cp+Dy)—0 atp—Q, and  where(, is the lattice cell volume.
One can see that the one-magnon damg@gs finite at
_ 2 2\1/2_ / / . . . .
"’p_(cp_Dp)lZ_ZS(Jp_JQ)lZ(JQw_‘]Q)l2 arbitrarily small q(in contrast with the FM casebut be-
is the magnon frequency. We have taken into accouf®)in  COMes considerably larger when intersubband transitions be-

the expressions for the static correlation functions that ocdin t©© WOrk (G>do). Unlike the FM situation Q=0), the
curred in the equations of motion, intersubband damping does not contain the factor of.
However, such a dependence occurs in s@pregion pro-
vided that the electron spectrum approximately satisfies the
|2 (Ch_o,Ck1)=—S(I56— ). (6)  “nesting” conditiont, . o= —t in a large part of the Fermi
surface.
The damping owing to two-magnon scattering processes
1> <b$(0l-mcm—0l-plcu)>= —(25)1’2(Cp— D) ® poo- is determined by the imaginary part of the functi@). The
k intersubband transitions contribute at mBx() >T*. Using
() the identity
These are obtained by calculating the corresponding retarded , , ,
Green's functions and using the spectral representation. n(e)[1-n(e)]=N(e=€’)n(e)—n(e)], (13

Although the energy denominators ), (5) do not take \ye obtain from(2) to leading order inw= g
into account the splitting of the band by AFM ordering, we

have to separate the contributions of the transitions within C.—aD.C.+aD

the AFM subbands and between théch Ref. 9. Generally 7&2)_ 12> > ( : - 17 - p—ﬁ)(w—ﬂwp)

speaking, the latter contributions are more singular, but in kP @f=x P

fact they are cut off owing to the AFM splitting =2|1|S, S X[N(wp) = N(wp—Bw)]8(ty) 8(tysp—q)- (149

being the sublattice magnetization. The correspondin

threshold value of the magnon quasimomentum transfer jgtegration aff <w gives

estimated as mjp—Q|=qgo~A/vg (vg is the electron ve-

locity at the Fermi level This quantity determines a charac- Y2 = Qo (gAerE w2+4w2(2Aw+§)T2}

teristic temperature and energy scale a9 24mc3|\5 '
=w(go)=Cqo~(Alve) Ty, (8) D=3, (15

with ¢ being the magnon velocity. Note that for FM’s with )

the quadratic dispersion law of spin waves one has YD =— 0 ( Aw+ g) w+4(Aw+§)T|n£ ,

T* ~(Alvg)?Tc .8 a " 8c?|\3 T

Despite the absence of long-range magnetic ordering at
finite temperatures, the resul®) is valid als%Zin the two- D=2, (16)
dimensional(2D) case up tol~J (i.e., Ty—JS") owing to I o = o '
the strong short-range order. The quanfys replaced by with B(w>T7)=B andB(«<T")=0. At @<T we find
square root of the Ornstein-Cernike peak in the spin correla-
tion function and has in the spin-wave region a lindar ng>:
dependencécf. Ref. 11).

The spin-wave damping owing to one-magnon decay pro-
cesses, determined by the imaginary part(4f reads at (2)_&
smallq Ya 722

2
6§(3)AT+7T—ABJ}T2, D=3, (17

0
2arc® 3

T
—AT+B In

P T, D=2, (18)
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with §(T>T*)=B, E(T<T*)=O and {(z) the Riemann and nonanalytical terms are absent. b3, T>T* the
function, £(3)=1.2. As well as for the one-magnon damp- intersubband contribution takes the form
ing, the intersubband contributiorfterms withB) become
modified and increase considerably in the “nesting” situa-
tion. Although the two-magnon damping is smaller than the
“Landau” damping(9), the former can be picked up owing
to its strong temperature dependence. The correction of the forni25) can be obtained also for FM
Calculation of the two-magnon damping in a disorderedbut at lowT, 8S,~ — (T/Tc)? (Ref. 8]. Note the difference
AFM (the one-magnon damping is treated in Ref. 1@10 in comparison with the case of weak itinerant magnets where
ocwé) can be performed by analogy with the case of thethe damping in the denominators (21) may not be ne-
ferromagnet? After averaging the’ function over the Fermi  glected. ThensS is proportional toT# and T%? at not too
surface[see(14)] we have forD =3 to replace as compared low T (aboveT*) for FM’'s and AFM's, respectively:?

— Qg T
(5Sel)2:_WSLBTkInT_*- (25

to the “clean” limit In the 2D case the second term(R21) yields the logarith-
1 . mic contribution
[p—al " *—(2/m)b(|p—all)[p—al ", (19
= 2 55020 SiBin—2 26
b(z)=(1+ 1/z%)arctarz— 1/z, ( e|)2—2m:2 nma>(T,T*)' (26)

with | being the electron mean free path. Then we obtain in

the hydrodynamic limigl<1, T<c/I instead of(15), (17), For T=0 this expression yields an increase $fand de-
scribes the suppression of zero-point magnon oscillations

Q 0*107?, T<w, owing to the spin-wave damping. Such corrections are spe-
(2)_~"0 cific for 2D antiferromagnetg¢and for 3D “nested” onep
Yo =—z AlX 214 < (20 _ g
. c 8m7TH45,  w<T and are absent in the FM case. Thus we have a new class of

) N ) ~logarithmic divergences that depend essentially on the space
(at smallT,w only intrasubband transitions yield a contribu- dimensionality, unlike the Kondo ternis.

tion). Thus the disorder in the electron subsystem leads t0 @ Tne electronic contributions tcgowing to the two-

decrease of the two-magnon damping. _ . magnon damping yield only small corrections to the usual
Electronic corrections to the sublattice magnetlzatlonspin_v\,awe term(cf. the case of a ferromagrit
which are due to the one-magnon dampi@igare calculated Consider the square of the total momentum on a site,

in terms of the average(i)gbq) with the use of the spectral
representation for the Green’s functi®),

— 1 = ImC,, 2CpoyL” 2y
536,:;%) f, do N(w)(w2 L i (Siov

2 2__ 22"
—w, (0"~ wp)

1 2
S+ LEB O'aBCiTaCi,B) > (27)

2D This guantity is an analog of square of local moment in a
The zero-point contributions owing to the first term in the Hubbard magnet. The spin-wave correction(2d) is given

brackets yield a Kondo-type logarithmic correction to thePY
sublattice magnetizatiolf;*®

d
[5§el(0)]1:_2(|9)23 In(W/@), (22) &S sw=— EﬁFSWNIP(T/TN)‘lr (29)

with p being the electron density of states &,
w=w(2ke), andW of order of the bandwidth. The tempera-
ture correction tq22) for D=2 is

where §F is the free energy of magnons,

— Q ) =
(550)1m — ﬁ”sw'“maﬂ,m 23 SF sw T}q} In[1+N(wg)], (29
[the sense of the dependenSET) in the 2D case is dis- @and thel dependence comes from the RKKY interactich
cussed aboveForD =3 the intrasubban@2InT terms in the ~ Ref. 9. As well as standard spin-wave” corrections to
staggered magnetization are canceled, as well as for the paf@@gnetization, corrections of the ty(#4)—(26) are canceled
magnetic susceptibility in the Fermi-liquid thediyand the  in (27) by transverse fluctuation contributions. fidr=3 the
leading nonanalytical corrections owing to intrasubband€ading nonanalytical electronic corrections are proportional
transitions are proportional t8%InT. At T<T* the correc- 10 T*InT. Using (7) we obtain forD =2
tion owing intersubband transitions from the second term in
(21) reads o
4m2TY15T*)%, D=3 A Se— o ST~ g
J— T C, =3, tot/ el 2 *\ el
(5Se|)2=—%ozSBL>< XT*) 3c” | max T,T*) al

6 (TIT*)?, D=2,
m (24 (30)
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(cf. Ref. 16. The T?InT corrections occur also for a 3D FM
(see Ref. 8 The “Kondo” correction toSF is of the order
of (1p)2wh(Ww).1*

guency, i.e., to the pole dP), we substitutes-d contribu-
tions to the average$bgbq),.(b,qbq) , expand Ppge in
0= wg, and usg13). Integrating by parts we obtain for the

To calculate singular corrections to the spin-wave fre-spin-wave velocity

sc = J 9 1 N(w) 9\ L(C,—D,)
2 —|1==P R e et T | 2P P
o= kEp 5(tk)5(tk_p)f_xw dw[Z 1 (1 Jo)wpawp wz_w§+(1 aT) (wz_wS)ZN(w) . (3D
|
where we have accepted for simplicity the nearest-neighbor Sog Qo w0
approximationJ, . o= — J. The first term in square brackets “oq  4nc? LB Inmay(T,T* 0g)’ (34)

yields at T=0 the “Kondo” correction to the spin-wave
frequency, dw,/ wq=—2(1 p)?IN(Ww) for arbitrary q (cf.

so thatéwq>q Ing atgq>qp.

were treatel The intrasubbandp(— 0) temperature correc-
tion reads foD=3

N -
—°AT2|n$. (32)

(oclc)=— 1263

Note that in the 3D FM case the correction to the spin-wave

stiffness has the forméZl &= —K(T/w)?In(T/w) with
K(T<T*)~1, butK(T>T*)~(Ip)? because of the strong
compensation of intra- and intersubband contributfoRsr

terms in the Dyson expansibof the sublattice magnetiza-

5§mag=—% (Cplwp)[IN(wp) dwp]dw,.  (35)

At T<T* we havesS ma@,ocT“Intor a ferromagnet the cor-
fesponding result has the for8,, T"/4nT).

To conclude, we have presented a detailed study of the
temperature and wave vector dependences of spin-wave
characteristics in AFM metals, especially of the nonanalyti-

D=2 the intrasubband nonanalytical corrections for AFM'S .| terms. The electronic contributions lead to strong effects

are absent.

The intersubband transitiomp{- Q) temperature correc-
tion to éc arising from the same term i(81) is singular for
D=2. We have §c/c),=5(6Sg)1/S with (S, given by

which are absent in the insulating “Heisenberg” AFM

(where effects of magnon-magnon interaction are rather
weakd). This difference is usually disregarded in experi-
mental investigations of magnetic and thermodynamic prop-

(23). More singular intrasubband contributions for AFM’s erties of metallic substances. Thus the search for the tem-

are absent.

(8¢/C)p=(1—TalJT)(5Sy),/2S, (33

with (5§e|)2 given by (24)—(26). For finite @ we have at
D=2

perature dependences predicted is of great interest.
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