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Exact propagators for a two-dimensional electron in quadratic potentials
and a transverse magnetic field
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The propagator for an electron moving in a two-dimensidgBl) saddle-point potential under the influence
of a transverse magnetic field is evaluated exactly using the Feynmann path integrals. The applications of this
result for the calculation of tunneling through a saddle point are discussed. We also investigate tunneling a 2D
electron at finite temperature in the presence of a transverse magnetic field, dissipation, and random scatterers
by the use of a nonlocal harmonic oscillator model and find a crossover températufae application of the
same model at zero temperature for a quantum Hall system is shown to be incorrect.

[. INTRODUCTION to the calculation of tunneling. In Sec. Il with the use of the
Bezak modé€lwe investigate tunneling of an electron in the
It is well known that a propagator for a quadratic actionpresence of random potential, dissipation, and transverse
can be calculated exactlythe WKB result becomes exact magnetic field at finite temperature and calculate a crossover
Various calculations using path integrals were done: for systemperaturerl; for strong magnetic fields. We show in Sec.
tems with a harmonic force, a constant magnetic field, andV that the Bezak model, while valid for systems with finite
time-dependent electric fiefdand for an oscillator with temperature(playing a role of imaginary tinfe), fails to
memory(Ref. 3 and references thergiThe applications of ©btain a correct physical propagator for a 2D electron in a
these results were used to obtain energy eigenvalues and"@nsverse magnetic field and a random potential. We argue

magnetization of a systefna density of state3and a mag- thaththe rgsulllt optajned li.n I?)?f‘ f8’ Wh”ﬁ absrc]) Iut.elyl correct
netic susceptibility’ mathematically, is inapplicable for such a physical system

In order to treat systems with random scatterers, B7ezal&and consequently for the calculation of a density of states

. ; he wrong propagator was used. Conclusions are presented in
introduced a model for a Boltzmann electron gas in a GaussgeC Vv g propag P

ian random potential. It allowed the exact calculatfasithin
the model of the density of statésand a magnetic
susceptibility? Later the same model was used to calculate

exactly the propagator for a two-dimensiorfdD) electron [l. EXACT CALCULATION OF THE PROPAGATOR
moving under the influence of a transverse magnetic field, a
time-varying electric field, and a nonlocal harmonic fofce.
This latter result was finally applied to the calculation of a
density of states of two-dimensional electrons in high mag
netic field at zero temperatufe.

Electrons in a two-dimensional system with a strong mag-
netic field move along the lines of a constant poter{sami-
classical approximatiort® but when two such lines come
close, the quantum tunneling begins to play an important
role. This phenomenon is especially important for the de-

The tunneling of an electrofvortex in superconductors  gerintion of the transition between plateaus in the quantum
was also studied by the path-integral methot. The influ- |2 affect 13141617 The barrier between two equipotentials

ence of magnetic field, potential, and dissipation on tunnel;g \,.o1| described by a saddle-point potent&ie will use

ing was investigated. The tunneling is also very sensitive Qhe potentialV(x,y) = (Mw?/2) (y2—x?) and direct a mag-

the temperature. Thi_s dependence.o_n_ temperature becomr?étic field B along thez axis. The Lagrangian of the corre-
extremely important in systems exhibiting the quantum Ha”sponding classical system is presented as

effect. It was showlf that there is a crossover temperature
T, above which tunneling acquires the form of thermal acti-
vation. The width of the conductance peak between Hall pla- L= Tiz— Twz
teaus scales then &s° with k=3/7 at T<T, and crosses 2 2
over to k=6/7 atT>T,, in good agreement with experi-

mental datd*** Temperaturdr; for a saddle-point potential \here w.=eB/mc is the cyclotron frequency. We intro-
was calculated. . duced a 22 matrixJ=(9 ") as in Ref. 2,05 is a Pauli
In this paper we address various aspects of an electronigatrix, and a vector =(}). Since the Lagrangian given by

behavior in the presence of a transverse magnetic field andy (1) is quadratic the path integral can be evaluated exactly
different types of quadratic potentials. This paper is orgaxg

nized as follows. In Sec. Il we present an exact evaluation of
a propagator for an electron moving in a two-dimensional )
saddle-point potential under the influence of a transverse _ m p(l )

Lo X - K(r{T|rg)= 5— — T , (2
magnetic field and discuss the possibility to apply our result (rrTlro) Zwlh(delD(T))l’zeX h S(rrTlro) |, (2

2 m ¢
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whereS is the classical action and the matiqT) is de-

" w3 .,
fined asmD ™ }(T)=—3%S/dbfrrdr,. The action is calcu- coshw"t o sinhw"t
lated along the trajectory evolving via the equations of mo- exp(R,t) = ,
tion,

w
- w—“ sinhw”t  coshw't
F+ wJF — w2ogr=0. (3

According to Ref. 4, we will look for the solution of E(3) . ,
in the formr ~expRY), where the matriR has the structure Where®’ =yw,w;, "= Jwzw,.

R=(25). After this substitution, Eq(3) looks like Therefore the general solution of Eq(3) is
r(t)=expRit)a+exp®:t)b. Vectorsa andb are determined
R?+ wJR+ w?03=0, (4)  from the boundary conditions(T)=r1, r(0)=r,. In the

case of homogeneous quadratic Lagrangians, the classical

. . _ 0 —wy
which has two solutions, Ry=(,, o ) and Rz i ion petween the points(T) and (,0) becomes

=— (2,3 8)4), where w; 3= * (02-20%°+ Jol+40*) 2o,
w3 4= 200?02+ 20+ Joi+40%). One can show that

exponents can be presented as matrices m . .
P P S(r{T|r0)= E(rTrT—roro). (6)
' w7 .
Cosw't —Sinw't
w
exp(Ryt) = NG _ _ _ ,
OF! After simple but long enough calculations one finally obtains

— —sinw’ cosw't !
o o t the following formula:

m1l
S(rT|r0)= > K{(x$+ xé)[(wzwslw’ +w')siw'T) cosHw"T)—(wiws/ 0"+ w")cogw'T) sinh(w"T)]

+ 2X7Xo[ = (wp03/ 0" + 0" )siNw'T) +(w104/ 0"+ @") sinh(w"T)]
+ (X1 XoYo) (w1~ 0~ w3~ w4)(1—cosw’T) cosw"T) + (w1~ wy) "/’

(w3~ wy)0'lw"siw'T) sinh(«"T)]

(X7Yo—Y1X0)(@1F w2+ w3— w,4)(COSw'T) — cost{w"T)

(Y3 +Yo) (0 — w104/ 0" )siN(w'T) cosiw"T)

(wa03/ 0" = 0")cog ' T) siN("T) ]+ 2y1Yol (0104/ 0"~ 0")siN(w'T)

(0" = wy03/0") sinN("T)]}, (7

wherer;= (Q), o= (;g), andA=2-2cos@'T) cosh@"T) +[(wyw3— wiw4)/ @' ®"]sin(w'T) sinh(w”T). For the determi-
nant of the matrixD ~* we obtain

de(D HY=4[w w4+ (0")%—(0')?— ww3]SIf(0' T)+4[ 20" 0"+ (w03— 0104) (0" 0’ — o' o")
+(wiwi+ wgwg)/(w'w")]sin(w'T) SiNN@"T)+4[(0")?+ w0,— (0" )2 — wyw3] SiNkf(w"T)

+(w1+ wy+ w3—wg))[cosw"T)—cogw'T) ]2 (8

One can easily check that if we substitute=0 in the The presented result can be used to consider the behavior
initial Hamiltonian then we obtain the well-known propaga- of a tunneling electron. In this sense it is related to the trans-
tor for an electron in the perpendicular magnetic field. In themission coefficient through the saddle point calculated ex-

other casaw,=0 we get the answer for an electron in the ctly in Ref. 18. The initial Hamiltonian was transformed
saddle-point potential, which is represented by the product o.?t yth ' ¢ tw tina Hamiltoni ith
two independent one-dimensional propagators, for the haf1tO the sum or two commuting Hamiitonians with neéw co-

monic oscillator(along they axis) and for the inverse pa- °rdinatesX ands and momenta conjugatésandp, which

rabola potentialalong thex axis). The x-axis propagator is are the inverse parabola and harmonic oscillator Hamilto-
obtained from theg/-axis one by substitution of an imaginary hians, respectively. The relation betweey, p, ,p, and new
frequency. variables is given by
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[ 2 ) where ¢, ,8; are coefficients dependent on, w., and w
(alx B5S), (,31P+ asp), (Ref. 18. The propagator for new coordinates is a product of
two independent propagatork, for the inverse parabola
andK, for the harmonic oscillator, as was mentioned above.

p These propagators can be found in any book on path inte-
W _ _  [Mac grals (see, for example, Ref.)1The relation between the
(@sP=pB4p), Py (BaX+ ays) propagators in “old” coordinates Eq$7,8) and in coordi-
(9) nates from Ref. 18 is given by the following integral:

I’TT|I’0)—f f f J'dX ds’'dX"ds'K 1(X"T|X )K ”T|S )5()(1’ \[ (a1X" ﬁ s” ) ( \[ (a’]_X, st )
F{ N3 (,33X"+ a,s")yr|e F{ V> (ﬂaxu' @48 )YO} (10)

ll. TUNNELING OF A 2D ELECTRON equation for coordinatex and solve with boundary condi-
IN THE PRESENCE OF MAGNETIC FIELD, tions x(0)=x(#%B) considering coordinatg as an external
DISSIPATION, AND RANDOM POTENTIAL force:

AT FINITE TEMPERATURE

MQ?2
We consider the Euclidean action studied in Ref. 10, butM x+i —By fﬁﬁdr k(7= 7'|)+ ——=|[x(7) —x(7")]
instead of a harmonic pinning potential we introduce a ran- hp
dom potentialU(x,y), 0. (13)

We look for a solution in the form x(7)
=3 _.c.explv,7) , wherev,=2mn/#A B. Substituting this

hp 1 . )
S=J’ dr[EMr2+ieBxy+V1(y)+U(x,y)
0
form into Eq.(13) and using periodic boundary conditions

1 Ci _ .
+E + 5 M; w q— _]2 rit, (1D y(0)=y(% ), we obtain
e
where coordinate; describes environmental degrees of free- IS By,

dom. AssumingU(x,y) to be a random Gaussian function, Ch=—
the average over all realizations &f of the exponential

functional exp¢-S/fi) can be calculated exactfyadding the  where ¢,=1/m[%dw[J(w)/w]2v(w?+ v2). Substituting

following term to the sum in the exponent: the solution obtained from Eql13) into Eq.(12) we get the
(12)f 4P T4 drd7W(r (t) —r(t')), whereW is the autocorre-  effective Euclidean action,

lation function. If W is a Gaussian function,

W(r—r")=W(0)exd—(r—r")%/L?] (L is the correlation o1 1(m8

length, then one can use the idea of BeZaky large cor- Seft= JO dT[ >My +Va(y) + §JO dr

relationL length, to expand the Gaussian in the series and to

keep only the first two terms. This is a correct procedure if MQ?

for all relevant trajectoriefy (t) —r(t’)|<L. We will discuss tg(r—7')+ 2h8

the conditions of applicability of the method later in this

section. where
Summing up over the final states and integrating over the

g; coordinate we obtain the following action:

Wﬁ)ﬁﬁd Ty(T)exp —iv,t), (14

k(l7=1'])

[y(r)=y(")] ] (15

©

g(7)=(1/2M#%B)(eBlc)2 D, expliv,7)

ip 1 1 (#B -
— - r2 \ - ! o
S—fo dT{ZMr +IeBxy+V1(y)+ZfO dr’' | k(|7—7'|) K (MO24 £)(M2E MO+ £,).
2 _ 12 This type of tunneling problem in one dimension has been
zﬁﬁ [r(r)=r(")]? (12) extensively studied®?! Let us now consider the characteris-
tic temperaturel 1, which separates the region wherein the
where k(7)=(1/27) [dwd(w) coshw(®Bl2—7)]/ main contribution to the partition function comes from peri-

sinfwhB], MQ?/2h 8= W(0)/L?. The effect of the dissi- odic solutions near the extremal poirighoveT,) from that
pative environment is described by the spectral functiorone wherein the bounce contributéselow T,). According
J(w). Now following Ref. 10 we write down a classical to Grabert and Weis%, it corresponds to the transition be-
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tween thermal hopping and quantum tunnelifig.is deter-  Taking into account that the effective width of the bounce is
mined in the following way. We consider the action near thew, * (where wp~[K, /M + Q%+ wZ]"? is the characteristic
local maximum of the potentiaV,, say at pointy=0; i.e.,  frequency of bouncgsand using the condition for the di-

we can present,(y)= —Kyy2/2 near it(obviously the cur-  rection we obtain that max(7))<L if w./w=<1, which is
vature of the barrier should be proportional on average to thebviously satisfied for all temperatures. For the case of
inverse square of the correlation lengky,~ 1/L?). Repre- Ohmic dampingJ(w)=nw the term &,=7x|v,| and the
senting the periodic path negr=0 as equation looks like

. . 4w K, 2W(0)8 2mp
y(t)_n;m YnEXIIant), (16) (ﬁﬁ)z_ﬁ+W+M_ﬁ,3
5 47? B
we obtain the second-order action, tog ) 2W(0)42B8% 2mnhpB =0. (19)
- 4 ML2 M
SYI=ZMAB 3 AY,Y (17
y 2 nS, T For comparison the equation fay for the potential con-
. sidered in Ref. 10 is
where eigenvalues,, are
472 3 & 27
¢ 2 (hB)? M#.8
=p2— +0%+ 2+ 2 .
M=K M O e T (i) L2 42 . 20
(18 @e 2mphB

K
4w+ Vx(ﬁﬁ)2+ N
If the zero\ eigenvalue is negative, then the integral

overY, becomes divergent. If all other, are positive, then \ynere i is a curvature in th& direction. It is clear from
this divergence is overcome by distorting integrals into theEqs.(lgj( and (20) that in both cases the temperatdFe is
imaginary plane, which leads to the imaginary part of thedecreased by a switching on of the magnetic field. If
partition function(decay ratg This immediately puts a natu- ©.=0, then one can immediately find th&f in the case of
ral condition on the applicabilitzy of the .Bezak method. For,[hie ra'ndom potential is lower than for the case of pinning.
temperatures  belowW(0)/K,L* the eigenvaluex>0, In the absence of a random potentjainning) in the limit

meaning that the partition function has no imaginary par f hiah ic fiel > (Ko IMYY2 (2 /M) 22 ;
(decay ratg which is obviously impossible. Therefore, o igh magnetic fields = (K, /M) (2n/M) ™ we obtain

T>W(0)/KyL2 is a lower boundary for the Bezak method.

The condition that all characteristic trajectories should obey 1~ LV;’Z (21)
[r(t)—r(t")|<L is obviously satisfied: we consider small 2mM* o

oscillations near the local maximum, which are much smaller = . ) .
than the correlation length. The semiclassical apprdéuh which is consistent with our general statement that the mag-

representation of the solution in the form of E@i8)] breaks Netic field decreases the temperatdre and shows that

down when the first eigenvalug,; vanishes at some tem-
peratureT,. In this case the integral ovef; andY_, be-
comes divergent. Grabert and Wéisstate that the vanish-
ing eigenvalue points to the fact that beldw the classical
equation of motion foy(t) admits a new oscillatory solution
(a nonlinear one called bounceSo we have the equation
N1(T1)=0. Because we are interestedTin, we are still in
the limits of the applicability of the Bezak method. Indeed,

the bounce trajectory cannot exceed the distance between the
local maximum and minimum, which is of order or less than

the correlation length. For the limits of applicability in the
x direction in the limit#z 83— oo, we can change the summa-
tion in x(7)==/__..chexpir,7) by integration and obtain

X(7)=(wc/m) j:ﬁdr’

X JwY( )vsinlv(r—7')]dvl(v?+Q3?).
0

Ohmic dissipation leads to a smédirder of/” Ref. 4, where
/= (#icleB)Y? is a magnetic lengtheffect!?

In the absence of dissipation, EQO) can be solved ex-
actly and yields

_h[ K, 1’21+Mw§ Ky
1 r\2Mm Ke K
—-1/2
MowZ K, |2 4K} !
+\/ 1+ -2+ (22
Ky K Kx
In the limit w:> (K, /M)? we have
2
Ti~(1/27)/? KKy~ 12 (23

as was found in Ref. 12.

Solving Eq.(19) in the absence of dissipation and in the
strong magnetic fieldso.> (K, /M) yields the transition
temperature
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Kyv\/(o)ﬁ2 13 KyW(O)/“ s [ 2\ 2R3 i.e., it does not correspond to the real physical picture
1\ oz gz 2] T\ Tz | Tz (@°= w24+ 1?). The consequence of this divergence can
2mwiM“L 2L L c 4 - .
(24) also be found in Ref. 9. Before ta_k|_ng the F_oun_er tra_msform,
the authors neglected a sméblut finite) positive imaginary
The influence of the temperature on conductance peaRart ¥’T/w in the argument of the sine. Then they per-
0y Width was discussed in detail in Ref. 12.Tf is in the ~ formed the commonly used expansion,

range of temperatures studied in the experiment then an in- 1 0
termediate value of the critical exponentetween 3/7 and ————=2i >, exd(—iwT/2)(n+1/2)]. (27
6/7 could be measured. We have found thatalculated in sin(wcT/2)  i=o

the case of the random potential exhibits similar behavior tqg ;i this expansion is correct only if one adds an appropriate
T, calculated for the regular potenfialthe dependence on smajl negative imaginary part to frequencleSherefore if

the parameters of the system is weaker because of the powgke neglects a small imaginary part of the frequency in Ref.
2/3). It increases with increasing Landau leveécreasing g then the expansion would look like

magnetic field, predicting smallek, and decreases with in-
creasing correlation length of the random potential in agree- 1

o

N . . . . - — — 2 + i +
ment with experiment? indicating largerx. SN T/2+ 7T wy) 2';{) exd(+iwT/2)(n+1/2)
IV. APPLICABILITY OF THE BEZAK MODEL — ([T we)(n+1/2)] (28)
TO THE CALCULATION OF THE DENSITY and after performing a Fourier transformation one would get
OF STATES FOR A 2D ELECTRON IN HIGH Landau levels witmegativeenergies, which obviously does

MAGNETIC FIELDS AT ZERO TEMPERATURE not correspond to the physical picture.

As we mentioned in the Introduction any propagator with
a quadratic action can be calculated exactly. Sa-yakanit,
Choosiri, and Robkdbconsidered the action presented inthe  We have presented the exact evaluation of the propagator
following form: for a 2D electron in a saddle-point potential and a transverse
™m My (T (T _magnet_ic field by the use of path _integrals and have shown

S(FTT|Fo):f —(F2+ wtIr)dt— _f f Ir—r'|2drdt, its relatlon to the tunnellng_ probability calculayed in Ref. 18.
02 4T Jo Jo We considered the tunneling of the electron in the presence

(25 of the random potential, dissipation, and magnetic field at

finite temperature by the Bezak method. We obtained a

V. CONCLUSIONS

wherev is the frequency of the nonlocal harmonic oscillator ) )
and we omitted an electric field term from Ref. 8. This is anCr0SSOVer temperaturg, at which tunneling changes from

analog of the action from Eq11) but without a barrier and f[he zero temperature behavior to an activated one and found

dissipation and presented in real time. They have calculate'&? dependence on .thle magr_1etic field and gor:relatiop Iengtl|'1
the propagator explicitly. Then Nithisoontorn, Lassing, ando! @ random potential to be in agreement with experimenta

Gornik® investigated a two-dimensional electron system in gdata. We discussed the applicability of the Bezak model to

high magnetic field with random scatterers. After averaging€ duantum Hall system at zero temperature. The original
over all possible configurations, assuming high density anif@ Was proposed for a Boltzmann gas of electrons where
weak scatterers and applying the Bezak method, they oh® characteristic “diffusion length'Lyy can be defined.
tained the effective action in the form of the E85) form of ~ 1he method is justified it g<L. In the system under con-
Eq. (10), with »2=2i p72T/mhL2, wherep is the density sideration, such a characteristic length cannot be defined.
and e is the strength of scatterers. Then by taking the tracd '€ Negative resulidivergent propagatpmeans that by us-
and performing a Fourier transform to the energy represern9 only the first two terms of the expansion of the Gaussian
tation, the density of states was obtaifed. correlation function, one neglects trajectories which give a

We repeated such a substitutierin the exact propagator crucial contribution to the path integral. We therefore con-

expression obtained in Ref. 8, but instead of taking the traces'Ude that at zero temperature this model is inapplicable to

we investigated the behavior of the propagator for timel'® duantum Hall system.

;’S—m. It turns out thathe propagator diverges in this limit ACKNOWLEDGMENTS
The author wishes to thank Professor B. Horovitz, Profes-
sor S. Gredeskul, and Professor Y. Avishai for helpful and

K(ryT—o|r0 ome 2 26
o0 oC —_— -
(rrT—ce|r0)xexg —>-(rr—ro)*, 29 Critical discussions.

IR. P. Feynmann and A. R. Hibb®uantum Mechanics and Path 3G. J. Papadopoulos, J. Phys.7A183(1973.
Integrals (McGraw-Hill, New York, 1965; L. S. Schulman, 4G. J. Papadopoulos, J. Phys4A773(1977).
Techniques and Applications of Path Integrati@fviley, New SE. Majernikova and S. Barta, Phys. Status Solidi8B 183
York, 198J. (1978.

2G. J. Papadopoulos and A. V. Jones, J. Phyd, A86 (1971). 6V. Bezak and J. Bansky, Phys. Status Solid7® 569 (1976.



53 EXACT PROPAGATORS FOR A TWO-DIMENSIONAL ELECTRON ... 13661

V. Bezak, Proc. R. Soc. London Ser.315, 339 (1971).

8y, Sa-yakanit, N. Choosiri, and U. Robkob, Phys. Rev3B
10 851(1988.

9M. Nithisoontorn, R. Lassing, and E. Gornik, Phys. Rev3®
6225(1987.

0p, Ao and D. J. Thouless, Phys. Rev. L&®2, 132(1994.

11p, Ao, Phys. Rev. Letf72, 1898(1994).

12y, Kagalovsky, B. Horovitz, and Y. Avishai, Europhys. Ledt,
425 (1995.

135, Koch, R. J. Haug, K. v. Klitzing, and K. Ploog, Phys. Rev.
Lett. 67, 883 (199)).

1H. P. Wei, S. Y. Lin, D. C. Tsui, and A. M. M. Pruisken, Phys.
Rev. B45, 3926(1992.

1°S. A. Trugman, Phys. Rev. B7, 7539(1983.

18G. V. Mil'nikov and I. M. Sokolov, Pis’'ma Zh. Esp. Teor. Fiz.
48, 494 (1988 [JETP Lett.48, 536(1988)].

17D. H. Lee, Z. Wang, and S. Kivelson, Phys. Rev. L&, 4130
(1993.

184, A. Fertig and B. I. Halperin, Phys. Rev. 8, 7969(1987).

19T Lukes, Philos. Magl2, 719(1965; 13, 875 (1966.

203, s. Langer, Ann. Phy$N.Y.) 41, 132(1967).

21H. Grabert and U. Weiss, Phys. Rev. L&8, 1787(1984.



