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Density-matrix renormalization-group study of the spin-1/2 XXZ antiferromagnet
on the Bethe lattice
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Ground-state properties of a spin-MXZ antiferromagnet on the Bethe lattice with three nearest neighbors
are investigated; especially, the nature of the phase transition driven by the anisotropy is examined. In actual
calculations, we employ the density-matrix renormalization-group method which is so far used in the studies
on the one-dimensional quantum systems; its applicability to the higher-dimensional system is thus exhibited
in our calculations. Numerical data on local spin correlations imply that the model undergoes the first-order
phase transition at the Heisenberg palpj=J, and the ground state is conjectured to be in the Ising-like
ordered phasghe ordered phase XY plain) for J,,<J, (Jxy,>J,). We also compare our results with those
for other systems, say, theXZ model on the square lattice to discuss a possible type of symmetry breaking.
[S0163-182606)02821-4

So far, the ground-state properties of the quantum antiferen which quantum systems are located. As is well known,
romagnets are of interest in both theoretical and experimerthe Bethe lattice is defined as a group of infinite points each
tal researches of magnetism. Especially, after the discovergonnected t@ neighbors such that no closed loops ekiste
of the highT, superconductors, the spin-1/2 Heisenberg anFig. 1(a)]. This type of graph is also known as a Cayley tree
tiferromagnet on the square lattice which is accepted as thand possesses the features of both one and infinite dimen-
proper model corresponding to the undoped materials hasions: Since/(n), a number of points within a distance 1of
been extensively investigated. Generally speaking, since esteps from a point, is given asi(q—1)""2]/(q—2), the
act solutions are not available and some powerful techniqudattice dimension defined bp =lim,_..[InV(n)/Inn] is infi-
cannot be used except for one-dimensional systems, numenite. On the other hand, any two points on the lattice are
cal approaches, e.g., the quantum Monte Carlaconnected by a unique pafindeed, theq=2 case is reduced
simulation$~2 and the exact diagonalization metHbthave to a one-dimensional chainAs we shall see below, this
been frequently employed for the investigations of higher-single connectivity may allow us to adapt the DMRG algo-
dimensional systems. However, fully convincing calculationsrithm straightforwardly. And then, we finally describe the
are not always possible due to the limitations on the cominfinite system as shown in Fig.(d), where four filled
puter ability. double circles indicate the renormalized-effective blocks rep-

In solid-state physics, the Bethe lattice has been succesgesenting the parts of the original infinite system.
fully used as an effective instrument for the periodic and the The DMRG method which was proposed by Whites
nonperiodic systems because it has often presented theichieved great improvements in the efficiency of the numeri-
simple treatments; theoretical models on the Bethe latticeal renormalization-group calculation by utilizing the infor-
may be expected to describe the realistic two- and threemation of the reduced density matrix fthre physical system

dimensional systems to some extént. combined withthe environmentAs a result, the convergency
In this paper, we discuss the ground-state properties of thef the data against the number of states) (kept in the
spin-1/2XXZ antiferromagnet on the Bethe lattice: DMRG transformation is remarkably accelerated. However,

the scope of the applicable systems is limited to the one-

H=2 2, IS+ +I,SS, (1)
(I,m)

(Jxy:3,>0) by  employing the density-matrix

renormalization-group(DMRG) method’ the purpose is

twofold: the properties of the phase transition caused by the |:>

anisotropyJ,/J,, are clarified and a possible type of the

symmetry breaking is discussed through the comparison with

other systems, e.g., théXZ antiferromagnet on the square

lattice 2~ At the same time, we shall propose a new applica-

tion of the DMRG method which enables us to treat a quan- b

tum system not in one dimension; the applicability to the (a) ( )

present higher-dimensional system is to be clarified through

our calculations. FIG. 1. The original Bethe lattic@y=3) (a) is renormalized and
Before starting with the description of the DMRG calcu- finally reduced to the six-block systertb). Four filled double

lation procedure, let us see the structure of the Bethe latticeircles represent the renormalized blocks to be obtained.
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FIG. 2. The schematic representation of the DMRG calculation | N -
for the quantum systems on the Bethe lattige=3). The starting
six-site systenta), the RG procesgh), and the whole system in the ob 4, : . b : | b : | I
next step(c). -0 -10 0 __ 10 20

dimensional quantum systefrdue to the technical problem:;
the extension of the algorithm for higher-dimensional sys- FIG. 3. The normalized distribution function of the numbers of

tems ha?s_ been desired. Her_e, we shall see that t_he Sin%%ses classified by the tot&: p(S%,J,). Thex axis is the value of
connectivity betweerthe physical systerand the environ- SZ. We exhibit the data for the largest 63-site block.

mentmight be crucial for the implementation of the DMRG
calculations; at least, the Bethe lattice fulfills this topological
condition as well as the one-dimensional case. Now, suppose thahg is the renormalization levefthe

The schematic representation of the DMRG calculatiornumber of iterations the numbers of sites in the whole sys-
for the quantum systems on the Bethe latlige=3) is given  tem and the sites belonging to the boundary are given
in Fig. 2. We start with the six-site system shown as Fig.as Nq(nR)=2[(q—1)”R*2—1]/(q—2) and  Mg(ng)
2(a). Each site/block is described by the bases which are-2(q—1)"*1 respectively. So, unlikely to regular lattices,
classified by a set of quantum numbés conferved under  ihe ratio of boundary sites does not become smaller even in
the DMRG transformation, e.g., the tot# (S%) for quan- the thermodynamic limit. To avoid the difficulty, we will

tum spins and the up- and down-electron numbars (¢) — o
for fermions. The whole system is represented by the direcftonow the definition of the Bethdattice: the measurements

product of bases for each blockiu})=|ue)®|ue)®|is) of physical quantities are perform_ed on the _center part of the
| 11)® | 1) ®|p1y), Where {ih=(puy pipy... i), I actual cal-  Whole system, e.g., the local spin correlations betwien
culations, we do not know expressions of these bases, b@nd[4], and identically with the usual lattices, these sites are
only store the representation matrices for the block Hamilvegarded to be equivaletf.

tonian: Hg and spin componentS;" ,S? or fermion opera- In the following, we summarize our numerical results on
tors: ¢,,,,Nn,,, which have a block form indexed by. To  the ground state of th&¥XZ model; the energy is measured
calculatethe target state(usually the ground state of the in units ofJ,,, and thusJ, is an anisotropy parameter. The
whole systemusing the Lanczos method, we should multi- DMRG calculation was repeatet=>5 times(so, up to 254-

ply the representation matrix of the whole Hamiltonian con-site systems were treajedThe truncation error was esti-
structed from a direct product of matrices of the six blocks.mated using the eigenvalues of the reduced density matrix:
Here, it should be noted that when calculating the electron©(m,J,)=1-P(m,J,), which strongly depends upon the
hopping term betweej#] and[6], for example(we hereafter  number of statem andJ, (see Ref. 8 WhenJ,=1.1,m=30
denote thejth block as []), we should properly take the s enough to realiz€ <107 and in the region near theY

fermion anticommuting nature into account: point (J,<0.6), the truncation error is moderate against
<{M—}|C2004(r|{ﬂ}> HoweverLgthe states up ton~70 are requwed to .keep
Q<5X%10 ° for the systems near the Heisenberg point.
e ; A )
=(— 1)n5[C£U]M_G‘M6® 1, ®0Carliy 0, ® 1,01, 01, , In Fig. 3, the distribution function of the numbers of bases

classified byS%: p(S%)=d(S%)/m is presented for vari-
(2 ousJ, values(for the largest 63-site blogkA single peak
whereng=ng, +ng_ is the total electron number of a given observed in theXY region becomes broader and the width
us subspace and,, is ad(u)Xd(x) unit matrix[d(u) is ~ seems to diverge with approaching the Heisenberg point
the dimension ofu subspacg where the length of the total-spfis a good quantum num-
As the same manner with the one-dimensional case, thieer. The Lieb-Mattis theorem says that the ground state of
RG part is defined by the projectidrthe bases describing thes=1/2 antiferromagnetic Heisenberg model on a bipartite
the left-block[1], [2], and [3] are truncated using the or- lattice is in the sector 08=|N,—Ng|/2, whereN, (Ng) is
thogonal matrix which is constructed from the eigenvectorshe number of sites belonging to tha& sublattice (B
belonging to the largesh eigenvalues of the reduced density sublattice.! In the present case, the true ground state of the
matrix. And then, the renormalized new blocK][is ob-  63-site block possess&-=21/2 and it has thu&S+1)-fold
tained[Fig. 2(b)]. We again construct the six-block system degeneracy concerning abd#. Therefore, the flat distribu-
as shown in Fig. @) by replacing[1], [2], [5], and[6] in  tion of the bases again&7 is thought to be a reflection of
Fig. 2(a) with [X], and repeat the same procedures until thethe symmetry at the Heisenberg point. On the other hand, the
system becomes sufficiently large. distribution shows a double-peak structure in the Ising re-
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FIG. 4. The longitudinal spin correlation functic®%J,) esti- FIG. 5. The transverse spin correlation functi8f(J,) esti-

mated from the finite-size-system data using a least-squares-fittingated from the finite-size-system data using a least-squares-fitting
procedure. The inset exhibits the system-size dependers® afd procedure. The inset exhibits the system-size depender&e ahd

the extrapolated data aj=1. The solid line shows the result of the the extrapolated value d@,=0. The solid line shows the result of
perturbation expansion from the Ising limit. the perturbation expansion from the Ising limit.

gion; this may exhibit the formation of the ‘Meorder be- ognize the phase transition at the Heisenberg point, where
cause the peak positio®=+21/2 are corresponding to the the symmetry of the ground state should be changed. When
magnetizations of the twofold degenerateeNstates. we define the order of the ground-state phase transition on
As mentioned above, we could not calculate the longthe basis of the singularity i&y(J,), the jump observed in
distance properties such as theeNerder parameters and the these figures is naturally recognized as a sign of the first
long-range correlation functions which are the most propeprder.
quantities indicating the symmetry breaking propérijow- In the Ising regionJ,>1), the perturbation results on the
ever, the singularity accompanied with the phase transitiofluantum antiferromagnets have been availabtag expres-
should be reflected in an anomalous behavior of the groundsions on the local spin correlations are given as follows:
state energy per borig(J,) or its derivatives. Further, they
are directly related with the measurable local spin correlation

functions by the Feynman-Hellman theorem: S%(J)=~ 83, " FZJZJF e
1 JE4(J,)
SXX(Jz)E<\P|SE(3]%X4]|\P>: Z Eg(‘]z)_‘]z% ’ SZZ(J )= 1 n 1 7 4
Z —_z L.
3 2747832 12812
. 1 9E4(J,) The results are drawn with the solid lines in these figures.
SHI)= (V|5 5aV) =5 FI (4)  We can see that the DMRG data agree well with the pertur-
z

bation results atl,>1; this coincidence indicates that the
Thus, some significant insights into the magnetic phase diasystem possesses the long-range ofHRO) in the z direc-
gram may be obtained from the measurements on theg®n, and the phase may continue just to the Heisenberg
guantities. In Figs. 4 and 5, we present the results on thpoint.
local spin correlations. The original data exhibit the stag- Before inquiring into the data in th¥Y region (J,<1),
gered dependence on the system s@eshown in the insets we briefly refer to the previously obtained results on the
in these figures We thus extrapolated these two sequencespin-1/2XY ferromagnets on the two-dimensional lattices. It
of data independently with the use of a least-squares-fittingpas been conjectured that the longitudinal nearest-neighbor
procedure, and then by taking a weighted average of thengorrelation is nearly lattice independergS*40)~—0.16,
the infinite system size data have been evaluated. For the0.15, and—0.16 for the honeycomb, square and triangular
finite system, the Peron-Frobenius theorem guarantees thiaitices, respectivel}? This sort of universal behavior may
the ground state of the present system is unique and thee naturally expected as a resultant of LRO. Indeed, the ex-
energy level crossing does not occur in the whole parametdstence of LRO was exactly proved for the square lattfce,
range'! However, the level crossing may occur in the ther-while it is difficult to draw a definite conclusion for the tri-
modynamic limit. Actually, from these figures, we can rec-angular lattice case based on the finite size {aNow, our
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result on theXY antiferromagnet on the Bethe latti¢hhe  one-dimensional quantum systems was extended and applied
sign of the coupling is irrelevant in this cgsds to the present higher-dimensional system. As a result, its
qS40)~—0.17, which is considerably close to the aboveapplicability was confirmed and the following conclusions
universal value. We thus think that the€Y antiferromagnet have been obtained: The model undergoes the first-order
on the Bethe lattice may have LROXY plain. Atthe same phase transition at the Heisenberg point and the system may
time, the above conjecture may be valid not only for two-pe in the Ising-like ordered ground stdtae ordered state in
dimensional systems, but its origin should lie in more genxy plain) for J,y<J; (3,>J,), which is a quite similar
eral effects of the quanturXY model. Since no singular jyation to the closely investigatétiX Z antiferromagnet on
behavior is observed except for the Heisenberg point, thg,e square lattice. However, we should remind the reader that
supposed ordered state may continue up,tel. _the definitive conclusion on the magnetic phase diagram
At this stage, we shall conjecture the magnetic phase diashoyld be drawn with calculating the order parameters in
gram: the ground state shows LRO in thelirection(in Xy poth |sing and theXY regions, which is left as a future
plain) for J,>1 (0<J,<1). From the observation of the jump . opjem.
in $°4(J,), we think that the order parameter is finite at the' Tpe applications of the DMRG method to the other quan-
Heisenberg point, which changes its direction by an infini-ym systems on the Bethe lattice, e.g., the Hubbard model,
tesimal symmetry-breaking field. Seemingly, these resultge 5150 interesting; we shall report the results elsewhere. At
agree well with those for th¥XZ model on the square lat- e same time, since the idea of the DMRG method is not
tice in many points: the same magnetic phase diagram has,aracteristic of one-dimensional systems, the new algorithm
been confirmed and the order parameters were evaluated IB\!/ which we can treat the quantum systems on the square
various methods:* More directly, by employing the quan- |astice. for example, is desirdd.
tum Monte Carlo method, Barnest al. have reported the ' '
discontinuous behavior of the first derivativegf(J,) at the The author is grateful to Y. Okabe, T. Kawakatsu, and T.
Heisenberg poirt. Nishino for helpful discussions. Main computations were
In conclusion, we have investigated the ground-statearried out on HP Apollo 9000 Model 735 at Tokyo Metro-
phase transition of the spin-1)2XZ antiferromagnet on the politan University and FACOM VPP550 at the Supercom-
Bethe lattice (q=3). The density-matrix renormalization- puter Center, Institute for Solid State Physics, University of
group method which has been used in the studies of th&okyo.
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