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A method of full quantum-mechanical calculation of the energy bands with the use of theS matrix is
developed in antidot lattices subjected to a uniform perpendicular magnetic field. It can simplify the calcula-
tions considerably in comparison with other methods because only several traveling and a few evanescent
modes are sufficient to give accurate results. The resulting energy bands are extremely complicated for realistic
antidots. Calculated density of states are analyzed semiclassically in terms of the periodic orbit theory.@S0163-
1829~96!06120-6#

I. INTRODUCTION

Recent advances in microfabrication technology and
crystal-growth technique enable one to prepare lateral super-
lattices with submicrometer structures on the surface of two-
dimensional electron system~2DES! with a mean free path
of the order of several micrometers. A 2DES modulated by a
periodic strong repulsive potential is called ‘‘antidot lat-
tices.’’ The transport in this system is ballistic, i.e., electrons
are scattered from an antidot potential rather than impurity.
The purpose of this paper is to develop a method of full
quantum-mechanical calculations of energy bands and con-
ductivity of the antidot lattice in the presence of uniform
perpendicular magnetic fields.

Various interesting phenomena have been observed in an-
tidot lattices in uniform perpendicular magnetic fields. They
are the quenching of the Hall effect,1 Al’tshuler-Arono”v-
Spivak oscillation nearB;0,2–4 and the so-called localized
peaks in the magnetoresistance.1 In magnetic fields corre-
sponding to localized peaks, the classical electron trajectory
becomes commensurate with the antidot period and encircles
a specific number of antidots. Fine oscillations were ob-
served in the magnetoresistance around the localized peak.5,6

The localized peaks and the quenching of the Hall effect
have been understood in classical mechanics.1,7 On the fine
structures near the localized peak, a semiclassical quantiza-
tion of periodic orbits was suggested.6 Semiclassical conduc-
tivities have been derived8 and used for analysis of such fine
structures.9,10 Full quantum-mechanical calculations of en-
ergy bands and conductivities were also reported.11–13In par-
ticular Ishizakaet al. made a detailed comparison between
semiclassical and full quantum-mechanical results.13 Trans-
port properties were also calculated by transmission prob-
ability through finite number of antidots.14,15 A method of
calculating electronic states and transport properties was de-
veloped for finite quantum-dot arrays in high magnetic
fields.16–18

Difficulties in full quantum-mechanical calculations lie in
the fact that the unit cell should be expanded considerably in
a magnetic field depending on the flux passing through the
unit cell in its absence. In the presentS-matrix formalism we
replace the antidot lattice by a two-dimensional array of
quantum-wire junctions. Energy bands are determined by
imposing Bloch’s theorem on anSmatrix that describes the

scattering at a junction. This method can simplify calcula-
tions quite effectively by minimizing the necessary number
of modes that define theSmatrix. A method to reduce matrix
sizes using a recursive Green’s-function technique was
proposed,12 but the present method is expected to be much
more efficient.

In Sec. II theS-matrix formalism for the calculation of the
energy bands in antidot lattices is described. Some charac-
teristic features of the energy band and their relation to prop-
erties of theS matrix are discussed in Sec. III. Section IV
gives results of numerical calculations. The results of elec-
tronic states of antidot lattices are analyzed by the periodic
orbit theory based on the trace formula in Sec. V. Summary
and conclusion are given in Sec. VI. A very preliminary
account on a part of this work was presented previously.19

II. S-MATRIX FORMALISM

A. S matrix

We shall replace an antidot lattice by a two-dimensional
array of quantum-wire junctions as schematically illustrated
in Fig. 1. Each junction with the widthWx in thex direction
andWy in the y direction is connected to neighboring junc-
tions through a quantum wire with lengthLx andLy in thex
andy directions, respectively. The lattice period isa in thex
direction andb in they direction. The system is subjected to
a uniform perpendicular magnetic fieldB.

Figure 2 shows a junction of two infinitely long quantum
wires. The system is divided into four wires denoted as 1–4
and a rectangular junction region. The origin is chosen at the
lower left corner point of the junction. The Hamiltonian for
an electron in the two-dimensionalxy plane is

H5
1

2m* S p1
e

c
AD 21V~x,y!, ~2.1!

where,m* is the effective mass of electrons,V(x,y) is the
confinement potential, and the vector potentialA is chosen
as

A5~2By,0!. ~2.2!

It is worth pointing out that the density of states and the
conductivity are independent of this choice of the gauge.

The wave functions in the wires 1–4 are given by
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~0,0!5

1

Avn
x
expF i S 6kn

x1
Wy

2l 2D S x1
Lx
2 D Ghn6~y!,

~2.3!

c2n6
~0,0!5

1

Avn
y
expF i S 6kn

y2
Wx

2l 2D S y1
Ly
2 D G

3expS 2 i
xy

l 2 D jn6~x!,

c3n6
~0,0!5

1

Avn
x
expF i S 6kn

x1
Wy

2l 2D S x2Wx2
Lx
2 D Ghn6~y!,

c4n6
~0,0!5

1

Avn
y
expF i S 6kn

y2
Wx

2l 2D S y2Wy2
Ly
2 D G

3expS 2 i
xy

l 2 D jn6~x!,

where l is the magnetic length defined byl5AeB/c\.
Modes in each wire are specified asn6 with integern. There
are two kinds of modes: traveling modes with real wave
number and evanescent modes with imaginary wave number.
For eachn, we shall define the wave numberkn in such a
way that it is positive for traveling modes and its imaginary
is positive for evanescent modes. The sign1 ~2! denotes a
mode traveling or decaying in the positive~negative! direc-
tion with wave numberkn ~2kn!. The wave function is given
by hn6(y) for the motion in they direction in a wire infi-
nitely long in thex direction. In a wire in they direction, the
corresponding wave function is written asj(x) with the
gaugeA85~0,Bx!, which is different from Eq.~2.2!. They
are solutions of the equations

F2
\2

2m*
d2

dy2
1
1

2
m*vc

2~y7 l 2kn
x2Wy/2!21V~y!Ghn6~y!

5Ehn6~y!,
~2.4!

F2
\2

2m*
d2

dx2
1
1

2
m*vc

2~x6 l 2kn
y2Wx/2!21V~x!Gjn6~x!

5Ejn6~x!,

whereE is the energy andvc5eB/m* c the cyclotron fre-
quency. Further,v n

x and v n
y are the group velocities of a

traveling mode in thex and they direction, respectively, and
are given by

vn
x5

\

m* E dy hn1* ~y!S kn
x1

Wy

2l 2
2

y

l 2Dhn1~y!,

~2.5!

vn
y5

\

m* E dx jn1* ~x!S kn
y2

Wx

2l 2
1

x

l 2D jn1~x!.

This velocity has been defined in such a way that it is always
positive. The normalization factor of an evanescent mode is
arbitrary, as will be discussed below. The wave function in
wires is represented by using the expansion coefficientsC
with respect to modes of Eqs.~2.3!:

C i
~0,0!~x,y!5(

n
$Cin1

~0,0!c in1
~0,0!~x,y!1Cin2

~0,0!c in2
~0,0!~x,y!%,

~2.6!

with i51,...,4. TheSmatrix gives the following relation be-
tween incoming and outgoing waves:

S C12
~0,0!

C22
~0,0!

C31
~0,0!

C41
~0,0!

D 5S S11
S21
S31
S41

S12
S22
S32
S42

S13
S23
S33
S43

S14
S24
S34
S44

D S C11
~0,0!

C21
~0,0!

C32
~0,0!

C42
~0,0!

D ,

~2.7!

FIG. 1. Schematic illustration of a two-dimensional array of
junctions.

FIG. 2. Schematic illustration of a quantum-wire junction for
calculation of anSmatrix.
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whereC consists of expansion coefficientsC and therefore
its dimension is the number of modes. TheSmatrix defined
above is not necessarily unitary because evanescent modes
do not carry current, although the part of theS matrix for
traveling modes is unitary. For wires connected to a junction
specified by (m,n), modesn in 1–4 wires are defined by

c in
~m,n!~x,y!5c in

~0,0!~x2ma,y2nb!expF2 i
nb

l 2
~x2ma!G .

~2.8!

For this definition, the scattering problem at each quantum-
wire junction is described by the sameSmatrix.

Kirczenow and collaborators16–18 developed a method of
calculating electronic states and transport properties of dot
arrays in high magnetic fields. In this method anSmatrix is
defined as a quantity describing mixing between edge chan-
nels existing in each dot. The method seems to be quite
effective in systems consisting of a periodic array of dots
interacting weakly with each other, particularly in high mag-
netic fields where clear edge states are formed. On the other
hand, the present method considers the scattering among
states associated with channel regions between neighboring
antidots and is expected to be more suitable in antidot lat-
tices consisting of periodic array of ‘‘scatterers’’ instead of
dots. The present method and that of Kirczenow and co-
workers are considered to be complimentary to each other.

B. Energy band

For an infinitely large array of such junctions the period is
a5Wx1Lx in thex direction andb5Wy1Ly in they direc-
tion. We restrict our calculation to magnetic fields with a
rational number of flux quanta per unit cell, i.e.,
Bab/F05p/q, wherep and q are mutual prime numbers
and we shall impose Bloch’s theorem for the perioda in the
x direction andqb in they direction. AnSmatrixSe for this
extended magnetic unit cell is given from the combination of
anSmatrix for a unit cell. We have

S C1
2

C2
2

C3
1

C4
1

D 5S Se11
Se21
Se31
Se41

Se12
Se22
Se32
Se42

Se13
Se23
Se33
Se43

Se14
Se24
Se34
Se44

D S C1
1

C2
1

C3
2

C4
2

D ,

~2.9!

with

C1
6[S C16

~m,n1q21!

A
C16

~m,n!
D , C3

6[S C36
~m,n1q21!

A
C36

~m,n!
D ,

C2
6[C26

~m,n! , C4
6[C46

~m,n1q21! .

WhenA5~2By,0!, Bloch’s theorem is given as follows for
this magnetic unit cell:

ckx ,ky
~x,y!5exp~2 ikxa!ckx ,ky

~x1a,y! ~2.10!

5expF i S xl 22kyDqbGckx ,ky
~x,y1qb!.

~2.11!

Bloch’s theorem imposes the following conditions on the
wave function in the wire region:

C1
~m,n1 i !~x,y!5exp~2 ikxa!C3

~m,n1 i !~x1a,y!
~2.12!

for ma2Lx<x<ma andnb<y<nb1Wy and

C2
~m,n!~x,y!5expF i S xl 22kyDqbGC4

~m,n1q21!~x,y1qb!

~2.13!

for na<x<na1Wx andnb2Ly<y<nb, with i50,1,...,q
21. With the aid of the relations

c1
~m,n1 i !~x,y!5expF i ~n1 i !ab

l 2 Gc3
~m,n1 i !~x1a,y!,

~2.14!

c2
~m,n!~x,y!5expS i qbl 2 xDc4

~m,n1q21!~x,y1qb!,

~2.15!

Bloch’s theorem for expansion coefficientsC is obtained:

C1n6
~m,n1 i !5expF2 i S kx1 ~n1 i !b

l 2 DaGC3n6
~m,n1 i ! , ~2.16!

C2n6
~m,n!5exp~2 ikyqb!C4n6

~m,n1q21! . ~2.17!

These are rewritten in the relation between incoming and
outgoing waves:

S C1
2

C2
2

C3
1

C4
1

D 5Pe
~n!~kx ,ky!S C1

1

C2
1

C3
2

C4
2

D , ~2.18!

where

Pe
~n!~kx ,ky!5S 0

0
Px

0

0
0
0
Py

Px
21

0
0
0

0
Py

21

0
0
D , ~2.19!

with

Px5ei ~kx1bn/ l2!aS ei ~q21!ab/ l2 0 ••• 0

0 ei ~q22!ab/ l2 ••• 0

••• ••• � A

0 0 ••• 1

D ,
Py5eikyqb. ~2.20!

Energy bands are given by the condition that Eqs.~2.9! and
~2.18! have nontrivial solutions ofC. This condition is

det@Pe
~n!~kx ,ky!Se~E!21#50, ~2.21!

where the relationPe5Pe
21 is used andSe(E)5(Seii8) is

theSmatrix for extended unit cell defined in Eq.~2.9! for a
given energyE.
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At first glance Eq.~2.21! is dependent on the choice of the
unit cell n. However, we have the relation

Pe
~n!~kx12pp/qa,ky!5Pe

~n11!~kx ,ky! ~2.22!

from the definition of the matrixPe . Thus the apparentn
dependence corresponds to nothing but the fact that the en-
ergy bands are periodic with period 2p/qa in the kx direc-
tion.

The S matrix has ambiguity concerning the phase of
modes and even the amplitude for evanescent modes. We
can choose generally the phase such that

c̃1n6~x,y!5eiun6c1n6~x,y!,

c̃2n6~x,y!5eifn6c2n6~x,y!,
~2.23!

c̃3n6~x,y!5eiun6c3n6~x,y!,

c̃4n6~x,y!5eifn6c4n6~x,y!,

whereu andf are real for traveling modes and are complex
for evanescent modes. If anSmatrix is defined by modes Eq.
~2.23!, then it is transformed into

S̃5U1SU2 , ~2.24!

where

U15S Uu2

0
0
0

0
Uf2

0
0

0
0

Uu1

0

0
0
0

Uf1

D ~2.25!

and

U25S Uu1

21

0
0
0

0
Uf1

21

0
0

0
0

Uu2

21

0

0
0
0

Uf2

21
D , ~2.26!

with

@Uu6
#mn5eium6dmn , @Uf6

#mn5eifm6dmn . ~2.27!

These matricesU1 andU2 have the property

U2
21PeU1

215Pe , ~2.28!

which immediately leads to the conclusion that the energy
spectrum is independent of ambiguity in the phase of anS
matrix, i.e.,

det@Pe~kx ,ky!S̃e~E!21#5det@Pe~kx ,ky!Se~E!21#.
~2.29!

It is necessary to transform Eq.~2.21! into more conve-
nient form for numerical calculations of energy bands. From
Eq. ~2.17!, C2 andC4 satisfy Bloch’s theorem

SC2
2

C4
1D 5S 0Py

Py
21

0 D SC2
1

C4
2D . ~2.30!

Substituting Eq.~2.30! into Eq. ~2.9!, we have

SC1
2

C3
1D 5SM11

M21

M12

M22
D SC1

1

C3
2D , ~2.31!

with

SM11

M21

M12

M22
D[SSe11Se31

Se13
Se33

D1SSe12Se32

Se14
Se34

D
3S 2Se22

Py2Se42

Py
212Se24
2Se44

D 21SSe21Se41

Se23
Se43

D .
~2.32!

We then have

SC3
1

C3
2D 5S 01 2M12

2M22
D 21SM11

M12

21
0 D SC1

1

C1
2D . ~2.33!

With use of Eq.~2.16!, we have the eigenequation

eikxaSC1
1

C1
2D 5S Px

21

0

0
Px

21D S 01 2M12

2M22
D 21SM11

M12

21
0 D

3SC1
1

C1
2D . ~2.34!

Therefore,kx can be calculated for a givenE and ky from
eigenvalues of Eq.~2.34!. Similarly, ky can be calculated for
a givenE andkx . This simplifies greatly the actual calcula-
tion for the energy band, because the calculation of the de-
terminant is quite time consuming.

C. Density of states and conductivity

The density of states and conductivity can be calculated
from energy bands. The density of statesD(E) is written as

D~E!5
2

~2p!2
R dl

\uvu
, ~2.35!

where 2 comes from the spin degeneracy and the line integral
is along the equienergy line at energyE. The group velocity
v is

v~k!5
1

\

]E~k!

]k
. ~2.36!

The conductivity can be calculated with use of the Boltz-
mann transport equation and becomes

s i j5
1

2p2 E R e2tv iv j
\uvu S 2

] f

]EDdl dE, ~2.37!

wheref is the Fermi distribution function,t is a phenomeno-
logical relaxation time,i , j5x,y, and the line integral is
along the equienergy line. Unfortunately, Eq.~2.37! gives
only the symmetric part of the conductivity tensor, i.e.,
sxy5syx , and an antisymmetry part or the Hall conductivity
cannot be obtained from this equation.
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III. SOME EXAMPLES

A. Single traveling mode

We consider the simplest case of a square antidot with a
single traveling channel in the absence of a magnetic field.
TheSmatrix is written as

S~E!5S r
s
t
s

s
r
s
t

t
s
r
s

s
t
s
r
D , ~3.1!

where r is the reflection amplitude,s is the transmission
amplitude for turning left or right, andt is that for going
straight. Usually,r , s, andt are complex numbers and satisfy
the relations from the unitarity of anSmatrix

ur u212usu21utu251,

Re@~r1t !s* #50, ~3.2!

usu21Re@rt * #50.

Subtracting twice the third equation of Eq.~3.2! from the
first one yields the relation

ur2tu51. ~3.3!

Equation~2.21! yields

4a cos~kxa!cos~kya!12b@cos~kxa!1cos~kya!#1g50,
~3.4!

with

a5t22s2,

b52s2~ t2r !1t~r 2212t2!, ~3.5!

g524s2~ t2r !21~r 2212t2!2.

It is straightforward to show with the use of the unitarity
condition ~3.2! that Eq. ~3.4! constitutes a single equation,
i.e., the real and imaginary parts give the same equation.

We can derive characteristic features of the bands using
Eqs.~3.4! and ~3.5!. The following are some examples.

~i! For an energy wherer2t521, in particular, Eq.~3.4!
becomes@cos(kxa)21#@cos(kya)21#50, giving the equien-
ergy linekx50 or ky50.

~ii ! For an energy wherer2t51, on the other hand, Eq.
~3.4! becomes@cos(kxa)11#@cos(kya)11#50, giving the
equienergy linekx5p/a or ky5p/a.

~iii ! Finally, whent2.s2.0 andur u2.1, Eq. ~3.4! gives
cos(kxa)1cos(kya)5(12r 2)/2t. This seldom has a solution
becauset is very small unlessr561, leading to the forma-
tion of a gap at this energy.

These peculiar features can be found in the numerical results
given in Sec. IV A.

B. Single evanescent mode

Consider the case that anS matrix defined with a single
evanescent mode is sufficient for accurate description of the
system. Then we can choose the phase of wave functions

such thatr , s, and t are all real without loss of generality.
When the energy is close to a quasibound levelE0 localized
inside a junction, we have

r'6s't'2
t0

E2E0
, ~3.6!

with t0 being a constant having the dimension of energy.
This leads toa;0, b;2t, andg;1. Therefore, the energy
band becomes

E5E022t0@cos~kxa!1cos~kya!#, ~3.7!

which is nothing but the band obtained in a nearest-neighbor
tight-binding model.

When the energy is close at a quasibound levelE1 asso-
ciated with the first excited one-dimensional~1D! subband,
on the other hand, anSmatrix for the evanescent mode with
the smallest wave number is written as

S~E!5S r
s
t

2s

s
r

2s
t

t
2s
r
s

2s
t
s
r
D , ~3.8!

because of the symmetry of the wave function,20 and we
have

r'6s'2t'2
t1

E2E1
, ~3.9!

with t1 being a constant. Then the energy band is

E5E112t1@cos~kxa!1cos~kya!#, ~3.10!

which is again a band obtained in a nearest-neighbor tight-
binding model.

IV. NUMERICAL RESULTS

A. S matrix in a lattice model

To calculate anSmatrix for a quantum-wire junction we
consider a two-dimensional system on a square lattice with
lattice constanta8 and an isotropic nearest-neighbor transfer
integral. The magnetic field is included in terms of a Peierls
phase factor of the transfer integral and the confinement po-
tential is included as a local site energy. This lattice model
can simulate the two-dimensional system at
GaAs/AlxGa12xAs heterostructures well if we choose the lat-
tice constant such thatlFa8*10 with lF is the Fermi wave-
length of the 2DES in the absence of the antidot potential.
The S matrix is calculated in a recursive Green’s-function
technique developed previously.21 In order to demonstrate
the accuracy of theS-matrix method, we shall calculate also
exact energy bands by diagonalizing the Hamiltonian in the
same lattice model.

Although an antidot potential should be determined by a
self-consistent calculation,22,23 we use the model potential
V(x,y) given by7

V~x,y!5U0FcosS px

a D cosS py

a D G2b

, ~4.1!
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whereU0 is a maximum of the potential,b is a parameter
describing steepness of potential, anda is the period. This
potential corresponds to the system whereLx5Ly50 and
Wx5Wy5a in Fig. 1. It is convenient to introduce the anti-
dot diameterd defined as the width in thex direction of the
region where the antidot potential is larger than the Fermi
energyEF . In the following numerical calculations we shall
choose the parameters such thata/lF54.31, U0/EF58.4,
d/a50.6, andb52. Further, the energy is measured in units
of the Fermi energy in the absence of antidot potential.

B. Single traveling or evanescent case

Figure 3~a! shows energy bands in the energy region cor-
responding to the presence of a single traveling mode
~0.166,E/EF,0.409! in the absence of a magnetic field.
The dots represent the bands calculated by including only a
traveling mode in theS-matrix method and the solid lines
those obtained by a direct diagonalization of the Hamiltonian
in a lattice model. TheS-matrix results are in good agree-
ment with the exact results except in the high-energy region
near the bottom of the first excited 1D subband. Further, the
narrow band atE/EF;0.258, which is the quasi-bound level
associated with the first excited 1D subband, is absent in the
S-matrix results. As will be demonstrated in Sec. IV C, this
discrepancy is removed almost completely if just a single
evanescent mode associated with the first excited 1D sub-
band is included. Figure 3~b! shows the corresponding en-

ergy dependence ofur 2u, ut22s2u, and arg(r2t), wherer , s,
andt are the elements of theSmatrix for the traveling mode,
defined in Eq.~3.1!.

Almost all the characteristic features of the energy band
discussed in Sec. III A appear in the energy bands calculated
in theS-matrix formalism.

~i! The phase ofr2t becomes6p or r2t521 at the
energyE/EF;0.121, 0.277, and 0.375~note thatur2tu51
because of the unitarity of theS matrix!. At these energies
we havekx50 andky50, according to the discussion in Sec.
III A.

~ii ! Similarly, the phase ofr2t vanishes orr2t51 at
E/EF;0.192 and 0.355 for which kx56p/a and
ky56p/a.

~iii ! Further,ut22s2u50 andur u2;1 atE/EF;0.372, lead-
ing to the gap formation. Note thatusu;0 andutu;0 also at
the bottom of the 1D channelE/EF;0.116, where the gap is
not necessarily formed becauser;1.

Figure 4~a! shows a narrow band atE/EF;0.051 below
the bottom of the lowest 1D subband. This is associated with
a bound state formed inside each quantum-wire junction and
has the dispersion characteristic to a nearest-neighbor tight-
binding model, i.e.,}@cos(kxa)1cos(kya)#. Figure 4~b!
shows 1/r , 1/s, and 1/t as a function of energy, wherer , s,
and t are the elements of theS matrix for an evanescent
mode. It is clear that this is nothing but a demonstration of
the discussion in Sec. III B.

C. Multichannel case

Figure 5~a! shows the energy bands in the wider energy
range. The bands at a given energy are calculated by includ-
ing all traveling modes and a single evanescent mode having
the smallest wave number. The horizontal dotted lines denote
the bottom of 1D subbands in the wire region. The results by
using theS-matrix formalism and diagonalizing the Hamil-
tonian agree well with each other. In particular the disagree-
ment existing in Fig. 3 disappeared completely. This shows
that theSmatrix including a few evanescent modes in addi-
tion to all traveling modes is sufficient for accurate descrip-
tion of energy bands of antidot lattices.

Figure 5~b! gives the results in a magnetic field
Ba2/V054, which corresponds to about 0.4 T for a typical

FIG. 3. ~a! Calculated energy bands of antidot lattices in the
absence of magnetic fields in the energy with a single traveling
mode and~b! energy dependence ofur 2u, ut22s2u, and arg(r2t).
The dots are calculated by using theSmatrix with the inclusion of
a single traveling mode and solid lines by diagonalizing directly the
Hamiltonian of the lattice model. The inset shows the first Brillouin
zone.

FIG. 4. ~a! Narrow band calculated with a single evanescent
mode below the bottom of the lowest 1D subband in the wire region
and ~b! the energy dependence ofr21, s21, andt21.
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antidot lattice witha;2000 Å. The agreement of the results
of theS-matrix formalism with exact ones is again excellent.
Unfortunately, the energy bands of a realistic antidot lattice
are very complicated. It is very difficult, therefore, to discuss
its electronic properties directly based on the band structure
alone.

The exact diagonalization of the Hamiltonian matrix for
such a realistic antidot lattice must deal with a matrix of
dimension~;1000,;1000! even in the absence of a mag-
netic field or a special magnetic field corresponding to the
case that the flux passing through a unit cell is an integer
multiple of the flux quantum. This shows that such a calcu-
lation is actually impossible in magnetic fields, which require
a considerably extended magnetic unit cell. The present
S-matrix formalism does not have such a severe restriction
and is quite useful.

Figures 6~a! and 6~b! show the corresponding energy de-
pendence of the density of states and the conductivity. The
density of states is measured in units of the 2DES value
m* /p\2 and the conductivity in units ofne2t/m* , with n
being the electron concentration in the absence of antidot
potential. They are averaged over the Gaussian distribution
with broadeningG/EF50.02. The peaks of the density of
states remaining after the average may correspond to classi-
cal periodic orbits and be analyzed semiclassically in terms
of Gutzwiller’s trace formula.24 Some of structures of the

conductivity correspond to those of the density of states, but
there are some differences from those of the density of states.
This shows that the analysis of the density of states is insuf-
ficient for understanding oscillations of the conductivity ap-
pearing in antidot lattices.

V. SEMICLASSICAL ANALYSIS

A. Trace formula

According to Gutzwiller’s trace formula,24 the density of
states of a chaotic system is given semiclassically by the
contribution of classical periodic orbits as

D~E!5D0~E!1(
PO

Dosc
PO~E!, ~5.1!

whereD0(E) is the mean density of states andD osc
PO(E) is the

oscillatory part. The contribution of a particular periodic or-
bit can be rewritten into thed function for a stable orbit

Dosc
PO~E!5

T

\ (
m50

` F (
n52`

`

d„Sc /\2~m1 1
2 !v22np…2

1

2pG
~5.2!

and into Lorentzian for an unstable orbit

Dosc
PO~E!5

T

\ (
m50

`

~61!mF (
n52`

`
1

p

~2m11!u/2

@Sc /\22p~m/41n!#21@~2m11!u/2#2
2

1

2pG , ~5.3!

FIG. 5. Calculated energy bands~a! in the absence of a magnetic field and~b! in a magnetic fieldBa2/F054. In theS-matrix method,
all traveling modes and only a single evanescent mode are taken into account.
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whereSc is the classical action,T is the period, andv is the
stability angle. For unstable orbits,u is the Lyapunov expo-
nent,m is the Maslov index, and the sign becomes6 accord-
ingly as the neighborhood of a periodic orbit is hyperbolic or
inverse hyperbolic. The integerm is considered as a quantum
number for a motion transverse to the periodic orbit.25 The
quantization conditions for stable and unstable orbits are

Sc5H 2p\H n1
1

2p Sm1
1

2D vJ for stable orbit

2p\S n1
m

4 D for unstable orbit , ~5.4!

with integern and positive integerm.

B. Numerical results

In general, a long periodic orbit is expected to have a
large Lyapunov exponentu and give only a small contribu-
tion to the oscillatory density of states. Therefore, we shall
take into account several periodic orbits having shortest tra-
jectory denoted as~a!–~f! shown in Fig. 7.9 Figure 7~a!
shows orbits in the absence of a magnetic field and Fig. 7~b!
those for Ba2/F058.5, where the cyclotron diameter is
nearly equal to the antidot period. The density of states is
calculated by taking into account terms withm50 alone.26

Figure 8 compares the oscillatory part of the density of
states in the absence of the magnetic field. The solid line
denotes the results calculated by using theS-matrix formal-
ism and by subtracting the average and the dotted line is
calculated with periodic orbit theory. Both results are aver-
aged over the Gaussian distribution with broadening

G/EF50.03. The arrows indicate the quantization levels of
each periodic orbit. Figure 9 gives calculated Lyapunov ex-
ponents for the periodic orbits~a!–~f!, which show that al-
most all periodic orbits are unstable in the energy range

FIG. 6. Energy dependence of the destiny of states~solid line! and the conductivity~dotted line! ~a! in the absence of a magnetic field
and~b! in the magnetic fieldBa2/F054. The density of states is normalized by the 2D value (4pm* /h2) and the conductivity by the value
(ne2t/m* ). Both are averaged by a Gaussian distribution with broadeningG/EF50.02.

FIG. 7. Example of periodic orbits in an antidot lattice~a! in the
absence of a magnetic field and~b! in the magnetic field
Ba2/F058.5.
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shown in the figure. The only exception is the orbit~b!,
which is stable and gives a large contribution in the energy
range 0.76,E/EF,0.85.

The peaks of the semiclassical result at the energy

E/EF50.40, 0.57, 0.76, 0.83, and 0.93 correspond well to
those of the full quantum-mechanical density of states. There
remain several structures that cannot be reproduced in the
semiclassical calculation. The agreement is worse in particu-
lar in the energy region higher than the Fermi energy, where
periodic orbits more complicated and having a longer trajec-
tory are likely to have a large contribution.

Figure 10 shows the results in the magnetic field
Ba2/V054 for which the periodic orbits~a!–~f! are all un-
stable in the energy range as shown in Fig. 11. Some of the
peaks obtained quantum mechanically are explained again by
the periodic orbits but certainly not completely.

Figure 12 gives the results forBa2/F058.5, where the
cyclotron orbit is nearly commensurate with the antidot po-
tential. They are averaged over the Gaussian distribution
with broadeningG/EF50.02. The agreement between the
quantum-mechanical and semiclassical results is much better
than in previous two cases, i.e., Figs. 8 and 10. Figure 13
shows the corresponding Lyapunov exponents. The orbit~a!
is stable in the energy region belowE/EF50.43, the orbit~b!
below E/EF51.41, and orbit~e! below E/EF50.68. It is
clear that the quantized levels associated with stable periodic
orbits ~denoted by arrows! can give peaks in the density of
states in agreement with the quantum-mechanical result.

The stability of an orbit usually depends strongly on the
potential parameters. Whend/a,0.66, however, the orbit~b!
is stable independent of steepnessb. This means that the
orbit ~b! is not affected strongly by fluctuations of antidot
potential inherent to actual antidots fabricated experimen-

FIG. 8. Oscillator part of the density of states in the absence of
a magnetic field. The solid line is calculated withS-matrix formal-
ism and the dotted line the trace formula. Both are averaged by a
Gaussian distribution withG/EF50.03.

FIG. 9. Calculated Lyapunov exponents of several periodic or-
bits in the absence of a magnetic field.

FIG. 10. Oscillator part of the density of states in the magnetic
field Ba2/F054.
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tally. Therefore the orbit~b! dominates the structures of the
density of states near the Fermi energy around the localized
or commensurate peaks of the resistivity,6,10,13leading to the
Aharanov-Bohm-type oscillation observed experimentally.5,6

VI. SUMMARY AND CONCLUSION

We have developed the numerical method of the
quantum-mechanical calculation of the electronic states of
the antidot lattices in magnetic fields with use of anSmatrix.
The method can simplify calculations quite effectively in
comparison with the conventional one because the inclusion
of traveling modes and only a few evanescent modes is suf-
ficient to reproduce the band structure. It has certainly some
limitations such as difficulty in the calculation of the Hall
conductivity in strong magnetic fields as well as the eigen-
wave functions.

Based on the results of full quantum-mechanical calcula-
tions of electronic states, the density of states and the con-
ductivity have been calculated. It has been shown that there
is no clear one-to-one correspondence between the peaks and
dips of the density of states and the conductivity. The density
of states has been calculated semiclassically based on
Gutzwiller’s trace formula with inclusion of several periodic
orbits with shortest trajectory. It is shown that quantized lev-
els associated with these periodic orbits can account for most
of peaks in the density of states in magnetic fields where the
classical cyclotron orbit is commensurate with the antidot
period. Near the Fermi level, in particular, the orbit circling
around an antidot gives a major contribution in agreement
with the premise of previous analyses.6,10,13
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FIG. 11. Calculated Lyapunov exponents of several periodic
orbits in the magnetic fieldBa2/F054.

FIG. 12. Oscillator part of the density of states in the magnetic
field Ba2/F058.5 averaged by a Gaussian distribution with
G/EF50.02.

FIG. 13. Calculated Lyapunov exponents of several periodic
orbits in the magnetic fieldBa2/F058.5.
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