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Green’s-tensor approach in the theory of the surface or interface vibrational contribution
to thermodynamic properties of solids
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We present a theory of the surface or interface contribution to vibrational thermodynamic properties of
solids. We express the thermodynamic quantities such as the free energy and specific heat in terms of the
surface or interface density of vibrational states. We derive a simple analytic expression for this function in
terms of a static Green'’s tensor of the system. We redefine the dynamical Green'’s tensor compared with some
earlier works, requiring that it correspond to a Hermitian differential operator. In order to calculate the free
energy, we modify the Debye model to apply it to surface or interface problems. The free energy and specific
heat are calculated for the cases of an isotropic solid bounded by a stress-free planar surface and two isotropic
solids separated by a flat interfa¢80163-18206)04619-X]

I. INTRODUCTION and is normalized to the total number of degrees of freedom
of the system. Here the sum arruns over all normal modes
The thermodynamics of solid surfaces and interfaces hasf the system andy, is the frequency of theaith normal
been a subject of theoretical study since the early 1960snode. Velasco and Garcia-Moliftérderived this fundamen-
Extensive investigations have been carried out of the probtal function for an isotropic solid bounded by a stress-free
lem of obtaining the surface contribution to the low- planar surface. Using this function, they constructed a sur-
temperature specific heat of a solid. Dupius, Mazo, andace analog of the bulk Debye model. The total number of
Onsaget showed that for an elastically isotropic medium degrees of freedom was required to be the same in the
this quantity is proportional t&T?, whereS is the surface bounded system as it had been in the unbounded one, al-
area andr is the absolute temperature, and has the form though these degrees of freedom were now distributed dif-
ferently between the bulk and surface vibrations. This led to
Sy B another Debye cutoff frequeney, , which differed from the
AC7(T)=3mL(3) "h2cZ - (D) pulk value wp . Finally, the knowledge ofG(w) and wy,
s made it possible to obtain the surface contribution both to the
Herec, andc, are the speeds of longitudinal and transversezero-point energy and to the specific heat of an isotropic
bulk waves, respectively(z) is the Riemann zeta function, solid. Their result for the latter contribution agreed with Eq.
h is Planck’s constankg is Boltzmann’s constant, and (1). However, the authors of Refs. 6 and 7 did not extend the
95 2 o Debye model to cover the case of an interface between two
> Gt (ci—cp) 5 solids. It will be apparent from the analysis that follows that
CS_3C,“—3c|zct2+ 2cf' 2) this problem is more delicate than the surface case.
Finally, there is one more problem we would like to raise
The result(1) was later confirmed by a number of indepen- here. We note thaACf,S)(T) expressed in terms of the den-
dent derivation$:” Further investigations yieldeiC {(T)  sity of states in Refs. 6 and 7 is related to the dynamical
for hexagondl® and cubi€'° crystals whose stress-free sur- Green's tensor for a semi-infinite isotropic elastic medium
faces were basal planes of these solids. By the same techounded by a planar stress-free surface. On the other hand,
niques,AC {9(T) was obtained for different solid interface Maradudin, Wallis, and Eguil§zshowed that it is sufficient
problems:™~ to know only the static limit of this tensor to obtain
The majority of the works cited above presented a directAcgs)(T)_ This fact seems to be mysterious Simgs)('r),
calculation of AC{¥(T) and did not consider other thermo- in turn, can be expressed uniquely in terms of the density of
dynamic properties of solid surfaces and interfaces, such agates. One can hypothesize intuitively that it is the static
the zero-point energy. It was noted in a recent wbtkat  versjon of the Green's tensor that determines the surface or
this quantity can be of interest, in particular, in understandinterface contribution to the surface density of states, which
ing the phenomenon of the wetting transition on the surfacegas not been proven yet.
of alkali metals:® In this work we present a straightforward analytic method
It is known that the vibrational contribution to the ther- of calculating the surface or interface contribution to the den-
modynamic quantities describing a system can be expressegy of vibrational modesG(w). We construct a surface or
in terms of its density of vibrational staté(w), which is  interface analog of the Debye model. Each medium involved
defined by in the problem will be characterized by its own density of
statesG(w) and cutoff frequencyw,, . This model will en-
G(w)=2 S(w—wy) 3) able us to obtain the §urfac§ or interface c_ontribution to the
n Helmholtz free energyincluding the zero-point energyand
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the specific heat. We will show that the surface or interfaceneous version of Eqg4)—(6) is complete and orthonormal
contribution toG(w) is completely determined by a static with a weight p(x3) = p;0(X3) + p,0(—X3), where 6(x5) is
Green'’s tensor, whose calculation is much simpler than irthe Heaviside unit step function,

the dynamical case, which is especially important for aniso-

tropic media(see, e.g., Ref.)9Finally, we will point out that ) .

the conventional definition of the dynamical Green’s tensor ; v v (X) = 8,58(x—X"), )
in the interface problem$!® does not correspond to a Her-

mitian differential operator. The method we present here re- .

quires the Hermiticity of the probl?m. For this reason, the fdzxuf dxgp(xs)v(a”)*(x)vgn (X)= 8 - ®)
definition of the dynamical Green’'s tensor we use in the s —

present work is different from the conventional one. ) _
Here x,=(X1,X,,0), S is the surface area, and the index

Il. THE INTERFACE DENSITY n=1,2,3,... labels the eigenfunctions. Then the Green’s ten-
OF VIBRATIONAL STATES sor can be represented in the form
In order to calculate the density of vibrational sta@g) v;”)(x)v(ﬁn)*(x’) .
for a system of two solids separated by a planar interface we D qg(X,X'|@)= >, I R D (x.X'|@).
use the elastic continuum theory. The functiGfw) calcu- n n

lated in the elastic continuum model determines the vibra- ©
tional contribution to fundamental thermodynamic quantitiesyye next change to w—i # in Eq. (9), where is a positive
of the system such as the Helmholtz free energy, includingnfinitesimal, then take the imaginary part of
the zero-point energy, and specific heat. The results based @ (x x|w—i7), and integrate the result over all with a

this approach were shown to agree with those obtained iQeight p(x,). With the aid of Eq(8) we obtain the density of
lattice dynamical calculations in the harmonic approximationstates defined in Ed3) in the form

(see, e.g., the discussions in Refs. 5 angd 16
We consider two different isotropic elastic media 1 and 2

2w @
occupying the half spaces;>0 and x3<0, respectively. G(w)=7 f dzx”f dxgp(X3)IM D, (X,X|w—i7).
Each medium is characterized by its mass densignd the S o
speeds of longitudinal and transverse bulk wae@d and (10
cty respectivelél. The elastic modulus tensors have the form We note here that the definition of the Green’s tensor we
Cg,z}p,v = pj(Cll)z_zcgj)z) 50{ﬁ5MV + pjcgj)z(aaﬂaﬁv +

o L : it use differs from the conventional orté®because the differ-
SarOpu)s _]—1,2. We t_)egm with a quite formal derivation of_ ential operator appearing i) is greater by a factor op
the density of vibrational states. In order to calculate this perator app g g y i
quantity, we need to know the Green’s tengy(xx'«) than the one in Refs. 11 and 13. However, the operator used

for two solids in contact along the interfagg=0. We define N Refs. 11 and 13, together with the boundary conditi@s
this tensor as a solution of the equations and(6), is not Hermitian. As we have seen, the Hermiticity

of the operator is essential in deriving the relatid®) be-
2 tween the density of states and the dynamical Green’s tensor
D uy(X X[ @) = 84y 8(X—X") of the system. Nevertheless, we will show that the method
4y ~Wweuse here yields the same result for the specific heat as was
obtained in Refs. 11 and 13. The point is that if we used the

2 (1)
pjw 5au+caﬂuv x50,

and the boundary conditions method of Refs. 11 and 13, 1B, would appear in Eq10)
without the factorp(x3). However,D ,, of Refs. 11 and 13
D y(X, X' [@) |y~ 0+ =D y(X,X" | @) ;0 (5 coincides withp(x3)D,, in our notation, which explains the

agreement between the results of the two approaches.
0y 9 , Because the system possesses infinitesimal translational
Cosur v Dy, X' @) |, 0+ invariance in directions parallel to the interface, it is conve-
: nient to introduce the Fourier coefficientds g(k,w|x3,X3)
_c®2 7 D , of the Green'’s tensor according to
— “a3uv 0—,XV ,uy(xyx |w)|x3~>071 (6)
which come from the continuity of the displacements and Daﬂ(x,x’lw)=J 22 e im9)d,, gk, w[X3,X3),
normal stresses across the interface. In addition, we require (11)
that Daﬁ(x,x’|w) obey the outgoing or exponentially decay-
ing wave conditions afxg|—x. In Eq. (4) j=1if x;>0 and  wherek,=(k; ,k,,0). Furthermore, the rotational invariance

j=2 if x3<<0. The greek indicegp,... assume the values in the planex;=0 allows one to introduce Green’s functions
1,2,3 and summation over repeated greek indices is implieghat do not depend on the direction lq‘f'l7

throughout the paper.

The partial differential operator appearing on the left- ki olxs x2)=S. (k)d. (K X2 XS~ (K
hand side of Eq(4) supplemented by the boundary condi- Gapl ki1 01Xa,X3) =S (K1) Ak, 01X, X3) S, ")'(12)
tions (5) and (6) can be shown to be Hermitian. Therefore,
the infinite set of eigenfunction{a)(a“)(x)} of the homoge- where
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! e 25 +C il D /
S(k”):k_” —ka kg I? (13 PwW 04y aBuv X 50X, MV(X,X|(D)
0 0
H =084,0(X—X"), X3,X3>0, (20)

and |2H=|<|,/k”. It was shown in Ref. 11 that the functions

gaﬁ(ku,w|X3-X§) can be represented in the form and the stress-free boundary conditions

J
up(Kj 0] X3,%5) = 0(x3){g'" (K, @|x3,X5) Casur 55 D y(X,X'[®)|x,=0=0. (21

1,1 ’
+945 (Ky,@]X3,X3)} + 0(—X3) Repeating the derivation of the preceding section, we obtain

/ the density of states as a sum of bulk and surface contribu-
x{g(ff(k“ ,0|X3,X3) + g(al/éz) tions y
X(kH,(,L)|X3,Xé)}. (14)

G(0)=G®(w)+G®(w), (22)
B,1 B,2 ’ ;
Here g " and g ;> are the bulk Green's functions that | 1o c(®) is given by Eq.(16) with the index] dropped.

correspond to the infinite elastic media 1 and 2, respectively-l-he functionG®, which we will call the surface density of

R ' : (1,1) (1,2)
The interface Green’s functiorts,;” andg,;”’ appear as a states, has the form

result of the presence of the interface and provide the satis-

faction of the boundary conditions. 20Sp (= d2k,
We next use Eqg11)—(14) in Eq. (10) to obtain GO(w)= E— fo dxsf (2m)?
— B,1 1,1 B,2 1,2 .
G(w)=GBY(w)+G"V(w)+GBA(w)+G! >(w)-(15) x1Im g'3(k;,w—i75|x3,X3). (23
_ B _ _ The elements of the surface Green's tensor
_The_den?;;%/sof state§™(w) in the unboundegith medium gﬁyslg(kH ,w|X3,x3) are derived in Ref. 17; here we only have
IS given to divide them byp to conform to the definition of the
20 Green'’s tensor we use in this work:
. 3wV
GEI(w)= 573 (16) 2
2m CB (S) — k” —2aX —(ay+ap)x
_ gll(k”,w|x3,x3)——ﬁ r_e 2@+ e (@tayXs
whereV) is the volume occupied by thigh medium and a@ TP
r_k? ,
3 2 . 1 an ety (248
= — M [
ciB M3 T D3 !
The interface contributions to the density of states are given 955 (K, |x3,X3) = — 5— @20, (24b)
by 2a4Cip
2
20Sp; d’k (S) - Ki A - o
1D )= _— K,w|X3,X3)=— e s
G (w) = J;) dxaf 2m)? 953 (Kj, @|X3,X3) 2ao?p | K
xIm g(al,}l)(ku L0 —17|X3,X3), (18) +Ze‘(ﬂ|+at)X3+r_e—(a|+at)xs},
2
o) (2) with
xIm g2 (ky, =i 7/X3,Xs). (19 w2\ 12
. . . al,t(kllvw):(kﬁ_ T) (29
We will show that all the integrals in Eq§18) and(19) can Cit
be evaluated analytically and can be expressed in terms %fn d
the trace of the static Green’s tens_;ﬂ[',‘)(ku,0|x3,x§). We
start with the simplest case, when the second medium is a —4kﬁa|ati(kf+af)2
= - . ro= 26
vacuum and the plane;=0 represents a stress-free surface + daya, (kﬁ T atz) (26)
Ill. DENSITY OF STATES AND THERMODYNAMIC We next introduce the function
QUANTITIES FOR A SEMI-INFINITE SOLID BOUNDED s )
- P o T
BY A STRESS-FREE SURFACE f(kj0)=g 3 fo dxg fo do gk wlxs.xs), (27)

Because we are dealing with only one elastic medium, we
will drop the index|j in this section. The Green's tensor whered is the polar angle in thekg ,k,) plane. We see that
satisfies the equation because of the simple exponential dependence of
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99 (k,,|x3,%3) on x3, we can immediately evaluate the
integral over this variable in Eq27). We note also that the
integral overé is trivial and gives 2r since the integrand
does not depend on the directioniqf

Thus we know the explicit expression fofk, ,w), which
we will not write down explicitly because of its cumbersome
form. The surface density of states is given by

7). (28)

(S)(w)=4wJ dka” Im f(kH , W

0

It turns out that we can evaluate this integral analytically by

means of complex analysis. First, we note that
93 (k,,0|x3,x3) depends ork, and w only throughk? and

w”. Therefore, the same is true fb{k; ,w). This fact enables

us to introduce the variables

Q= w?

p= kH , (29

which we will use later on as the argumentsfofSince

G¥(w)=20G¥(0?)=2wG(Q), (30)
where 6(5)(w2) is the surface contribution to
G(0)=3,8(w?— w?), we obtain that

6<S>(Q)=f dp Im f(p,Q—in). 31)

0

This integral can be reduced to a contour one as follows:

fwdp Im f(p,Q—in)
0
L[ . .
~ 5 | aptp.0-im—(p.0+im)

1 (= . .
~ 5 | apttp+in )~ fp-ino)]

(32

1
o7 fc dp f(p,Q),

where the contou€; is shown in Fig. 1 by the solid line.
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FIG. 1. Complexp plane and the integration contou@y and
C., used in the evaluation of the integral in E§J).

f(p,Q) is regular and has no singularities inside the closed
contour C=C;+C,. As a simple consequence of the
Cauchy theorem, we obtain

®Q)= —% (33

- | dpf(p.).
Ce

The analysis of the behavior ¢fp,Q2) for large|p| shows

that this function decreases as cofmst/as g:)|—>00. Since
|p|>Q/c? Q can be set equal to zero a®i®(Q) does not
depend or(} at all:

G(Q)=—m{pf(p.0)}. (34)

We point out that the expression in curly brackets does not
depend omp.

ThusG(s)(Q) is completely determined by the static limit
(Q—0) of f(p,Q). This is the reason why we did not calcu-
late the explicit form of this function. We could have used
the static Green’s functiong{)(k; ,0x3,x}) from the very
beginning. These functions are much easier to calculate than
their dynamical analogs, especially in the case of anisotropic

Here we have used the fact that it is immaterial whether wenedia®

subtract the infinitesimaln from p or add it to(), since this
imaginary infinitesimal is important only in the terms con-
taining \/p—Q/c,ZYt. We considerf as a function of complex
p and real(). Due to the presence of the functioag, de-
fined in Eq.(25), the Riemann surface on whidtfp,Q) is
single valued consists of four sheets, each of which is de

fined by a combination of the sheets Qﬁ_)—()/cl2 and

Using Egs.(27), (28), (30), and(34), we obtain

G<S><w>——— f dxa{kfgS)(k,0/x3,X3)}.  (35)

Again, we stress that the function in curly brackets does not
depend ork, . Substituting Eqs(24) into Eq.(35) in the limit
=0 results in

Vp— Q/cf The branch cuts associated with these square

roots are shown in Fig. 1. We next note that the singularitie
of f(p Q1) come only from the singularities of the functions

(kH w|X3,X3) given in Egs.(24). In particular, the pole
p Q/c%, wherecg is the speed of Rayleigh waves in the
solid, is associated with the Rayleigh root of the functign
and lies to the right of)=Q/ct2 on the realp axis.

S Sw
G(w)=
(@) 8mcs
with ¢2 defined in Eq(2). Now we know both terms in Eq.
(22). Th|s enables us to construct a surface analog of the
Debye model. For an infinite monatomic crystal, which we

(36)

The other singular points correspond to leaky surfacanacroscopically treat as an isotropic elastic medium, we re-

waves and do not lie on the firgthysica) Riemann sheéef
Thus, if we close the contou€, by a circleC,, of an infi-

quire that the total number of degrees of freedom bk 3
whereN is the number of atoms in the volunve Hence we

nitely large radius, as shown in Fig. 1, we can claim thathave the normalization condition



wadw G®(w)=3N, 37)
0

which determines the bulk Debye cutoff frequenagy,

N
v
where cg is defined in Eq.17) with the indexj dropped.

When we are dealing with a semi-infinite medium, gzame
numberof degrees of freedom is distributed differently be-

1/3

wp=(672)3 Cg, (39

tween bulk and surface vibrations, which leads to a new

maximum (cutoff) frequencyw,, defined by the relation
f " dw[G®) (@) + G (w)]=3N. (39)
0

Finally, we obtain thaty, differs from wy by a small nega-
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VkZ—(?1c(V?) and VkZ— (0?/cD?). However, there are
still no singularities inside the conto@=C; + C,, shown in

Fig. 1. Thus the interface density of states is determined by
the static interface Green’s tensor and we obtain the analogs
of Eq. (35),

G (w)=— (k;,0%3,%3)},

(43

p1Sw (=
o fo dx{kfgy;’

p2Sw (0
G!'(w)=~ 2 f, dxa{kigl.? (k;,01x3,X3)}-

(44)

We next use the explicit expressions for the functions
gD (k,,0/x3,x3) derived in Ref. 13. The result of the inte-
gration overxs then leads to

tive correction appearing as a result of the perturbation in-

troduced by the stress-free surface:

(40)

W\ = wp

L S (67%)%%
V. 144nc2

37

The surface zero-point energy has the form

AF(9(0)= fdew %‘" [G®(w)+GY(w)]
0

oo

—f "do = G®)(v)
o 9072

hod

-S——s.
967c2

(41)

The temperature-dependent part of the surface free energy in

the limit kg T<% wp is given by

kgT)?
A
The low-temperature surface specific haat (9(T) that is

obtained from Eq(42) coincides with Eq(1). In addition,
the results forwy, and AF(0) given in Egs.(40) and (41)

hS
a2 {(3).

AF<S>(T)=( 8o
m S

(42

Swpi12
8mc!H?’

G (w)= (45)

where

_4 2 Ry 2
ﬁlz—A (L+v)(1+v) = vi(1—v)(1+vy)

— 29151 vp(1+ 1) — (L= v) [ Y3 1= vo) + 21005

-y

A
—(1+wy) ]+

Z 1+ '}/12 ! (466)
y12=p20 I pictV?, vy=c%c?, (46b)
A=4[ Y31+ v1) (1= ) + 2711+ v1))
+(1_V1)(1+ Vz)] (460)
The expression fo6(""*?(w) has the form
Swpr1
1,2 —
G2 (w)= 8?2 (47)

agree with those obtained in Ref. 7, where the surface analohere B;; can be obtained from the expression 8y, by

of the Debye model was developed. The important point ofnterchanging the indices 1 and 2. To check the correctness
our derivation is that we have shown that the density ofof EQs.(45) and(47) we can assume that the two solids we
vibrational states of a semi-infinite solid is completely deter-consider are not distinct. In this case we see that

mined by the static Green’s tensor of this system, and so ai@' (@) =G{"?(w)=0, which indicates the absence of the
the free energy and specific heat. interface. We also point out that the simple frequency depen-

dence ofG!"V(w) is a consequence of the general law that
the density of states is proportional &1, whered is the
dimensionality of the system. In our cade=2, since we are
We now return to the system of two isotropic solids in dealing with an interface contribution.
contact considered in Sec. Il. We are going to construct an It seems that in order to construct the interface Debye
interface Debye model for it, which, to our knowledge, hasmodel we can repeat the procedure we followed in the case
not been developed yet. The interface contributions to thef a surface. However, if we require that the total density of
density of vibrational states are given by E(E3) and(19). states(15) be normalized to the total number of degrees of
It turns out that we can apply exactly the same technique téreedom 3{;+N,), while G®(w) are normalized to N§;,
evaluate these integrals that we used in solving the surfacse obtain an unphysical result for the cutoff frequensy:
problem. The analytic properties of the integrands seem to bthe number of atomll; in the jth medium does not enter the
more complicated since the Riemann surface now consist a@xpression foiwy, in the combination ;/V;), as it clearly
16 sheets due to the presence of 4 different square rootshould. Fortunately, this difficulty can be removed. We claim

IV. THE INTERFACE DEBYE MODEL
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that the interface perturbs the vibrational spectrum of each V. CONCLUSION

sohd_and require thaeachmedium be described by its own In this paper we have studied the thermodynamic proper-

density of states ties of solid surfaces and interfaces. The main goal of this

- _ ~(B L work was to develop a simple analytic approach for calcu-

G(@) =GP (w)+G"(w) 48 Jating the surface or interface density of vibrational states,

and its own cutoff frequencyw{}. Then we normalize since this function plays a fundamental role in the thermo-

G (w) to 3N;. dynamics of vibrations. We have related this function to the

The justification for this requirement can be provided by astatic Green’s tensor of the systejigs. (35), (43), and

simple example. Let us consider the same two solids occué4]. Thisis a generalization of the result obtained in Ref. 5,
pying the half spaces;>0 andx;<0, but now separated by namely, that the static Green's tensor determines the syrface

a very thin gap, so that we have two stress-free surface®' interface contribution to the specific heat. The density of

instead of the interface. Even if we consider these two solid tates we have derived for an |S(_)trqp|c el_ast|c medium
as an entire system, we see that it is meaningless to descri unded by a stress-free surface coincides with the result of

the density of states of the system by the functiog). At ef. 7 and gives the established expressions for the specific

: ) heat~" and free energy.
the same time, the separate des_cnp(ld;a) leads to the es- In the case of two different isotropic solids in contact
tablished resul{40) for each medium.

h . interf | in th across a planar interface we have constructed the interface
Thus, returning to our interface problem, we obtain theanaioqg of the Debye model. We have shown that it is nec-
following cutoff frequency for thgth medium: essary to describe each medium by its own density of states,
S (672)2%0)2 WAEL: which should be normalized to the total number of vibra-
_ = (67%) CB_ Bij i (49) tional degrees of freedom in this medium. This requirement
V,  144mc()? N; gives rise to new cutoff frequencies for both media. We have
. . . .. obtained the interface free energy and specific heat for this
Here j'>2 for j=1 and j'=1 for |=2, gystem and have found that the latter result agrees with the
oy’ =(67°N;/V,)"*cy’ is the Debye frequency of thgth o obtained in Ref. 11.
solid. The interface contribution to the zero-point energy is  The approach we have developed in this work seems to be
quite straightforward and can be applied to different surface
7S [ wd?® 0?3 . . - ;
_ =% Biot D B (50) or interface problems. In particular, it can be useful in further
96 | (V2 P12 (22 P2y studies of thermodynamic properties of anisotropic media,
, . . whose static Green’s tensor is much easier to calculate than
while the temperature-dependent part in the Wit has i dynamical analog. This method is also applicable to the
the form determination of the thermodynamic properties of solid-
liquid interfaces, which is a problem of considerable current

ww=w8) 1

AFY(0)=

3
AF(T)= keT|"ASE(3) | Brz B . (51) experimental interest This work is being carried out at the
h 8m |cP? (22 present time and the results are planned to published else-
Finally, we can obtain the interface contribution to the spe—Where'
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