
Green’s-tensor approach in the theory of the surface or interface vibrational contribution
to thermodynamic properties of solids

Andrei V. Shchegrov
Department of Physics and Astronomy and Institute for Surface and Interface Science, University of California, Irvine, California 92717

~Received 9 November 1995!

We present a theory of the surface or interface contribution to vibrational thermodynamic properties of
solids. We express the thermodynamic quantities such as the free energy and specific heat in terms of the
surface or interface density of vibrational states. We derive a simple analytic expression for this function in
terms of a static Green’s tensor of the system. We redefine the dynamical Green’s tensor compared with some
earlier works, requiring that it correspond to a Hermitian differential operator. In order to calculate the free
energy, we modify the Debye model to apply it to surface or interface problems. The free energy and specific
heat are calculated for the cases of an isotropic solid bounded by a stress-free planar surface and two isotropic
solids separated by a flat interface.@S0163-1829~96!04619-X#

I. INTRODUCTION

The thermodynamics of solid surfaces and interfaces has
been a subject of theoretical study since the early 1960s.
Extensive investigations have been carried out of the prob-
lem of obtaining the surface contribution to the low-
temperature specific heat of a solid. Dupius, Mazo, and
Onsager1 showed that for an elastically isotropic medium
this quantity is proportional toST2, whereS is the surface
area andT is the absolute temperature, and has the form

DCv
~S!~T!53pz~3!

kB
3T2S

h2cs
2 . ~1!

Herecl andct are the speeds of longitudinal and transverse
bulk waves, respectively,z(z) is the Riemann zeta function,
h is Planck’s constant,kB is Boltzmann’s constant, and

cs
25

cl
2ct

2~cl
22ct

2!

3cl
423cl

2ct
212ct

4 . ~2!

The result~1! was later confirmed by a number of indepen-
dent derivations.2–7 Further investigations yieldedDC v

(S)(T)
for hexagonal7,8 and cubic9,10 crystals whose stress-free sur-
faces were basal planes of these solids. By the same tech-
niques,DC v

(S)(T) was obtained for different solid interface
problems.11–13

The majority of the works cited above presented a direct
calculation ofDC v

(S)(T) and did not consider other thermo-
dynamic properties of solid surfaces and interfaces, such as
the zero-point energy. It was noted in a recent work14 that
this quantity can be of interest, in particular, in understand-
ing the phenomenon of the wetting transition on the surfaces
of alkali metals.15

It is known that the vibrational contribution to the ther-
modynamic quantities describing a system can be expressed
in terms of its density of vibrational statesG~v!, which is
defined by

G~v!5(
n

d~v2vn! ~3!

and is normalized to the total number of degrees of freedom
of the system. Here the sum onn runs over all normal modes
of the system andvn is the frequency of thenth normal
mode. Velasco and Garcia-Moliner6,7 derived this fundamen-
tal function for an isotropic solid bounded by a stress-free
planar surface. Using this function, they constructed a sur-
face analog of the bulk Debye model. The total number of
degrees of freedom was required to be the same in the
bounded system as it had been in the unbounded one, al-
though these degrees of freedom were now distributed dif-
ferently between the bulk and surface vibrations. This led to
another Debye cutoff frequencyvM , which differed from the
bulk value vD . Finally, the knowledge ofG~v! and vM
made it possible to obtain the surface contribution both to the
zero-point energy and to the specific heat of an isotropic
solid. Their result for the latter contribution agreed with Eq.
~1!. However, the authors of Refs. 6 and 7 did not extend the
Debye model to cover the case of an interface between two
solids. It will be apparent from the analysis that follows that
this problem is more delicate than the surface case.

Finally, there is one more problem we would like to raise
here. We note thatDC v

(S)(T) expressed in terms of the den-
sity of states in Refs. 6 and 7 is related to the dynamical
Green’s tensor for a semi-infinite isotropic elastic medium
bounded by a planar stress-free surface. On the other hand,
Maradudin, Wallis, and Eguiluz5 showed that it is sufficient
to know only the static limit of this tensor to obtain
DC v

(S)(T). This fact seems to be mysterious sinceDC v
(S)(T),

in turn, can be expressed uniquely in terms of the density of
states. One can hypothesize intuitively that it is the static
version of the Green’s tensor that determines the surface or
interface contribution to the surface density of states, which
has not been proven yet.

In this work we present a straightforward analytic method
of calculating the surface or interface contribution to the den-
sity of vibrational modesG~v!. We construct a surface or
interface analog of the Debye model. Each medium involved
in the problem will be characterized by its own density of
statesG~v! and cutoff frequencyvM . This model will en-
able us to obtain the surface or interface contribution to the
Helmholtz free energy~including the zero-point energy! and
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the specific heat. We will show that the surface or interface
contribution toG~v! is completely determined by a static
Green’s tensor, whose calculation is much simpler than in
the dynamical case, which is especially important for aniso-
tropic media~see, e.g., Ref. 9!. Finally, we will point out that
the conventional definition of the dynamical Green’s tensor
in the interface problems11,13 does not correspond to a Her-
mitian differential operator. The method we present here re-
quires the Hermiticity of the problem. For this reason, the
definition of the dynamical Green’s tensor we use in the
present work is different from the conventional one.

II. THE INTERFACE DENSITY
OF VIBRATIONAL STATES

In order to calculate the density of vibrational statesG~v!
for a system of two solids separated by a planar interface we
use the elastic continuum theory. The functionG~v! calcu-
lated in the elastic continuum model determines the vibra-
tional contribution to fundamental thermodynamic quantities
of the system such as the Helmholtz free energy, including
the zero-point energy, and specific heat. The results based on
this approach were shown to agree with those obtained in
lattice dynamical calculations in the harmonic approximation
~see, e.g., the discussions in Refs. 5 and 16!.

We consider two different isotropic elastic media 1 and 2
occupying the half spacesx3.0 and x3,0, respectively.
Each medium is characterized by its mass densityrj and the
speeds of longitudinal and transverse bulk wavesc l

( j ) and
c t
( j ), respectively. The elastic modulus tensors have the form

C abmn
( j ) 5 r j (c l

( j )222c t
( j )2)dabdmn 1 r j c t

( j )2(damdbn 1
dandbm), j51,2. We begin with a quite formal derivation of
the density of vibrational states. In order to calculate this
quantity, we need to know the Green’s tensorDab~x,x8uv!
for two solids in contact along the interfacex350. We define
this tensor as a solution of the equations

Fr jv
2dam1Cabmn

~ j !
]2

]xb]xn
GDmg~x,x8uv!5dagd~x2x8!

~4!

and the boundary conditions

Dmg~x,x8uv!zx3→015Dmg~x,x8uv!zx3→02 , ~5!

Ca3mn
~1!

]

]xn
Dmg~x,x8uv!zx3→01

5Ca3mn
~2!

]

]xn
Dmg~x,x8uv!zx3→02 , ~6!

which come from the continuity of the displacements and
normal stresses across the interface. In addition, we require
thatDab~x,x8uv! obey the outgoing or exponentially decay-
ing wave conditions asux3u→`. In Eq. ~4! j51 if x3.0 and
j52 if x3,0. The greek indicesa,b,... assume the values
1,2,3 and summation over repeated greek indices is implied
throughout the paper.

The partial differential operator appearing on the left-
hand side of Eq.~4! supplemented by the boundary condi-
tions ~5! and ~6! can be shown to be Hermitian. Therefore,
the infinite set of eigenfunctions$va

(n)(x)% of the homoge-

neous version of Eqs.~4!–~6! is complete and orthonormal
with a weightr(x3)5r1u(x3)1r2u(2x3), whereu~x3! is
the Heaviside unit step function,

(
n
va

~n!* ~x!vb
~n!~x8!5dabd~x2x8!, ~7!

E
S
d2xi E

2`

`

dx3r~x3!va
~n!* ~x!va

~n8!~x!5dnn8 . ~8!

Here xi5(x1 ,x2,0), S is the surface area, and the index
n51,2,3,... labels the eigenfunctions. Then the Green’s ten-
sor can be represented in the form

Dab~x,x8uv!5(
n

va
~n!~x!vb

~n!* ~x8!

v22vn
2 5Dba* ~x,x8uv!.

~9!

We next changev to v2ih in Eq. ~9!, whereh is a positive
infinitesimal, then take the imaginary part of
Daa~x,xuv2ih!, and integrate the result over allx with a
weightr~x3!. With the aid of Eq.~8! we obtain the density of
states defined in Eq.~3! in the form

G~v!5
2v

p E
S
d2xi E

2`

`

dx3r~x3!Im Daa~x,xuv2 ih!.

~10!

We note here that the definition of the Green’s tensor we
use differs from the conventional one11,13because the differ-
ential operator appearing in~4! is greater by a factor ofrj
than the one in Refs. 11 and 13. However, the operator used
in Refs. 11 and 13, together with the boundary conditions~5!
and ~6!, is not Hermitian. As we have seen, the Hermiticity
of the operator is essential in deriving the relation~10! be-
tween the density of states and the dynamical Green’s tensor
of the system. Nevertheless, we will show that the method
we use here yields the same result for the specific heat as was
obtained in Refs. 11 and 13. The point is that if we used the
method of Refs. 11 and 13, ImDaa would appear in Eq.~10!
without the factorr~x3!. However,Daa of Refs. 11 and 13
coincides withr(x3)Daa in our notation, which explains the
agreement between the results of the two approaches.

Because the system possesses infinitesimal translational
invariance in directions parallel to the interface, it is conve-
nient to introduce the Fourier coefficientsdab(ki ,vux3 ,x38)
of the Green’s tensor according to

Dab~x,x8uv!5E d2ki

~2p!2
eiki•~xi2xi8!dab~ki ,vux3 ,x38!,

~11!

whereki5(k1 ,k2,0). Furthermore, the rotational invariance
in the planex350 allows one to introduce Green’s functions
that do not depend on the direction ofki ,

17

gab~ki ,vux3 ,x38!5Sam~ k̂i!dmn~ki ,vux3 ,x38!Snb
21~ k̂i!,

~12!

where
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S~ k̂i!5
1

ki
S k1

2k2
0

k2
k1
0

0
0
ki

D ~13!

and k̂i5ki/ki . It was shown in Ref. 11 that the functions
gab(ki,vux3,x38) can be represented in the form

gab~ki ,vux3 ,x38!5u~x3!$gab
~B,1!~ki ,vux3 ,x38!

1gab
~ I ,1!~ki ,vux3 ,x38!%1u~2x3!

3$gab
~B,2!~ki ,vux3 ,x38!1gab

~ I ,2!

3~ki ,vux3 ,x38!%. ~14!

Here g ab
(B,1) and g ab

(B,2) are the bulk Green’s functions that
correspond to the infinite elastic media 1 and 2, respectively.
The interface Green’s functionsg ab

(I ,1) andg ab
(I ,2) appear as a

result of the presence of the interface and provide the satis-
faction of the boundary conditions.

We next use Eqs.~11!–~14! in Eq. ~10! to obtain

G~v!5G~B,1!~v!1G~ I ,1!~v!1G~B,2!~v!1G~ I ,2!~v!.
~15!

The density of statesG(B, j )~v! in the unboundedj th medium
is given by16

G~B, j !~v!5
3v2V~ j !

2p2cB
~ j !3 , ~16!

whereV( j ) is the volume occupied by thej th medium and

3

cB
~ j !3 5

2

ct
~ j !3 1

1

cl
~ j !3 . ~17!

The interface contributions to the density of states are given
by

G~ I ,1!~v!5
2vSr1

p E
0

`

dx3E d2ki

~2p!2

3Im gaa
~ I ,1!~ki ,v2 ihux3 ,x3!, ~18!

G~ I ,2!~v!5
2vSr2

p E
2`

0

dx3E d2ki

~2p!2

3Im gaa
~ I ,2!~ki ,v2 ihux3 ,x3!. ~19!

We will show that all the integrals in Eqs.~18! and~19! can
be evaluated analytically and can be expressed in terms of
the trace of the static Green’s tensorgab

(I , j )(ki,0ux3 ,x38). We
start with the simplest case, when the second medium is a
vacuum and the planex350 represents a stress-free surface.

III. DENSITY OF STATES AND THERMODYNAMIC
QUANTITIES FOR A SEMI-INFINITE SOLID BOUNDED

BY A STRESS-FREE SURFACE

Because we are dealing with only one elastic medium, we
will drop the index j in this section. The Green’s tensor
satisfies the equation

Frv2dam1Cabmn

]2

]xb]xn
GDmg~x,x8uv!

5dagd~x2x8!, x3 ,x38.0, ~20!

and the stress-free boundary conditions

Ca3mn

]

]xn
Dmg~x,x8uv!zx35050. ~21!

Repeating the derivation of the preceding section, we obtain
the density of states as a sum of bulk and surface contribu-
tions

G~v!5G~B!~v!1G~S!~v!, ~22!

whereG(B) is given by Eq.~16! with the index j dropped.
The functionG(S), which we will call the surface density of
states, has the form

G~S!~v!5
2vSr

p E
0

`

dx3E d2ki

~2p!2

3Im gaa
~S!~ki ,v2 ihux3 ,x3!. ~23!

The elements of the surface Green’s tensor
gab
(S)(ki ,vux3 ,x38) are derived in Ref. 17; here we only have
to divide them byr to conform to the definition of the
Green’s tensor we use in this work:

g11
~S!~ki ,vux3 ,x3!52

ki
2

2a lv
2r1r F r2e

22a l x312e2~a l1a t!x3

1
r2ki

2

a la t
e22a tx3G , ~24a!

g22
~S!~ki ,vux3 ,x3!52

1

2a tct
2r

e22a tx3, ~24b!

g33
~S!~ki ,vux3 ,x3!52

ki
2

2a tv
2r1r Fa la tr2

ki
2 e22a l x3

12e2~a l1a t!x31r2e
2~a l1a t!x3G ,

~24c!

with

a l ,t~ki ,v!5S ki
22

v2

cl ,t
2 D 1/2 ~25!

and

r65
24ki

2a la t6~ki
21a t

2!2

4a la t~ki
21a t

2!
. ~26!

We next introduce the function

f ~ki ,v!5
rS

8p3 E
0

`

dx3E
0

2p

du gaa
~S!~ki ,vux3 ,x3!, ~27!

whereu is the polar angle in the (k1 ,k2) plane. We see that
because of the simple exponential dependence of
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g aa
(S)(ki ,vux3 ,x3) on x3, we can immediately evaluate the

integral over this variable in Eq.~27!. We note also that the
integral overu is trivial and gives 2p since the integrand
does not depend on the direction ofki .

Thus we know the explicit expression forf (ki ,v), which
we will not write down explicitly because of its cumbersome
form. The surface density of states is given by

G~S!~v!54vE
0

`

dkiki Im f ~ki ,v2 ih!. ~28!

It turns out that we can evaluate this integral analytically by
means of complex analysis. First, we note that
g aa
(S)(ki ,vux3 ,x3) depends onki andv only throughk i

2 and
v2. Therefore, the same is true forf (ki ,v). This fact enables
us to introduce the variables

p5ki
2, V5v2, ~29!

which we will use later on as the arguments off . Since

G~S!~v!52vG̃~S!~v2!52vG̃~S!~V!, ~30!

where G̃(S)(v2) is the surface contribution to
G̃(v2)5(nd(v

22v n
2), we obtain that

G̃~S!~V!5E
0

`

dp Im f ~p,V2 ih!. ~31!

This integral can be reduced to a contour one as follows:

E
0

`

dp Im f ~p,V2 ih!

5
1

2i E0
`

dp@ f ~p,V2 ih!2 f ~p,V1 ih!#

5
1

2i E0
`

dp@ f ~p1 ih,V!2 f ~p2 ih,V!#

5
1

2i EC1dp f~p,V!, ~32!

where the contourC1 is shown in Fig. 1 by the solid line.
Here we have used the fact that it is immaterial whether we
subtract the infinitesimalih from p or add it toV, since this
imaginary infinitesimal is important only in the terms con-
tainingAp2V/cl ,t

2 . We considerf as a function of complex
p and realV. Due to the presence of the functionsal ,t de-
fined in Eq.~25!, the Riemann surface on whichf (p,V) is
single valued consists of four sheets, each of which is de-
fined by a combination of the sheets ofAp2V/cl

2 and
Ap2V/ct

2. The branch cuts associated with these square
roots are shown in Fig. 1. We next note that the singularities
of f (p,V) come only from the singularities of the functions
g aa
(S)(ki ,vux3 ,x3) given in Eqs.~24!. In particular, the pole

p5V/c R
2, wherecR is the speed of Rayleigh waves in the

solid, is associated with the Rayleigh root of the functionr1

and lies to the right ofp5V/c t
2 on the realp axis.

The other singular points correspond to leaky surface
waves and do not lie on the first~physical! Riemann sheet.18

Thus, if we close the contourC1 by a circleC` of an infi-
nitely large radius, as shown in Fig. 1, we can claim that

f (p,V) is regular and has no singularities inside the closed
contour C5C11C` . As a simple consequence of the
Cauchy theorem, we obtain

G̃~S!~V!52
1

2i EC`

dp f~p,V!. ~33!

The analysis of the behavior off (p,V) for large upu shows
that this function decreases as const/upu as upu→`. Since
upu@V/c t,l

2 V can be set equal to zero andG̃(S)~V! does not
depend onV at all:

G̃~S!~V!52p$p f~p,0!%. ~34!

We point out that the expression in curly brackets does not
depend onp.

ThusG̃(S)~V! is completely determined by the static limit
~V→0! of f (p,V). This is the reason why we did not calcu-
late the explicit form of this function. We could have used
the static Green’s functionsgab

(S)(ki .,0ux3 ,x38) from the very
beginning. These functions are much easier to calculate than
their dynamical analogs, especially in the case of anisotropic
media.9

Using Eqs.~27!, ~28!, ~30!, and~34!, we obtain

G~S!~v!52
rSv

2p E
0

`

dx3$ki
2gaa

~S!~ki,0ux3 ,x3!%. ~35!

Again, we stress that the function in curly brackets does not
depend onki . Substituting Eqs.~24! into Eq.~35! in the limit
v50 results in

G~S!~v!5
Sv

8pcs
2 , ~36!

with c s
2 defined in Eq.~2!. Now we know both terms in Eq.

~22!. This enables us to construct a surface analog of the
Debye model. For an infinite monatomic crystal, which we
macroscopically treat as an isotropic elastic medium, we re-
quire that the total number of degrees of freedom be 3N,
whereN is the number of atoms in the volumeV. Hence we
have the normalization condition

FIG. 1. Complexp plane and the integration contoursC1 and
C` used in the evaluation of the integral in Eq.~31!.
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E
0

vD
dv G~B!~v!53N, ~37!

which determines the bulk Debye cutoff frequencyvD ,

vD5~6p2!1/3SNVD 1/3cB , ~38!

wherecB is defined in Eq.~17! with the index j dropped.
When we are dealing with a semi-infinite medium, thesame
numberof degrees of freedom is distributed differently be-
tween bulk and surface vibrations, which leads to a new
maximum~cutoff! frequencyvM defined by the relation

E
0

vM
dv@G~B!~v!1G~S!~v!#53N. ~39!

Finally, we obtain thatvM differs fromvD by a small nega-
tive correction appearing as a result of the perturbation in-
troduced by the stress-free surface:

vM5vDF12
S

V

~6p2!2/3cB
2

144pcs
2 S VND 1/3G . ~40!

The surface zero-point energy has the form

DF ~S!~0!5E
0

vM
dv

\v

2
@G~B!~v!1G~S!~v!#

2E
0

vD
dv

\v

2
G~B!~v!

52S
\vD

3

96pcs
2 . ~41!

The temperature-dependent part of the surface free energy in
the limit kBT!\vD is given by

DF ~S!~T!5S kBT\ D 3 \S

8pcs
2 z~3!. ~42!

The low-temperature surface specific heatDC v
(S)(T) that is

obtained from Eq.~42! coincides with Eq.~1!. In addition,
the results forvM andDF (S)~0! given in Eqs.~40! and ~41!
agree with those obtained in Ref. 7, where the surface analog
of the Debye model was developed. The important point of
our derivation is that we have shown that the density of
vibrational states of a semi-infinite solid is completely deter-
mined by the static Green’s tensor of this system, and so are
the free energy and specific heat.

IV. THE INTERFACE DEBYE MODEL

We now return to the system of two isotropic solids in
contact considered in Sec. II. We are going to construct an
interface Debye model for it, which, to our knowledge, has
not been developed yet. The interface contributions to the
density of vibrational states are given by Eqs.~18! and~19!.
It turns out that we can apply exactly the same technique to
evaluate these integrals that we used in solving the surface
problem. The analytic properties of the integrands seem to be
more complicated since the Riemann surface now consist of
16 sheets due to the presence of 4 different square roots:

Aki
22(v2/cl ,t

(1)2) andAki
22(v2/cl ,t

(2)2). However, there are
still no singularities inside the contourC5C11C` shown in
Fig. 1. Thus the interface density of states is determined by
the static interface Green’s tensor and we obtain the analogs
of Eq. ~35!,

G~ I ,1!~v!52
r1Sv

2p E
0

`

dx3$ki
2gaa

~ I ,1!~ki,0ux3 ,x3!%,

~43!

G~ I ,2!~v!52
r2Sv

2p E
2`

0

dx3$ki
2gaa

~ I ,2!~ki,0ux3 ,x3!%.

~44!

We next use the explicit expressions for the functions
g aa
(I , j )(ki,0ux3 ,x3) derived in Ref. 13. The result of the inte-

gration overx3 then leads to

G~ I ,1!~v!5
Svb12

8pct
~1!2 , ~45!

where

b125
4

D H ~11n1
2!~11n2!2g12

2 ~12n2!~11n1!
2

22g12n1n2~11n1!2~12n1!
2@g12

2 ~12n2!12g12n2

2~11n2!#1
D

4

12g12

11g12
J , ~46a!

g125r2ct
~2!2/r1ct

~1!2, n j5ct
~ j !2/cl

~ j !2, ~46b!

D54@g12
2 ~11n1!~12n2!12g12~11n1n2!

1~12n1!~11n2!#. ~46c!

The expression forG(I ,2)~v! has the form

G~ I ,2!~v!5
Svb21

8pct
~2!2 , ~47!

whereb21 can be obtained from the expression forb12 by
interchanging the indices 1 and 2. To check the correctness
of Eqs.~45! and ~47! we can assume that the two solids we
consider are not distinct. In this case we see that
G(I ,1)(v)5G(I ,2)(v)[0, which indicates the absence of the
interface. We also point out that the simple frequency depen-
dence ofG(I , j )~v! is a consequence of the general law that
the density of states is proportional tovd21, whered is the
dimensionality of the system. In our cased52, since we are
dealing with an interface contribution.

It seems that in order to construct the interface Debye
model we can repeat the procedure we followed in the case
of a surface. However, if we require that the total density of
states~15! be normalized to the total number of degrees of
freedom 3(N11N2), whileG

(B, j )~v! are normalized to 3Nj ,
we obtain an unphysical result for the cutoff frequencyvM :
the number of atomsNj in the j th medium does not enter the
expression forvM in the combination (Nj /Vj ), as it clearly
should. Fortunately, this difficulty can be removed. We claim
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that the interface perturbs the vibrational spectrum of each
solid and require thateachmedium be described by its own
density of states

G~ j !~v!5G~B, j !~v!1G~ I , j !~v! ~48!

and its own cutoff frequencyvM
( j ). Then we normalize

G( j )~v! to 3Nj .
The justification for this requirement can be provided by a

simple example. Let us consider the same two solids occu-
pying the half spacesx3.0 andx3,0, but now separated by
a very thin gap, so that we have two stress-free surfaces
instead of the interface. Even if we consider these two solids
as an entire system, we see that it is meaningless to describe
the density of states of the system by the function~15!. At
the same time, the separate description~48! leads to the es-
tablished result~40! for each medium.

Thus, returning to our interface problem, we obtain the
following cutoff frequency for thej th medium:

vM
~ j !5vD

~ j !F12
S

Vj

~6p2!2/3cB
~ j !2b j j 8

144pct
~ j !2 S Vj

Nj
D 1/3G . ~49!

Here j 852 for j51 and j 851 for j52;
v D

( j )5(6p2Nj /Vj )
1/3c B

( j ) is the Debye frequency of thej th
solid. The interface contribution to the zero-point energy is

DF ~ I !~0!52
\S

96 FvD
~1!3

ct
~1!2 b121

vD
~2!3

ct
~2!2 b21G , ~50!

while the temperature-dependent part in the low-T limit has
the form

DF ~ I !~T!5S kBT\ D 3 \Sz~3!

8p F b12

ct
~1!2 1

b21

ct
~2!2G . ~51!

Finally, we can obtain the interface contribution to the spe-
cific heat

DCv
~ I !~T!53pz~3!

kB
3T2S

h2 F b12

ct
~1!2 1

b21

ct
~2!2G . ~52!

This expression can be reduced to the result of Ref. 11.

V. CONCLUSION

In this paper we have studied the thermodynamic proper-
ties of solid surfaces and interfaces. The main goal of this
work was to develop a simple analytic approach for calcu-
lating the surface or interface density of vibrational states,
since this function plays a fundamental role in the thermo-
dynamics of vibrations. We have related this function to the
static Green’s tensor of the system@Eqs. ~35!, ~43!, and
~44!#. This is a generalization of the result obtained in Ref. 5,
namely, that the static Green’s tensor determines the surface
or interface contribution to the specific heat. The density of
states we have derived for an isotropic elastic medium
bounded by a stress-free surface coincides with the result of
Ref. 7 and gives the established expressions for the specific
heat1–7 and free energy.7

In the case of two different isotropic solids in contact
across a planar interface we have constructed the interface
analog of the Debye model. We have shown that it is nec-
essary to describe each medium by its own density of states,
which should be normalized to the total number of vibra-
tional degrees of freedom in this medium. This requirement
gives rise to new cutoff frequencies for both media. We have
obtained the interface free energy and specific heat for this
system and have found that the latter result agrees with the
one obtained in Ref. 11.

The approach we have developed in this work seems to be
quite straightforward and can be applied to different surface
or interface problems. In particular, it can be useful in further
studies of thermodynamic properties of anisotropic media,
whose static Green’s tensor is much easier to calculate than
its dynamical analog. This method is also applicable to the
determination of the thermodynamic properties of solid-
liquid interfaces, which is a problem of considerable current
experimental interest.15 This work is being carried out at the
present time and the results are planned to published else-
where.
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