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For electrons in quantum dots the dipole absorption spectrum is known to reflect only magnetoplasmon
modes with a rigid center-of-mass motidtgeneralized Kohn's theorem). A more complex behavior is
expected for holes in quantum dots, as the valence-band mixing prohibits the separation of relative and
center-of-mass coordinates, and the dipole field couples then also to the relative motion. We investigate
theoretically the far-infrared response of hole-confining quantum dots, assuming a structure that can be realized
by the lateral modulation of a two-dimensional hole gas in gAba_,As-GaAs quantum well or heterojunc-
tion. The ground state of the many-hole system is determined in the local density approximation, using the
4X 4 Luttinger Hamiltonian to include the valence-band mixing. The collective response to a dipole field is
calculated within the random phase approximation. The resulting far-infrared absorption spectra exhibit a rich
set of dipole active magnetoplasmon modes vititternal motions of the charge density, which due to the
generalized Kohn's theorem are not possible for electrons in quantum[86t53-182606)00820-X]

. INTRODUCTION been performed®~8 The resulting specific splittings of the
modesw.. can be compared qualitatively to weak features in

Recent progress in nanofabrication technology has led tthe observed FIR spectra of QD’s with a controllable number
the realization of semiconductor quantum de@D’s) that  of very few electrons per datFor higher numbers of elec-
confine charge carriers in all three spatial directions. Suclrons per QD the FIR spectra have been described in the
structures have been made by superimposing a lateral modutartree and the Hartree-Fock approximatidd-2°The col-
lation onto an otherwise two-dimensional electron gadective excitations obtained within these theories give mag-
(2DEG) in quantum wellSQW'’s) or heterojunctiongHJ's).  netoplasmon modes with frequencies as in Eq.(1) and
Despite the complexity of the confined many-electronsmall splittings that are induced by nonparabolicities in the
systems—which sometimes are addressed as “artificiatonfinement. Calculations within a classical hydrodynamic
atoms”—QD’s exhibit a rather simple far-infraré&IR) di- ~ model give magnetoplasmon modes where the lowest fre-
pole absorption spectrum, even in the presence of a magnetigiencies again have the magnetic field dependenae.dh
field.1~" This has been explained as being a consequence @q. (1).22221t has been shown that even for highly nonpara-
the parabolic lateral confinement potential and of the parapolic confinement the dipole absorption is dominated by
bolic conduction band characterized by an effective masghese two modes and higher modes become only weakly di-
m*. In this case the FIR absorption spectrum shows thgole active??
single-particle spectrum of the center-of-méssn) motion, Band-structure effects have been detected for electrons in
because the dipole operator depends only on the c.m. cooQ@D’s on InSb*® whose conduction band deviates signifi-
dinates, which can be separated from the relative coordicantly from the simple parabolic form. Calculations that take
nates. Thus, the dipole spectra do not exhibit the manyinto account this nonparabolicfty®° are in quantitative
particle interaction, a fact known as the “generalized Kohn’sagreement with the observed downward shift of the
theorem” (GKT).>** The dipole resonances are those of themode. For InSb QD’s with high lateral quantization energies,

2D harmonic oscillator in a magnetic fiéfd** comparable to the energy separation of the states in growth
direction, coupling of these states must also be considered to
, [ @c 2w, obtain agreement between theory and experifi@pecific
w+="\/wgt 2 =2 ( line splittings due to band nonparabolicity and spin-orbit

coupling have been predicted theoretically for QD’s in

where wo is the lateral confinement frequency, andInSh?*but these splittings are smaller than the resolution of
w.=eB/m* the cyclotron frequency. These collective exci- the available experiments,
tations are magnetoplasmon modes with a rigid c.m. motion Much stronger effects can be expected for holes in quan-
against the neutralizing charged background. Deviationsum dot€>2=26from the complex structure of the valence
from this simple two-mode absorption spectrum can be inband?*=*?It is known from experimental and theoretical in-
duced by nonparabolicities in the lateral confinement potenvestigations of 2D hole gases (2DHG’s) in
tial or by band-structure effects. GaAl;_,As-GaAs HJ's(Refs. 33—-4D and Ge-SiGe QW'’s

For two and three electrons in a QD with nonparabolic(Refs. 41—-4#that the degeneracy of the bulk valence band
confinement exact calculations of the dipole spectra haveauses particular features: the coupling between heavy-hole
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(HH) and light-hole(LH) states leads to unequally spacedtive electromagnetic response of the system and the excita-
hole Landau levels with a highly nonlinear magnetic fieldtion of magnetoplasmons by an external dipole field. In Sec.
dispersion, which results in complex cyclotron resonance/ the model parameters are given for QD structures assumed
spectra. The HH-LH coupling prohibits an application of to be realized by the lateral modulation of the 2DHG in a
Kohn's theorem: it has been shown that many-body effect&aAl, _ ,As-GaAs QW or HJ. In Sec. VI we show the cal-
have an influence on the dipole excitation of hole magnetoeulated FIR absorption spectra for these two systems, which
plasmons in 2DHG’$> Calculations of the eigenenergies of are clearly distinct due to the different symmetry in growth
a single hole in a QORefs. 23 and 26and of the corre- direction. We present motion patterns of the charge density
sponding single-particle dipole spectrtfmhave already for dipole active hole magnetoplasmon modes, which are
demonstrated the strong impact of the HH-LH coupling forsignificantly more complex than the known c.m. motion of
holes in QD’s. In a recent wofRwe have published results electrons in QD’s governed by the GKT.
for collective excitations of many holes in a QD, which show
significant deviations from the simple behavior of electrons
in QD’s governed by the GKT. Il. VALENCE-BAND STRUCTURE

The outline of this paper is as follows: In Sec. Il we
present Luttinger's X4 k-p Hamiltonian, which is used to To describe thd'g valence band with hole spim; =
take the valence-band structure into account. In Sec. Il wet3/2 for HH andm; = +1/2 for LH we use Luttinger's
describe the determination of the ground state of holes in 4 X4 k-p Hamiltonian within the axial approximation, ne-
QD within the local density approximatiofiDA). In Sec.  glecting the small anisotropy of the in-plane band structure.
IV we present calculations in the time-dependent LDA orFor the basis ordem; = (+3/2,+1/2,— 1/2,—3/2) it has the
random phase approximatid®RPA) to describe the collec- form?®

3
P+Q+5«B S R 0
. 1
S P—Q+§KB 0 R
R' 0 P—Q-5«B -S
t t 3
0 R -S P+Q- 5«B

The HamiltonianH, of Eq. (2) has been used in Refs. 36

Yoo 2. 2. . . ; .
P= S (Px+ Py+Pz) = Pyy+ Py, (3@  and 38-40 to describe a 2DHG in a perpendicular magnetic

0 field. The HH-LH mixing couples the in-plane motion to the

y 2y motion in growth direction, which leads to highly nonpara-

_ 2 2, 2 2 2 . bolic 2D subbands and to a strong mixing of Landau levels

=2 (p24p2)- 2 2p2=:0,+Q,, (3D g mixing

Q 2mo(px PY) = Zm, Pe = Qurt Qz 3 evolving from different subbands. In Refs. 23, 26 and 27 we

have usedH, to model the properties of a single hole in a

Vot vz ) QD and demonstrated the importance of HH-LH coupling
R= (=312 (px—ipy)?, (30 for holes in QD's.
2mg
S= %(—Zﬁ)(px—ipy)pz- (3d) lil. GROUND STATE
0

For our calculations we use a confinement potential with
The diagonal contributionP=Q are the kinetic energy op- axial symmetry. We employ a cylindrical coordinate system
erators for uncoupled HH’s and LH’s with respective in- with a 3D vectorr=(x,y,z) written asr=(p,z), wherep
plane masses,/(y,=* v,) andz massesny/(y1+2v5). In =(p,¢) is a 2D vector in polar coordinates. The confine-
Egs. (38 and(3b) we separatd® and Q into operators that ment is modeled by a superposition of a potentig{z) in
depend only orp, andpy or only onp,. The off-diagonal the growth direction and a parabolic lateral potential
partsR andS couple HH and LH states. A magnetic field in V,(p) = 1K op?. This form is in good agreement with calcu-
thez directionB=(0,0,B) is included by defining the differ- lations that model the electrostatic potential in Qs
ential operatorp= —i#V +eA with a vector potential in the  Small nonparabolicities i, (p) could easily be incorpo-
symmetric gaugé = B/2(—y,x,0). The Zeeman splitting is rated in the following calculations but shall be neglected
given by the termsn;«xB on the diagonal o . here, as their known influence on the dipole
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excitation$**~?*%js much weaker than the effects induced Q,, is diagonal inm; and », but R andS are off diagonal

by the valence-band structure. For realistic QD systems thand couple HH and LH states.

confinement in the-y plane is much wider than that in the ~ The occupation of the lowest levels is given by the Fermi
z direction. This results in quite different energy separationdunction f(Ey,) and the ground-state density is

of the quantized levels associated with these confinements,
and in a very flat, disklike electron or hole system.

We describe the many-hole ground state of the QD in the n(f)IMEM f(EMM)m_;m [P/ (NI
LDA. The effective single-particle potential is added to the :
diagonal ofH, in Eq. (2). The total Hamiltonian of our sys-
tem is then given by = 23/2 Nm (1), (7)

mj:*

H=H_+14x4[V(2) +Vyy(p) + Vu(r) +Vxc(r)], (4)  where ij"(r) are the envelope functions of E¢). The

where V(1) is the Hartree potential an®/yo(r) the ground-state density can be decomposed into contri_butions
exchange-correlation potential. nmj(r) from thg four spmo_r components. The modula_tlon of

Due to the axial symmetry ofl, in Eq. (2) and of the the wave functlonslf,y,#(r) in Eq. (5) by the Bloch functlons .
confinement potential, the component of total angular mo- Um (") is neglected in the usual envelope function approxi-
mentum is a good quantum number. The wave functions camation by averaging over the unit cells of the lattice and
then be labeled by the corresponding quantum nunilber exploiting the orthogonality of thelmj(r). To evaluate the
and a second indep, Hartree potential

+3/2

+3/2

+312 e? n(r’)
wMﬂ(r)=m2 /zumj(r)ij”(r), (5) VH(r)=;fp dp quo fdz = 8
=

we exploit the very flat disklike shape of the charge densit
and are sums over products of bulk band edge Bloch funcémd agproximate >iIn Eq@8) |r—r’|~|pp—p’| Thengthez’ y
. . M ( .
tionsup, (r) and envelope functiorSp,“(r). We expand the  jntegration in Eq(8) can be used to define a 2D density with
envelope functions in terms of products of the eigenfunctionsixial symmetryn(p’)=[dz'n(r’) and the¢’ integration
of P,=Q,+V,(z) and the wave functions of the 2D har- reduces Eq(8) to the 1D integral
monic oscillator in thex-y plane. The two different masses
in the =z direction, mgy/(y,—2v,) for HH and
mg/(y1+27v,) for LH, give rise to two different sets of

wave functions, which we label by§|mj‘y(z) with

v=12,... andm;|=3/2 for HH, [m;|=1/2 for LH. As it
will turn out later, it is advantageous to define the 2D oscil- p p’ p>p'
p>= ’ P<= for ’

2

4 <
° fdp’p’n(p’)p—K(p—), €)

€ > P>

Vu(p)=

where

lator in thex-y plane for the massy/y; by using the hybrid (10

frequency Vst (w/2)? with  ©3=Kyy,/my and p
w.=eBy;/my, which corresponds to the Hamiltonian andK is the complete elliptic integral of the first kind. _
ny+ ny(p) (The teerXy will be considered |ate)’_The In RefS 36—40, 43, and 44 the 2DHG7S were described
corresponding wave functions are of the form only w!th|rg the Hartree approximation. In a recent
Rn\m|(P)eim‘P, wherem is the orbital angular momentum, and publicatior?® a density-functional approach for holes was

n the radial quantum number. The explicit form of the radialPresented: the exchange and correlation energies were calcu-
functionsR,m(p) of the 2D harmonic oscillator is given, for lated for a homogeneous 3D hole gas, including the degen-

example, in Ref. 13. The expansion in the chosen basis igracy of the bulk valence band. In the case of 2DHG’s with
then written as strong quantum confinement in the growth direction the en-

ergy separation between the first HH subband and the other
_ subbands is large. For realistic QD parameters, the occupied
Fm_"(r) = E Cm_“(v,n)g‘m,w(z) Rn|M_m_\(p)e'<M‘mi)‘P, hole states evolve from this first HH subband and the density
: wn : : J has mainly HH character with only a small LH contribution
6) due to HH-LH coupling. Therefore, we do not use an
where the values for the respective orbital angular moment&Xchange-correlation potential derived from the degenerate
are fixed tom=M—m; due to the conservation of the total Pulk valence band as in Ref. 50, but take an exchange-

angular momentum. For every value Mf, the mixing coef- ~ Correlation potential for a 2DEG and scale it with the in-
ficientsCM~(»,n) are determined by numerical diagonaliza- Plane HH massno/(y;+ y2). In the standard way, we take

!

p<p’

tions of the full Hamiltonian with off-diagonal term®,,, d

R, andS of H_ in Eq. (2), andVy(r) + Vyc(r) of Eq. (4). Vxc(n)= ﬁ{n[EX(n)vLEC(n)]}, (11
The corresponding eigenvalues give the energigg . For

the chosen basis, the matrix elements@y,, R, andScan  where Ex(n) and Ec(n) are the exchange and correlation
easily be evaluated analytically by expressing these differerenergy as a function of the homogeneous densitgf a
tial operators in terms of the creation and annihilation opera2DEG, taken from the calculations of Ref. 51. A possible
tors of the 2D harmonic oscillatd?.The mass deviation term magnetic field dependence Bf(n) andE(n) is neglected.
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The matrix elements o¥,(p) +Vxc(p) between the ra- This allows us to decompose EG?3) into separate equations
dial functionsRy(p) are calculated numerically employing for components with different angular symmetryWith the
a modified Simpson’s quadrature to account for the weakkD Fourier expansion of [ig' — p”| we get
singularity ofK in Eq. (9). These contributions are diagonal
in m; and », but mix states with different radial quantum _ . , o )
numbersn. Self-consistency of the ground state is achieved 5n|(p,w)—j dp’p’| xi(p.p" @)V (p")
in an iterative procedure.

+Bip.p" w)oni(p”,0)+ xi1(p.p' )

IV. ELECTROMAGNETIC RESPONSE anc)
. X2 on(p’, )|, (15
The standard experimental setup for FIR spectroscopy on an
QD'’s involves an electromagnetic wave propagating in the with
z direction(perpendicular to the QD arrawith the vector of
the electric field in thex-y plane. This is described by a 47r%e?
time-dependent external potenti@d®{(r,t)=V(p)e'“", Bi(p.p' w)= f dp"p"xi(p.p",@)Ri(p".p"),
where V®{(p) contains the information about the polariza- (16)
tion. The linear response to this perturbation is described
using the density-density correlation function, or susceptibil-
ity Ru(p’,p")=J daJi(ap’)di(ap"), 17
oy S f(Emu) —F(Emrpr) whereJ, denotes the Bessel functions.
x(r.r ’w)_M v ho+Ey,—Ew,+ill To describe an electric dipole field of strendE§* with
e circular polarization we set in E¢1439
XU (NP (DT (P Wy, (r7), (12)
eE™p, I==1,
wherel" is a phenomenological broadening factor. We again fo(p)z[ (18
use the envelope function approximation to average over the 0, I#=1,

unit cells of the semiconductor lattice and exploit the or-yynere + stands for the two polarization directions. Thus,
thogonahty of the Bloch funcuonsmj'(r.)' in the wavg func- only magnetoplasmon modes witk +1 couple to the ex-
tionsWy, ,(r) of Eq.(5). The susceptibility(r,r’,») isthen  ternal dipole radiation. Foll|=1 the integral in Eq.(17)
determined by the envelope functioﬁﬁjﬂ(r) of Eq.(6) and  gives

the eigenenergieB), , . Analogous to Sec. Ill we restrict our

model to a 2D description of the very flat disklike charge , pP< pP<

density by takingr—r’|~|p—p’|. The induced change of Rea(p.p’) = - K(p_>) _E(pt) : (19
the 2D densitydn(p,w)=fdzén(r,w) is then given by the

RPA formuld?®>2 whereK andE denote the complete elliptic integrals of the

first and second kind, respectively, amd andp-. as defined
on(p’,w) in Eg. (10). We solve the integral equation E@L5) for

e2
VE(p')+ ;J dp” 7 oni(p,w) for I=+1 andl=—1 on a discrete grid for the

on(p,w)= J dp’ x(p,p' @)

e variable p by direct matrix inversion, employing the same
NVxc , quadrature as in Sec. IIl.
+ an on(p’,w) |, (13 The time dependence of the induced change of the density

is
wherex(p,p’,w)=[dzfdZ x(r,r’,w) is the 2D susceptibil-
ity. The first term in the bracket of the right-hand side of Eq. 1 ‘
(13) stands for the bare external dipole field, which is 5”(01):55”(»0,60)@_“"t
screened by the two following terms. The resulting respec-

tive shifts of the collective resonances are known as “depo- 1 i+ omat)

larization shift” and “excitonic shift.” =§5n:1(13,w)e ey (20)
Following Ref. 19, we take advantage of the axial sym-

metry of the system and expand which gives the plasmonic motion of the charge density for

the two polarization directions. Frodin(p,») we can also

Ve p) = 2, 'V p), (143 calculate the polarizability
1 .
ai(w)=E—exf dppe™'¢on(p,w)
sn(p,w)=2 e'¢sn(p,w), (14b)
! 2 )
x(p.p' 0)=2 €'y (p,p' 0). (149

[ and the cross section for photon absorption



53 HOLE MAGNETOPLASMONS IN QUANTUM DOTS 13635

)
o

0. (w) =47 oIm{a.(0)}, (22

-2

which describes the observable FIR absorption for the two
polarization directions.

-
o

density (10™° A
o
[&)]

V. MODEL PARAMETERS @)

As QD’s with holes have not yet been fabricated, we as-
sume realistic model parameters for our calculation. The
most likely starting point for the realization of such a QD 100
structure is the 2DHG in a Ga,Al,As-GaAs QW
or HJ33% Therefore, we use the Luttinger parameters
and the dielectric constant for GaAyg( = 6.85,v, = 2.1,
vs = 2.9, k = 1.2, ande = 13.1).>® To describe a
Ga; Al As-GaAs QW structure, we use a rectangular po-
tential well forV,(z). We choose a well width of 100 A and i
an Al content in the barrier ok = 0.3, which gives a 2 (b)
valence-band offset of 130 meV. For these QW parameters | T .
the eigenenergies for the first and second subband functions % 250 500 750 1000
§|mj‘,,(z) are 7.4 and 29.5 meV for HH, and 20.2 and 78.0

meV for LH. For the HJ, we use foW,(z) a triangular radius (A)
potential*°® with an infinite offset forz<0 and a constant
electric field forz>0. To allow a comparison with the QW o
system, we chose an electric field of 0.265 mV/A, whichduantum dot based on a @dl,_,As-GaAs heterojunction(a)

. lid line: total density; dashed lines: the contributions of the four
leads to subband energies of 20.8 and 36.4 meV for HH, angpoainor components with hole spin = + 312, + 112, 112, 3/2. (b)

§3£6 andtﬁ&? rr:e|_\|/Hf0r It;g agd g(ljvfﬁ t?_e fiﬂe SsgaregloEotted line: external parabolic confinement; dashed line: external
etween the nrs subband an € nirs subband Ot finement plus Hartree potential; solid line: total potential, in-

12.8 meV as in the Q\_N S‘,ys,tem' This Chos_en value forcluding the exchange-correlation potential.
HH-LH subband separation is in agreement with the known

data for the 2D hole systems in G ,_,As-GaAs
HJ'g33-40 VI. RESULTS

For the matrix elements of the HH-LH coupling terms In Fig. 1 we display as an example the self-consistent

and S, integrals with the functions|y,,(z) of the form o4 ,nq state density and the potential for 14 holes in a QD
Jd28112,(2) {312,/ (2), and [dz{1/5,(2) P,{32,/(2) have to be  based on a HJ for a magnetic field Bf= 4 T. In Fig. 1a)
evaluated. For the QW half of these matrix elements are zerghe densityn(p) is shown with a solid line. According to Eq.
due to the inversion symmetry in tizedirection and the total  (7) it is the sum over the COntI’ibUtiOl’T!ij(p) of the four

matrix separates into two blocks. The lack of this symmetryj e spin components, which are shown separately by dashed
for the HJ leads to additional couplings. lines. The two HH components are much bigger than the two

To deltermzine the curvature of the lateral potential .y components. For 14 holes in the QD we get a 2D hole
Viy(p) = 2Kop”, we assume a similar electrostatic modula- jensity of around 1.8 10 cm~2 in the center of the dot,

tion as for the GgAs QD's with electrons from Refs. 2, 3, and, hichis in the order of magnitude known for 2DHG's in
7, where a confmement frequency of.about 4 meV was ObGaXAI L As-GaAs HI'<3% From Fig. 1a) we estimate
served. To scale this for the used oscillator magsy;, We  yhe giameter of the disklike charge density to be about 1200
take iwo=1 Koy /Mg = (4 meV) Jym*= 2.6 meV, A which is substantially bigger than the extension in the
wherem* = 0.067j is the effective electron mass of GaAs. girection of about 100 A(for the QW, as well as for the HJ
With _the mass deviation ter@,, this leads to an oscillator parametens This demonstrates the validity of the 2D ap-
spacing of 3.0 meV for HH and 2.2 meV for LH. The calcu- proximation that was used in the ground state and response
lations have been made for a temperaturd of 1.0 K. For  cajculations in the present work and throughout the existing
the phenomenological line broadening in E&2) we usel’  theoretical literature on FIR spectra of QD's with
= 0.1 meV. electrong/ 520 22

In the investigated range of up to 14 holes per QD con-  Figure Xb) displays the radial potential, corresponding to
vergence for the calculated FIR absorption spectra Wage density of Fig. (a). The external parabolic confinement
achieved by incI_uding in the baSiS for the gxpansion of the‘/xy(P) is shown with the dotted line, the dashed line gives
wave functions in Eq(5) the first two functions(|m.(2), v, (p) plus the Hartree potentiady(p), the solid line gives
v = 1,2 for HH (m;=*=3/2) and LH (n;=*1/2) and the the total potentialV,,(p)+Vy(p)+Vxc(p) including the
eleven lowest radial functionR,(p) for n = 0,1,...,10.  exchange-correlation potential. The screening of the confine-
The total matrix size for a diagonalization was therefore 88ment potential due to the charge carriers in the center of the
X 88. To determine the ground state, the diagonalization ha@®D leads to a flat bottom of the effective single-particle po-
to be performed for several total angular momeiita tential. The upward shift of the potential bottdsf about 50

potential (meV)

FIG. 1. Self-consistent ground stateBat 4 T for 14 holes in a
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FIG. 3. Integrated density components for hole spin
m;=+3/2,+ 1/2,— 1/2,— 3/2 as a function of the magnetic field for
six holes in a quantum dot based on a,8lg _,As-GaAs hetero-
junction. The ground state has mainly heavy-hole character, domi-
nated bym;= —3/2 below 8 T, and byn;=+3/2 above 8 T.

bolic confinement give the known simple two-mode absorp-
tion spectrum with the resonance frequencies of Eq. (1)
for the plasmonic c.m. motion. If we artificially set the
magnetic field (T) HH-LH coupling termsR andS in H, of Eq. (2) to zero, our
system reduces to the simple one known for electrons, but
FIG_. 2. Eigenenergies as a function of the magnetic fielpl for sixwith the HH in-plane massng/(y;+7y,) as only states
holes in a quantum dot based on a8k, -,As-GaAs heterojunc-  ayglving from the lowest HH subband are occupied. In Fig. 4
tion. (Hole energies are taken positiye. we show the corresponding FIR absorption (o) for the
meV for 14 hole} gives the estimate for the interaction en- two polarization directions of circular polar.ize_d radiation.
ergy of the system within our mean-field description. W|th|n an error o'f less than 1%, the result is in agreement
In Fig. 2 we show selected lowest eigenenergigs, as a with Eq. (1), applied to the massiy/(y;+y2) and the os-
function of the magnetic fiel@ for the case of 6 holes in a Cillator frequencyfiwy=3.0 meV. It should be noted that
QD based on a HJ. The levels lie above an energy that i§ven in the absence of band mixing, HH's and LH's are
given by the addition of the energy from the quantization inCoupled by the Coulomb interaction. As a result, a QD sys-
the z direction(of 20.8 meV for the lowest HH subbandnd €M containing uncoupled HHand LH's would not satisfy
the upward shift of the potential bottom by the Hartree and<0ohn’s theorem, and the r_esu!tng spectrum would be more
exchange-correlation potentigbf about 25 meV for 6 Complicated than the one in Fig. .
holes. Due to the flat bottom of the self-consistent potential

the level spacing is significantly smaller than the confine- ; -

ment frequency for HH of 3.0 meV. AB = 0 states with z @ n M H )\ \ 5‘1(I)

total angular momentum+ M and —M are degenerate. For e i

small B, the mj=—3/2 state¥ are lower than those with g S HJ{H& 12

m;= +3/2 due to the Zeeman term;«B. With increasing ‘g’ wmnina 13

B, the HH-LH coupling lowers thet3/2 states relative to = ; |'“‘\ l;”\ ;”1% 6

their — 3/2 counterparts. This leads to a crossing of these two S —Hi& 4

sets of states @=7—8 T. In the high magnetic field limit s P 5
: 0

the QD levels converge into hole Landau levels and the low- Al

est states belong to a Landau level with dominant 0 5 10 15
m;=+3/2 character. To illustrate thi dependence of the . b) ‘ '

ground-state character, we have plotted in Fig. 3 the integrals % B(T)
(1/N) [dr nmj(r) over the density components of E(f), _2 1‘21
normalized by the number of holéé = 6. We see, that in k:) 10
the whole magnetic field range the occupied states have 5 i 8
mainly HH charactefdominated bym;=—3/2 below 8 T g j n 6
and by +3/2 above 8 T with only very small LH contribu- 2 % 4
tions (m;==1/2). As already mentioned in Sec. I, this ® = 2
justifies our approximation for an exchange-correlation po- 0 5 10 15 0
tential derived for a 2DEG, scaled with the HH in-plane energy (meV)

mass.

In two recent paper§°®’it has been shown that the time-  FIG. 4. Absorption spectrum fdg) the plus, andb) the minus
dependent LDA can reproduce the exact result of the GKTdirection of circular polarization for holes in quantum datithout
This has also been found in Refs. 7 and 18—-20, where ththe heavy-hole light-hole coupling terrsandS. Neglecting these
Hartree-RPA calculations for electrons in QD’s with para-couplings reduces the system to the one with electrons.
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FIG. 5. Absorption spectrum for 14 holes in a quantum dot  FIG. 6. Same as in Fig. 5, but for a quantum dot based on a
based on a Ga\l ;_,As-GaAs heterojunction fofa) the plus po- GaAl l_X_As-.GaAs quantum v_veII. The inversion symmetry in the
larization, and(b) the minus polarization. The strong deviations 9rowth direction leads to a simpler absorption spectrum as in the
from the spectrum in Fig. 4 are induced by heavy-hole light-holec@S€ Of a heterojunction shown in Fig. 5.

coupling. For the resonances marked with the grey triangles, the ) ] ]
p|asm0nic motions of the density are shown in F|g 8. the Separat|0n betWeen the f|rSt HH and the f|rSt LH Subband.

The dipole spectrum for the QW system is significantly sim-

The FIR absorption for 14 holes in a QD based on the HJpler than that for the HJ system in Fig. 5. As described
calculatedwith the HH-LH coupling term® andSis shown  above, the inversion symmetry in taalirection eliminates a
in Fig. 5. The important effect of this coupling becomespart of the HH-LH couplings. Effects associated with this
evident by comparison with Fig. 4. The dominant mode insymmetry have been observed previously in 2DH®’s.
the plus polarizatiofisee Fig. 5a)] has a much weaker mag- Within the investigated range from 6 to 14 holes per QD,
netic field dispersion and a large splitting fB=6—-9 T.  the calculated FIR spectra show essentially no dependence
The magnetic field dispersion results from the repulsion been the particle number. For less than 6 holes per QD, we
tween levels due to HH-LH coupling and is found already inobserve additional features, which might indicate the break-
the corresponding single particle excitatiGAshe spliting  down of our mean-field description. The spectra also do not
is a consequence of the changing occupation of the lowesixhibit a significant dependence on the temperature in the
levels described above and illustrated in Fig. 3: at small magrange ofT=0.1—- 4.2 K. A repetition of our calculation in the
netic fieldsB<6 T the spectrum is dominated by transitions Hartree approximation, neglecting the exchange-correlation
originating from the states withm;=—3/2 charactet®  corrections in the ground state and response calculations, re-
whereas forB>11 T transitions from thet3/2 states are sults in different eigenenergidsy, and a slightly changed
important. At intermediate fieldB=7—10 T both kinds of ground-state density profile, but gives essentially the same
transitions are possible, which leads to the splitting. A newFIR absorption spectra.
mode appears in the plus polarization for magnetic fields In the high magnetic field limit, where the cyclotron orbit
B<10 T at an energy around 11 meV, which is related to thesize becomes much smaller than the dot size, the influence of
separation between the first HH and first LH subband of 12.8he Hartree and the exchange-correlation potential for the
meV. This “inter-subband mode” becomes dipole allowed ground-state calculation as well as the influence of the depo-
as thek-p Hamiltonian H, of Eq. (2) couples the levels larization and excitonic shift in Eq(13) for the response
evolving from different subbands in thedirection. For the calculation become negligible. In this limiting case the reso-
minus polarizationsee Fig. )] we find a basically un- nance energies are directly given by differences between
changedw_ mode and an additional mode fBr> 7 T that  eigenenergie€),,, and our FIR absorption spectra become
grows in strength and splits with increasing field. A similar identical to those of a single hole in a QD, i.e., without
mode was also found in the corresponding single-particlénteraction effectd’ Furthermore, these spectra also ap-
excitations?’ Here, this mode arises with the shifting of the proach the cyclotron resonance spectra of a corresponding
ground-state density from 3/2 to primarily +3/2 character 2DHG, calculated independently for the same QW or HJ
as described above. parameters in a single-particle picture using also Luttinger’s

The calculated FIR absorption for 14 holes in a QD based!x 4 k-p Hamiltonian®® (It should be noted that correlation
on a QW is shown in Fig. 6. Again we observe a nearlyeffects anticipated in high magnetic field, such as Wigner
unchangedw _ mode, a strongly lowered, mode with a  crystallization, cannot be represented within our mean-field
splitting, and a new mode in the minus polarization related tdreatmenkt For the HJ system we also find good qualitative
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FIG. 7. (a) Same ground state density as in Fig. 1, &dodthe
change of density for a rigid center-of-mass motion.

agreement with the available experimental cyclotron reso- (b) plus
nance dat®~3°of 2DHG’s in GaAl ;_,As-GaAs HJ's with 4.1 mev
the somewhat higher densities of (2.3.6)x 10 cm™2
(compared to~1.5x 10** cm~2 for the areal density in the
center of the QD with 14 holesThe high-field dataB =
10-14 7T are typically characterized by one main peak
around 4 meV and one or two weaker features at slightly (c) plus
higher energy, as is the case for our calculated FIR spectrain 102 meV
Fig. 5.

gFor an interpretation of the modes in our absorption spec- . FIG. 8. (;hange; of the densit.y for selected resonances marked
tra we look at the form of the time-dependent induced"/th 9ray triangles in the absorption spectrum of Fig. 5. The plas-
change of the charge density as given by ©6). According monic m_otlon_s are given by_a stiff rotation of these patterns in the
to the GKT, the only dipole active magnetoplasmon modeé;olarl_zatlon direction and with the freque_ncy_of th_e ex_ternal field.
for electron;‘ in parabolic QD’s are c.m. motions. The corre- he flggres(a)—(f) are labeled by .the pglanzanon direction aqd the
sponding rigid shifts of the ground-state densityp) are respective frequencies. These dipole induced plasmon motions ex-

! - . . hibit strong deviations from a simple center-of-mass motion shown
circular motions with the displacement vector in Fig. 7(b).

B
R

(f) minus
14.3 meV

cog gt wt)

son of Figs. —8(f) with Fig. 7(b) shows that only the
sin( ot wt) | (23) gs. &)-8(f) g. 7(b) y

w_ mode with Fig. 8) maintains a simple c.m. motion,
whereas all other hole magnetoplasmon modes exhibit a
mixture of c.m. and internal motion. The dipole excitation of
such plasmon modes is according to the GKT not possible

Spem(t)=9dpg

where Spg is the amplitude and the phase. The change in
densitydn. (p,t) for a c.m. motion is therefore determined

b
y for electrons in parabolic QD’s.
n(p)+ onem(p,t)=n[p+ dpcm(V)]. (24
_ _ _ VII. CONCLUSIONS
A Taylor expansion for small amplitude$p, of the right-
hand side gives We have calculated the FIR absorption spectra of QD’s
confining holes, which reflect the dipole excitation of hole
n(p) magnetoplasmons. The ground state of the many-hole system
5nc.m.(P,t)=5PoWC05(aoi wt—¢), (259 was determined in the LDA using Luttinger'sx k-p

Hamiltonian to include the valence-band mixing. The collec-
wheredn(p)/dp is the derivative of the ground-state density tive response to a dipole field was calculated within the RPA.
with respect to the radial coordinate. In Fig. 7 we plot theWe present the resulting FIR spectra for two realistic model
same ground-state densityp) as in Fig. 1 and the resulting systems: QD’s with holes realized by the lateral modulation
on . m(p,t) as given by Eq(25). The change in density for a of a 2DHG in a GaAl ; _,As-GaAs HJ or QW.
pure c.m. motion én.,(p,t) can be compared with According to the GKT, parabolic QDwith electronsex-
éon(p,t) of Eq. (20 resulting from the response calculation. hibit a single-particle dipole spectrum with the two reso-
In the case of electrons in QD[svhich we can describe by nance frequencieso.., reflecting only magnetoplasmon
setting the HH-LH coupling termR andSin Eqg. (2) to zerd modes with a rigid c.m. motion. For QDwith holes the
the calculatedn(p,t) for the two modeso - in the spectrum valence-band structure induces strong observable deviations
of Fig. 4 reproduce the exact resdt; ,(p,t) to a very high  from this simple behavior: the HH-LH mixing leads to a
degree. But for holes a more complicated behavior is obweak magnetic field dispersion of the, mode and to an
served: in Fig. 8 we plot the real part 6h(p,t) for selected anticrossing in this mode; the coupling of states evolving
resonances which are marked by grey triangles in the absorfrom different subbands in thedirection induces new dipole
tion spectrum of Fig. 5. Figuredd and 7b) and 8a)-8(f)  transitions at frequencies related to the energy separation be-
use the same length scale in thg plane, but the amplitudes tween the lowest states. The resonances in our calculated
are normalized to the same maximum height. According td~IR absorption spectra are due to hole magnetoplasmon
Eq. (20) the time dependence of the density fluctuation patimodes withinternal motions of the charge density. The ex-
terns is given by a stiff rotation in polarization direction and citation of such modes is possible for holes in QD’s as the
with the frequencyw of the external dipole field. A compari- dipole field couples also to the relative motion, but prohib-
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ited by the GKT for electrons in QD’s.
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