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For electrons in quantum dots the dipole absorption spectrum is known to reflect only magnetoplasmon
modes with a rigid center-of-mass motion~‘‘generalized Kohn’s theorem’’!. A more complex behavior is
expected for holes in quantum dots, as the valence-band mixing prohibits the separation of relative and
center-of-mass coordinates, and the dipole field couples then also to the relative motion. We investigate
theoretically the far-infrared response of hole-confining quantum dots, assuming a structure that can be realized
by the lateral modulation of a two-dimensional hole gas in a GaxAl 12xAs-GaAs quantum well or heterojunc-
tion. The ground state of the many-hole system is determined in the local density approximation, using the
434 Luttinger Hamiltonian to include the valence-band mixing. The collective response to a dipole field is
calculated within the random phase approximation. The resulting far-infrared absorption spectra exhibit a rich
set of dipole active magnetoplasmon modes withinternal motions of the charge density, which due to the
generalized Kohn’s theorem are not possible for electrons in quantum dots.@S0163-1829~96!00820-X#

I. INTRODUCTION

Recent progress in nanofabrication technology has led to
the realization of semiconductor quantum dots~QD’s! that
confine charge carriers in all three spatial directions. Such
structures have been made by superimposing a lateral modu-
lation onto an otherwise two-dimensional electron gas
~2DEG! in quantum wells~QW’s! or heterojunctions~HJ’s!.
Despite the complexity of the confined many-electron
systems—which sometimes are addressed as ‘‘artificial
atoms’’—QD’s exhibit a rather simple far-infrared~FIR! di-
pole absorption spectrum, even in the presence of a magnetic
field.1–7 This has been explained as being a consequence of
the parabolic lateral confinement potential and of the para-
bolic conduction band characterized by an effective mass
m* . In this case the FIR absorption spectrum shows the
single-particle spectrum of the center-of-mass~c.m.! motion,
because the dipole operator depends only on the c.m. coor-
dinates, which can be separated from the relative coordi-
nates. Thus, the dipole spectra do not exhibit the many-
particle interaction, a fact known as the ‘‘generalized Kohn’s
theorem’’ ~GKT!.8–11The dipole resonances are those of the
2D harmonic oscillator in a magnetic field12–14
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where v0 is the lateral confinement frequency, and
vc5eB/m* the cyclotron frequency. These collective exci-
tations are magnetoplasmon modes with a rigid c.m. motion
against the neutralizing charged background. Deviations
from this simple two-mode absorption spectrum can be in-
duced by nonparabolicities in the lateral confinement poten-
tial or by band-structure effects.

For two and three electrons in a QD with nonparabolic
confinement exact calculations of the dipole spectra have

been performed.15–18 The resulting specific splittings of the
modesv6 can be compared qualitatively to weak features in
the observed FIR spectra of QD’s with a controllable number
of very few electrons per dot.5 For higher numbers of elec-
trons per QD the FIR spectra have been described in the
Hartree and the Hartree-Fock approximation.7,17–20The col-
lective excitations obtained within these theories give mag-
netoplasmon modes with frequenciesv6 as in Eq.~1! and
small splittings that are induced by nonparabolicities in the
confinement. Calculations within a classical hydrodynamic
model give magnetoplasmon modes where the lowest fre-
quencies again have the magnetic field dependence ofv6 in
Eq. ~1!.21,22 It has been shown that even for highly nonpara-
bolic confinement the dipole absorption is dominated by
these two modes and higher modes become only weakly di-
pole active.22

Band-structure effects have been detected for electrons in
QD’s on InSb,1,6 whose conduction band deviates signifi-
cantly from the simple parabolic form. Calculations that take
into account this nonparabolicity23–25 are in quantitative
agreement with the observed downward shift of thev1

mode. For InSb QD’s with high lateral quantization energies,
comparable to the energy separation of the states in growth
direction, coupling of these states must also be considered to
obtain agreement between theory and experiment.6 Specific
line splittings due to band nonparabolicity and spin-orbit
coupling have been predicted theoretically for QD’s in
InSb,24 but these splittings are smaller than the resolution of
the available experiments.1,6

Much stronger effects can be expected for holes in quan-
tum dots23,26–28 from the complex structure of the valence
band.29–32 It is known from experimental and theoretical in-
vestigations of 2D hole gases ~2DHG’s! in
GaxAl12xAs-GaAs HJ’s~Refs. 33–40! and Ge-SiGe QW’s
~Refs. 41–44! that the degeneracy of the bulk valence band
causes particular features: the coupling between heavy-hole
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~HH! and light-hole~LH! states leads to unequally spaced
hole Landau levels with a highly nonlinear magnetic field
dispersion, which results in complex cyclotron resonance
spectra. The HH-LH coupling prohibits an application of
Kohn’s theorem: it has been shown that many-body effects
have an influence on the dipole excitation of hole magneto-
plasmons in 2DHG’s.45 Calculations of the eigenenergies of
a single hole in a QD~Refs. 23 and 26! and of the corre-
sponding single-particle dipole spectrum27 have already
demonstrated the strong impact of the HH-LH coupling for
holes in QD’s. In a recent work28 we have published results
for collective excitations of many holes in a QD, which show
significant deviations from the simple behavior of electrons
in QD’s governed by the GKT.

The outline of this paper is as follows: In Sec. II we
present Luttinger’s 434 k–p Hamiltonian, which is used to
take the valence-band structure into account. In Sec. III we
describe the determination of the ground state of holes in a
QD within the local density approximation~LDA !. In Sec.
IV we present calculations in the time-dependent LDA or
random phase approximation~RPA! to describe the collec-

tive electromagnetic response of the system and the excita-
tion of magnetoplasmons by an external dipole field. In Sec.
V the model parameters are given for QD structures assumed
to be realized by the lateral modulation of the 2DHG in a
GaxAl12xAs-GaAs QW or HJ. In Sec. VI we show the cal-
culated FIR absorption spectra for these two systems, which
are clearly distinct due to the different symmetry in growth
direction. We present motion patterns of the charge density
for dipole active hole magnetoplasmon modes, which are
significantly more complex than the known c.m. motion of
electrons in QD’s governed by the GKT.

II. VALENCE-BAND STRUCTURE

To describe theG8
v valence band with hole spinmj 5

63/2 for HH andmj 5 61/2 for LH we use Luttinger’s
434 k–p Hamiltonian within the axial approximation, ne-
glecting the small anisotropy of the in-plane band structure.
For the basis ordermj5(13/2,11/2,21/2,23/2) it has the
form29
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The diagonal contributionsP6Q are the kinetic energy op-
erators for uncoupled HH’s and LH’s with respective in-
plane massesm0 /(g16g2) andz massesm0 /(g172g2). In
Eqs. ~3a! and ~3b! we separateP andQ into operators that
depend only onpx andpy or only onpz . The off-diagonal
partsR andS couple HH and LH states. A magnetic field in
thez directionB5(0,0,B) is included by defining the differ-
ential operatorsp52 i\¹1eA with a vector potential in the
symmetric gaugeA5B/2(2y,x,0). The Zeeman splitting is
given by the termsmjkB on the diagonal ofHL .

The HamiltonianHL of Eq. ~2! has been used in Refs. 36
and 38–40 to describe a 2DHG in a perpendicular magnetic
field. The HH-LH mixing couples the in-plane motion to the
motion in growth direction, which leads to highly nonpara-
bolic 2D subbands and to a strong mixing of Landau levels
evolving from different subbands. In Refs. 23, 26 and 27 we
have usedHL to model the properties of a single hole in a
QD and demonstrated the importance of HH-LH coupling
for holes in QD’s.

III. GROUND STATE

For our calculations we use a confinement potential with
axial symmetry. We employ a cylindrical coordinate system
with a 3D vectorr5(x,y,z) written asr5(r,z), wherer
5(r,w) is a 2D vector in polar coordinates. The confine-
ment is modeled by a superposition of a potentialVz(z) in
the growth direction and a parabolic lateral potential
Vxy(r)5

1
2K0r

2. This form is in good agreement with calcu-
lations that model the electrostatic potential in QD’s.46–48

Small nonparabolicities inVxy(r) could easily be incorpo-
rated in the following calculations but shall be neglected
here, as their known influence on the dipole

13 632 53T. DARNHOFER, U. RÖSSLER, AND D. A. BROIDO



excitations7,15–20,22is much weaker than the effects induced
by the valence-band structure. For realistic QD systems the
confinement in thex-y plane is much wider than that in the
z direction. This results in quite different energy separations
of the quantized levels associated with these confinements,
and in a very flat, disklike electron or hole system.

We describe the many-hole ground state of the QD in the
LDA. The effective single-particle potential is added to the
diagonal ofHL in Eq. ~2!. The total Hamiltonian of our sys-
tem is then given by

H5HL11434@Vz~z!1Vxy~r!1VH~r !1VXC~r !#, ~4!

where VH(r ) is the Hartree potential andVXC(r ) the
exchange-correlation potential.

Due to the axial symmetry ofHL in Eq. ~2! and of the
confinement potential, thez component of total angular mo-
mentum is a good quantum number. The wave functions can
then be labeled by the corresponding quantum numberM
and a second indexm,

CMm~r !5 (
mj523/2

13/2

umj
~r !Fmj

Mm~r !, ~5!

and are sums over products of bulk band edge Bloch func-
tionsumj

(r ) and envelope functionsFmj

Mm(r ). We expand the

envelope functions in terms of products of the eigenfunctions
of Pz6Qz1Vz(z) and the wave functions of the 2D har-
monic oscillator in thex-y plane. The two different masses
in the z direction, m0 /(g122g2) for HH and
m0 /(g112g2) for LH, give rise to two different sets of
wave functions, which we label byz umj un

(z) with

n51,2, . . . andumj u53/2 for HH, umj u51/2 for LH. As it
will turn out later, it is advantageous to define the 2D oscil-
lator in thex-y plane for the massm0 /g1 by using the hybrid
frequency Av0

21(vc/2)
2 with v0

25K0g1 /m0 and
vc5eBg1 /m0 , which corresponds to the Hamiltonian
Pxy1Vxy(r). ~The termQxy will be considered later.! The
corresponding wave functions are of the form
Rnumu(r)e

imw, wherem is the orbital angular momentum, and
n the radial quantum number. The explicit form of the radial
functionsRnumu(r) of the 2D harmonic oscillator is given, for
example, in Ref. 13. The expansion in the chosen basis is
then written as

Fmj

Mm~r !5(
nn

Cmj

Mm~n,n!z umj un~z!RnuM2mj u~r!ei ~M2mj !w,

~6!

where the values for the respective orbital angular momenta
are fixed tom5M2mj due to the conservation of the total
angular momentum. For every value ofM , the mixing coef-
ficientsCmj

Mm(n,n) are determined by numerical diagonaliza-

tions of the full Hamiltonian with off-diagonal termsQxy ,
R, andS of HL in Eq. ~2!, andVH(r )1VXC(r ) of Eq. ~4!.
The corresponding eigenvalues give the energiesEMm . For
the chosen basis, the matrix elements forQxy , R, andS can
easily be evaluated analytically by expressing these differen-
tial operators in terms of the creation and annihilation opera-
tors of the 2D harmonic oscillator.49 The mass deviation term

Qxy is diagonal inmj and n, but R andS are off diagonal
and couple HH and LH states.

The occupation of the lowest levels is given by the Fermi
function f (EMm) and the ground-state density is

n~r !5(
Mm

f ~EMm! (
mj523/2

13/2

uFmj

Mm~r !u2

5 (
mj523/2

13/2

nmj
~r !, ~7!

whereFmj

Mm(r ) are the envelope functions of Eq.~6!. The

ground-state density can be decomposed into contributions
nmj

(r ) from the four spinor components. The modulation of

the wave functionsCMm(r ) in Eq. ~5! by the Bloch functions
umj

(r ) is neglected in the usual envelope function approxi-
mation by averaging over the unit cells of the lattice and
exploiting the orthogonality of theumj

(r ). To evaluate the
Hartree potential

VH~r !5
e2

« E r8dr8E dw8E dz8
n~r 8!

ur2r 8u
~8!

we exploit the very flat disklike shape of the charge density
and approximate in Eq.~8! ur2r 8u'ur2r8u. Then thez8
integration in Eq.~8! can be used to define a 2D density with
axial symmetryn(r8)5*dz8n(r 8) and thew8 integration
reduces Eq.~8! to the 1D integral

VH~r!5
e2

« E dr8r8n~r8!
4

r.
KS r,

r.
D , ~9!

where

r.5H r

r8
J , r,5H r8

r J for H r.r8

r,r8
J , ~10!

andK is the complete elliptic integral of the first kind.
In Refs. 36–40, 43, and 44 the 2DHG’s were described

only within the Hartree approximation. In a recent
publication50 a density-functional approach for holes was
presented: the exchange and correlation energies were calcu-
lated for a homogeneous 3D hole gas, including the degen-
eracy of the bulk valence band. In the case of 2DHG’s with
strong quantum confinement in the growth direction the en-
ergy separation between the first HH subband and the other
subbands is large. For realistic QD parameters, the occupied
hole states evolve from this first HH subband and the density
has mainly HH character with only a small LH contribution
due to HH-LH coupling. Therefore, we do not use an
exchange-correlation potential derived from the degenerate
bulk valence band as in Ref. 50, but take an exchange-
correlation potential for a 2DEG and scale it with the in-
plane HH massm0 /(g11g2). In the standard way, we take

VXC~n!5
d

dn
$n@EX~n!1EC~n!#%, ~11!

whereEX(n) and EC(n) are the exchange and correlation
energy as a function of the homogeneous densityn of a
2DEG, taken from the calculations of Ref. 51. A possible
magnetic field dependence ofEX(n) andEC(n) is neglected.
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The matrix elements ofVH(r)1VXC(r) between the ra-
dial functionsRnumu(r) are calculated numerically employing
a modified Simpson’s quadrature to account for the weak
singularity ofK in Eq. ~9!. These contributions are diagonal
in mj and n, but mix states with different radial quantum
numbersn. Self-consistency of the ground state is achieved
in an iterative procedure.

IV. ELECTROMAGNETIC RESPONSE

The standard experimental setup for FIR spectroscopy on
QD’s involves an electromagnetic wave propagating in the
z direction~perpendicular to the QD array! with the vector of
the electric field in thex-y plane. This is described by a
time-dependent external potentialeFex(r ,t)5Vex(r)eivt,
whereVex(r) contains the information about the polariza-
tion. The linear response to this perturbation is described
using the density-density correlation function, or susceptibil-
ity

x~r ,r 8,v!5 (
MmM8m8

f ~EMm!2 f ~EM8m8!

\v1EMm2EM8m81 iG

3CMm* ~r !CM8m8~r !CM8m8
* ~r 8!CMm~r 8!, ~12!

whereG is a phenomenological broadening factor. We again
use the envelope function approximation to average over the
unit cells of the semiconductor lattice and exploit the or-
thogonality of the Bloch functionsumj

(r ) in the wave func-

tionsCMm(r ) of Eq. ~5!. The susceptibilityx(r ,r 8,v) is then
determined by the envelope functionsFmj

Mm(r ) of Eq. ~6! and

the eigenenergiesEMm . Analogous to Sec. III we restrict our
model to a 2D description of the very flat disklike charge
density by takingur2r 8u'ur2r8u. The induced change of
the 2D densitydn(r,v)5*dzdn(r ,v) is then given by the
RPA formula19,52

dn~r,v!5E dr8x~r,r8,v!FVex~r8!1
e2

« E d r9
dn~r9,v!

ur82r9u

1S ]VXC

]n D dn~r8,v!G , ~13!

wherex(r,r8,v)5*dz*dz8x(r ,r 8,v) is the 2D susceptibil-
ity. The first term in the bracket of the right-hand side of Eq.
~13! stands for the bare external dipole field, which is
screened by the two following terms. The resulting respec-
tive shifts of the collective resonances are known as ‘‘depo-
larization shift’’ and ‘‘excitonic shift.’’

Following Ref. 19, we take advantage of the axial sym-
metry of the system and expand

Vex~r!5(
l
eil wVl

ex~r!, ~14a!

dn~r,v!5(
l
eil wdnl~r,v!, ~14b!

x~r,r8,v!5(
l
eil ~w2w8!x l~r,r8,v!. ~14c!

This allows us to decompose Eq.~13! into separate equations
for components with different angular symmetryl . With the
2D Fourier expansion of 1/ur82r9u we get

dnl~r,v!5E dr8r8Fx l~r,r8,v!Vl
ex~r8!

1b l~r,r8,v!dnl~r8,v!1x l~r,r8,v!

32pS ]VXC

]n D dnl~r8,v!G , ~15!

with

b l~r,r8,v!5
4p2e2

« E dr9r9x l~r,r9,v!Rl~r8,r9!,

~16!

Rl~r8,r9!5E dqJl~qr8!Jl~qr9!, ~17!

whereJl denotes the Bessel functions.
To describe an electric dipole field of strengthEex with

circular polarization we set in Eq.~14a!

Vl
ex~r!5H eEexr, l561,

0, lÞ61,
~18!

where6 stands for the two polarization directions. Thus,
only magnetoplasmon modes withl561 couple to the ex-
ternal dipole radiation. Foru l u51 the integral in Eq.~17!
gives

R61~r,r8!5
2

p

1

r,
FKS r,

r.
D2ES r,

r.
D G , ~19!

whereK andE denote the complete elliptic integrals of the
first and second kind, respectively, andr, andr. as defined
in Eq. ~10!. We solve the integral equation Eq.~15! for
dnl(r,v) for l511 and l521 on a discrete grid for the
variabler by direct matrix inversion, employing the same
quadrature as in Sec. III.

The time dependence of the induced change of the density
is

dn~r,t !5
1

2p
dn~r,v!e2 ivt

5
1

2p
dn61~r,v!ei ~6w2vt !, ~20!

which gives the plasmonic motion of the charge density for
the two polarization directions. Fromdn(r,v) we can also
calculate the polarizability

a6~v!5
1

EexE drre6 iwdn~r,v!

5
2p

EexE drr2dn61~r,v!, ~21!

and the cross section for photon absorption
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s6~v!54p
v

c
Im$a6~v!%, ~22!

which describes the observable FIR absorption for the two
polarization directions.

V. MODEL PARAMETERS

As QD’s with holes have not yet been fabricated, we as-
sume realistic model parameters for our calculation. The
most likely starting point for the realization of such a QD
structure is the 2DHG in a Ga12xAl xAs-GaAs QW
or HJ.33–40 Therefore, we use the Luttinger parameters
and the dielectric constant for GaAs (g1 5 6.85,g2 5 2.1,
g3 5 2.9, k 5 1.2, and « 5 13.1!.53 To describe a
Ga12xAl xAs-GaAs QW structure, we use a rectangular po-
tential well forVz(z). We choose a well width of 100 Å and
an Al content in the barrier ofx 5 0.3, which gives a
valence-band offset of 130 meV. For these QW parameters
the eigenenergies for the first and second subband functions
z umj un

(z) are 7.4 and 29.5 meV for HH, and 20.2 and 78.0

meV for LH. For the HJ, we use forVz(z) a triangular
potential54,55 with an infinite offset forz,0 and a constant
electric field forz.0. To allow a comparison with the QW
system, we chose an electric field of 0.265 mV/Å, which
leads to subband energies of 20.8 and 36.4 meV for HH, and
33.6 and 58.7 meV for LH and gives the same separation
between the first HH subband and the first LH subband of
12.8 meV as in the QW system. This chosen value for
HH-LH subband separation is in agreement with the known
data for the 2D hole systems in GaxAl 12xAs-GaAs
HJ’s.33–40

For the matrix elements of the HH-LH coupling termsR
and S, integrals with the functionsz umj un

(z) of the form

*dzz1/2n(z)z3/2n8(z), and*dzz1/2n(z)pzz3/2n8(z) have to be
evaluated. For the QW half of these matrix elements are zero
due to the inversion symmetry in thez direction and the total
matrix separates into two blocks. The lack of this symmetry
for the HJ leads to additional couplings.

To determine the curvature of the lateral potential
Vxy(r)5

1
2K0r

2, we assume a similar electrostatic modula-
tion as for the GaAs QD’s with electrons from Refs. 2, 3, and
7, where a confinement frequency of about 4 meV was ob-
served. To scale this for the used oscillator massm0 /g1 , we
take \v05\AK0g1 /m0 5 ~4 meV! Ag1m*5 2.6 meV,
wherem* 5 0.067m0 is the effective electron mass of GaAs.
With the mass deviation termQxy this leads to an oscillator
spacing of 3.0 meV for HH and 2.2 meV for LH. The calcu-
lations have been made for a temperature ofT 5 1.0 K. For
the phenomenological line broadening in Eq.~12! we useG
5 0.1 meV.

In the investigated range of up to 14 holes per QD con-
vergence for the calculated FIR absorption spectra was
achieved by including in the basis for the expansion of the
wave functions in Eq.~5! the first two functionsz umj un

(z),

n 5 1,2 for HH (mj563/2) and LH (mj561/2) and the
eleven lowest radial functionsRnumu(r) for n 5 0,1, . . .,10.
The total matrix size for a diagonalization was therefore 88
3 88. To determine the ground state, the diagonalization had
to be performed for several total angular momentaM .

VI. RESULTS

In Fig. 1 we display as an example the self-consistent
ground-state density and the potential for 14 holes in a QD
based on a HJ for a magnetic field ofB 5 4 T. In Fig. 1~a!
the densityn(r) is shown with a solid line. According to Eq.
~7! it is the sum over the contributionsnmj

(r) of the four
hole spin components, which are shown separately by dashed
lines. The two HH components are much bigger than the two
LH components. For 14 holes in the QD we get a 2D hole
density of around 1.531011 cm22 in the center of the dot,
which is in the order of magnitude known for 2DHG’s in
GaxAl 12xAs-GaAs HJ’s.33–40 From Fig. 1~a! we estimate
the diameter of the disklike charge density to be about 1200
Å, which is substantially bigger than the extension in thez
direction of about 100 Å~for the QW, as well as for the HJ
parameters!. This demonstrates the validity of the 2D ap-
proximation that was used in the ground state and response
calculations in the present work and throughout the existing
theoretical literature on FIR spectra of QD’s with
electrons.7,15–20, 22

Figure 1~b! displays the radial potential, corresponding to
the density of Fig. 1~a!. The external parabolic confinement
Vxy(r) is shown with the dotted line, the dashed line gives
Vxy(r) plus the Hartree potentialVH(r), the solid line gives
the total potentialVxy(r)1VH(r)1VXC(r) including the
exchange-correlation potential. The screening of the confine-
ment potential due to the charge carriers in the center of the
QD leads to a flat bottom of the effective single-particle po-
tential. The upward shift of the potential bottom~of about 50

FIG. 1. Self-consistent ground state atB5 4 T for 14 holes in a
quantum dot based on a GaxAl 12xAs-GaAs heterojunction:~a!
solid line: total density; dashed lines: the contributions of the four
spinor components with hole spinmj513/2,11/2,21/2,23/2. ~b!
dotted line: external parabolic confinement; dashed line: external
confinement plus Hartree potential; solid line: total potential, in-
cluding the exchange-correlation potential.
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meV for 14 holes! gives the estimate for the interaction en-
ergy of the system within our mean-field description.

In Fig. 2 we show selected lowest eigenenergiesEMm as a
function of the magnetic fieldB for the case of 6 holes in a
QD based on a HJ. The levels lie above an energy that is
given by the addition of the energy from the quantization in
thez direction~of 20.8 meV for the lowest HH subband! and
the upward shift of the potential bottom by the Hartree and
exchange-correlation potential~of about 25 meV for 6
holes!. Due to the flat bottom of the self-consistent potential
the level spacing is significantly smaller than the confine-
ment frequency for HH of 3.0 meV. AtB 5 0 states with
total angular momentum1M and2M are degenerate. For
small B, themj523/2 states58 are lower than those with
mj513/2 due to the Zeeman termmjkB. With increasing
B, the HH-LH coupling lowers the13/2 states relative to
their23/2 counterparts. This leads to a crossing of these two
sets of states atB5728 T. In the high magnetic field limit
the QD levels converge into hole Landau levels and the low-
est states belong to a Landau level with dominant
mj513/2 character. To illustrate thisB dependence of the
ground-state character, we have plotted in Fig. 3 the integrals
(1/N)*dr nmj

(r ) over the density components of Eq.~7!,

normalized by the number of holesN 5 6. We see, that in
the whole magnetic field range the occupied states have
mainly HH character~dominated bymj523/2 below 8 T
and by13/2 above 8 T! with only very small LH contribu-
tions (mj561/2). As already mentioned in Sec. III, this
justifies our approximation for an exchange-correlation po-
tential derived for a 2DEG, scaled with the HH in-plane
mass.

In two recent papers56,57 it has been shown that the time-
dependent LDA can reproduce the exact result of the GKT.
This has also been found in Refs. 7 and 18–20, where the
Hartree-RPA calculations for electrons in QD’s with para-

bolic confinement give the known simple two-mode absorp-
tion spectrum with the resonance frequenciesv6 of Eq. ~1!
for the plasmonic c.m. motion. If we artificially set the
HH-LH coupling termsR andS in HL of Eq. ~2! to zero, our
system reduces to the simple one known for electrons, but
with the HH in-plane massm0 /(g11g2) as only states
evolving from the lowest HH subband are occupied. In Fig. 4
we show the corresponding FIR absorptions6(v) for the
two polarization directions of circular polarized radiation.
Within an error of less than 1%, the result is in agreement
with Eq. ~1!, applied to the massm0 /(g11g2) and the os-
cillator frequency\v053.0 meV. It should be noted that
even in the absence of band mixing, HH’s and LH’s are
coupled by the Coulomb interaction. As a result, a QD sys-
tem containing uncoupled HH’sandLH’s would not satisfy
Kohn’s theorem, and the resulting spectrum would be more
complicated than the one in Fig. 4.28

FIG. 2. Eigenenergies as a function of the magnetic field for six
holes in a quantum dot based on a GaxAl 12xAs-GaAs heterojunc-
tion. ~Hole energies are taken positive.!

FIG. 3. Integrated density components for hole spin
mj513/2,11/2,21/2,23/2 as a function of the magnetic field for
six holes in a quantum dot based on a GaxAl 12xAs-GaAs hetero-
junction. The ground state has mainly heavy-hole character, domi-
nated bymj523/2 below 8 T, and bymj513/2 above 8 T.

FIG. 4. Absorption spectrum for~a! the plus, and~b! the minus
direction of circular polarization for holes in quantum dotswithout
the heavy-hole light-hole coupling termsR andS. Neglecting these
couplings reduces the system to the one with electrons.
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The FIR absorption for 14 holes in a QD based on the HJ,
calculatedwith the HH-LH coupling termsR andS is shown
in Fig. 5. The important effect of this coupling becomes
evident by comparison with Fig. 4. The dominant mode in
the plus polarization@see Fig. 5~a!# has a much weaker mag-
netic field dispersion and a large splitting forB5629 T.
The magnetic field dispersion results from the repulsion be-
tween levels due to HH-LH coupling and is found already in
the corresponding single particle excitations.27 The splitting
is a consequence of the changing occupation of the lowest
levels described above and illustrated in Fig. 3: at small mag-
netic fieldsB,6 T the spectrum is dominated by transitions
originating from the states withmj523/2 character,58

whereas forB.11 T transitions from the13/2 states are
important. At intermediate fieldsB57210 T both kinds of
transitions are possible, which leads to the splitting. A new
mode appears in the plus polarization for magnetic fields
B,10 T at an energy around 11 meV, which is related to the
separation between the first HH and first LH subband of 12.8
meV. This ‘‘inter-subband mode’’ becomes dipole allowed
as thek–p HamiltonianHL of Eq. ~2! couples the levels
evolving from different subbands in thez direction. For the
minus polarization@see Fig. 5~b!# we find a basically un-
changedv2 mode and an additional mode forB. 7 T that
grows in strength and splits with increasing field. A similar
mode was also found in the corresponding single-particle
excitations.27 Here, this mode arises with the shifting of the
ground-state density from23/2 to primarily13/2 character
as described above.

The calculated FIR absorption for 14 holes in a QD based
on a QW is shown in Fig. 6. Again we observe a nearly
unchangedv2 mode, a strongly loweredv1 mode with a
splitting, and a new mode in the minus polarization related to

the separation between the first HH and the first LH subband.
The dipole spectrum for the QW system is significantly sim-
pler than that for the HJ system in Fig. 5. As described
above, the inversion symmetry in thez direction eliminates a
part of the HH-LH couplings. Effects associated with this
symmetry have been observed previously in 2DHG’s.59

Within the investigated range from 6 to 14 holes per QD,
the calculated FIR spectra show essentially no dependence
on the particle number. For less than 6 holes per QD, we
observe additional features, which might indicate the break-
down of our mean-field description. The spectra also do not
exhibit a significant dependence on the temperature in the
range ofT50.124.2 K. A repetition of our calculation in the
Hartree approximation, neglecting the exchange-correlation
corrections in the ground state and response calculations, re-
sults in different eigenenergiesEMm and a slightly changed
ground-state density profile, but gives essentially the same
FIR absorption spectra.

In the high magnetic field limit, where the cyclotron orbit
size becomes much smaller than the dot size, the influence of
the Hartree and the exchange-correlation potential for the
ground-state calculation as well as the influence of the depo-
larization and excitonic shift in Eq.~13! for the response
calculation become negligible. In this limiting case the reso-
nance energies are directly given by differences between
eigenenergiesEMm and our FIR absorption spectra become
identical to those of a single hole in a QD, i.e., without
interaction effects.27 Furthermore, these spectra also ap-
proach the cyclotron resonance spectra of a corresponding
2DHG, calculated independently for the same QW or HJ
parameters in a single-particle picture using also Luttinger’s
434 k–p Hamiltonian.60 ~It should be noted that correlation
effects anticipated in high magnetic field, such as Wigner
crystallization, cannot be represented within our mean-field
treatment!. For the HJ system we also find good qualitative

FIG. 5. Absorption spectrum for 14 holes in a quantum dot
based on a GaxAl 12xAs-GaAs heterojunction for~a! the plus po-
larization, and~b! the minus polarization. The strong deviations
from the spectrum in Fig. 4 are induced by heavy-hole light-hole
coupling. For the resonances marked with the grey triangles, the
plasmonic motions of the density are shown in Fig. 8.

FIG. 6. Same as in Fig. 5, but for a quantum dot based on a
GaxAl 12xAs-GaAs quantum well. The inversion symmetry in the
growth direction leads to a simpler absorption spectrum as in the
case of a heterojunction shown in Fig. 5.
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agreement with the available experimental cyclotron reso-
nance data33–35of 2DHG’s in GaxAl 12xAs-GaAs HJ’s with
the somewhat higher densities of (2.725.6)31011 cm22

~compared to'1.531011 cm22 for the areal density in the
center of the QD with 14 holes!. The high-field data (B 5
10–14 T! are typically characterized by one main peak
around 4 meV and one or two weaker features at slightly
higher energy, as is the case for our calculated FIR spectra in
Fig. 5.

For an interpretation of the modes in our absorption spec-
tra we look at the form of the time-dependent induced
change of the charge density as given by Eq.~20!. According
to the GKT, the only dipole active magnetoplasmon modes
for electrons in parabolic QD’s are c.m. motions. The corre-
sponding rigid shifts of the ground-state densityn(r) are
circular motions with the displacement vector

drc.m.~ t !5dr0S cos~a06vt !
sin~a06vt ! D , ~23!

wheredr0 is the amplitude anda0 the phase. The change in
densitydnc.m.(r,t) for a c.m. motion is therefore determined
by

n~r!1dnc.m.~r,t !5n@r1drc.m.~ t !#. ~24!

A Taylor expansion for small amplitudesdr0 of the right-
hand side gives

dnc.m.~r,t !5dr0
dn~r!

dr
cos~a06vt2w!, ~25!

wheredn(r)/dr is the derivative of the ground-state density
with respect to the radial coordinate. In Fig. 7 we plot the
same ground-state densityn(r) as in Fig. 1 and the resulting
dn c.m.(r,t) as given by Eq.~25!. The change in density for a
pure c.m. motion dn c.m.(r,t) can be compared with
dn(r,t) of Eq. ~20! resulting from the response calculation.
In the case of electrons in QD’s@which we can describe by
setting the HH-LH coupling termsR andS in Eq. ~2! to zero#
the calculateddn(r,t) for the two modesv6 in the spectrum
of Fig. 4 reproduce the exact resultdnc.m.(r,t) to a very high
degree. But for holes a more complicated behavior is ob-
served: in Fig. 8 we plot the real part ofdn(r,t) for selected
resonances which are marked by grey triangles in the absorp-
tion spectrum of Fig. 5. Figures 7~a! and 7~b! and 8~a!–8~f!
use the same length scale in thex-y plane, but the amplitudes
are normalized to the same maximum height. According to
Eq. ~20! the time dependence of the density fluctuation pat-
terns is given by a stiff rotation in polarization direction and
with the frequencyv of the external dipole field. A compari-

son of Figs. 8~a!–8~f! with Fig. 7~b! shows that only the
v2 mode with Fig. 8~d! maintains a simple c.m. motion,
whereas all other hole magnetoplasmon modes exhibit a
mixture of c.m. and internal motion. The dipole excitation of
such plasmon modes is according to the GKT not possible
for electrons in parabolic QD’s.

VII. CONCLUSIONS

We have calculated the FIR absorption spectra of QD’s
confining holes, which reflect the dipole excitation of hole
magnetoplasmons. The ground state of the many-hole system
was determined in the LDA using Luttinger’s 434 k–p
Hamiltonian to include the valence-band mixing. The collec-
tive response to a dipole field was calculated within the RPA.
We present the resulting FIR spectra for two realistic model
systems: QD’s with holes realized by the lateral modulation
of a 2DHG in a GaxAl 12xAs-GaAs HJ or QW.

According to the GKT, parabolic QD’swith electronsex-
hibit a single-particle dipole spectrum with the two reso-
nance frequenciesv6 , reflecting only magnetoplasmon
modes with a rigid c.m. motion. For QD’swith holes, the
valence-band structure induces strong observable deviations
from this simple behavior: the HH-LH mixing leads to a
weak magnetic field dispersion of thev1 mode and to an
anticrossing in this mode; the coupling of states evolving
from different subbands in thez direction induces new dipole
transitions at frequencies related to the energy separation be-
tween the lowestz states. The resonances in our calculated
FIR absorption spectra are due to hole magnetoplasmon
modes withinternalmotions of the charge density. The ex-
citation of such modes is possible for holes in QD’s as the
dipole field couples also to the relative motion, but prohib-

FIG. 7. ~a! Same ground state density as in Fig. 1, and~b! the
change of density for a rigid center-of-mass motion.

FIG. 8. Changes of the density for selected resonances marked
with gray triangles in the absorption spectrum of Fig. 5. The plas-
monic motions are given by a stiff rotation of these patterns in the
polarization direction and with the frequency of the external field.
The figures~a!–~f! are labeled by the polarization direction and the
respective frequencies. These dipole induced plasmon motions ex-
hibit strong deviations from a simple center-of-mass motion shown
in Fig. 7~b!.
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ited by the GKT for electrons in QD’s.
We hope that our results can stimulate the technical real-

ization of QD’s with holes in the near future.
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