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Transverse magnetoresistance of GaAs/AGa; _,As heterojunctions in the presence
of parallel magnetic fields
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We have calculated the resistivity of a GaAs/Bs, .,As heterojunction in the presence of both an in-plane
magnetic field and a weak perpendicular component using a semiclassical Boltzmann transport theory. These
calculations take into account fully the distortion of the Fermi contour which is induced by the parallel
magnetic field. The scattering of electrons is assumed to be due to remote ionized impurities. A positive
magnetoresistance is found as a function of the perpendicular component, in good qualitative agreement with
experimental observations. The main source of this effect is the strong variation of the electronic scattering rate
around the Fermi contour which is associated with the variation in the mean distance of the electronic states
from the remote impurities. The magnitude of the positive magnetoresistance is strongly correlated with the
residual acceptor impurity density in the GaAs layer. The carrier lifetime anisotropy also leads to an observable
anisotropy in the resistivity with respect to the angle between the current and the direction of the in-plane
magnetic field[S0163-18206)05420-3

[. INTRODUCTION magnetic field which affects the electronic structure and
leads to a field-induced anisotropy of the 2D Fermi contour.
Magnetotransport in a two-dimensional electron gasAs noted by Leadleyet al,® this is analogous to the Fermi-
(2DEG) is an extremely rich and complex subject. In the surface anisotropy found in metals, and should similarly lead
more usual geometry with a magnetic field perpendicular td0 @ positive magnetoresistanc&lthough the anisotropy of
the p|ane of the ZDEG, the magnetoresistance exh|b|tgje Fermi contour is important, we shall see that it is not the
Shubnikov—de Haas oscillations which are the low-field pre2nly effect contributing to the positive magnetoresistance.
cursors of the quantum Hall effect. This behavior is a con- There have been a few theoretical considerations of this
sequence of the quantization of the in-plane orbital motiorProblem. The first c;alcylaﬂon of transport in the presence of
into Landau levels. The situation with a magnetic field in theg E)e;]railslgl rrr:agnethdflelz was galrr_led E.Uth tt)%/ Tzalljngea_nd
plane of the 2DEG is quite different since the cyclotron mo- uteher= who considered a model in whic € IS

. . . .. confined by a harmonic potential. The electronic states and
tion now competes with the effects of the potential conﬁnlngenergy disypersion can pbe obtained analytically for this

lectronic._ enerav-band structure which was recentl r](?nodel, which simplifies the solution of the transport prob-
electronic_energy-band structure ch was recently anggy, They further assumed that the electrons are scattered by
!yzeq |n1 zdetall for typ!cal GaAs/AlGa xAs hetero- short-ranges-function potentials, and demonstrated within
junctions.”“ These calculations account for the observed dethe framework of the Boltzmann transport theory that the
population of higher subbanifehich occurs with increasing conductivity of the electron gas is anisotropic with respect to
parallel magnetic field. the angle between the current and the parallel magnetic field.
In comparison to the perpendicular field geometry, transHowever, they did not consider the additional effects of a
port in the presence of a parallel field has received relativelyerpendicular magnetic field. A similar model was used by
little attention. One of the earliest studies is that of EnglertSmrdal®in an attempt to explain the observed positive mag-
et al,* who observed a pronounced positive transverse magietoresistance. However his calculation invokes a dc con-
netoresistance when an in-plane magnetic field was tilteductivity in the third dimension perpendicular to the plane of
slightly out of the plane of the 2DEG. This interesting ob-the 2DEG which has no obvious physical meaning. More
servation was not understood at the time. More recently, theecently, Steda, Vask, and Cukt* developed a semiclassi-
same effect was studied in considerably more detail by Leadzal Boltzmann transport theory of the magnetoresistance
ley et al? for a number of GaAs/AlGa, ,As heterojunctions.  within a constant relaxation-time approximation. The theory
The explanation of this effect is the primary focus of ourassumes that currents flowing in a direction perpendicular to
work. the in-plane magnetic field induce a transverse Hall field per-
A positive transverse magnetoresistance is known to ocpendicular to the 2DEG, as first suggested by Stéiin.is
cur in situations where conduction is provided by differentthen argued that this field in turn leads to a correction to the
kinds of carriers, for example, a heterojunction with two orin-plane conductivity which is the source of the positive
more occupied subbands. In accord with classical thkorymagnetoresistance. This argumentation, however, is rather
samples with only a single occupied subband do not shoveuristic, and a more rigorous explanation of the experimen-
the effect(in fact, a negative magnetoresistance attributabldgal observations is needed. We have therefore performed a
to weak localization is usually obseryetHowever, the situ- more thorough calculation of the transport properties in a
ation changes when the system is subjected to a parallélted magnetic field, utilizing a realistic model of both the
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heterojunction electronic structure and the scattering of elec- ,
trons from remote ionized impurities. We shall demonstrate (a)

that the inherent anisotropy of these properties is ultimately 2r .
the source of the positive transverse magnetoresistance.

We perform our calculations for model heterojunctions | ]
which correspond to the G590 series of samples studied by 8 0 ¢O

hope to minimize any differences in electronic structure
which might otherwise obscure a comparison between theory

Leadley et al> By modeling these particular samples we ~ U

and experiment. The design characteristics of these samples -2

have been discussed elsewh&fiéhe important variables are )

the areal acceptor and donor densitieg and np), which

can be varied experimentally by means of the persistent pho- _

toconductivity effect. We shall deal specifically with two (b)

combinations, herein referred to as samples 1 and 2. Sample 2 -
¢

1 has an acceptor density of,=1.03x10'* cm 2 and a
donor density ofnp=4.53x10"* cm™?, giving a total elec- i 1
tron density ofn;=3.5x10'" cm™2. It corresponds to the S \

unilluminated experimental sample referred to as G590a, ~ ki
which has only one occupied subband. For sample 2, the : ]
areal densities ar@,=0.1x10" cm 2 and np=7.2x10" 5

cm 2, resulting in a total electron density of=7.1x10"
cm™ 2, corresponding to the experimental sample referred to , L
as G590c. This sample is obtained from G590a by illumina- —2 0 2 4

tion, and has two occupied subbands. A comparison of the

theoretical and experimental zero-field mobilities provides ]Cy

one measure of how well we have been able to model these

sample:_;. We f'n_d 20.6 and 37.9Ms for _samples 1 a_nd 2, FIG. 1. Constant Fermi energy contours for sample 2 with a
respectively, which compare favorably with the expenmentabara”d magnetic field ofa) 5 T (two-band occupandyand (b) 10
values of 17.4 and 94.0 %V s. We are therefore confident T (single-band occupangyk, andk, are in units of inverse Bohr

that our model heterojunctions closely represent the actughgii [(a*) 1. The angular variables defines the position on the

experimental samples. Fermi contour with respect to the position of the first subband mini-
mum, k""; a similar angular coordinate is defined for the second

Il. THEORY subband, but is not shown.
A. Boltzmann transport theory presence of a parallel magnetic field, the electron velocity is

In this section, we develop the Boltzmann transport equanot parallel to the wave vectdr. Expressingf (k) as
tion for a 2DEG in the presence of a strong parallel magnetic 0
field in thex direction and a weak perpendicular component. F(K)=T7(Enk) + gn(k), )
The parallel field is taken into account quantum mechaniyhere fO(E,,) is the equilibrium Fermi distribution and

cally in the determination of the subband electronic structur%n(k) is the deviation from equilibrium, the linearized Bolt-
(see Ref. 1 As a function of the in-plane wave vectiorthe 7 mann equation is given by

dispersion of the subband energigg, is anisotropic, and

leads to noncircular constant energy contours. An example of agn(K)

this behavior is shown in Fig. 1, where the contours are TR

illustrated for sample 2 for two parallel magnetic fields, one

(B=5 T) for which two subbands are occupied, and a second e

(B=10 T) for which only a single subband is occupied. e (VX B ) - Vign(k). 3
The dynamics of the electrons in the presence of a per-

pendicular magnetic-field componeBt will be described The scattering term i3) is

semiclassically. The transport properties arising from an ex-

e
3

) E- kaO(Enk)

scat

ternal electric fieldE are then determined using the Boltz- dgn(k) ) )
mann equation ot =2 [90(K') = gn(K) Wnp (KK, (4)
scat n'k’
afkyl (e e wherew,,(k,k') is the transition rate between statdsand
at t_ B E-Vifn(k)— e (VX BL) - Vicfn(k), n'k’. It satisfies the detailed balance condition
scal

(1) Wy (k' K)=w, (k,k"), which ensures the overall conserva-
tion of the particle number.

where f (k) is the nonequilibrium distribution function of In the following we shall assume that the scattering is due

subbandn, andv,,=VE./#% is the group velocity. Since to impurities. In this case, Fermi's golden rule gives the tran-

the energy bands are neither parabolic nor isotropic in thsition probability
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20 —
Wnn’(kak’)zfI<nk|v(r)|n’k,>|25(Enk_En’k’): (5)

*

Pont (Ene, b, 8)=A 7 [KVIDIVK')P,  (10)

whereV(r) is the screened impurity potential. The bar overin terms of which the quantum lifetime is given by
the matrix element denotes an average over all possible im-

purity configurations. The important property for the present

purposes is the energy-conservidgunction which corre-

1 27
et =3 o= | 40960 (e .00,

sponds to the elastic nature of the scattering. Making use of (11)

this dependence and defining the quangjitk) by
(?fo(Enk)
gn(k)= OB, én(K), (6)

Eg. (3) can be reduced to

70 MK En(K) = 2 Wop (KK énr(K) + €E- Ve

n'k’
e
+ 35 (O B1)- Vién(k). (7

Here 7,(k) is the quantum lifetime

7 H(K)= 2 Won (KK, ®)

n'k’

The integrals in(9) and(11) contain the quantity
12k

Jn(e.¢)= (12

m* [V Ene- k|’
which is a dimensionless form of the Jacobian of the variable
transformation. In this form it is just the ratio of the free
particle velocitynk/m* to the component of the actual ve-
locity v, (k) in the directionk. The deviation of this function
from unity reflects the asymmetry of the constant energy
contours in the presence of a parallel magnetic field.

The solution of(9) is easily obtained using a Fourier ex-
pansion in the angular variable, i.e.,

Enle,d)=2 aM(e)em?. (13

which represents the total unweighted probability of scatterMultiplying (9) by e”'™?J,(e,¢) and integrating overs
ing from the initial statenk to all available final states, in- Yields the set of linear equations
cluding states in other subbands. Due to the more compli-
cated energy subband structure in the presence of a parallel » [Agm—m’)&m,_Bg:;—m’>+imw25mm, 5nn,]af1rp’>
magnetic fieldw, (k,k") is not simply a function ok —k’ m'n’
and, as a result;, (k) is in general an anisotropic function of _pm (14
the wave vectok. noo

The anisotropic energy-band structure also complicategith
the solution of the Boltzmann equation. We find it useful to
transform from thek-space variables to a curvilinear coordi- m_ L [ Cime 1
nate system defined by the energy variabeE,, and an An =5 . d¢ e ""In(P) 7, (), (15
angular variable¢ corresponding to the orientation of the
vectork. To be specific, the position ik space of a state in

’ 1 2w . 1
the nth subband is referred to the position of theimumof B;fn;m )= f d¢ e M (p) —
the subband energy which is displaced frkpr0 because of 27 Jo 2m
the parallel magnetic field. This origin is implicitly assumed 2
in the following. The definition of these variables is illus- X | de'e ™I ()P, P), (16)
trated in Fig. 1. We have found that the use of the variagble 0

is more convenient in the present context than the phasg,qy
angle 6, which naturally appears in discussions of cyclotron

motion (Ref. 6, Chap. 8 m 1 (2= ,
With this variable transformation, E¢7) becomes by =5_ . de e M (p)eE-vy(h).  (17)
1 2w | . .
-1 _ = , n these equations, the dependence on the energy vaeable
7 (€:0) (€ 0) nE 2 fo dpdn (€4 has been suppressed. We note that the free-electron cyclotron

) ) frequency w °=eB,/m*c appears in Eq.(14), and not
XPan(€,¢,0")én(€,¢") the actual cyclotron frequency defined hy = (Ac/

eB,
+eE'Vn(€,¢)—(%

Xvn(6!¢)fn'vk§n(€l¢)v (9)

wheret,, is a unit vector pointing in the direction of cyclotron
motion on the constant energy contour of tite subband at
the pointk. The angular transition rate at energgppearing
in (9) is defined by

eB,)$(dk/v,), where the line integral extends over a con-
stant energy contour.

In the absence of a parallel magnetic field the energy dis-
persion is isotropicJ,(¢) reduces to unity, and the angular
transition rate is only a function of the differenge-¢’'. As
a result,7, *(¢) becomes independent gt b{™ is propor-
tional to &, -1, anda{"? are the only nonvanishing expan-
sion coefficients. In this limit, one recovers the usual form of
the multisubband transport equatids.
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In the present situation, however, the equations defining 1
the Fourier expansion coefficients are coupled. In practice, ~(nk|V(r)[n'k’)=+ f dz ¢ni (2) ¢nri (2V(2,9),
the expansion is truncated at some finite number of terms, (21)
and the set of equations {14) is solved with the inhomo-
geneous term taking on two possible values, one corresponthereq=k—k’, and
ing to an electric field in the direction and one in thy
direction. _On_ce these solutions are known, the transport cur- V(z,q)=f ds e 19%V(s,2) (22)
rent density is obtained from

is the 2D Fourier transform of the scattering potential. We

J=- ze > gn(K)Vik note that the evaluation ¢21) for the parallel field configu-
A Tk ration is considerably more involved because of khede-
m*e w0 9t e) peno!ence of the subband_ states. As a result, the potential
=522 2 de( iy ) matrix elements do not simply depend on the momentum
mn —00

transferq which appears in the Fourier transform of the im-

o purity potential.

Xaﬁ\m)(f)J’ do Jn(e,d)vp(e,p)e™. (18 ~We assume that the impurity potential arises from a dis-
0 tribution of remote ionized impurities located at sites

Since the Fourier coefficierd™ depends linearly on the (Ri:Zi)- These impuritiesof chargee) give rise to the bare

electric field, we can define the conductivity tensor as electrostatic potential
" :ﬁz » del — at%(e) aaﬁm)(e) ¢ext(z’q):2 (@)e—QZquie—iqﬂiE(ZLG)|(q)e—qz'
wy 2772ﬁ2 mn — e &EV ! Kq Kq
(23)
> 2Wd¢ Jo(€,d)v (€ b)em?. (199  Where a two-dimensional Fourier transform has been taken
0 a in the plane of the 2DEG, and we have assumed that the

position of the charged impurities is such t&a& z. « is the
" A It of the distorti Ythe Fermi ; dielectric constant of the material in which the 2DEG is im-
Txx7 Oyy- AS A TESUIL 0T the distortion ot the ermi contour, o 4qeq. The quantity(q) determines the amplitude of the

the cutr:centtglow IS _n?t parallelk;to trtlﬁ aplplufc_i e;!e%rl_c f'.i': exponentially decaying Fourier transform, and contains all
except for the special cases wnen the electric Neld IS eithe,r, .y 4iion regarding the spatial distribution of the ionized
parallel or perpendicular to the in-plane magnetic field.

' donor impurities.

We finally comment on whether or not the transverse Hall The external impurity potential is screened by the 2DEG,

and it is the final screened potential which is responsible for

o N L L ; 10N€4YRe electron scattering. We shall account for the screening at
I|br|_um distribution fun_ctlon '”(2)."“9"95 a _spatlal redistri- the level of the random-phase approximation in which the

puuon of the electronic charge in a direction normal to theelectrons respond self-consistently to the ionized impurity

interface given by potential. Definingy’(z,z’,q) to be the 2D Fourier transform

of the independent particle density response function, the

In the B, —0 limit, one can show that,, is diagonal, but

on(z)=2, gn(k)|¢nky(z)|2, (200  change in electron density due to the impurities is given by
nk
where ¢ (2) is the subband wave function in the presence 6n(2,q)=eJ dz'x°(z,2',q) ¢"°(Z',q), (24)

of the in-plane magnetic field. This redistribution gives rise

to a transverse Hall field, and a Hall potential which is esti-where ¢'°'(z,q) is the total electrostatic potential acting on
mated to be of the order of microvolts under typical currentthe electrons. This potential is given by

carrying conditions?® These potentials are small on the en-

ergy scale of the confining potentiland will lead to small $°%(z,q) = ¢(z,9) + ¢""(z,9), (25)
changes in the energy-band dispersion. Corrections to the . . : .
Boltzmann equatiorifor example, as a result of changes in where the second term is the induced electrostatic potential
the electron velocity are therefore of higher order in the 2me

applied electric field and, at the level of the linearized Bolt- ¢"(z,q)= _<_>f dze 97 ZIsn(z’,q), (26)
zmann theory, can be safely neglected. A transverse Hall Kq

field is therefore not relevant to in-plane transport. arising from the induced electron charge density.

' . In the absence of a parallel magnetic field, the subband
B. Evaluation of the scattering elementsP,,/ (k,k") envelope functions ark independent, and the calculation of
We now turn our attention to the calculation®f, (k,k’)  the density response function is relatively straightforward. It
in (10) for a situation in which scattering is due to remote takes the form
ionized impurities. Using the form of the subband states in
the presence of a parallel magnetic field, the potential matrix XO(Z,Z’,q)=2 fﬁ(Z)f,g(Z')X%(Q), 27)
element has the form B
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with, a maximum of two subbands are occupied and we have
therefore truncated%(q) to a 2<2 matrix corresponding to
the lowest two subbands. Once the second subband is de-
populated, the second subband still contributes to the screen-
ing by providing final states to which the first subband elec-
trons can be excited. In this situation the second subband is
positioned relative to the Fermi level according to the self-
consistent calculation, while the first subband energy is still
determined by(28). In practice we have found that these
refinements have only a slight effect on the calculated scat-
tering matrix elements since the lowest subband holds most
0.00 ' ' of the electrons and contributes most of the screening. Nev-
0 10 <0 ertheless, since relatively little additional effort is required to
z (nm) determine these corrections, we have retained them in all of
the screening calculations.
FIG. 2. The spatial density profile of the 2DEG in sample 2asa  With this prescription for X%(Q) and x°(z,z',q), the
function of distance from the interface, for zero magnetic fieldScreened impurity potential is obtained from the set of equa-
(solid line) and for a parallel magnetic field of 10 (Bashed ling tions (23)—(26). Expressing$'®(q,z) as

0.75

0.50

0.25

n(z) (10" cm™2)

where the indexB represents a pair of subband indices 2me

(n,n"), andf 4(2) is the productp,(2) ¢, (2) of two subband $°(z,q)= (—) 1(9)J(z,q), (29

envelope functions. The factcn%(q) is just the intersubband «q

response function for an ideal 2DEG which depends on the

subband structure through the subband energy levels and the have

position of the Fermi level. Analytic expressions f)a%(q)

are availablgsee, for example, Ref. 15 a2
Once a parallel magnetic field is present, the subband 9(Zd)=€ %~

states acquire a nontrivilj, dependence, and(z,z',q) can-

not be obtained analytically. To avoid an excessive and ,  —dlee s’ , e

largely unnecessary amount of numerical work, we shall XJ dz J dze” 9771t 4(2)fo(2)3(2" ).

make a simple approximation motivated by the following

observation. Although the individual subband states are (30

strongly modified by the parallel field, depending on the

value ofk,, the overall electron density distribution is rela-

tively insensitive to the field. This is illustrated for sample 2

in Fig. 2, where we compare the ground state density fo

B,=0 T to the density at the relatively high field Bj=10 T.

As can be seen, the effect of the field is minor, even for this _ 0

case in which the second occupied subband is depopulated JQ(Q)ZJ dz f(z)e qz_% Fap(A)xp(a)Ip(a),

by the magnetic field. One would therefore expect the (32)

screening of the impurity potential to take place in the pres-

ence of the parallel field in much the same way as in theyhere

zero-field limit. We therefore adopt the physically reasonable

approximation of screening the impurities by the zero-field

response function givelj b()??). . Ja(q):f dz f,(2)3(z,9), (32)
However, one complication must be addressed: higher oc-

cupied subbands will depopulate with increasing parallel

magnetic field. Since different subbands screen differently‘:7lnd

maintaining the zero-field populations in the calculation of

x’(z,Z',q) introduces an error which can be avoided in the ,

following way. The subband populatioms(B) are first de- Faﬁ(q):( )f de dz'f,(2)f y(z')e 97

termined from a fully self-consistent electronic structure cal- (33

culation which is known to reproduce the observed field de-

pendence quite accuratelyWe ghen make use of this 5 3 Coulomb form factor. As mentioned earlier, we retain
information in the calculation 0f,(q) by simply defining 4y supbands in our calculations, so that the screening effect
fictitious subband energieS; to ensure that the subband f the second subband is still present even when it is depopu-
densities are given correctly; that is, lated.
_ 0 The solution of(31) is substituted intg30) to obtain the

2mni(By)=Ep— . (28) z-dependence of the screened impurity potential required in
This is sufficient to define the intersubband response functhe calculation of the scattering matrix elements. In particu-
tion for the occupied subbands. In the cases we have ded#r, the angular transition rate takes the form

2me?
Kq

)% X3(a)

We note that this integral equation has a separable kernel,
and it can therefore be reduced to a matrix problem. Multi-
plying (30 by f,(2) and integrating over gives

2me?
Kq
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m* Zﬂ_ez 2 T T T
Pnn/(krk,):F (Tq)fdz ¢nky(2)¢nfk;(Z)J(Z,CI) 1.00
1 0.75
- p)
XX [1(q)]?, (39 5
<~ 0.50

H

where the bar over the final factor denotes a configuration '
average. For uncorrelated impurity positions, we have

0.25

i||( )|2_fd2 i(2)e2% (39 _
A= P ’ 0.00 —1— 1
0 =n/4 wn/2 3n/4 W

wherep,(z) is the average spatial density of ionized impuri-
ties. For the special case of @doped layer with ¢
pi(2)=ny48(z+s), (35) becomesye 295, showing that the . . _
effect of the impurities diminishes exponentially with the  FIG. 3. The inverse Jacobian™v,-k/%k, along the Fermi con-
setback distancs. tour of the first subband, for sample 2 in the presence of a 10-T
We can compare this result with the idealized situation ofparallel magnetic fieldsolid ling). Also included for comparison is
short-range impurity scattering considered by Tang andhe functionm*uv,/%ik (dashed ling
8 . .
Butcher? For a sheet ob-function scatterers located in the curs at approximatelg,~5.6 T) Interestingly, the minimum

plane z=z, we find Pnn’(kvkl)“|¢nky(20)|2|¢n’k}’,(20)|2’ in the second subband also displaces relative to that in the
which must be integrated ovey to correspond to a uniform first, so that the pocket of second subband states approaches
distribution of scatterers throughout the region of the 2DEGthe first subband Fermi contour with increasing field. This
This scattering rate is independent lgf and k;, which, as  too will be seen to have an important effect. However, we
noted by Tang and Butch&rsimplifies the solution of the shall begin by considering the simpler situation in which
Boltzmann equation in the case BfB,. For the more real- only a single subband is occupied, either because the elec-
istic situation of remote charged impurities this simplifica- tron density is low or because the field is sufficiently high to
tion does not arise, and tHg|B, case requires a treatment have depopulated the higher subband. Since our calculations
similar to that of theE LB, case. are done for zero temperature, only the states at the Fermi
energy are relevant, and we can restrict the solutio{®pofo
e=Eg. It should be understood that all quantities are calcu-
lated at this energy.

All of the interesting magnetotransport effects in the pres- One measure of the Fermi contour anisotropy is the Jaco-
ence of an in-plane magnetic field ultimately arise from thebian defined in(12). In Fig. 3 we plot the inverse of this
distortion of the Fermi contours illustrated in Fig. 1, and thequantity as a function of the angular position around the
associated behavior of the subband wave functions. That thiSermi contour, together with the ratio of the magnitude of
could lead to a positive transverse magnetoresistance walse velocity to the free-electron velocifik/m*. We recall
already appreciated by Leadley al, who viewed the elec- that thek vector in this context is defined with respect to the
trons on the distorted Fermi contour as different kinds ofposition of the subband minimum, and not the more usual
carriers having different mobilities. The usual treatment ofk-space origin. One consequence of this definition is that
parallel transpoftwould then give rise to a positive magne- there is only a small difference between the curves in Fig. 3,
toresistance. They attributed variations in the mobility to aindicating that the normal to the Fermi contour does not
k-dependent effective mass which is due to the altered bandeviate much from the direction &. In this respect, the
structure. However, within a Boltzmann transport theory it isFermi contour is still rather circular in nature, despite its
the electron velocity which emerges as the important dyvisual appearance. On the other hand, the fourfold variation
namical variable, and the effective mass appears only wheof J;1(¢) around the contour shows that the modified energy
the energy dispersion is strictly parabolic, which is not thedispersion has a dramatic effect on the electron velocity.
case in the present situation. In any event, a much mor&here are two effects coming into play. The first is the over-
significant factor is the variation of the electronic scatteringall elongation along thek, axis which is a result of a
rates around the Fermi contour. In the following we shall trymagnetic-field enhancement of the effective mass in this di-
to differentiate between the kinematic effects which ariserection. As discussed previouslhis leads to an enhance-
from the energy-band structure, and the dynamical effectment of the electronic density of states above the ideal 2D
associated with impurity scattering. value. It is this effect that accounts for the decrease in

Figure 1 shows an example of the Fermi contour anisotd; X(¢) near ¢=. However, this same effect is swamped
ropy for a sample in which two subbands are occupied ahear¢$=0 by a much larger reduction of the velocity coming
zero field. As can be seen, the distortion of the Fermi contoufrom the flattening of the energy bands. Only ¢t 7/2 is
of the first subband increases with parallel field strength anthere no effect of the Fermi contour anisotropy, as the de-
eventually takes on the shape of an egg. As this distortion ipendence of the energy dq is unchanged by the parallel
developing, the energy separation between the first and semagnetic field.
ond subbands increases, and leads to the depopulation of the The difference in behavior of the energy dispersion near
second subbandFor sample 2, complete depopulation oc- ¢=0 and ¢= is a reflection of thek, dependence of the

Ill. RESULTS AND DISCUSSION
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FIG. 4. The centroid of the first subband wave function relative

to the interface, as a function of angular position on the Fermi FIG. 5. The angular scattering raﬁl(d’ Ad) of the first sub-
Contcl)lulr. The re_sufl_ts are for sample 2 in the presence of a 10-Fq for sample 2 with a 10-T parallel magnetic field. The scatter-
parallel magnetic field. ing rate is normalized by the small-angle scattering rate-atr.

The curves are labeled by the scattering anide with the solid

electron wave functions. Electrons wikl) negative(¢—m)  curves corresponding to positive scattering angles and the dashed
experience a magnetic potential which drives them into theyrves to negative angles.

interface, whereas states with positkg(¢—0) are pushed
away from the interface. The latter is a stronger effect, since Figure 5 shows the normalized scattering rate as a func-

f[he confining potentigl in a direction away from the interface;on of the starting angle for several scattering angles. For
is much softer, particularly when the background acceptor, given scattering anglé¢, the momentum transfeq is

density is low. These differences are illustrated in Fig. 4'approximately constant, and the dependence @an indi-

which shows the centroid of the subband probability densiwaiion of the strong anisotropy arising mainly from
ties as a function ok, . One can see that there is only a slight yehendence of the subband wave functions. The curve for
change in the centroid position as the wave functions ar ,_q corresponds to the limit of small-angle scattering, and
driven into the interfacd#/2<¢<), but there is a much shows a strong maximum gt=1. At this angle, the subband
larger variation for those states being pushed in the oppositgates are closest to the impurities where the screened poten-
direction (0O<$<m/2). N _ tial J(z,q) is relatively large. Asp—O0 (or 27), the subband

The change In mean pos[tlon ha}s a dramatlc; gffect on theates move away from the impurities, and the scattering rate
angular scattering rate4). It is particularly sensitive to the  jiminishes accordingly. A similar behavior is seen for the
wave-function position since the bare scattering potential ig,er scattering angles, although now an asymmetry with
an exponential function of the distapce from the imp“rityrespect to+Ad is evident. The decreasing magnitude of the
layer. Furthermore, those states which are further from th%cattering rate with increasing scattering angle is partly due

interface experience the full screening effect of the 2DEG; the momentum transfer dependence of the screened poten-
which is interposed between them and the ionized donor imgy, J(z,q) which decreases with increasing

purities. The angular scattering rate depends on the two an- ;i aiso of interest to consider the anisotropy of the quan-
gular variablesp and ¢ which specify the orientation of the ;1 jifetime defined in(8). Given that the scattering rate
initial and final wave vectors, respectively. Part of this angu-grops off rapidly with increasing momentum transéerthe

lar dependence arises from the impurity form fadidn)|*  inverse quantum lifetime is dominated by small-angle scat-
which depends on the momentum transferk’ —k. This  tering. In Fig. 6 the anisotropy of the quantum lifetime is
factor is common to the zero-field limit, and we thereforejjjystrated for sample 1 at a field of 10 T. The lifetime shows

choose to plot a normalized transition rate which has thig fourfold variation between its maximum &=0 and its
factor removed in order to isolate the effects associated withhinimum at ¢=1, the latter occurring when the angular

the dependence of the scattering matrix elements on the SUQcattering rate has its maximum, as shown in Fig. 5. To

band states. In particular, for the case of a single subband Wsolate the effects of the shape of the Fermi contour itself, we
consider the quantity can perform a model calculation in which the actual subband
wave functions are replaced by their zero-field limit. The
P, (. Ad)= A lifetime anisotropy in this case is shown by the dashed line in
1R 11(q)]2 Pu(¢.o+A¢), (36) Fig. 6. Since the angular scattering rate€34) is now only a
function of the momentum transfer, its anisotropy is rela-
whereA¢ is the angle through which the electron starting attively weak, and the lifetime anisotropy is dominated by the
the point ¢ is scattered. Because of the anisotropy of theJacobian factor irill). As a result, the dashed curve in Fig.
Fermi contourP;(¢,¢+Ad) is not a symmetric function of 6 mimics the behavior ad; *(¢) in Fig. 3. It is clear from a
the scattering angle, except at the special poifits) and  comparison of the two curves in Fig. 6 that the full lifetime
¢=m. More generally, we have the symmetry anisotropy comes mainly from the magnetic-field depen-
Pi(d,¢')=Pu(27— ¢, 27— d'). dence of the subband wave functions. The variation with
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] o ] FIG. 8. The multiple-subband quantum lifetimes, (¢) for
FIG. 6. The first subband quantum lifetime, as a function of thesample 2 in the presence of a 5-T parallel magnetic field, as a

angular position on the Fermi contour, for sample 1 in the presencg;nction of the angular coordinate.
of a 10-T parallel magnetic field. The solid line is the full calcula-
tion using thek,-dependent wave functions, while the dashed "nesmaller range ok, values in the second subband. Fgrwe
has been computed using only the constant zero-field wave funcs-ee a slight increélse in the lifetime @s»r. This ariées since
tions as described in the text. ) .

' ed! X the second subband states néeatw tend to experience a

parallel magnetic-field strength is shown in Fig. 7. The Iife-_Slightly larger average momentum transfer when scattering

time at zero field is of course isotropic, and the anisotropyNt© the first subband than do the states nga0. However,

about this value is seen to increase approximately in propc)II_he anisotropy of.this intersubband lifetime is again small
tion to the parallel field. due to t.he.small size of the pocket of sepond sut_)band states.

To illustrate the effect of multiple-subband occupancy, WeThe variation ofr, is much mo're.dramatlc, covering almost
have performed similar lifetime calculations for sample 2 at"fé€ orders of magnitude. This intersubband lifetime shows
an intermediate field5 T) where both subbands are still & Pronounced minimum neap~m/8 which is the region

occupied. In this instance, we can define multiband quantun/neré the first Fermi contour comes closest to the second
lifetimes by the equation subband. The reduced average momentum transfer for these

states results in a scattering “hot spot” at which the lifetime
4 4 is relatively small.
T ()= Ton (K) =2 Won (K K). (37) In the zero-field limit, the single-subband transport life-
K’ time differs from the quantum lifetime by the appearance of
These lifetimes represent the unweighted probability of aran additional1—cos¢) weighting factor in the integrand of
electron scattering from the staké¢) in subbandn to all ~ (8). In the presence of a parallel magnetic field, there unfor-
other states in subband. The two-band quantum lifetimes tunately is no similar expression which can be used to define
presented in Fig. 8 can be seen to exhibit quite different transport lifetime. Instead, one must deal directly with the
anisotropies. Forr;, we basically have the same behavior nonequilibrium distribution function as determined by the
shown in Fig. 7 for the single-subband sample, but the magsolution of the Boltzmann equation. This distribution func-
nitude of the anisotropy is significantly larger because of thaion can always be expressed in the form
smaller acceptor density in this samplg, has a similar
behavior, although the anisotropy is reduced because of the E(D)=E-An(9), (39)

which introduces the vector mean free pa&h(¢). In gen-
eral, the mean free path is not parallel to the velocity vector
at the pointg, and for this reason the conventional definition
of a transport lifetime is not appropriate. Nevertheless, for a
given direction of the electric field, it is possible to param-
etrize the mean free path in terms of a lifetime. For example,
for E=EX (i.e., parallel to the in-plane magnetic figlde
can write

7:(¢) (1077%s)

And @)=0nd §) T B). (39

Since the zeros of,(¢) coincide by symmetry with those of
vnx($) When the electric field is in the direction, 7h,( ) is
o) a well-defined quantity. This is not the case if the electric
field is oriented in they direction, and a similarly defined
FIG. 7. As in Fig. 6, but for a range of parallel magnetic-field lifetime would exhibit singularities at certain points on the
strengths. Fermi contour which have no physical significance. We shall

1 n 1 L i L 1
0 /4 w/2 3n/4 w




13602 J. M. HEISZ AND E. ZAREMBA 53

0T —
21
\/3‘1"

5w
. _ \/
©- g
s s 67—
- S Vv
N
8
8
Q

8T
jﬁm%

-0.6 -0.83 00 03 0.6

B, (T)

0 =n/4 n/2 3n/4 7

¢

FIG. 9. The effective transport lifetime of sample 1 as a function
of the angular coordinate, for an applied electric field parallel to the
in-plane magnetic field. The lifetime has been normalized by the
zero-field transport lifetime of the first subband. The curves are

labeled by the parallel magnetic field. FIG. 11. The transverse magnetoresistance for a series of paral-

lel magnetic-field strengths. The parameters characterizing this
] r ] .. sample are described in the text. The second subband depopulates at
therefore simply user,,(¢) as a convenient parametrization 5 parallel magnetic field of approximately 4 T. The curves have
in order to visualize the anisotropy of the solution to thepeen offset arbitrarily for clarity, but the scale of resistance varia-
Boltzmann equation. tion is the same for each.
Figure 9 shows the transport lifetime of sample 1 defined
according to(39), normalized by the zero-field transport life- than for JIB,, in qualitative agreement with experimént,
time, at three magnetic fields. For lower fields we see although it should be noted that the experimental anisotropy
monotonic angular variation similar to that of the quantumseems to vary from sample to sample in an unpredictable
lifetime, with those states ap—0 having a 50% greater way.
lifetime than those atp— . The states neap=n/2 which We finally consider the transverse magnetoresistance
contribute the most to the current have a lifetime very similarwhich arises with a perpendicular component of the mag-
to the zero-field lifetime. As the field strength increases, thenetic field. This component induces a cyclotron motion of
transport anisotropy changes in character, with additionathe electrons around the Fermi contour, and leads to an av-
structure appearing neg=0. More importantly, the average eraging of the anisotropic scattering rates. Figure 11 illus-
lifetime decreases with increasing field, and results in a positrates the behavior found for a series of parallel magnetic-
tive parallel field magnetoresistance. This effect is illustratedield strengths for a situation in which two subbands are
in Fig. 10, which shows the magnetoresistance for the curinitially occupied. The model parameters in this case are
rent parallel and perpendicular to the in-plane magnetic fieldn ,=0.3x10'* cm 2 and np=7.4x10'* cm™2 (n; is still
The magnetoresistance is approximately parabolic, and of 21x10' cm™2) instead of the values,=0.1x10'" cm2
sizable magnitude for field strengths of the order of 10 T. Inandny,=7.2x10" cm 2 used for sample 2. This adjustment
addition, we see that the magnetoresistance is largelfBf  was made since the two subband mobilities for sample 2 are
almost identical, and no positive magnetoresistance is found
for zero parallel field. By increasing the acceptor concentra-
tion the calculated magnetoresistance corresponds more
closely to that observed experimentally, and a more mean-
ingful comparison of the parallel field dependence can be
made. In addition, with the adjusted parameters the second
subband depopulates at approximately 4 T, which is in better
agreement with the G590c sample of Leadétyal®
TheB,=0 T curve in Fig. 11 is the usual positive magne-
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toresistance associated with the different carriers in the two
subbandsgalthough it should be stressed that the carriers are
not independent since intersubband scattering is incltibled
As the parallel magnetic field is increased, both the depth of
the magnetoresistance dip, and the field at which saturation
occurs, increase. This is in good qualitative agreement with
the observations of Leadlest al> on their G590c sample,
although the saturation field we find is approximately twice

FIG. 10. Variation of the magnetoresistance as a function of thédhe value observed. Since saturation occurs when=1, the

in-plane magnetic field. The labelsx andyy correspond talllB,
andJLB,, respectively.

discrepancy can be explained in terms of the difference be-
tween our calculated mobility 0ft:=37.7 nf/V's and the
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0 . . . . FIG. 13. The normalized transverse magnetoresistance as a
0.0 01 02 03 04 05 function of parallel magnetic-field strength. The different curves are
B, (1) labelled by the acceptor density,, in units of 13* cm 2. All

samples have the same electron density ofxZ@! cm™ 2. The
FIG. 12. The transverse magnetoresistance Ji;(xx) and low-field termination of the curves occurs at the point where the
JLB,(yy). (a) and(b) correspond to samples 1 and 2, respectively,Second subband becomes populated.

both at a fields, =5 T. subband states are more strongly affected by a parallel mag-
experimental value of 94.0 #V s. Once the depopulation netlc' fleld' n cht., We.have foqnd thalp,./po is far more
sensitive to variations in, than in any of the other material

field of abou 4 T is exceeded, we find that the saturation : .
field decreases suddenly to a value below the zero parallgara_meters. For example, F|g._(ﬂ))4|llusfcrates th_e effects of
varying the total electron density;, while keeping the par-

field value due to the elimination of intersubband scattering | - magnetic field constant. For low values mf, an in-
%T%Bﬁg Leerro?/llntshgogjt%mﬂIlgti?r?r#eelg C?Qér?ﬁértga?: (?fetr;]ae\éfease in total electron density translates into a reduction of
i 'epop : : L . 1-the anisotropy in the system and a lows®p,,/py. This is
magnetoresistance with increasing parallel field in the smglemainl due to an increase in the confinement of the self-
subband limit is simply a consequence of the increasing life- y

time anisotropy shown in Fig. 7. This behavior is in excellentConSiStent heterostructure potential with increasipg For
o Py Mg 7. higher values oh,, the acceptors are themselves providing
gualitative agreement with that observed.

In Fig. 12 we give an example of the kind of anisotropya stronger confining potential, and the effect of varyings

that could be expected in the perpendicular field magnetoregreatly reduced.
sistance. Figure 13) is for the same sample discussed in
Fig. 10, and shows a magnetoresistance which is only 30 ' '
slightly larger forJIB, than for JLB,. Figure 12b), corre- (a)
sponding to theB;=5 T curve in Fig. 11, shows a much 20l
larger anisotropy with the magnetoresistance still being o1
larger forJIB, than forJLB,. This relative magnitude of the 7.6T
two magnetoresistances persists over a range of sample pa- 10l 5T
rameters, and is opposite to the relative magnitude observed
in one particular sampl¥. We have no explanation for this
difference. It should also be noted that the experimental
magnetoresistance tends not to saturate, but passes through a
maximum before falling at higher magnetic fieffs:

To further quantify our results, in Fig. 13 we show the
normalized magnetoresistance

Apo./po (%)

Apyx _ pPxx(BL=%°)—py (B, =0T)
Po pxx(B, =0T)

for a range of acceptor densities with the total electron den- 0 0.0 0.5 1.0 1.5

sity fixed atny=7.1x10'" cm 2 A decrease im, can be n, (10" cm™)

induced by illumination. In agreement with observation, the

magnetoresistance increases with decreasjngFig. 14a) FIG. 14. (a) The normalized magnetoresistance as a function of
shows this dependence in a different way. This variation ren, at three different parallel magnetic fields, for the same set of
flects the effect of illumination on the confining potential. As samples as in Fig. 13b) As in (a), but for a parallel magnetic field
n, decreases, the confining potential becomes softer, and th# 10 T and varying electron-gas density, in units of 1¢* cm™2.

(40
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A comparison of our results in Fig. 13 with the experi- remote ionized donors. The scattering at different points on
mental data of Leadlegt al. permits an estimate of the ac- the Fermi contour is found to be highly anisotropic as a
ceptor densities in the experimental samples. We find thatesult of the field dependence of the subband wave functions.
n,=0.35x10'" cm 2 is appropriate for the illuminated This detailed scattering information is then used in a Boltz-
sample(G5900, while ny=1.2—1.4<10' cm 2 for the dark mann transport theory which treats the perpendicular field
sample(G590a. These values indicate that the change incomponent semiclassically. Our general solution of the Bolt-
acceptor density as a result of illuminationAs,=1x10""  zmann transport equation includes fully the effects of the
cm2, which is consistent with the previously determined electronic structure, intersubband scattering, and the anisot-
value? Interestingly, our estimates suggest that a significantopy of the nonequilibrium distribution function. Application
residual acceptor density remains after illumination, in con-of the theory to a realistic heterojunction is found to yield
trast to what is sometimes assumed. If the acceptor densitgsults which are in good qualitative agreement with experi-
were eliminated completely, our calculations would yield ament. In particular, our calculations account for the observed

much larger magnetoresistance than observed. positive transverse magnetoresistance and its detailed depen-
dence on the magnitude of the in-plane magnetic field in
IV. CONCLUSIONS both the one- and two-subband regimes. It is clear from our

) ) calculations that a careful treatment of the electronic struc-

We have performed extensive calculations of the transpofiyre, Jong-range impurity scattering, and transport behavior
properties of a 2DEG in the presence of parallel and perpengre all needed to obtain a complete understanding of the
dicular magnetic-field components. The in-plane componengxperimental results.
leads to a significant perturbation of the electronic structure
which manifests itself as a distortion of the Fermi contours
and a magnetic-field depopulation of higher-lying subbands. ACKNOWLEDGMENTS
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