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The propagator for an electron moving in a two-dimensional~2D! saddle-point potential under the influence
of a transverse magnetic field is evaluated exactly using the Feynmann path integrals. The applications of this
result for the calculation of tunneling through a saddle point are discussed. We also investigate tunneling a 2D
electron at finite temperature in the presence of a transverse magnetic field, dissipation, and random scatterers
by the use of a nonlocal harmonic oscillator model and find a crossover temperatureT1 . The application of the
same model at zero temperature for a quantum Hall system is shown to be incorrect.

I. INTRODUCTION

It is well known that a propagator for a quadratic action
can be calculated exactly1 ~the WKB result becomes exact!.
Various calculations using path integrals were done: for sys-
tems with a harmonic force, a constant magnetic field, and
time-dependent electric field,2 and for an oscillator with
memory~Ref. 3 and references therein!. The applications of
these results were used to obtain energy eigenvalues and a
magnetization of a system,4 a density of states,5 and a mag-
netic susceptibility.6

In order to treat systems with random scatterers, Bezak7

introduced a model for a Boltzmann electron gas in a Gauss-
ian random potential. It allowed the exact calculation~within
the model! of the density of states5 and a magnetic
susceptibility.6 Later the same model was used to calculate
exactly the propagator for a two-dimensional~2D! electron
moving under the influence of a transverse magnetic field, a
time-varying electric field, and a nonlocal harmonic force.8

This latter result was finally applied to the calculation of a
density of states of two-dimensional electrons in high mag-
netic field at zero temperature.9

The tunneling of an electron~vortex in superconductors!
was also studied by the path-integral method.10,11 The influ-
ence of magnetic field, potential, and dissipation on tunnel-
ing was investigated. The tunneling is also very sensitive to
the temperature. This dependence on temperature becomes
extremely important in systems exhibiting the quantum Hall
effect. It was shown12 that there is a crossover temperature
T1 above which tunneling acquires the form of thermal acti-
vation. The width of the conductance peak between Hall pla-
teaus scales then asTk with k53/7 at T,T1 and crosses
over to k56/7 at T.T1 , in good agreement with experi-
mental data.13,14TemperatureT1 for a saddle-point potential
was calculated.

In this paper we address various aspects of an electron’s
behavior in the presence of a transverse magnetic field and
different types of quadratic potentials. This paper is orga-
nized as follows. In Sec. II we present an exact evaluation of
a propagator for an electron moving in a two-dimensional
saddle-point potential under the influence of a transverse
magnetic field and discuss the possibility to apply our result

to the calculation of tunneling. In Sec. III with the use of the
Bezak model7 we investigate tunneling of an electron in the
presence of random potential, dissipation, and transverse
magnetic field at finite temperature and calculate a crossover
temperatureT1 for strong magnetic fields. We show in Sec.
IV that the Bezak model, while valid for systems with finite
temperature~playing a role of imaginary time6,7!, fails to
obtain a correct physical propagator for a 2D electron in a
transverse magnetic field and a random potential. We argue
that the result obtained in Ref. 8, while absolutely correct
mathematically, is inapplicable for such a physical system
and consequently for the calculation of a density of states9

the wrong propagator was used. Conclusions are presented in
Sec. V.

II. EXACT CALCULATION OF THE PROPAGATOR

Electrons in a two-dimensional system with a strong mag-
netic field move along the lines of a constant potential~semi-
classical approximation!,15 but when two such lines come
close, the quantum tunneling begins to play an important
role. This phenomenon is especially important for the de-
scription of the transition between plateaus in the quantum
Hall effect.13,14,16,17The barrier between two equipotentials
is well described by a saddle-point potential.16 We will use
the potentialV(x,y)5(mv2/2)(y22x2) and direct a mag-
netic fieldB along thez axis. The Lagrangian of the corre-
sponding classical system is presented as

L5
m

2
ṙ22

m

2
v2s3r

21
m

2
vcṙJr , ~1!

where vc5eB/mc is the cyclotron frequency. We intro-
duced a 232 matrix J5( 1

0
0

21) as in Ref. 2,s3 is a Pauli
matrix, and a vectorr5( y

x). Since the Lagrangian given by
Eq. ~1! is quadratic the path integral can be evaluated exactly
as

K~rTTur0!5
m

2p i\„detD~T!…1/2
expS i\ S~rTTur0! D , ~2!
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whereS is the classical action and the matrixD(T) is de-
fined asmD21(T)52]2S/]b f rT]r0 . The action is calcu-
lated along the trajectory evolving via the equations of mo-
tion,

r̈1vcJṙ2v2s3r50. ~3!

According to Ref. 4, we will look for the solution of Eq.~3!
in the formr;exp(Rt), where the matrixR has the structure
R5( a

0
0
b). After this substitution, Eq.~3! looks like

R21vcJR1v2s350, ~4!

which has two solutions, R15(v1

0
0
2v2) and R2

52(v3

0
0
v4), wherev1,356(vc

222v26Avc
414v4)/2vc ,

v2,452vcv
2/(vc

212v26Avc
414v4). One can show that

exponents can be presented as matrices

exp~R1t !5S cosv8t
v1

v8
sinv8t

2
v2

v8
sinv8t cosv8t

D , ~5!

exp~R2t !5S coshv9t
v3

v9
sinhv9t

2
v4

v9
sinhv9t coshv9t

D ,

wherev85Av1v2, v95Av3v4.
Therefore the general solution of Eq.~3! is

r (t)5exp(R1t)a1exp(R2t)b. Vectorsa andb are determined
from the boundary conditionsr (T)5rT , r (0)5r0 . In the
case of homogeneous quadratic Lagrangians, the classical
action between the points (rTT) and (r00) becomes

S~rTTur0!5
m

2
~rTṙT2r0ṙ0!. ~6!

After simple but long enough calculations one finally obtains
the following formula:

S~rTTur0!5
m

2

1

D
$~xT

21x0
2!@~v2v3 /v81v8!sin~v8T! cosh~v9T!2~v1v4 /v91v9!cos~v8T! sinh~v9T!#

12xTx0@2~v2v3 /v81v8!sin~v8T!1~v1v4 /v91v9! sinh~v9T!#

1~xTyT2x0y0!@~v12v22v32v4!~12cosv8T! cosh~v9T!1~v12v2!v9/v8

1~v32v4!v8/v9sin~v8T! sinh~v9T!#

1~xTy02yTx0!~v11v21v32v4!~cosv8T!2 cosh~v9T!

1~yT
21y0

2!@~v82v1v4 /v8!sin~v8T! cosh~v9T!

1~v2v3 /v92v9!cos~v8T! sinh~v9T!#12yTy0@~v1v4 /v82v8!sin~v8T!

1~v92v2v3 /v9! sinh~v9T!#%, ~7!

whererT5(yT
xT), r05(y0

x0), andD5222cos(v8T) cosh(v9T)1@(v2v32v1v4)/v8v9#sin(v8T) sinh(v9T). For the determi-

nant of the matrixD21 we obtain

det~D21!54@v1v41~v9!22~v8!22v2v3#sin
2~v8T!14@2v8v91~v2v32v1v4!~v9/v82v8/v9!

1~v1
2v4

21v2
2v3

2!/~v8v9!#sin~v8T! sinh~v9T!14@~v9!21v1v42~v8!22v2v3# sinh
2~v9T!

1~v11v21v32v4!
2@cosh~v9T!2cos~v8T!#2. ~8!

One can easily check that if we substitutev50 in the
initial Hamiltonian then we obtain the well-known propaga-
tor for an electron in the perpendicular magnetic field. In the
other casevc50 we get the answer for an electron in the
saddle-point potential, which is represented by the product of
two independent one-dimensional propagators, for the har-
monic oscillator~along they axis! and for the inverse pa-
rabola potential~along thex axis!. Thex-axis propagator is
obtained from they-axis one by substitution of an imaginary
frequency.

The presented result can be used to consider the behavior
of a tunneling electron. In this sense it is related to the trans-
mission coefficient through the saddle point calculated ex-
actly in Ref. 18. The initial Hamiltonian was transformed
into the sum of two commuting Hamiltonians with new co-
ordinatesX ands and momenta conjugatesP andp, which
are the inverse parabola and harmonic oscillator Hamilto-
nians, respectively. The relation betweenx,y,px ,py and new
variables is given by
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x5A 2

mvc
~a1X2b2s!, y5A 2

mvc
~b1P1a2p!,

px5Amvc

2
~a3P2b4p!, py5Amvc

2
~b3X1a4s!,

~9!

wherea i ,b i are coefficients dependent onm, vc , andv
~Ref. 18!. The propagator for new coordinates is a product of
two independent propagators,K1 for the inverse parabola
andK2 for the harmonic oscillator, as was mentioned above.
These propagators can be found in any book on path inte-
grals ~see, for example, Ref. 1!. The relation between the
propagators in ‘‘old’’ coordinates Eqs.~7,8! and in coordi-
nates from Ref. 18 is given by the following integral:

K~rTTur0!5E E E E dX8ds8dX9ds9K1~X9TuX8!K2~s9Tus8!dS xT2A 2

mv
~a1X92b2s9! D dS x02A 2

mv
~a1X82b2s8! D

3expF i\Amv

2
~b3X91a4s9!yTGexpF i\Amv

2
~b3X91a4s8!y0G . ~10!

III. TUNNELING OF A 2D ELECTRON
IN THE PRESENCE OF MAGNETIC FIELD,
DISSIPATION, AND RANDOM POTENTIAL

AT FINITE TEMPERATURE

We consider the Euclidean action studied in Ref. 10, but
instead of a harmonic pinning potential we introduce a ran-
dom potentialU(x,y),

S5E
0

\b

dtH 12M ṙ21 ieBẋy1V1~y!1U~x,y!

1(
j

F12mj q̇j
21

1

2
mjv j

2S qj2 cj
mjv j

2D r G J , ~11!

where coordinateqj describes environmental degrees of free-
dom. AssumingU(x,y) to be a random Gaussian function,
the average over all realizations ofU of the exponential
functional exp(2S/\) can be calculated exactly19 adding the
following term to the sum in the exponent:
(1/2)*0

\b*0
\bdtdtW„r (t)2r (t8)…, whereW is the autocorre-

lation function. If W is a Gaussian function,
W(r2r 8)5W(0)exp@2(r2r 8)2/L2# (L is the correlation
length!, then one can use the idea of Bezak,7 for large cor-
relationL length, to expand the Gaussian in the series and to
keep only the first two terms. This is a correct procedure if
for all relevant trajectoriesur (t)2r (t8)u,L. We will discuss
the conditions of applicability of the method later in this
section.

Summing up over the final states and integrating over the
qj coordinate we obtain the following action:

S5E
0

\b

dtH 12M ṙ21 ieBẋy1V1~y!1
1

2E0
\b

dt8Fk~ ut2t8u!

1
MV2

2\b G @r ~t!2r ~t8!#2J , ~12!

where k(t)5(1/2p) *0
`dvJ(v) cosh@v(\b/22t)#/

sinh@v\b# , MV2/2\b5 W(0)/L2 . The effect of the dissi-
pative environment is described by the spectral function
J(v). Now following Ref. 10 we write down a classical

equation for coordinatex and solve with boundary condi-
tions x(0)5x(\b) considering coordinatey as an external
force:

Mẍ1 i
e

c
Bẏ2E

0
\bdt8Fk~ ut2t8u!1

MV2

\b G@x~t!2x~t8!#

50. ~13!

We look for a solution in the form x(t)
5(n52`

` cnexp(innt) , wherenn52pn/\b. Substituting this
form into Eq. ~13! and using periodic boundary conditions
y(0)5y(\b), we obtain

cn52

e

c
Bnn

Mnn
21MV21jn

E
0
\bdty~t!exp~2 innt !, ~14!

where jn51/p*0
`dv@J(v)/v#2nn

2/(v21nn
2). Substituting

the solution obtained from Eq.~13! into Eq. ~12! we get the
effective Euclidean action,

Seff5E
0

\b

dtH 12Mẏ21V1~y!1
1

2E0
\b

dt8Fk~ ut2t8u!

1g~t2t8!1
MV2

2\b G @y~t!2y~t8!#2J , ~15!

where

g~t!5~1/2M\b!~eB/c!2 (
n52`

`

exp~ innt!

3~MV21jn!/~Mnn
21MV21jn!.

This type of tunneling problem in one dimension has been
extensively studied.20,21Let us now consider the characteris-
tic temperatureT1 , which separates the region wherein the
main contribution to the partition function comes from peri-
odic solutions near the extremal points~aboveT1) from that
one wherein the bounce contributes~below T1). According
to Grabert and Weiss,21 it corresponds to the transition be-
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tween thermal hopping and quantum tunneling.T1 is deter-
mined in the following way. We consider the action near the
local maximum of the potentialV1 , say at pointy50; i.e.,
we can presentV1(y)52Kyy

2/2 near it~obviously the cur-
vature of the barrier should be proportional on average to the
inverse square of the correlation length,Ky;1/L2). Repre-
senting the periodic path neary50 as

y~ t !5 (
n52`

`

Ynexp~ innt !, ~16!

we obtain the second-order action,

S@y#5
1

2
M\b (

n52`

`

lnYnY2n , ~17!

where eigenvaluesln are

ln5nn
22Ky /M1V21

jn
M

1vc
2

nn
2

nn
21V21~jn /M !

.

~18!

If the zero l0 eigenvalue is negative, then the integral
overY0 becomes divergent. If all otherln are positive, then
this divergence is overcome by distorting integrals into the
imaginary plane, which leads to the imaginary part of the
partition function~decay rate!. This immediately puts a natu-
ral condition on the applicability of the Bezak method. For
temperatures belowW(0)/KyL

2 the eigenvaluel0.0,
meaning that the partition function has no imaginary part
~decay rate!, which is obviously impossible. Therefore,
T.W(0)/KyL

2 is a lower boundary for the Bezak method.
The condition that all characteristic trajectories should obey
ur (t)2r (t8)u,L is obviously satisfied: we consider small
oscillations near the local maximum, which are much smaller
than the correlation length. The semiclassical approach@the
representation of the solution in the form of Eq.~18!# breaks
down when the first eigenvaluel1 vanishes at some tem-
peratureT1 . In this case the integral overY1 andY21 be-
comes divergent. Grabert and Weiss21 state that the vanish-
ing eigenvalue points to the fact that belowT1 the classical
equation of motion fory(t) admits a new oscillatory solution
~a nonlinear one called bounce!. So we have the equation
l1(T1)50. Because we are interested inT1 , we are still in
the limits of the applicability of the Bezak method. Indeed,
the bounce trajectory cannot exceed the distance between the
local maximum and minimum, which is of order or less than
the correlation length. For the limits of applicability in the
x direction in the limit\b→`, we can change the summa-
tion in x(t)5(n52`

` cnexp(innt) by integration and obtain

x~t!5~vc /p!E
0

\b

dt8

3E
0

`

y~t8!nsin@n~t2t8!#dn/~n21V2!.

Taking into account that the effective width of the bounce is
vb

21 ~wherevb'@Ky /M1V21vc
2#1/2 is the characteristic

frequency of bounces! and using the condition for they di-
rection we obtain that max„x(t)…,L if vc /v<1, which is
obviously satisfied for all temperatures. For the case of
Ohmic dampingJ(v)5hv the term jn5hunnu and the
equation looks like

4p2

~\b!2
2
Ky

M
1
2W~0!b

ML2
1

2ph

M\b

1vc
2 4p2

4p21
2W~0!\2b3

ML2
1
2ph\b

M

50. ~19!

For comparison the equation forT1 for the potential con-
sidered in Ref. 10 is

4p2

~\b!2
2
Ky

M
1

2ph

M\b

1vc
2 4p2

4p21
Kx

M
~\b!21

2ph\b

M

50, ~20!

whereKx is a curvature in theX direction. It is clear from
Eqs. ~19! and ~20! that in both cases the temperatureT1 is
decreased by a switching on of the magnetic field. If
vc50, then one can immediately find thatT1 in the case of
the random potential is lower than for the case of pinning.

In the absence of a random potential~pinning! in the limit
of high magnetic fieldsvc@(Ky /M )1/2,(2h/M )1/2 we obtain

T1'
\Kyh

2pM2vc
2 , ~21!

which is consistent with our general statement that the mag-
netic field decreases the temperatureT1 and shows that
Ohmic dissipation leads to a small@order ofl Ref. 4, where
l 5(\c/eB)1/2 is a magnetic length# effect.12

In the absence of dissipation, Eq.~20! can be solved ex-
actly and yields

T15
\

p
S Ky

2M
D 1/2F11

Mvc
2

Kx
2
Ky

Kx

1AS 11
Mvc

2

Kx
2
Ky

Kx
D 21 4Ky

Kx
G21/2

. ~22!

In the limit vc@(Ky,x /M )1/2 we have

T1'~1/2p!l 2AKxKy;
l 2

L2
~23!

as was found in Ref. 12.
Solving Eq.~19! in the absence of dissipation and in the

strong magnetic fieldsvc@(Ky /M )1/2 yields the transition
temperature
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T1'S KyW~0!\2

2p2vc
2M2L2D 1/35SKyW~0!l 4

2p2L2 D 1/3;S l 2

L2 D 2/3.
~24!

The influence of the temperature on conductance peak
sxx width was discussed in detail in Ref. 12. IfT1 is in the
range of temperatures studied in the experiment then an in-
termediate value of the critical exponentk between 3/7 and
6/7 could be measured. We have found thatT1 calculated in
the case of the random potential exhibits similar behavior to
T1 calculated for the regular potential12 ~the dependence on
the parameters of the system is weaker because of the power
2/3). It increases with increasing Landau level~decreasing
magnetic field!, predicting smallerk, and decreases with in-
creasing correlation length of the random potential in agree-
ment with experiment,13 indicating largerk.

IV. APPLICABILITY OF THE BEZAK MODEL
TO THE CALCULATION OF THE DENSITY
OF STATES FOR A 2D ELECTRON IN HIGH

MAGNETIC FIELDS AT ZERO TEMPERATURE

As we mentioned in the Introduction any propagator with
a quadratic action can be calculated exactly. Sa-yakanit,
Choosiri, and Robkob8 considered the action presented in the
following form:

S~rTTur 0!5E
0

Tm

2
~ ṙ21vcṙJr !dt2

mn2

4T E
0

TE
0

T

ur2r 8u2dtdt,

~25!

wheren is the frequency of the nonlocal harmonic oscillator
and we omitted an electric field term from Ref. 8. This is an
analog of the action from Eq.~11! but without a barrier and
dissipation and presented in real time. They have calculated
the propagator explicitly. Then Nithisoontorn, Lassing, and
Gornik9 investigated a two-dimensional electron system in a
high magnetic field with random scatterers. After averaging
over all possible configurations, assuming high density and
weak scatterers and applying the Bezak method, they ob-
tained the effective action in the form of the Eq.~25! form of
Eq. ~10!, with n252irh2T/m\L2, wherer is the density
and e is the strength of scatterers. Then by taking the trace
and performing a Fourier transform to the energy represen-
tation, the density of states was obtained.9

We repeated such a substitutionn in the exact propagator
expression obtained in Ref. 8, but instead of taking the trace,
we investigated the behavior of the propagator for time
T→`. It turns out thatthe propagator diverges in this limit
as

K~rTT→`ur0!}expF5mṽ

32
~rT2r0!

2G , ~26!

i.e., it does not correspond to the real physical picture
(ṽ25vc

2/41n2). The consequence of this divergence can
also be found in Ref. 9. Before taking the Fourier transform,
the authors neglected a small~but finite! positive imaginary
part n2T/vc in the argument of the sine. Then they per-
formed the commonly used expansion,

1

sin~vcT/2!
52i(

n50

`

exp@~2 ivcT/2!~n11/2!#. ~27!

But this expansion is correct only if one adds an appropriate
small negative imaginary part to frequencies.1 Therefore if
one neglects a small imaginary part of the frequency in Ref.
9 then the expansion would look like

1

sin~vT/21n2T/vc!
522i(

n50

`

exp@~1 ivT/2!~n11/2!

2~ un2uT/vc!~n11/2!# ~28!

and after performing a Fourier transformation one would get
Landau levels withnegativeenergies, which obviously does
not correspond to the physical picture.

V. CONCLUSIONS

We have presented the exact evaluation of the propagator
for a 2D electron in a saddle-point potential and a transverse
magnetic field by the use of path integrals and have shown
its relation to the tunneling probability calculated in Ref. 18.
We considered the tunneling of the electron in the presence
of the random potential, dissipation, and magnetic field at
finite temperature by the Bezak method. We obtained a
crossover temperatureT1 at which tunneling changes from
the zero temperature behavior to an activated one and found
its dependence on the magnetic field and correlation length
of a random potential to be in agreement with experimental
data. We discussed the applicability of the Bezak model to
the quantum Hall system at zero temperature. The original
idea was proposed for a Boltzmann gas of electrons where
the characteristic ‘‘diffusion length’’Ldif can be defined.7

The method is justified ifLdif,L. In the system under con-
sideration, such a characteristic length cannot be defined.
The negative result~divergent propagator! means that by us-
ing only the first two terms of the expansion of the Gaussian
correlation function, one neglects trajectories which give a
crucial contribution to the path integral. We therefore con-
clude that at zero temperature this model is inapplicable to
the quantum Hall system.
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