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Electronic states in antidot lattices: Scattering-matrix formalism
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A method of full quantum-mechanical calculation of the energy bands with the use @& thatrix is
developed in antidot lattices subjected to a uniform perpendicular magnetic field. It can simplify the calcula-
tions considerably in comparison with other methods because only several traveling and a few evanescent
modes are sufficient to give accurate results. The resulting energy bands are extremely complicated for realistic
antidots. Calculated density of states are analyzed semiclassically in terms of the periodic orbif 8&6$-
182996)06120-4

I. INTRODUCTION scattering at a junction. This method can simplify calcula-
tions quite effectively by minimizing the necessary number
Recent advances in microfabrication technology anddf modes that define tiematrix. A method to reduce matrix
crystal-growth technique enable one to prepare lateral supesizes using a recursive Green's-function technique was
lattices with submicrometer structures on the surface of twoproposed;” but the present method is expected to be much
dimensional electron systef@DES with a mean free path more efficient.
of the order of several micrometers. A 2DES modulated by a !n Sec. Il theS-matrix formalism for the calculation of the
periodic strong repulsive potential is called “antidot lat- €ENergy bands in antidot lattices is described. Some charac-
tices.” The transport in this system is ballistic, i.e., electronsteristic features of the energy band and their relation to prop-
are scattered from an antidot potential rather than impurityerties of theS matrix are discussed in Sec. lll. Section IV
The purpose of this paper is to develop a method of fullgives results of numerical calculations. The results of elec-
guantum-mechanical calculations of energy bands and cortonic states of antidot lattices are analyzed by the periodic
ductivity of the antidot lattice in the presence of uniform Orbit theory based on the trace formula in Sec. V. Summary
perpendicular magnetic fields. and conclusion are given in Sec. VI. A very preliminary
Various interesting phenomena have been observed in aRccount on a part of this work was presented previotisly.
tidot lattices in uniform perpendicular magnetic fields. They
are the quenching of the Hall effettAl'tshuler-Aronév- Il. S-MATRIX FORMALISM
Spivak oscillation neaB~0,2~* and the so-called localized
peaks in the magnetoresistaricen magnetic fields corre-
sponding to localized peaks, the classical electron trajectory We shall replace an antidot lattice by a two-dimensional
becomes commensurate with the antidot period and encirclegray of quantum-wire junctions as schematically illustrated
a specific number of antidots. Fine oscillations were ob4n Fig. 1. Each junction with the widtkV, in the x direction
served in the magnetoresistance around the localized¥feak.andW, in they direction is connected to neighboring junc-
The localized peaks and the quenching of the Hall effections through a quantum wire with length andL, in the x
have been understood in classical mechahic®n the fine  andy directions, respectively. The lattice periocaisn the x
structures near the localized peak, a semiclassical quantizdirection ando in they direction. The system is subjected to
tion of periodic orbits was suggest&emiclassical conduc- a uniform perpendicular magnetic fieRi
tivities have been derivédind used for analysis of such fine  Figure 2 shows a junction of two infinitely long quantum
structures:*? Full quantum-mechanical calculations of en- wires. The system is divided into four wires denoted as 1-4
ergy bands and conductivities were also repottedfin par-  and a rectangular junction region. The origin is chosen at the
ticular Ishizakaet al. made a detailed comparison betweenlower left corner point of the junction. The Hamiltonian for
semiclassical and full quantum-mechanical restiltfrans- ~ an electron in the two-dimensionay plane is
port properties were also calculated by transmission prob-

A. S matrix

2

ability through finite number of antidot4:'®> A method of 1 e

. . . H=——|p+— + .
calculating electronic states and transport properties was de- < 2m* P c A VoY), @D
}gg:gg?&é‘” finite quantum-dot arrays in- high magnetlcwhere,m* is the effective mass of electrong(x,y) is the

Difficulties in full quantum-mechanical calculations lie in confinement potential, and the vector potenals chosen

the fact that the unit cell should be expanded considerably RS
a magnetic field depending on the flux passing through the A=(—By,0 292

\ =" . , =(—By,0). (2.2
unit cell in its absence. In the preseimatrix formalism we
replace the antidot lattice by a two-dimensional array oflt is worth pointing out that the density of states and the
guantum-wire junctions. Energy bands are determined bgonductivity are independent of this choice of the gauge.
imposing Bloch’s theorem on aB matrix that describes the The wave functions in the wires 1-4 are given by
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xexp{ —i %)EM(X),

where | is the magnetic length defined by=+eB/ch.
(ma, {n+1)b) i a, ' Modes in each wire are specified as with integerv. There
: are two kinds of modes: traveling modes with real wave
number and evanescent modes with imaginary wave number.
For eachv, we shall define the wave numbef, in such a
way that it is positive for traveling modes and its imaginary
is positive for evanescent modes. The sigr(—) denotes a
mode traveling or decaying in the positiveegative direc-
tion with wave numbex, (—«,). The wave function is given
(ma, nb) {(m+1)a, nb) by 7,.(y) for the motion in they direction in a wire infi-
W, Le nitely long in thex direction. In a wire in they direction, the

- > corresponding wave function is written &x) with the

gaugeA’=(0,Bx), which is different from Eq.(2.2). They

FIG. 1. Schematic illustration of a two-dimensional array of are solutions of the equations
junctions.

oL 125 — W, /2)2+V
o ayE T3 MRy TP W22 V() 7,.(Y)
1
0,0 _ : y X
Y= N exr{l(iKHEz X+ = }mi(w, =En,=(y),
- 2,y —
[ I Ol + m* wc(x+l W,/2)2+V(X) | €,+(X)
1 W L =E¢,+(x),
99— ol (2~ 25y Y| 61200
\/U—v whereE is the energy and,=eB/m*c the cyclotron fre-
Xy quency. FurtherpX andv? are the group velocities of a
Xex;{ —i I_Z) £,.(X), traveling mode in thex and they direction, respectively, and

are given by

fi W.
00 _ Wy Lx ”izﬁfdy 77§+(Y)(Ki+ TZ— |X2) 7,+(Y),
(v[/SV’t eXF{ ("‘K + 2|2)(X_Wx_ 7”771/:()/)1 (25)
W, X
—*fdx §t+(X)(K¥—W+I—2)gH(x).

ﬁ =
<

This velocity has been defined in such a way that it is always
positive. The normalization factor of an evanescent mode is
arbitrary, as will be discussed below. The wave function in
wires is represented by using the expansion coefficients
with respect to modes of Eq&.3):

WPO0y) =3 (G200 +COOUO 0y,
(2.6

with i =1,...,4. TheS matrix gives the following relation be-
tween incoming and outgoing waves:

X Su S Sm S\ [CrY

C(zo—'o) Si S Sz Sy C(zoio)

CO [ 7| S;i Sz Siz Sam cPo [
FIG. 2. Schematic illustration of a quantum-wire junction for CE&O) Sa1 Sz Sz Sua CE‘O;@

calculation of anS matrix. (2.7
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whereC consists of expansion coefficients and therefore
its dimension is the number of modes. TRenatrix defined wave function in the wire region:
above is not necessarily unitary because evanescent modes
do not carry current, although the part of tBematrix for
traveling modes is unitary. For wires connected to a junction
specified by (n,n), modesv in 1-4 wires are defined by

SV (xy) = 1200 (x—may - nb)exr{ i J7 (x—ma)|.

For this definition, the scattering problem at each quantum;

(2.9

wire junction is described by the sarfematrix.
Kirczenow and collaboratot& 8 developed a method of

calculating electronic states and transport properties of dot

arrays in high magnetic fields. In this method &matrix is

defined as a quantity describing mixing between edge chan-

ELECTRONIC STATES IN ANTIDOT LATTICES:

Bloch's theorem imposes the following conditions on the

WM (x,y) = exp( —ik@) WM D (x+a,y)

\If(zm*”)(x,y):exp{i

X
|—2—ky Qb

for ma—L,<x<=maandnb<sy<nb+W, and

—1. With the aid of the relatlons

nels existing in each dot. The method seems to be quite

w&”"“”(x,y):exr{

(n+i)ab

|)ab

13615

(2.12

wmtalixy+qb)

(2.13

for nasxsna+W, andnb—L <y=nb, withi=0,1,...9

w(m'”+i)(x+a,y),

(2.19

effective in systems consisting of a periodic array of dots b
interacting weakly with each other, particularly in high mag- zp(zm'“)(x,y):exp(i q_2 x) e Dix y+qb),
netic fields where clear edge states are formed. On the other |

hand, the present method considers the scattering among (2.19

states aSSOCIated W|th Channel reg|0ns betWeen ne|ghb0r|rmoch S theorem for expans|on Coeff|c|erﬁ‘s|s Obta|ned
antidots and is expected to be more suitable in antidot lat-

tices consisting of periodic array of “scatterers” instead of (i) . (n+i)b clmni
dots. The present method and that of Kirczenow and co- Ce '=exp —i{ ket —pz—a|Cq 7, (2.16
workers are considered to be complimentary to each other.

COl =exp(—ikygb)Cyt a7 Y (2.17)

B. Energy band
These are rewritten in the relation between incoming and

For an infinitely large array of such junctions the period 'Soutgoing waves:

a=W,+L, in thex direction ando=W,+L, in they direc-

tion. We restrict our calculation to magnetic fields with a Co ct
rational number of flux quanta per unit cell, ie., Cl_ Ci
Bab/®y=p/q, wherep and q are mutual prime numbers 2 ZPQ”)(kX,ky) 2|, (2.18
and we shall impose Bloch’s theorem for the peréoih the Cs Cs
x direction andgb in they direction. AnS matrix S, for this Cs C,
extended magnetic unit cell is given from the combination of h
an S matrix for a unit cell. We have where
- + o o Pt O
Cl_ Se11 Se1z Se1z Ses Ci 0 o 8 p-1
Co| | Se2r Sezz Sezs Seas G, Miky ,ky) = P. 0 0 é , (219
Cs Sest Ses2 Sess Sess Cs |’ OX P 0 0
C, Sesr Seaz Sess Seas C, y
(2.9 with
with el (a—Dab/? 0 R
cimn+a-d) cymrra-b . , 0 gila-2abi> ...
Ci C+ Px:el(kx+bn/| )a
1= : s 3= : s !
ey e o
- - 0 O N 1
c: _C(m n) CiEC(T’n+q_l). _
2 Lo P, =ekyab, (2.20

WhenA=(—BY,0), Bloch’s theorem is given as follows for

this magnetic unit cell: Energy bands are given by the condition that Egs9) and

(2.18 have nontrivial solutions o€. This condition is

def Py (ky,ky)Se(E)—1]=0, (2.20)

where the relatiorP,=P ;! is used andS,(E)=(S.;) is
the S matrix for extended unit cell defined in E.9) for a
given energykE.

i, k(%Y =exp(—ik@) g i (x+ay) (210

ol -

)qb}lﬂk Kk, (X,y+qD).
(2.11)



13616 SENJI URYU AND TSUNEYA ANDO 53

At first glance Eq(2.21) is dependent on the choice of the C; My, My [Cy
unit cell n. However, we have the relation + :(M M ) - (2.31)
Cs 21 22/ \ C3

P (ke 2mplaaky) =P Pk ky) (222 L

from the definition of the matri¥,. Thus the apparent
dependence corresponds to nothing but the fact that the env,, M,
ergy bands are periodic with periodrja in the k, direc- I'( )

Sell Se13>+(se12 S1314)

tion M21 M22 Se31 Se33 Se32 Se34
The S matrix has ambiguity concerning the phase of ~Sezz Py =Seos) Y Sest Ses
modes and even the amplitude for evanescent modes. We X Py— Ses2 — Seus Sear Sess)
can choose generally the phase such that
(2.32
U +(X, :eigvr +(X, ,
lplvf( y) lplvf( y) We then have
E Vi(xay):eid)yiw Vi(x7y)v _
2 2 C';r 0 - M12 ! Mll _1 C]J_r
_ _ (2.23 3= ). (233
Y3y (%,Y) =€ 3,0 (X,Y), Cs) 11 =Myl (M 0J1C

Yape (X Y) =€ 4y L (X,Y), With use of Eq.(2.16, we have the eigenequation

where 6 and ¢ are real for traveling modes and are complex ct Pl 0 \/0 —Mdul"YM 1
for evanescent modes. If &matrix is defined by modes Eq. eikxa( 1) = x P1> 1 _Mlz) (Mll 0 )
(2.23, then it is transformed into Cy 0 X 22 12
- Ci
1
where
Therefore k, can be calculated for a giveld andk, from
U, 0 0 0 eigenvalues of Eq2.34). Similarly, k, can be calculated for
| o Ug O 0 a givenE andk, . This simplifies greatly the actual calcula-
U= 0 o Uy, O (229 ton for the energy band, because the calculation of the de-
0 0 o Uy, terminant is quite time consuming.
and C. Density of states and conductivity
U;+l 0 0 0 The density of states and conductivity can be calculated
0 U;l 0 0 from energy bands. The density of stal2€E) is written as
U,= * -1 (2.26
2 0 0 P 2 2 dl
o o o Yy _ 3§ a
: D(E) a2 P Ay (2.39
with
— i i where 2 comes from the spin degeneracy and the line integral
[Uo. Imn=€"m0mn,  [Uy Imn=€mmn. (2.2 o along the equienergy line at ener§y The group velocity
These matricet), and U, have the property vis
Uz "PeUp =P, (2.28 1 9E(K)
o ) ) v(k)=—- ——. (2.36
which immediately leads to the conclusion that the energy ho ok
spectrum is independent of ambiguity in the phase ofSan o )
matrix, i.e., The conductivity can be calculated with use of the Boltz-

_ mann transport equation and becomes
def Pe( kx 1ky) Se( E)—1]=det Pe( kx ,ky) Se( E)—-1].

(2.29 1 ezrvivj of
. . Uijzﬁj % 7 ——E dl dE, (237}
It is necessary to transform E¢R.21) into more conve- ™ V] J

nient form for numerical calculations of energy bands. From

Eqg. (2.17), C, andC, satisfy Bloch’s theorem wheref is the Fermi distribution functioryis a phenomeno-
logical relaxation time,i,j=x,y, and the line integral is
C, 0 p;l C, along the equienergy line. Unfortunately, E.37) gives

(Cf{): P, 0 )(C;)' (2.30 only the symmetric part of the conductivity tensor, i.e.,

Ty = Oyx, and an antisymmetry part or the Hall conductivity
Substituting Eq(2.30 into Eqg. (2.9, we have cannot be obtained from this equation.
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lll. SOME EXAMPLES such thatr, s, andt are all real without loss of generality.
When the energy is close to a quasibound ldyglocalized

inside a junction, we have
We consider the simplest case of a square antidot with a

A. Single traveling mode

single traveling channel in the absence of a magnetic field. to
The S matrix is written as r~Isst~-—— E,’ 3.6
r-s ts with t, being a constant having the dimension of energy.
s r st This leads toa~0, B~—t, andy~1. Therefore, the energy
S(B)= t s r s (3D pand becomes
s t s

E=Ey—2tg[ cogk,a) +cogk,a)], (3.7
wherer is the reflection amplitudes is the transmission
amplitude for turning left or right, and is that for going Which is nothing but the band obtained in a nearest-neighbor

straight. Usuallyr, s, andt are complex numbers and satisfy tight-binding model.

the relations from the unitarity of a8 matrix When the energy is close at a quasibound lé&vghsso-
ciated with the first excited one-dimensionaD) subband,
[r|2+2[s|]?+[t]*=1, on the other hand, a8 matrix for the evanescent mode with
the smallest wave number is written as
Re (r+t)s*]=0, (3.2
r s t -—s
|s|2+Re rt*]=0. s _s
. . . . S(E)= B , (3.8
Subtracting twice the third equation of E(.2) from the t s s
first one yields the relation -s t s r
Ir—t|=1. (3.3 because of the symmetry of the wave functiBrand we
) . have
Equation(2.21) yields
4a cogka)cogk,a)+2p4[ cogk,a) +cogkya)]+ y=0, [~+S~—t~— ! , (3.9
(3.9 E-E;
with with t; being a constant. Then the energy band is
a=t*-¢?, E=E,+2t,[cogk,a) +cogk,a)], (3.10
B=28%(t—r)+t(r’2—1-1t2?), (3.5 which is again a band obtained in a nearest-neighbor tight-
binding model.
y=—4s%(t—r)?+(r2—1—t??2
It is straightforward to show with the use of the unitarity IV. NUMERICAL RESULTS
condition (3.2) that Eq.(3.4) constitutes a single equation, A. S matrix in a lattice model

i.e., the real and imaginary parts give the same equation. ) o ]
We can derive characteristic features of the bands using 10 calculate ars matrix for a quantum-wire junction we
Egs.(3.4) and (3.5). The following are some examples. consider a two-dimensional system on a square lattice with
lattice constan&’ and an isotropic nearest-neighbor transfer

(i) For an energy where—t=—1, in particular, Eq(3.4) integral. The magnetic field is included in terms of a Peierls
becomegcos(k,a) —1][cosk,a) —1]=0, giving the equien- phase factor of the transfer integral and the confinement po-
ergy linek,=0 ork,=0. tential is included as a local site energy. This lattice model

(i) For an energy where—t=1, on the other hand, Eq. can  simulate the two-dimensional system at
(3.4 becomes[cosk,a)+1][coskya)+1]=0, giving the GaAs/ALGa _,As heterostructures well if we choose the lat-
equienergy linek, = mr/a or k, = m/a. tice constant such that-a’=10 with \¢ is the Fermi wave-

(iii) Finally, whent?~=s?=0 and|r|?>=1, Eq.(3.4) gives length of the 2DES in the absence of the antidot potential.
cos(kxa)+cos(kya)=(1—r2)/2t. This seldom has a solution The S matrix is calculated in a recursive Green’s-function
becausd is very small unless==+1, leading to the forma- technique developed previously.In order to demonstrate
tion of a gap at this energy. the accuracy of th&matrix method, we shall calculate also

) ) _ exact energy bands by diagonalizing the Hamiltonian in the
These peculiar features can be found in the numerical results; e |attice model.

given in Sec. IV A. Although an antidot potential should be determined by a
self-consistent calculatiof?;?®> we use the model potential
B. Single evanescent mode V(x,y) given by

Consider the case that & matrix defined with a single
evanescent mode is sufficient for accurate description of the _
: V(X,y) - UO
system. Then we can choose the phase of wave functions

2B
, 4.9

{ WX) S( wy
co§ —|C0§ —
a a
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0.053
040 ul o.052 |-
kS
&
0.35 S 0.051 |-
>
— 2
w
ur 2 o050 |-
5 w
2 (@)
S 0.049
T 025 r X M r s 0 5
g Wave Vector 1/r, 1/s, and 1/t
C
w 0.20 I 1 FIG. 4. (a) Narrow band calculated with a single evanescent
’ k=0 A mode below the bottom of the lowest 1D subband in the wire region
A — and (b) the energy dependence of!, s™%, andt 1.
Va I/
O . 2.2
0.15 ya 1% ergy dependence d&fF, |t?—s?|, and argf —t), wherer, s,
ky=n/a| / o manr andt are the elements of t@matrix for the traveling mode,
<Z] - — defined in Eq(3.1).
r X M r 00 05 10 Almost all the characteristic features of the energy band
Wave Vector Ir21,1t>-s2| discussed in Sec. Il A appear in the energy bands calculated

in the S-matrix formalism.
FIG. 3. () Calculated energy bands of antidot lattices in the  (j) The phase of —t becomes* or r—t=—1 at the
absence of magnetic fields in the energy with a single travelingenergyE/EF~O 121, 0.277, and 0.376ote that|r—t|=1
2 2 2 ) v ’ )
mode and(b) energy dependence @, |t°—s|, and arg(—1).  pecause of the unitarity of th® matrix). At these energies

Thg dots are c_:alculated by usin_g t_ﬁematrix yvith the_ i_nclus_ion of \ve havek, =0 andk,=0, according to the discussion in Sec.
a single traveling mode and solid lines by diagonalizing directly the

Hamiltonian of the lattice model. The inset shows the first Brillouin (i) Similarly, the phase of —t vanishes or —t=1 at

zone. E/E.~0.192 and 0.355 for whichk,==m/a and
ky=*m/a.
whereU, is a maximum of the potentia]g is a parameter (iii ) Further,|t*—s?|=0 and|r|*>~1 atE/Er~0.372, lead-

describing steepness of potential, ads the period. This ing to the gap formation. Note thét|~0 and|t|~0 also at
potential corresponds to the system whége=L,=0 and the bottom of the 1D chann&/Eg~0.116, where the gap is
W,=W,=a in Fig. 1. It is convenient to introduce the anti- not necessarily formed because1.

dot diameted defined as the width in the direction of the Figure 4a) shows a narrow band &/E-~0.051 below
region where the antidot potential is larger than the Fermthe bottom of the lowest 1D subband. This is associated with
energyEe . In the following numerical calculations we shall a bound state formed inside each quantum-wire junction and
choose the parameters such tladh-=4.31, Uy/E-=8.4, hgs .the dispersiqn characteristic to a nearest.-neighbor tight-
d/a=0.6, andg=2. Further, the energy is measured in unitsPinding model, i.e.,«[cosk,a) +coskya)]. Figure 4b)

of the Fermi energy in the absence of antidot potential. ~ Shows 1/, 1/s, and 1f as a function of energy, where s,
andt are the elements of th€ matrix for an evanescent

mode. It is clear that this is nothing but a demonstration of
B. Single traveling or evanescent case the discussion in Sec. 11l B.

Figure 3a) shows energy bands in the energy region cor-
responding to the presence of a single traveling mode
(0.166<E/Er<0.409 in the absence of a magnetic field. = Figure 5a) shows the energy bands in the wider energy
The dots represent the bands calculated by including only eange. The bands at a given energy are calculated by includ-
traveling mode in theS-matrix method and the solid lines ing all traveling modes and a single evanescent mode having
those obtained by a direct diagonalization of the Hamiltoniarthe smallest wave number. The horizontal dotted lines denote
in a lattice model. The&s-matrix results are in good agree- the bottom of 1D subbands in the wire region. The results by
ment with the exact results except in the high-energy regiomsing theS-matrix formalism and diagonalizing the Hamil-
near the bottom of the first excited 1D subband. Further, théonian agree well with each other. In particular the disagree-
narrow band aE/E~0.258, which is the quasi-bound level ment existing in Fig. 3 disappeared completely. This shows
associated with the first excited 1D subband, is absent in thihat theS matrix including a few evanescent modes in addi-
S-matrix results. As will be demonstrated in Sec. IV C, thistion to all traveling modes is sufficient for accurate descrip-
discrepancy is removed almost completely if just a singletion of energy bands of antidot lattices.
evanescent mode associated with the first excited 1D sub- Figure 5b) gives the results in a magnetic field
band is included. Figure(B) shows the corresponding en- Ba%(,=4, which corresponds to about 0.4 T for a typical

C. Multichannel case
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FIG. 5. Calculated energy bané® in the absence of a magnetic field afil in a magnetic fieldBa%®,=4. In the S-matrix method,
all traveling modes and only a single evanescent mode are taken into account.

antidot lattice witha~2000 A. The agreement of the results conductivity correspond to those of the density of states, but
of the S-matrix formalism with exact ones is again excellent. there are some differences from those of the density of states.
Unfortunately, the energy bands of a realistic antidot latticeThis shows that the analysis of the density of states is insuf-
are very complicated. It is very difficult, therefore, to discussficient for understanding oscillations of the conductivity ap-
its electronic properties directly based on the band structurpearing in antidot lattices.

alone.

The exact diagonalization of the Hamiltonian matrix for V. SEMICLASSICAL ANALYSIS
such a realistic antidot lattice must deal with a matrix of
dimension(~1000~1000 even in the absence of a mag- A. Trace formula

netic field or a special magnetic field corresponding to the According to Gutzwiller's trace formul' the density of
case that the flux passing through a unit cell is an integestates of a chaotic system is given semiclassically by the
multiple of the flux quantum. This shows that such a calcu-contribution of classical periodic orbits as

lation is actually impossible in magnetic fields, which require

a considerably extended magnetic unit cell. The present PO

S-matrix formalism does not have such a severe restriction D(E):DO(E)+;) Dosd B, (5.1

and is quite useful.

Figures 6a) and Gb) show the corresponding energy de- \whereD,(E) is the mean density of states aR§S(E) is the

pendence of the density of states and the conductivity. Thgscillatory part. The contribution of a particular periodic or-
density of states is measured in units of the 2DES valugjt can be rewritten into thé function for a stable orbit

m*/mh? and the conductivity in units ofie?s/m*, with n

being the electron concentration in the absence of antidot T o 1
potential. They are averaged over the Gaussian distributioryPo, =y _ _ _ 1y, _ _ =
with broadeningl’/EL=0.02. The peaks of the density of DELE) h mE=0 n;m 8(Se /= (mtz)v —2nm) 277}
states remaining after the average may correspond to classi- (5.2
cal periodic orbits and be analyzed semiclassically in terms

of Gutzwiller's trace formul&* Some of structures of the and into Lorentzian for an unstable orbit

0

- - 1 (2m+1)u/2 1
mE:O (=1) n;_m 7 [S/h—2m(uld+n) P+ [(2m+Du/l2? 2=

: (5.3

> o

DIE)=
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Q00 004 008 012 016 020 000 004 008 012 016 020
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FIG. 6. Energy dependence of the destiny of stéetid line) and the conductivitydotted ling (a) in the absence of a magnetic field
and(b) in the magnetic fieldBa%d®,=4. The density of states is normalized by the 2D valuert# /h?) and the conductivity by the value
(ne?7/m*). Both are averaged by a Gaussian distribution with broadeFilig=0.02.

whereS, is the classical actiorT is the period, and is the T'/E-=0.03. The arrows indicate the quantization levels of
stability angle. For unstable orbits,is the Lyapunov expo- each periodic orbit. Figure 9 gives calculated Lyapunov ex-
nent,u is the Maslov index, and the sign becomesccord- ponents for the periodic orbit@)—(f), which show that al-
ingly as the neighborhood of a periodic orbit is hyperbolic ormost all periodic orbits are unstable in the energy range
inverse hyperbolic. The integer is considered as a qguantum
number for a motion transverse to the periodic ofbithe
guantization conditions for stable and unstable orbits are

1 1
2mhin+ — | m+ —)v for stable orbit
2 2
S.= §
2wh| n+ Z) for unstable orbit, (5.4

with integern and positive integem.

B. Numerical results

In general, a long periodic orbit is expected to have a
large Lyapunov exponent and give only a small contribu-
tion to the oscillatory density of states. Therefore, we shall
take into account several periodic orbits having shortest tra-
jectory denoted aga)—(f) shown in Fig. 7 Figure 7a)
shows orbits in the absence of a magnetic field and Fig. 7
those for Ba?/®,=8.5, where the cyclotron diameter is
nearly equal to the antidot period. The density of states is
calculated by taking into account terms with=0 alone?®

Figure 8 compares the oscillatory part of the density of
states in the absence of the magnetic field. The solid line
denotes the results calculated by using $matrix formal-
ism and by subtracting the average and the dotted line is FIG. 7. Example of periodic orbits in an antidot latti@ in the
calculated with periodic orbit theory. Both results are aver-absence of a magnetic field ang) in the magnetic field
aged over the Gaussian distribution with broadeningBa?d,=8.5.

(b) Ba2/@=8.5 4
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FIG. 8. Oscillator part of the density of states in the absence of
a magnetic field. The solid line is calculated wikmatrix formal-

l,/
Ba2/CI>0=4
—— S matrix
L il [ semiclassical
T 12
w
— L
o
[%)]
= 10 |-
C
>
= i
(®))
o 08|
c
] i
0.6 |-
04 |-
1 - N |
-0.4 -0.2 0.0 0.2 0.4 0.6

Dosc (units of 4rm’/h2)

FIG. 10. Oscillator part of the density of states in the magnetic

ism and the dotted line the trace formula. Both are averaged by fie|d Ba%/®,=4.
Gaussian distribution witlh'/Ex=0.03.

shown in the figure. The only exception is the orfi,
which is stable and gives a large contribution in the energ

range 0.76E/E:<0.85. i _ . : . .
The peaks of the semiclassical result at the energ emiclassical calculation. The agreement is worse in particu-
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FIG. 9. Calculated Lyapunov exponents of several periodic or-0rbit (b) is not affected strongly by fluctuations of antidot

bits in the absence of a magnetic field.

E/E-=0.40, 0.57, 0.76, 0.83, and 0.93 correspond well to
)}hose of the full quantum-mechanical density of states. There
remain several structures that cannot be reproduced in the

ar in the energy region higher than the Fermi energy, where
periodic orbits more complicated and having a longer trajec-
tory are likely to have a large contribution.

Figure 10 shows the results in the magnetic field
Ba?/Q,=4 for which the periodic orbitsa)—(f) are all un-
stable in the energy range as shown in Fig. 11. Some of the
peaks obtained quantum mechanically are explained again by
the periodic orbits but certainly not completely.

Figure 12 gives the results fda%®,=8.5, where the
cyclotron orbit is nearly commensurate with the antidot po-
tential. They are averaged over the Gaussian distribution
with broadeningl'/EL=0.02. The agreement between the
quantum-mechanical and semiclassical results is much better
than in previous two cases, i.e., Figs. 8 and 10. Figure 13
shows the corresponding Lyapunov exponents. The ¢abit
is stable in the energy region beld/E=0.43, the orbitb)
below E/Ex=1.41, and orbit(e) below E/E=0.68. It is
clear that the quantized levels associated with stable periodic
orbits (denoted by arrowscan give peaks in the density of
states in agreement with the quantum-mechanical result.

The stability of an orbit usually depends strongly on the

potential parameters. Whela<0.66, however, the orbib)
is stable independent of steepng&sThis means that the

potential inherent to actual antidots fabricated experimen-
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tally. Therefore the orbitb) dominates the structures of the
density of states near the Fermi energy around the localized
or commensurate peaks of the resistiVity;'*leading to the
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FIG. 13. Calculated Lyapunov exponents of several periodic

orbits in the magnetic fiel8a%/®,=8.5.

VI. SUMMARY AND CONCLUSION

We have developed the numerical method of the

Aharanov-Bohm-type oscillation observed experimentafly. quantum-mechanical calculation of the electronic states of
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FIG. 12. Oscillator part of the density of states in the magneticScientific Research on Priority Area “Mesoscopic Electron-

field Ba?®,=8.5 averaged by a Gaussian distribution with ics: Physics and Technology” from the Ministry of Educa-

the antidot lattices in magnetic fields with use ofmatrix.
The method can simplify calculations quite effectively in
comparison with the conventional one because the inclusion
of traveling modes and only a few evanescent modes is suf-
ficient to reproduce the band structure. It has certainly some
limitations such as difficulty in the calculation of the Hall
conductivity in strong magnetic fields as well as the eigen-
wave functions.
Based on the results of full quantum-mechanical calcula-
tions of electronic states, the density of states and the con-
ductivity have been calculated. It has been shown that there
is no clear one-to-one correspondence between the peaks and
dips of the density of states and the conductivity. The density
of states has been calculated semiclassically based on
Gutzwiller's trace formula with inclusion of several periodic
orbits with shortest trajectory. It is shown that quantized lev-
els associated with these periodic orbits can account for most
of peaks in the density of states in magnetic fields where the
classical cyclotron orbit is commensurate with the antidot
period. Near the Fermi level, in particular, the orbit circling
around an antidot gives a major contribution in agreement
with the premise of previous analyse¥:3
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