
Density-matrix renormalization-group study of the spin-1/2XXZ antiferromagnet
on the Bethe lattice

Hiromi Otsuka
Department of Physics, Tokyo Metropolitan University, Tokyo, 192-03, Japan

~Received 31 January 1996!

Ground-state properties of a spin-1/2XXZ antiferromagnet on the Bethe lattice with three nearest neighbors
are investigated; especially, the nature of the phase transition driven by the anisotropy is examined. In actual
calculations, we employ the density-matrix renormalization-group method which is so far used in the studies
on the one-dimensional quantum systems; its applicability to the higher-dimensional system is thus exhibited
in our calculations. Numerical data on local spin correlations imply that the model undergoes the first-order
phase transition at the Heisenberg pointJxy5Jz and the ground state is conjectured to be in the Ising-like
ordered phase~the ordered phase inXY plain! for Jxy,Jz (Jxy.Jz). We also compare our results with those
for other systems, say, theXXZmodel on the square lattice to discuss a possible type of symmetry breaking.
@S0163-1829~96!02821-4#

So far, the ground-state properties of the quantum antifer-
romagnets are of interest in both theoretical and experimen-
tal researches of magnetism. Especially, after the discovery
of the high-Tc superconductors, the spin-1/2 Heisenberg an-
tiferromagnet on the square lattice which is accepted as the
proper model corresponding to the undoped materials has
been extensively investigated. Generally speaking, since ex-
act solutions are not available and some powerful techniques
cannot be used except for one-dimensional systems, numeri-
cal approaches, e.g., the quantum Monte Carlo
simulations1–3 and the exact diagonalization method,4,5 have
been frequently employed for the investigations of higher-
dimensional systems. However, fully convincing calculations
are not always possible due to the limitations on the com-
puter ability.

In solid-state physics, the Bethe lattice has been success-
fully used as an effective instrument for the periodic and the
nonperiodic systems because it has often presented their
simple treatments; theoretical models on the Bethe lattice
may be expected to describe the realistic two- and three-
dimensional systems to some extent.6

In this paper, we discuss the ground-state properties of the
spin-1/2XXZ antiferromagnet on the Bethe lattice:
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(Jxy ,Jz.0) by employing the density-matrix
renormalization-group~DMRG! method;7 the purpose is
twofold: the properties of the phase transition caused by the
anisotropyJz/Jxy are clarified and a possible type of the
symmetry breaking is discussed through the comparison with
other systems, e.g., theXXZ antiferromagnet on the square
lattice.2–5 At the same time, we shall propose a new applica-
tion of the DMRG method which enables us to treat a quan-
tum system not in one dimension; the applicability to the
present higher-dimensional system is to be clarified through
our calculations.

Before starting with the description of the DMRG calcu-
lation procedure, let us see the structure of the Bethe lattice

on which quantum systems are located. As is well known,
the Bethe lattice is defined as a group of infinite points each
connected toq neighbors such that no closed loops exist@see
Fig. 1~a!#. This type of graph is also known as a Cayley tree
and possesses the features of both one and infinite dimen-
sions: SinceV(n), a number of points within a distance ofn
steps from a point, is given as [q(q21)n22]/(q22), the
lattice dimension defined byD5limn→`@lnV(n)/lnn# is infi-
nite. On the other hand, any two points on the lattice are
connected by a unique path~indeed, theq52 case is reduced
to a one-dimensional chain!. As we shall see below, this
single connectivity may allow us to adapt the DMRG algo-
rithm straightforwardly. And then, we finally describe the
infinite system as shown in Fig. 1~b!, where four filled
double circles indicate the renormalized-effective blocks rep-
resenting the parts of the original infinite system.

The DMRG method which was proposed by White7 has
achieved great improvements in the efficiency of the numeri-
cal renormalization-group calculation by utilizing the infor-
mation of the reduced density matrix forthe physical system
combined withthe environment. As a result, the convergency
of the data against the number of states (m) kept in the
DMRG transformation is remarkably accelerated. However,
the scope of the applicable systems is limited to the one-

FIG. 1. The original Bethe lattice~q53! ~a! is renormalized and
finally reduced to the six-block system~b!. Four filled double
circles represent the renormalized blocks to be obtained.
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dimensional quantum systems8 due to the technical problem;
the extension of the algorithm for higher-dimensional sys-
tems has been desired. Here, we shall see that the single
connectivity betweenthe physical systemand the environ-
mentmight be crucial for the implementation of the DMRG
calculations; at least, the Bethe lattice fulfills this topological
condition as well as the one-dimensional case.

The schematic representation of the DMRG calculation
for the quantum systems on the Bethe lattice~q53! is given
in Fig. 2. We start with the six-site system shown as Fig.
2~a!. Each site/block is described by the bases which are
classified by a set of quantum numbers~m! conserved under
the DMRG transformation, e.g., the totalSz (ST

z) for quan-
tum spins and the up- and down-electron numbers (n1

e ,n2
e )

for fermions. The whole system is represented by the direct
product of bases for each block:u$m%&5um6&^um5&^um4&
^um3&^um2&^um1&, where $m%5~m1,m2,...,m6!. In actual cal-
culations, we do not know expressions of these bases, but
only store the representation matrices for the block Hamil-
tonian:HB and spin components:Sl

1 ,Sl
z or fermion opera-

tors: cls ,nls , which have a block form indexed bym. To
calculate the target state~usually the ground state of the
whole system! using the Lanczos method, we should multi-
ply the representation matrix of the whole Hamiltonian con-
structed from a direct product of matrices of the six blocks.
Here, it should be noted that when calculating the electron-
hopping term between@4# and@6#, for example~we hereafter
denote thej th block as [j ] !, we should properly take the
fermion anticommuting nature into account:
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e is the total electron number of a given

m5 subspace and1m is a d(m)3d(m) unit matrix @d(m) is
the dimension ofm subspace#.

As the same manner with the one-dimensional case, the
RG part is defined by the projection:9 the bases describing
the left-block @1#, @2#, and @3# are truncated using the or-
thogonal matrix which is constructed from the eigenvectors
belonging to the largestm eigenvalues of the reduced density
matrix. And then, the renormalized new block [X] is ob-
tained @Fig. 2~b!#. We again construct the six-block system
as shown in Fig. 2~c! by replacing@1#, @2#, @5#, and @6# in
Fig. 2~a! with [X], and repeat the same procedures until the
system becomes sufficiently large.

Now, suppose thatnR is the renormalization level~the
number of iterations!, the numbers of sites in the whole sys-
tem and the sites belonging to the boundary are given
as Nq(nR)52[(q21)nR1221]/(q22) and Mq(nR)
52(q21)nR11, respectively. So, unlikely to regular lattices,
the ratio of boundary sites does not become smaller even in
the thermodynamic limit. To avoid the difficulty, we will
follow the definition of the Bethelattice: the measurements
of physical quantities are performed on the center part of the
whole system, e.g., the local spin correlations between@3#
and@4#, and identically with the usual lattices, these sites are
regarded to be equivalent.10

In the following, we summarize our numerical results on
the ground state of theXXZ model; the energy is measured
in units of Jxy , and thusJz is an anisotropy parameter. The
DMRG calculation was repeatednR55 times~so, up to 254-
site systems were treated!. The truncation error was esti-
mated using the eigenvalues of the reduced density matrix:
Q(m,Jz)[12P(m,Jz), which strongly depends upon the
number of statesm andJz ~see Ref. 8!. WhenJz>1.1,m.30
is enough to realizeQ,1027 and in the region near theXY
point ~Jz<0.6!, the truncation error is moderate againstm.
However, the states up tom;70 are required to keep
Q,531023 for the systems near the Heisenberg point.

In Fig. 3, the distribution function of the numbers of bases
classified byST

z : p(ST
z)[d(ST

z)/m is presented for vari-
ous Jz values~for the largest 63-site block!. A single peak
observed in theXY region becomes broader and the width
seems to diverge with approaching the Heisenberg point
where the length of the total-spinS is a good quantum num-
ber. The Lieb-Mattis theorem says that the ground state of
thes51/2 antiferromagnetic Heisenberg model on a bipartite
lattice is in the sector ofS5uNA2NBu/2, whereNA (NB) is
the number of sites belonging to theA sublattice ~B
sublattice!.11 In the present case, the true ground state of the
63-site block possessesS521/2 and it has thus~2S11!-fold
degeneracy concerning aboutST

z . Therefore, the flat distribu-
tion of the bases againstST

z is thought to be a reflection of
the symmetry at the Heisenberg point. On the other hand, the
distribution shows a double-peak structure in the Ising re-

FIG. 2. The schematic representation of the DMRG calculation
for the quantum systems on the Bethe lattice~q53!. The starting
six-site system~a!, the RG process~b!, and the whole system in the
next step~c!.

FIG. 3. The normalized distribution function of the numbers of
bases classified by the totalSz: p(ST

z ,Jz). Thex axis is the value of
ST
z . We exhibit the data for the largest 63-site block.
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gion; this may exhibit the formation of the Ne´el order be-
cause the peak positionsST

z5621/2 are corresponding to the
magnetizations of the twofold degenerate Ne´el states.

As mentioned above, we could not calculate the long-
distance properties such as the Ne´el-order parameters and the
long-range correlation functions which are the most proper
quantities indicating the symmetry breaking property.2 How-
ever, the singularity accompanied with the phase transition
should be reflected in an anomalous behavior of the ground-
state energy per bondEg(Jz) or its derivatives. Further, they
are directly related with the measurable local spin correlation
functions by the Feynman-Hellman theorem:

Sxx~Jz![^CuS@3#
x S@4#

x uC&5
1

4 FEg~Jz!2Jz
]Eg~Jz!

]Jz
G ,

~3!
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Thus, some significant insights into the magnetic phase dia-
gram may be obtained from the measurements on these
quantities. In Figs. 4 and 5, we present the results on the
local spin correlations. The original data exhibit the stag-
gered dependence on the system size~as shown in the insets
in these figures!. We thus extrapolated these two sequences
of data independently with the use of a least-squares-fitting
procedure, and then by taking a weighted average of them,
the infinite system size data have been evaluated. For the
finite system, the Peron-Frobenius theorem guarantees that
the ground state of the present system is unique and the
energy level crossing does not occur in the whole parameter
range.11 However, the level crossing may occur in the ther-
modynamic limit. Actually, from these figures, we can rec-

ognize the phase transition at the Heisenberg point, where
the symmetry of the ground state should be changed. When
we define the order of the ground-state phase transition on
the basis of the singularity inEg(Jz), the jump observed in
these figures is naturally recognized as a sign of the first
order.

In the Ising region~Jz@1!, the perturbation results on the
quantum antiferromagnets have been available;12 the expres-
sions on the local spin correlations are given as follows:

Sxx~Jz!52
1

8Jz
1

7

192Jz
3 1••• ,

Szz~Jz!52
1

4
1

1

8Jz
22

7

128Jz
4 1••• .

The results are drawn with the solid lines in these figures.
We can see that the DMRG data agree well with the pertur-
bation results atJz.1; this coincidence indicates that the
system possesses the long-range order~LRO! in thez direc-
tion, and the phase may continue just to the Heisenberg
point.

Before inquiring into the data in theXY region ~Jz!1!,
we briefly refer to the previously obtained results on the
spin-1/2XY ferromagnets on the two-dimensional lattices. It
has been conjectured that the longitudinal nearest-neighbor
correlation is nearly lattice independent:qSzz~0!;20.16,
20.15, and20.16 for the honeycomb, square and triangular
lattices, respectively.13 This sort of universal behavior may
be naturally expected as a resultant of LRO. Indeed, the ex-
istence of LRO was exactly proved for the square lattice,14

while it is difficult to draw a definite conclusion for the tri-
angular lattice case based on the finite size data.15 Now, our

FIG. 4. The longitudinal spin correlation functionSzz(Jz) esti-
mated from the finite-size-system data using a least-squares-fitting
procedure. The inset exhibits the system-size dependence ofSzzand
the extrapolated data atJz51. The solid line shows the result of the
perturbation expansion from the Ising limit.

FIG. 5. The transverse spin correlation functionSxx(Jz) esti-
mated from the finite-size-system data using a least-squares-fitting
procedure. The inset exhibits the system-size dependence ofSxx and
the extrapolated value atJz50. The solid line shows the result of
the perturbation expansion from the Ising limit.
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result on theXY antiferromagnet on the Bethe lattice~the
sign of the coupling is irrelevant in this case! is
qSzz~0!;20.17, which is considerably close to the above
universal value. We thus think that theXY antiferromagnet
on the Bethe lattice may have LRO inXY plain. At the same
time, the above conjecture may be valid not only for two-
dimensional systems, but its origin should lie in more gen-
eral effects of the quantumXY model. Since no singular
behavior is observed except for the Heisenberg point, the
supposed ordered state may continue up toJz51.

At this stage, we shall conjecture the magnetic phase dia-
gram: the ground state shows LRO in thez-direction ~in xy
plain! for Jz.1 ~0,Jz,1!. From the observation of the jump
in Szz(Jz), we think that the order parameter is finite at the
Heisenberg point, which changes its direction by an infini-
tesimal symmetry-breaking field. Seemingly, these results
agree well with those for theXXZ model on the square lat-
tice in many points: the same magnetic phase diagram has
been confirmed and the order parameters were evaluated by
various methods.1–4 More directly, by employing the quan-
tum Monte Carlo method, Barneset al. have reported the
discontinuous behavior of the first derivative ofEg(Jz) at the
Heisenberg point.3

In conclusion, we have investigated the ground-state
phase transition of the spin-1/2XXZ antiferromagnet on the
Bethe lattice ~q53!. The density-matrix renormalization-
group method which has been used in the studies of the

one-dimensional quantum systems was extended and applied
to the present higher-dimensional system. As a result, its
applicability was confirmed and the following conclusions
have been obtained: The model undergoes the first-order
phase transition at the Heisenberg point and the system may
be in the Ising-like ordered ground state~the ordered state in
XY plain! for Jxy,Jz (Jxy.Jz), which is a quite similar
situation to the closely investigatedXXZ antiferromagnet on
the square lattice. However, we should remind the reader that
the definitive conclusion on the magnetic phase diagram
should be drawn with calculating the order parameters in
both Ising and theXY regions, which is left as a future
problem.

The applications of the DMRG method to the other quan-
tum systems on the Bethe lattice, e.g., the Hubbard model,
are also interesting; we shall report the results elsewhere. At
the same time, since the idea of the DMRG method is not
characteristic of one-dimensional systems, the new algorithm
by which we can treat the quantum systems on the square
lattice, for example, is desired.16
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