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Fluorescence decay in aperiodic Frenkel lattices
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We study motion and capture of excitons in self-similar linear systems in which interstitial traps are arranged
according to an aperiodic sequence, focusing our attention on Fibonacci and Thue-Morse systems as canonical
examples. The decay of the fluorescence intensity following a broadband pulse excitation is evaluated by
solving the microscopic equations of motion of the Frenkel exciton problem. We find that the average decay is
exponential and depends only on the concentration of traps and the trapping rate. In addition, we observe
small-amplitude oscillations coming from the coupling between the low-lying mode and a few high-lying
modes through the topology of the lattice. These oscillations are characteristic of each particular arrangement
of traps and they are directly related to the Fourier transform of the underlying lattice. Our predictions then can
be used to determine experimentally the ordering of trE$8163-182606)08019-9

I. INTRODUCTION that the decay of the survival fraction of incoherent excitons
is simply exponential, P(t)~exp(—Atf), instead of the
The discovery of quasicrystdland the fabrication of ape- asymptotic stretched exponenti(t) ~exp(—At?) appear-
riodic low-dimensional systerhsiave encouraged the study ing in one-dimensional random latticESIt is well known
of the physical properties of solids with long-range order,that the exponent of the stretched exponential varies when
lacking translational symmetry. Physical aperiodic systemspassing from trapping of classic@hcoherent to quantum
whose structural order is described by means of deterministitccoherent excitons in random lattice’$. Then a natural ques-
sequences, present rather exotic electronic properties ntibn arises in the context of aperiodic systems, namely,
shared by crystalline and amorphous solids. Peculiar signavhether the simple exponential behavior of the survival frac-
tures of these unique electronic states are Cantor-like spectt@n holds in the quantum case.
and self-similar wave functions. Several electronic properties In this work we investigate the decay fluorescence due to
of solids can be inferred from optical characterization techFrenkel excitons in linear systems with interstitial traps ar-
niques such as optical absorption, photoluminescence, aridnged according to the Fibonacci and Thue-Morse se-
fluorescence after pulse excitation. Therefore, a complete urtuences. We have focused on the analysis of aperiodic ar-
derstanding of the interplay between the electronic propertiegangements of traps in systems where optically active centers
and the underlying aperiodic order requires a detailed analyare placed in a straight line. Nevertheless, the model can also
sis of the optical dynamics of this kind of ordering of matter. be applied to other possible geometric configurations of in-
This interest has motivated various works dealing with opti-terest such as, for example, zigzag chains wisggehybrid-
cal properties of aperiodic systems, mainly devoted to Fiization is considered explicitly. To this end, we make use of
bonacci and Thue-Morse semiconductor superlatficgs. a general treatment that allows us to study the dynamics of
Following a long term project regarding electronic andFrenkel excitons in these lattices, solve the microscopic
transport properties of aperiodic systefi¥ our group fo-  equations of motion, and find the fluorescence intensity as a
cused its attention on optical absorption spectra of Frenkdunction of time. The main results of this paper are the fol-
excitons in Fibonacci and Thue-Morse latti¢éOur main  lowing. First, we find out the decay law of the fluorescence
aim was to learn about the phenomenology of coherent exntensity at low temperature, and compare it to the above-
citon dynamics in molecular aggregates and polymers exhibmentioned simple exponential trend at moderate temperature.
iting long-range correlations. We considered Fibonacci andecond, and most important from an experimental point of
Thue-Morse lattices as canonical aperiodic models that argiew, we obtaindistinctive featuresof the decay curves
neither periodic nor random. In turn, they are inherentlyP(t), allowing us to unveil the ordering of traps present in
close to realistic aperiodic systems where the effects of longthe system. By means of an analytical approach we are able
range order might change dramatically the exciton dynamicgo explain the origin of these characteristic oscillations,
We found numerically several characteristic lines specific ofwhich are related to the Fourier transform of the arrangement
each aperiodic system that are not present in the spectra of traps. Thus we successfully relate an optical property
periodic or random Frenkel lattices, thus being an adequatdluorescence decaywith a structural ondtopology of the
way to determine the particular structural order of the systentattice).
from experiments! Moreover, using a model based on the  The remainder of the paper is organized as follows. In
Pauli master equation, we have also studied motion and cajgec. Il we describe our model Hamiltonian and the way we
ture of incoherent excitons when traps are arranged accor@range the traps following the Fibonacci and Thue-Morse
ing to aperiodic sequencé$As an interesting feature, ame- sequences. In Sec. Il we focus our attention on the fluores-
nable to experimental confirmation by means ofcence intensity following a broadband pulse excitation and
luminescence studies at moderate temperature, we obtainsdlve the microscopic equation of motion. We find numeri-
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cally that, superimposed to an overall exponential decaychoose those blocks as individual centers with and without a
there exist small-amplitude oscillations characteristic of eachirap associated with it, hereafter callE&ndS, respectively.
particular system. In Sec. IV we develop a homogeneou3he Fibonacci arrangement can be generated by the substi-
medium approximation that accounts for the exponential detution ruleS— ST, T—S. In this way, finite and self-similar
cay, and, in Sec. V we introduce a perturbative treatment thaiperiodic lattices are obtained Inysuccessive applications
successfully explains the small-amplitude oscillations. In thisof the substitution rule. Thath generation lattice will have
way, we clearly demonstrate that the frequency of the oscilN=F, elements, wheré=,, denotes a Fibonacci number.
lations depends on the specific aperiodic order of the distriSuch numbers are generated from the recurrence law
bution of traps and, in addition, that these oscillations arise=,=F,_;+F,_, starting withF,=F;=1; asn increases
as a consequence of the coupling between the low-lyinghe ratio F,_;/F, converges toward r=(\/5—1)/2
mode and few high-lying modes through the topology of the=0.618 . . . , anirrational number that is known as the in-
lattice. Section VI concludes the paper with a brief summaryerse golden mean. Therefore, lattice sites are arranged ac-
of results and some general remarks on their physical implicording to the sequen@®TSSTSTS. . . This type of dis-
cations. tribution of traps will be referred to awminority lattice since
the fraction of T centers (17 for large enough FL'sis
Il. PHYSICAL MODEL AND THEORY smaller than the fraction 0% centers ¢ for large enough

FL's). Moreover, it is worth noticing thal centers appear
isolated in the minority lattice. In the same way, one can

We consider a system of optically active two-level cen- generate thenajority lattice by replacings— T, thus obtain-
ters, occupying positions, on a linear regular lattice with ing the sequenc@ STTSTST . . . In this casel centers
spacinga. For our present purposes we neglect all thermaktan appear isolated or paired.
degrees of freedom. Therefore, the effective Frenkel Hamil-
tonian describing this system can be written(\@e use units
such that=1)4-17

A. Model Hamiltonian

C. Thue-Morse lattice

The Thue-Morse latticéTML) is also constructed from
. ) + N two building blocksS and T. The substitution rule in this
]/_; (Vn_'Fn)""n""rﬁrlg&zn Jnidnay (1) case isS—ST, T—TSand thenth generation lattice con-
tains 2' centers. It is clear that the fraction @f centers is
Here al and a,, are operators creating and annihilating anexactly 1/2 for any generation lattice. The resulting sequence
electronic excitation of energy,, at siten, respectively. STTSTSST.. is also aperiodic and self-similar but not
Jo (n#1) is the intersite interaction of dipole origin between quasiperiodic. Notice that botB and T centers appear iso-
centersn andl. In the case where all centers have equal andated or paired. The TML present an inversion center so that
parallel dipole moment the interaction can be cast in théhe lattice is invariant under the transformati®n-T.
form J,,,=—J(al/|r,—r|)3, whereJ is the coupling between
nearest-neighbor centers. In this papeés the unit of energy
andJ~! the unit of time. Moreover, sincé,, is a rapidly

decreasing function of the distance between centers, we will Having presented our model we now briefly describe the
omit interactions beyond nearest neighbors. method we have used to calculate the fluorescence decay

According to previous Workgs:_ls the non-Hermitian fOIIOWing a Short-pulse excitation. The calculation involves

term —i3,I',ala, accounts for the irreversible trapping of the total dipole moment operater= X ,dq(a+a,), where

the exciton due to interstitial traps and the subsequent photd# is the dipole moment of the center. Notice that we are
emission. Herd ,=T if the n center has a trap associated restricting ourselves to the case of systems whose length is
with it and Fnzo otherwiseI’ being the trapping rate. The much smaller than the Optical WaVEIength. After the excita-
site energyV,, can be written, without loss of generality, as tion, the state vector at time evolves according to
(V)+AV,. The first term stands for the average excitation| #(t)) =exp(-i.7t) Zlvag, |vac being the exciton vacuum
energy and we drop it by setting an appropriate referencestate. Besides radiative effects, the fluorescence intensity,
The second term is a random variable reflecting the offsefiormalized to the value at=0, is given by®

energy due to the influence of the surrounding medium.

D. Computation of physical magnitudes

Since we are mainly interested in the trapping dynamics, we [ (0)| ()2

neglect the effects of diagonal disordek\{,,=0), noting Pt)= 7712 2
that they could be easily incorporated in our treatment if Ky(0)]9(0))|

necessary.

The fluorescence intensity can also be viewed as the prob-
ability of finding an exciton in thé&k=0 mode at timet.

A reliable method for determinin®(t) numerically has

In this work we will be concerned with the Frenkel exci- been given by Huber and Chid§These authors introduced
ton dynamics and trapping processes in systems presentirgset of correlation functions,
an aperiodic distribution of interstitial traps. The Fibonacci
lattice (FL) is the archetypal example of deterministic and
quasiperiodically ordered structure. Any arbitrary Fibonacci Gn(t)zz dl(vaqan(t)aﬂvac), 3)
system presents two kinds of building blocks. In our case, we [

B. Fibonacci lattice
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wherea, (t) =exp(.7t)a,exp(—i.7t) is the annihilation op- 0.0 - ]
erator in the Heisenberg representation. The fundGg(t) : “;—~~§_::::"‘-~—::-—--_.-_a)
obeys the equation of motion 1 R
-0.5
_dGy(t) S
: dnt :2| HnGi(1), (4) & { FiBONACCI
a

-1.0 4

with the initial conditionG,(0)=d,,. The diagonal elements Majority

of the tridiagonal matriX,,; are —iI",, whereas off-diagonal | —=—Minority
elements are simply given by J. The microscopic equation

of motion is a discrete Schdinger-like equation on a lattice ‘61'8 B o r 7
and standard numerical techniques may be applied to obtain b)
the solution. Once these equations of motion are solved, the
fluorescence intensity is evaluated from the relationship __ —0.5 -
2 =
* =]
‘; dn Gn(t) — —1.0 { THUE-MORSE
P(t)= 7 - )
S a2
n -1.5 T T T T T T T T
0 5 10 15 20
I1l. NUMERICAL RESULTS t

We have solved numerically the equation of motid) FIG. 1. Time decay of fluorescence intensity (& Fibonacci

using an implicit (Crapk-NichoIsom .integ.ration schemg. lattices with N=F;,=233 centers and a fraction of traps
WE_E note that energy 1S me_asured In _unltsJoand _tlme N c=0618... (majority lattice, solid linesandc=0.38 ... (mi-
units of J7* and, since 4 is the exciton bandwidth, the ity jattice, dashed lines and (b) Thue-Morse lattices with
energy and time scales can be deduced from each particulg— 28— 256 centers. In all cases the trapping rate is, from top to
experimental situation. Aperiodic lattices are generated usingottom, I'=0.01,. . ., 0.05 in units ofJ.
the inflation rules discussed above. In order to minimize end
effects, spatial periodic boundary conditions are introduceéne functional formP(t) in all cases considered can be ex-
in all cases. The maximum integration time and the i”tegrapressed as
tion time step were 20 and>210 3, respectively. Smaller
time steps give essentially the same results. In most cases of P(t)=exp(— 2cTt)[1+T2p(t)], 6)
practical interest, one finds that the trapping rate is much less
than the exciton bandwidth, that i5<4J. Thus, as typical wherep(t) is an oscillatory function which is independent of
values, we have studied lattices withJ=0.01,...,0.05. the trapping rate. This function can be readily extracted from
The maximum lattice size under consideration wasnumerical data asp(t)=I"2In[P(t)exp(xIt)]. Figure 2
N=F1,=233 for FL's andN=28=256 for TML'’s. Finally, ~ shows the typical form of th@(t) function for any one of
local dipole moments are taken to bg=1/\N. the trapping rate€” considered in our study. Remarkably,

In our numerical simulations we have found that the fluo-this function is, on one side, independent of the number of
rescence intensity decays exponentially, for both FL's andictive centers present in the lattice and, most interestingly, it
TML's, in the full time interval considered by us. Figure 1 does not depend on the concentration of traps; i.e., it is ex-
shows the results for majority and minority FL's with actly the same for both majority and minority versions of
N=233 and TML’s withN=256, but we have checked that FL's—this invariance is, of course, trivial for TML's. Fi-
this behavior is independent of the system size. As expectedally, by comparing Figs. (@) and 2Zb) we realize that the
the larger the trapping rate, the faster the decay of the fluoescillatory pattern ofp(t) is characteristic of the arrange-
rescence intensity. Moreover, for the same value of the trapment of traps, in the sense that its general features are very
ping rate, this decay is faster on increasing the fraction obensitive to the kind of aperiodic order being considered.
traps(minority FL's, TML’s, and majority FL'$. Hence, as
occurs in the case of completely incoherent excitSrihe IV. HOMOGENEOUS MEDIUM APPROXIMATION
decay of Frenkel excitons in FL's and TML's resembles that
of periodic lattices instead of random ones, where the decay In this section we develop a theoretical approach to ex-
is stretched exponential. The average decay of the fluoreplain the overall exponential decay of the fluorescence in
cence intensity fits very well to an exponential of the formaperiodic lattices. To this end we rewrite the system Hamil-
exp(—2cI't) in the considered time intervat,being the frac-  tonian.7z=.7%—iI'. 777, where
tion of traps in each lattice. This time dependence has also
been confirmed by fitting the data to stretched exponentials ) ) + + t
of the form expEAt’), obtaining in all cases = _'CF; anan—J; (8pan+1tan.18n), (78)
B=1.0000+10*.

A detailed analysis of data plotted in Fig. 1 shows the
occurrence of small-amplitude oscillations superimposed to Thr= > (I'yT—c)ala,. (7b)
the average exponential decay of the fluorescence intensity. n
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0.00 describes the overall decay obtained by numerical simula-
FIBONACCI a) tions. On the other hand, the exact result obtained within that
—0.05 4 approximation provides us with a starting point that will al-
A ANAW low us to explain in full detail the small-amplitude oscilla-
< -0.10 1 'WAVA'AW: tions shown in Fig. 2.
—-0.15 - V V. PERTURBATIVE APPROXIMATION
~0.20 — . . . The replacement of a given aperiodic distribution of traps
0.00 by a uniform one with a renormalized trapping rate is a crude
~0.05 THUE-MORSE b) representation of the real system. To develop a better ap-
proximation one must explicitly consider the effects of the
. —0.10 1 o topology on the exciton decay through the terml".77; . To
< —0.15 1 \ carry out such an approximation we have been inspired by
~0.20 4 the nondegenerate perturbation theory developed by Huber
o5l \ to studyrandomsystems with substitutional trapSLet |k)
] be the perturbed eigenvector describing the exciton state
—0.30 — T T when the influence of the termil’ .7 is taken into ac-

0 5 10 15 20

count. To evaluate the perturbed dipole moment matrix ele-
X =

ment, we expandk) in the basis of the unperturbed eigen-

FIG. 2. Plot of p(t)=T"2In[P(t)exp(xIt)] as a function of VeCtors|k> given in(9a),

time for (a) Fibonacci andb) Thue-Morse lattice. Solid and dashed (I | ¥ |k>
lines indicate numerical results and perturbative prediction, respec- |'|Z>: |k>—if‘2 ;“% (103
tively. Results are independent of the number of lattice sites and the 7k Ex—E

concentration of traps. whereas the perturbed eigenvalues are given by

As a first approximation, we n_eglect the _topo_logy of tht_a lat- Ek: Ev—iT(K|.71]K), (10b)

tice and take7Z=.77\ . Physically this implies replacing

the aperiodic distribution of traps by a uniform distribution With Ey being the unperturbed eigenvalues. Making use of
with a renormalized trapping radd”. To proceed we notice the fact that the dlpOle moment matrix element inVOIVing
that the overlap between the state vector at timend the unperturbed eigenvectors(k| 7|vag = &y, the overlap be-

initial state vector may be calculated fré tween|y(0)) and|(t)) can be readily found, leading to
, 1+T2z(t) |?
(z/f(0)|1//(t))=2k [(k| Z|vac)|2exp( —iE,t), (8) P(t)=Pum(t) 157220
where|k) denotes the one-exciton eigenvectors(td) and =Pum(H{1+2I*Re z(t) —2(0)]}+O(I'), (11)

E the corresponding eigenvalues. The Hamiltoniafyy  \ith
with periodic boundary conditions can be exactly diagonal-

ized, yielding the eigenvectdrs [(0| 7+|k)|? _
Z(t)Ego —sz—exq—lwkot), (12
kO

1 nk
- TRt
ay|vag, (%3 where we have defined o= wy— wy=4Jsir’(7k/N). To

12
N) ; exp 2mi
obtain the above result we have made use of the
with k=0, ... N—1. The corresponding eigenvalues read result (k|.71|ky=0, which according to(10b) indicates
that E,=E, in the first-order perturbative treatment. Hence,
=—icT+ w. (9p)  recalling Eq.(6), one gets

k)=

k
E.= —icF—2Jcos< 27—

N
. . . [{0].7+|k)[?
Therefore, the dipole moment matrix elements in the homo- p(t)=22 —————(Coswet—1). (13
geneous medium approach satisfy the relation k#0 “ko
(k|Z|vag = 8. Consequently one gets The most remarkable fact of this expression is that it relates

(4(0)| (1)) =exp(—clt—iwt) so that we obtain the expo- the small-amplitude oscillations of the fluorescence decay,
nential behaviorPyy(t)=exp(—2cl't). This result shows an experimentally measurable magnitude, with the Fourier
that, within the tight-binding approximation, the overall ex- transform of the distribution of traps describing the topologi-
ponential decay of the fluorescence is a general property afal ordering of the system. To demonstrate this point, we
orderedsystems described in terms of the Hamilton{d  recall that unperturbed eigenvectors are orthogonal. Thus
with independence of this order being periodic or aperiodic.

i 1T kn
rangements of traps with different basis. In all cases we have<0|'%T|k>_ < 0 ; ?a”a“ k> B N; ?ex;{ 2 W) '
observed that the exponential behavior predicted by the ho-

We have confirmed this point by considering periodic ar- I'n
mogeneous medium approximation treatment successfully k#0. (14
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which is nothing but the above-mentioned Fourier transform. 0.020
A comparison of the perturbative predicti¢h3) with the FIBONACCI ) a
numerlcal re_sult is given in E|g. 2, Where an excellent agree- NGSO 015 —
ment is achieved for both Fibonacci and Thue-Morse aperi- >
odic arrangements. At this point we should stress that the P 0.010
above result is valid for any arbitrary lattice. It relates the g 6.5 4 .3
Fourier pattern of the distribution of traps with the finer de- <
tails of the fluorescence decay. Since each particular arrange- 0.005
ment of traps leads to a different Fourier pattermp(t), we
arrive at the conclusion that the small-amplitude oscillations 0.000 T L . 1
characterize every distribution of traps in much the same 107t
way that the usual x-ray diffraction analysis characterizes the o ] L % 1 b)
distribution of scattering centers in the space. It is also worth ~g 10 s 13 s
mentioning that it is not difficult to show frorfi.4) thatdual o 2 2
lattices, namely, those lattices obtained from the replacement ) 10
TS, present the same value [60].77;|k)[2. In particular, = 1074 ]
minority and majority Fibonacci lattices should display ex- M
actly the same oscillations, as is indeed the case in our nu- 107 ]
merical results. I THUE-MORSE

In order to get a deeper insight into the small-amplitude 107° — T
oscillations in the case of aperiodic arrangement of traps, we 60 01 02 03 04 05
relate our results with those reported in the various works k/N

dealing with the Fourier transform of these sequences, most

of them in connection with x-ray diffraction and Raman scat- FIG. 3. (&) Plot of [(0].71[k)["/ v, as a function of the ratio
tering in aperiodic semiconductor superlattices, and neutrolyN for FL's showing the occurrence of well-defined Bragg peaks,
scattering in quasicrystafé-2¢ Let us consider, in the first labeled according to successive powers of the inverse golden mean

S . 7. The arrow indicates the peak responsible of the largest-frequency
place, the case of the FL, which is known to exhibit a PUre_ llations observed in Fig. ab) Plot of (0| 7|K)/w?, as a

point Fourier spectrum displaying well-defined Bragg function of the ratick/N for a TML with 28= 256 active centers. A

5 H H H oy 2 ’ H
peaks The Fourier intensity(0|77k)|* of FL's consists  jenge arrangement of peaks labeled according to the formula
of a series of peaks located at values of the momenturppn1)/(3%x2m) is clearly observed.

27 (k/IN) of the form 27(m+no), wherem andn are two
Erbnf:ary ||£1tefgehrs I?ndr_=(_\/§+ 1.)/2| |sdthe gollden mean.'b Let us consider now the case of the TML, which is known
ti:rf tcf)if:e c;utm?l?’)ogrrl]zr Igéigselayueenilys ttcc)> 1 %gﬁ_ggf?rt]g dufo exhipit a singular continuous.F_ourier transform, Ia_cking
frequency in the oscillato,ry pattern p{t) ,A simple inspec- well-defined Bragg peakd. For finite TML's the Fourier

. : o ' ) . intensity consists of a dense arrangement of peaks whose
tion of Fig. 2(a) indicates that the_ pattern qi(t) IS domi- .number depends on the sample size. For a TML composed of
nated by a single frequency and, in fact, the Fourier analysi

P . i
of the data gives the approximate vakt@.456 for this main 2 building blocks of the same size one expects to find

f he f fh icul h 2"~ 1 peaks in the related Fourier transform whose positions
requency. The frequency of the particular maglehat con- 50 cated at values of the momentur(&/N) of the form

tributes significantly to the oscillatory pattern is thgn given(2n+l)/(3><2m), where n and m are two arbitrary

by @)~ wo=3.456, leading td,/N=0.3798, the ratio be- jntegers?® An inspection of Fig. f) indicates that, con-
ing independent of the system size. Therefore the mode igersely to the case of FL, the pattern of the oscillatory fluo-
located close to the top of the excitonic barldN=0.5).  rescence decay corresponding to the TML cannot be de-
Figure 3a) shows|(0|. 71| k)[?/ wZ, as a function of the ratio scribed in terms of a single main frequency. In fact, the
k/N evaluated from expressiai4), the results being inde- Fourier analysis of numerical data shows a considerable
pendent of the system size. A sequence of Bragg peaks, anumber of frequencies closely packed. Figui®)3shows
ranged according to successive powers-ofire clearly ob-  [(0].7%+/k)|?/ %, as a function of the rati&/N for a TML
served in this plot. The stronger one, which is responsible fowith N=28 active centers. A dense distribution of peaks is
the highest-frequency oscillations, is located atclearly observed. We have checked that most peaks can be
k/N=0.38=72. Making use of the relationshipg+ r=1 labeled by means of the formularf2- 1)/(3x 2™). This we
ando=1+ 7, we find the two indices labeling this peak to show in the figure for the most relevant peaks. By comparing
be m=2 and n=—1. The Fourier pattern is symmetric Fig. 3b) with x-ray results obtained for semiconducting TM
around the top of the excitonic band and, in fact, there existsuperlattice€® we see that the study of the oscillations in the
also a similar peak located BtN=0.62=1—7>=7, whose fluorescence decay allows us to analyze the topological
indices arem=—1 and n=1. The remaining, in general structure for a wide variety of aperiodic systems, even if
weaker, peaks also give rise to oscillationspift) but their  those systems do not give rise to well-defined Bragg peaks in
contribution is not appreciable in the decay curve becausthe reciprocal space.

they are closer to the bottom of the excitonic band and then Our results are suitable for a direct physical interpretation.
lead to low-frequency oscillations. Small-amplitude oscillations of largest frequenoyp—wO
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are caused by the coupling of two modes, namely, thexponentially on average in the case of aperiodic systems.
lowest-lying andk,, through the topology of the aperiodic We have demonstrated that such a time decay is quite well
distribution of traps. Notice that different arrangement ofdescribed within a homogeneous medium approximation,
traps would lead to completely different Fourier intensity where the aperiodic distribution of traps is replaced by a
|(0].71|k)|?> and p(t), as can be seen from a comparison ofuniform distribution one with a renormalized trapping rate.
Figs. 2a) and 2b). Thus, the exciton acts as a probe of the This exponential trend is similar to that found in the case of
spatial distribution of traps. This is one of the main results ofincoherent transport through aperiodic lattices and, in spite
the present work since it provides us with a useful method t®f its dependence on the concentration of traps, it cannot be
be applied in experimental situations. To elucidate the parused to fully characterize each particular arrangement of
ticular arrangement of traps in a linear lattice, first we cantrapping centers. Instead, quantum effects reveal themselves
analyze the fluorescence decay aftepulse excitation. If through small-amplitude oscillations superimposed to the av-
this decay is stretched exponential, the arrangement of traggage exponential decay. Interestingly, we have shown that
is completely disordered, whereas simple exponential behathe oscillatory pattern is characteristic of each particular lat-
ior indicatesabsence of disorderorresponding to either pe- tice and, consequently, it can be considered as a fingerprint
riodic or aperiodic distribution of trapping centers. The slopethat allows us to elucidate the kind of underlying ordering
of the average exponential decay permits one to find out thpresent in the distribution of traps.
concentration of traps through the exponent value of We have carried out a perturbation approach to account
Pum(t), and thermp(t) ~ In[P(t)/Pyu(t)]. By performing the for the small-amplitude oscillations, finding excellent agree-
Fourier analysis of(t) one can determine its related power ment with numerical data. The perturbative analysis clearly
spectrum and then, comparing the obtained results with thedndicates that the oscillatory pattern of the fluorescence de-
retical predictions from(13) and (14), to extract relevant cay is directly related to the Fourier transform of the distri-
information about the topological order of the underlying bution of traps and, as a consequence, it is characteristic of
structure. the ordering present in the considered system. In this sense,
On the other hand, from a theoretical point of view, thiswe realize that the necessary condition for an arbitrary sys-
work represents a twofold extension of the mathematicatem to exhibit Fourier peaks is the occurrence of long-range
treatment originally introduced by Hub&t First, instead of  order in its structure. This condition plays a major role in our
studying the asymptotic fluorescence decayaindomFren-  theoretical analysis. Since each well-defined frequency con-
kel lattices we consider the case of genepkriodic sys-  tributing to the functionp(t) can be related to a distinctive
tems. Second, while Huber evaluated the dipole moment mgeak in the Fourier transform of the lattice, the Fourier
trix elements using unperturbed eigenvectors and perturbeghalysis of the time-dependent signal gives us direct infor-
eigenvalues, we show that this approach can only explain theaation concerning the spatial distribution of traps. The
occurrence of long-period oscillations. To account for short-physical origin of the fluorescence oscillations can be traced
period oscillations we must include the second terrfil68), back to the coupling between the low-lying exciton mode
that is, perturbed eigenvectors. This second term is respo@nd certain particular high-lying modes through the lattice
sible for the coupling between the lowest-lying mode and thégopology. This means that excitons act as a probe of the
high-lying modes through the aperiodic arrangement ofspatial distribution of trapping centers. Hence the detailed

traps, causing the short-period oscillations. analysis of time decay of the fluorescence, which uses exci-
tons as a physical probe of the long-range order, represents a
VI. CONCLUSIONS powerful tool to investigate the topology of general aperiodic

systems from experiments, opening in this way an experi-

In this paper we have carried out a detailed analysis of thenental technique that may be tentatively referred ttaaer
fluorescence decay in self-similar Frenkel lattices with interrystallography

stitial traps arranged according to the Fibonacci and Thue-
Morse sequences. To this end, we have solved numerically
the equation of motion of Frenkel excitons in the time do-
main. Unlike what was previously found in random lattices, The authors thank A. ®&hez and V. Malyshev for a
we have observed that the fluorescence decay affmrlse  critical reading of the manuscript. This work was supported
excitation, in which all centers are initially excited, behavesby CICYT (Spain through Project No. MAT95-0325.
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