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We have calculated the resistivity of a GaAs/AlxGa1-xAs heterojunction in the presence of both an in-plane
magnetic field and a weak perpendicular component using a semiclassical Boltzmann transport theory. These
calculations take into account fully the distortion of the Fermi contour which is induced by the parallel
magnetic field. The scattering of electrons is assumed to be due to remote ionized impurities. A positive
magnetoresistance is found as a function of the perpendicular component, in good qualitative agreement with
experimental observations. The main source of this effect is the strong variation of the electronic scattering rate
around the Fermi contour which is associated with the variation in the mean distance of the electronic states
from the remote impurities. The magnitude of the positive magnetoresistance is strongly correlated with the
residual acceptor impurity density in the GaAs layer. The carrier lifetime anisotropy also leads to an observable
anisotropy in the resistivity with respect to the angle between the current and the direction of the in-plane
magnetic field.@S0163-1829~96!05420-3#

I. INTRODUCTION

Magnetotransport in a two-dimensional electron gas
~2DEG! is an extremely rich and complex subject. In the
more usual geometry with a magnetic field perpendicular to
the plane of the 2DEG, the magnetoresistance exhibits
Shubnikov–de Haas oscillations which are the low-field pre-
cursors of the quantum Hall effect. This behavior is a con-
sequence of the quantization of the in-plane orbital motion
into Landau levels. The situation with a magnetic field in the
plane of the 2DEG is quite different since the cyclotron mo-
tion now competes with the effects of the potential confining
the electrons. This leads to an interesting modification of the
electronic energy-band structure which was recently ana-
lyzed in detail for typical GaAs/AlxGa1-xAs hetero-
junctions.1,2 These calculations account for the observed de-
population of higher subbands3 which occurs with increasing
parallel magnetic field.

In comparison to the perpendicular field geometry, trans-
port in the presence of a parallel field has received relatively
little attention. One of the earliest studies is that of Englert
et al.,4 who observed a pronounced positive transverse mag-
netoresistance when an in-plane magnetic field was tilted
slightly out of the plane of the 2DEG. This interesting ob-
servation was not understood at the time. More recently, the
same effect was studied in considerably more detail by Lead-
ley et al.5 for a number of GaAs/AlxGa1-xAs heterojunctions.
The explanation of this effect is the primary focus of our
work.

A positive transverse magnetoresistance is known to oc-
cur in situations where conduction is provided by different
kinds of carriers, for example, a heterojunction with two or
more occupied subbands. In accord with classical theory,6

samples with only a single occupied subband do not show
the effect~in fact, a negative magnetoresistance attributable
to weak localization is usually observed!. However, the situ-
ation changes when the system is subjected to a parallel

magnetic field which affects the electronic structure and
leads to a field-induced anisotropy of the 2D Fermi contour.
As noted by Leadleyet al.,5 this is analogous to the Fermi-
surface anisotropy found in metals, and should similarly lead
to a positive magnetoresistance.7 Although the anisotropy of
the Fermi contour is important, we shall see that it is not the
only effect contributing to the positive magnetoresistance.

There have been a few theoretical considerations of this
problem. The first calculation of transport in the presence of
a parallel magnetic field was carried out by Tang and
Butcher8,9 who considered a model in which the 2DEG is
confined by a harmonic potential. The electronic states and
energy dispersion can be obtained analytically for this
model, which simplifies the solution of the transport prob-
lem. They further assumed that the electrons are scattered by
short-ranged-function potentials, and demonstrated within
the framework of the Boltzmann transport theory that the
conductivity of the electron gas is anisotropic with respect to
the angle between the current and the parallel magnetic field.
However, they did not consider the additional effects of a
perpendicular magnetic field. A similar model was used by
Smrčka10 in an attempt to explain the observed positive mag-
netoresistance. However his calculation invokes a dc con-
ductivity in the third dimension perpendicular to the plane of
the 2DEG which has no obvious physical meaning. More
recently, Strˇeda, Vasˇek, and Cukr11 developed a semiclassi-
cal Boltzmann transport theory of the magnetoresistance
within a constant relaxation-time approximation. The theory
assumes that currents flowing in a direction perpendicular to
the in-plane magnetic field induce a transverse Hall field per-
pendicular to the 2DEG, as first suggested by Stern.12 It is
then argued that this field in turn leads to a correction to the
in-plane conductivity which is the source of the positive
magnetoresistance. This argumentation, however, is rather
heuristic, and a more rigorous explanation of the experimen-
tal observations is needed. We have therefore performed a
more thorough calculation of the transport properties in a
tilted magnetic field, utilizing a realistic model of both the
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heterojunction electronic structure and the scattering of elec-
trons from remote ionized impurities. We shall demonstrate
that the inherent anisotropy of these properties is ultimately
the source of the positive transverse magnetoresistance.

We perform our calculations for model heterojunctions
which correspond to the G590 series of samples studied by
Leadley et al.5 By modeling these particular samples we
hope to minimize any differences in electronic structure
which might otherwise obscure a comparison between theory
and experiment. The design characteristics of these samples
have been discussed elsewhere.3 The important variables are
the areal acceptor and donor densities~nA and nD!, which
can be varied experimentally by means of the persistent pho-
toconductivity effect. We shall deal specifically with two
combinations, herein referred to as samples 1 and 2. Sample
1 has an acceptor density ofnA51.0331011 cm22 and a
donor density ofnD54.5331011 cm22, giving a total elec-
tron density ofnT53.531011 cm22. It corresponds to the
unilluminated experimental sample referred to as G590a,
which has only one occupied subband. For sample 2, the
areal densities arenA50.131011 cm22 and nD57.231011

cm22, resulting in a total electron density ofnT57.131011

cm22, corresponding to the experimental sample referred to
as G590c. This sample is obtained from G590a by illumina-
tion, and has two occupied subbands. A comparison of the
theoretical and experimental zero-field mobilities provides
one measure of how well we have been able to model these
samples. We find 20.6 and 37.9 m2/V s for samples 1 and 2,
respectively, which compare favorably with the experimental
values of 17.4 and 94.0 m2/V s. We are therefore confident
that our model heterojunctions closely represent the actual
experimental samples.

II. THEORY

A. Boltzmann transport theory

In this section, we develop the Boltzmann transport equa-
tion for a 2DEG in the presence of a strong parallel magnetic
field in thex direction and a weak perpendicular component.
The parallel field is taken into account quantum mechani-
cally in the determination of the subband electronic structure
~see Ref. 1!. As a function of the in-plane wave vectork, the
dispersion of the subband energiesEnk is anisotropic, and
leads to noncircular constant energy contours. An example of
this behavior is shown in Fig. 1, where the contours are
illustrated for sample 2 for two parallel magnetic fields, one
~B55 T! for which two subbands are occupied, and a second
~B510 T! for which only a single subband is occupied.

The dynamics of the electrons in the presence of a per-
pendicular magnetic-field componentB' will be described
semiclassically. The transport properties arising from an ex-
ternal electric fieldE are then determined using the Boltz-
mann equation

] f n~k!

]t U
scat

52S e\ DE•“k f n~k!2
e

\c
~vnk3B'!•“k f n~k!,

~1!

where f n~k! is the nonequilibrium distribution function of
subbandn, andvnk5“kEnk/\ is the group velocity. Since
the energy bands are neither parabolic nor isotropic in the

presence of a parallel magnetic field, the electron velocity is
not parallel to the wave vectork. Expressingf n~k! as

f n~k!5 f 0~Enk!1gn~k!, ~2!

where f 0(Enk) is the equilibrium Fermi distribution and
gn~k! is the deviation from equilibrium, the linearized Bolt-
zmann equation is given by

]gn~k!
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scat

52S e\ DE•“k f
0~Enk!

2
e

\c
~vnk3B'!•“kgn~k!. ~3!

The scattering term in~3! is

]gn~k!

]t U
scat

5 (
n8k8

@gn8~k8!2gn~k!#wnn8~k,k8!, ~4!

wherewnn8~k,k8! is the transition rate between statesnk and
n8k8. It satisfies the detailed balance condition
wn8n~k8,k!5wnn8~k,k8!, which ensures the overall conserva-
tion of the particle number.

In the following we shall assume that the scattering is due
to impurities. In this case, Fermi’s golden rule gives the tran-
sition probability

FIG. 1. Constant Fermi energy contours for sample 2 with a
parallel magnetic field of~a! 5 T ~two-band occupancy! and~b! 10
T ~single-band occupancy!. kx andky are in units of inverse Bohr
radii @~a* !21#. The angular variablef defines the position on the
Fermi contour with respect to the position of the first subband mini-
mum, k1

min ; a similar angular coordinate is defined for the second
subband, but is not shown.

53 13 595TRANSVERSE MAGNETORESISTANCE OF GaAs/AlxGa12xAs . . .



wnn8~k,k8!5
2p

\
z^nkuV~r !un8k8& z2d~Enk2En8k8!, ~5!

whereV~r ! is the screened impurity potential. The bar over
the matrix element denotes an average over all possible im-
purity configurations. The important property for the present
purposes is the energy-conservingd function which corre-
sponds to the elastic nature of the scattering. Making use of
this dependence and defining the quantityjn~k! by

gn~k!5
] f 0~Enk!

]Enk
jn~k!, ~6!

Eq. ~3! can be reduced to

tn
21~k!jn~k!5 (

n8k8
wnn8~k,k8!jn8~k8!1eE•vnk

1
e

\c
~vnk3B'!•“kjn~k!. ~7!

Heretn~k! is the quantum lifetime

tn
21~k!5 (

n8k8
wnn8~k,k8!, ~8!

which represents the total unweighted probability of scatter-
ing from the initial statenk to all available final states, in-
cluding states in other subbands. Due to the more compli-
cated energy subband structure in the presence of a parallel
magnetic field,wnn8~k,k8! is not simply a function ofk2k8
and, as a result,tn~k! is in general an anisotropic function of
the wave vectork.

The anisotropic energy-band structure also complicates
the solution of the Boltzmann equation. We find it useful to
transform from thek-space variables to a curvilinear coordi-
nate system defined by the energy variablee[Enk and an
angular variablef corresponding to the orientation of the
vectork. To be specific, the position ink space of a state in
thenth subband is referred to the position of theminimumof
the subband energy which is displaced fromky50 because of
the parallel magnetic field. This origin is implicitly assumed
in the following. The definition of these variables is illus-
trated in Fig. 1. We have found that the use of the variablef
is more convenient in the present context than the phase
angleu, which naturally appears in discussions of cyclotron
motion ~Ref. 6, Chap. 9!.

With this variable transformation, Eq.~7! becomes

tn
21~e,f!jn~e,f!5(

n8

1

2p E
0

2p

dfJn8~e,f8!

3Pnn8~e,f,f8!jn8~e,f8!

1eE•vn~e,f!2S eB'

\c D
3vn~e,f! t̂n•“kjn~e,f!, ~9!

wheret̂n is a unit vector pointing in the direction of cyclotron
motion on the constant energy contour of thenth subband at
the pointk. The angular transition rate at energye appearing
in ~9! is defined by

Pnn8~Enk ,f,f8!5A
m*

\3 z^nkuV~r !un8k8& z2, ~10!

in terms of which the quantum lifetime is given by

tn
21~e,f!5(

n8

1

2p E
0

2p

df8Jn8~e,f8!Pnn8~e,f,f8!.

~11!

The integrals in~9! and ~11! contain the quantity

Jn~e,f!5
\2k

m* u¹kEnk• k̂u
, ~12!

which is a dimensionless form of the Jacobian of the variable
transformation. In this form it is just the ratio of the free
particle velocity\k/m* to the component of the actual ve-
locity vn~k! in the directionk̂. The deviation of this function
from unity reflects the asymmetry of the constant energy
contours in the presence of a parallel magnetic field.

The solution of~9! is easily obtained using a Fourier ex-
pansion in the angular variable, i.e.,

jn~e,f!5(
m

an
~m!~e !eimf. ~13!

Multiplying ~9! by e2 imfJn~e,f! and integrating overf
yields the set of linear equations

(
m8n8

@An
~m2m8!dnn82Bnn8

~m,2m8!
1 imvc

0dmm8dnn8#an8
~m8!

5bn
~m! , ~14!

with

An
~m!5

1

2p E
0

2p

df e2 imfJn~f!tn
21~f!, ~15!

Bnn8
~m,m8!

5
1

2p E
0

2p

df e2 imfJn~f!
1

2p

3E
0

2p

df8e2 im8f8Jn8~f8!Pnn8~f,f8!, ~16!

and

bn
~m!5

1

2p E
0

2p

df e2 imfJn~f!eE–vn~f!. ~17!

In these equations, the dependence on the energy variablee
has been suppressed. We note that the free-electron cyclotron
frequency v c

05eB'/m* c appears in Eq.~14!, and not
the actual cyclotron frequency defined byv cn

215(\c/
eB')r(dk/vn), where the line integral extends over a con-
stant energy contour.

In the absence of a parallel magnetic field the energy dis-
persion is isotropic,Jn~f! reduces to unity, and the angular
transition rate is only a function of the differencef2f8. As
a result,t n

21~f! becomes independent off, b n
(m) is propor-

tional todm,61, anda n
(61) are the only nonvanishing expan-

sion coefficients. In this limit, one recovers the usual form of
the multisubband transport equations.13
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In the present situation, however, the equations defining
the Fourier expansion coefficients are coupled. In practice,
the expansion is truncated at some finite number of terms,
and the set of equations in~14! is solved with the inhomo-
geneous term taking on two possible values, one correspond-
ing to an electric field in thex direction and one in they
direction. Once these solutions are known, the transport cur-
rent density is obtained from

J52
2e

A (
nk

gn~k!vnk

5
m* e
2p2\2 (

mn
E

2`

`

deS 2
] f 0~e!

]e D
3am

~m!~e !E
0

2p

df Jn~e,f!vn~e,f!eimf. ~18!

Since the Fourier coefficienta n
(m) depends linearly on the

electric field, we can define the conductivity tensor as

smn5
m* e
2p2\2 (

mn
E

2`

`

deS 2
] f 0~e!

]e D ]an
~m!~e !

]En

3E
0

2p

df Jn~e,f!vnm~e,f!eimf. ~19!

In the B'→0 limit, one can show thatsmn is diagonal, but
sxxÞsyy . As a result of the distortion of the Fermi contour,
the current flow is not parallel to the applied electric field
except for the special cases when the electric field is either
parallel or perpendicular to the in-plane magnetic field.

We finally comment on whether or not the transverse Hall
field proposed by Strˇeda, Vasˇek, and Cukr11 is a possible
mechanism for the positive magnetoresistance. The nonequi-
librium distribution function in~2! implies a spatial redistri-
bution of the electronic charge in a direction normal to the
interface given by9

dn~z!52(
nk

gn~k!ufnky
~z!u2, ~20!

wherefnky
(z) is the subband wave function in the presence

of the in-plane magnetic field. This redistribution gives rise
to a transverse Hall field, and a Hall potential which is esti-
mated to be of the order of microvolts under typical current
carrying conditions.12,9 These potentials are small on the en-
ergy scale of the confining potential,14 and will lead to small
changes in the energy-band dispersion. Corrections to the
Boltzmann equation~for example, as a result of changes in
the electron velocity! are therefore of higher order in the
applied electric field and, at the level of the linearized Bolt-
zmann theory, can be safely neglected. A transverse Hall
field is therefore not relevant to in-plane transport.

B. Evaluation of the scattering elementsPnn8„k,k8…

We now turn our attention to the calculation ofPnn8~k,k8!
in ~10! for a situation in which scattering is due to remote
ionized impurities. Using the form of the subband states in
the presence of a parallel magnetic field, the potential matrix
element has the form

^nkuV~r !un8k8&5
1

A E dz fnky
~z!fn8ky8

~z!V~z,q!,

~21!

whereq5k2k8, and

V~z,q!5E ds e2 iq•sV~s,z! ~22!

is the 2D Fourier transform of the scattering potential. We
note that the evaluation of~21! for the parallel field configu-
ration is considerably more involved because of theky de-
pendence of the subband states. As a result, the potential
matrix elements do not simply depend on the momentum
transferq which appears in the Fourier transform of the im-
purity potential.

We assume that the impurity potential arises from a dis-
tribution of remote ionized impurities located at sites
~Ri ,Zi!. These impurities~of chargee! give rise to the bare
electrostatic potential

fext~z,q!5(
i

S 2pe

kq De2qzeqZie2 iq•Ri[S 2pe

kq D I ~q!e2qz,

~23!

where a two-dimensional Fourier transform has been taken
in the plane of the 2DEG, and we have assumed that the
position of the charged impurities is such thatZi,z. k is the
dielectric constant of the material in which the 2DEG is im-
bedded. The quantityI ~q! determines the amplitude of the
exponentially decaying Fourier transform, and contains all
information regarding the spatial distribution of the ionized
donor impurities.

The external impurity potential is screened by the 2DEG,
and it is the final screened potential which is responsible for
the electron scattering. We shall account for the screening at
the level of the random-phase approximation in which the
electrons respond self-consistently to the ionized impurity
potential. Definingx0~z,z8,q! to be the 2D Fourier transform
of the independent particle density response function, the
change in electron density due to the impurities is given by

dn~z,q!5eE dz8x0~z,z8,q!f tot~z8,q!, ~24!

whereftot~z,q! is the total electrostatic potential acting on
the electrons. This potential is given by

f tot~z,q!5fext~z,q!1f ind~z,q!, ~25!

where the second term is the induced electrostatic potential

f ind~z,q!52S 2pe

kq D E dz8e2quz2z8udn~z8,q!, ~26!

arising from the induced electron charge density.
In the absence of a parallel magnetic field, the subband

envelope functions arek independent, and the calculation of
the density response function is relatively straightforward. It
takes the form

x0~z,z8,q!5(
b

f b~z! f b~z8!xb
0~q!, ~27!
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where the indexb represents a pair of subband indices
~n,n8!, andf b(z) is the productfn(z)fn8(z) of two subband
envelope functions. The factorxb

0(q) is just the intersubband
response function for an ideal 2DEG which depends on the
subband structure through the subband energy levels and the
position of the Fermi level. Analytic expressions forxb

0(q)
are available~see, for example, Ref. 15!.

Once a parallel magnetic field is present, the subband
states acquire a nontrivialky dependence, andx

0~z,z8,q! can-
not be obtained analytically. To avoid an excessive and
largely unnecessary amount of numerical work, we shall
make a simple approximation motivated by the following
observation. Although the individual subband states are
strongly modified by the parallel field, depending on the
value ofky, the overall electron density distribution is rela-
tively insensitive to the field. This is illustrated for sample 2
in Fig. 2, where we compare the ground state density for
Bi50 T to the density at the relatively high field ofBi510 T.
As can be seen, the effect of the field is minor, even for this
case in which the second occupied subband is depopulated
by the magnetic field. One would therefore expect the
screening of the impurity potential to take place in the pres-
ence of the parallel field in much the same way as in the
zero-field limit. We therefore adopt the physically reasonable
approximation of screening the impurities by the zero-field
response function given by~27!.

However, one complication must be addressed: higher oc-
cupied subbands will depopulate with increasing parallel
magnetic field. Since different subbands screen differently,
maintaining the zero-field populations in the calculation of
x0~z,z8,q! introduces an error which can be avoided in the
following way. The subband populationsni(B) are first de-
termined from a fully self-consistent electronic structure cal-
culation which is known to reproduce the observed field de-
pendence quite accurately.1 We then make use of this
information in the calculation ofxb

0(q) by simply defining
fictitious subband energiesE i

0 to ensure that the subband
densities are given correctly; that is,

2pni~Bi!5EF2Ei
0. ~28!

This is sufficient to define the intersubband response func-
tion for the occupied subbands. In the cases we have dealt

with, a maximum of two subbands are occupied and we have
therefore truncatedxb

0(q) to a 232 matrix corresponding to
the lowest two subbands. Once the second subband is de-
populated, the second subband still contributes to the screen-
ing by providing final states to which the first subband elec-
trons can be excited. In this situation the second subband is
positioned relative to the Fermi level according to the self-
consistent calculation, while the first subband energy is still
determined by~28!. In practice we have found that these
refinements have only a slight effect on the calculated scat-
tering matrix elements since the lowest subband holds most
of the electrons and contributes most of the screening. Nev-
ertheless, since relatively little additional effort is required to
determine these corrections, we have retained them in all of
the screening calculations.

With this prescription forxb
0(q) and x0~z,z8,q!, the

screened impurity potential is obtained from the set of equa-
tions ~23!–~26!. Expressingftot~q,z! as

f tot~z,q!5S 2pe

kq D I ~q!J~z,q!, ~29!

we have

J~z,q!5e2qz2S 2pe2

kq D(
b

xb
0~q!

3E dz8E dz9e2quz2z8u f b~z8! f b~z9!J~z9,q!.

~30!

We note that this integral equation has a separable kernel,
and it can therefore be reduced to a matrix problem. Multi-
plying ~30! by f a(z) and integrating overz gives

Ja~q!5E dz fa~z!e2qz2(
b

Fab~q!xb
0~q!Jb~q!,

~31!

where

Ja~q!5E dz fa~z!J~z,q!, ~32!

and

Fab~q!5S 2pe2

kq D E dzE dz8 f a~z! f b~z8!e2quz2z8u

~33!

is a Coulomb form factor. As mentioned earlier, we retain
two subbands in our calculations, so that the screening effect
of the second subband is still present even when it is depopu-
lated.

The solution of~31! is substituted into~30! to obtain the
z-dependence of the screened impurity potential required in
the calculation of the scattering matrix elements. In particu-
lar, the angular transition rate takes the form

FIG. 2. The spatial density profile of the 2DEG in sample 2 as a
function of distance from the interface, for zero magnetic field
~solid line! and for a parallel magnetic field of 10 T~dashed line!.
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Pnn8~k,k8!5
m*

\3 US 2pe2

kq D E dz fnky
~z!fn8ky8

~z!J~z,q!U2

3
1

A
uI ~q!u2, ~34!

where the bar over the final factor denotes a configuration
average. For uncorrelated impurity positions, we have

1

A
uI ~q!u25E dz r i~z!e2qz, ~35!

whereri(z) is the average spatial density of ionized impuri-
ties. For the special case of ad-doped layer with
r i(z)5ndd(z1s), ~35! becomesnde

22qs, showing that the
effect of the impurities diminishes exponentially with the
setback distances.

We can compare this result with the idealized situation of
short-range impurity scattering considered by Tang and
Butcher.8 For a sheet ofd-function scatterers located in the
plane z5z0 we find Pnn8(k,k8)}ufnky

(z0)u2ufn8ky8
(z0)u2,

which must be integrated overz0 to correspond to a uniform
distribution of scatterers throughout the region of the 2DEG.
This scattering rate is independent ofkx and kx8 which, as
noted by Tang and Butcher,8 simplifies the solution of the
Boltzmann equation in the case ofEiBi . For the more real-
istic situation of remote charged impurities this simplifica-
tion does not arise, and theEiBi case requires a treatment
similar to that of theE'Bi case.

III. RESULTS AND DISCUSSION

All of the interesting magnetotransport effects in the pres-
ence of an in-plane magnetic field ultimately arise from the
distortion of the Fermi contours illustrated in Fig. 1, and the
associated behavior of the subband wave functions. That this
could lead to a positive transverse magnetoresistance was
already appreciated by Leadleyet al., who viewed the elec-
trons on the distorted Fermi contour as different kinds of
carriers having different mobilities. The usual treatment of
parallel transport6 would then give rise to a positive magne-
toresistance. They attributed variations in the mobility to a
k-dependent effective mass which is due to the altered band
structure. However, within a Boltzmann transport theory it is
the electron velocity which emerges as the important dy-
namical variable, and the effective mass appears only when
the energy dispersion is strictly parabolic, which is not the
case in the present situation. In any event, a much more
significant factor is the variation of the electronic scattering
rates around the Fermi contour. In the following we shall try
to differentiate between the kinematic effects which arise
from the energy-band structure, and the dynamical effects
associated with impurity scattering.

Figure 1 shows an example of the Fermi contour anisot-
ropy for a sample in which two subbands are occupied at
zero field. As can be seen, the distortion of the Fermi contour
of the first subband increases with parallel field strength and
eventually takes on the shape of an egg. As this distortion is
developing, the energy separation between the first and sec-
ond subbands increases, and leads to the depopulation of the
second subband.~For sample 2, complete depopulation oc-

curs at approximatelyBi;5.6 T.! Interestingly, the minimum
in the second subband also displaces relative to that in the
first, so that the pocket of second subband states approaches
the first subband Fermi contour with increasing field. This
too will be seen to have an important effect. However, we
shall begin by considering the simpler situation in which
only a single subband is occupied, either because the elec-
tron density is low or because the field is sufficiently high to
have depopulated the higher subband. Since our calculations
are done for zero temperature, only the states at the Fermi
energy are relevant, and we can restrict the solution of~9! to
e5EF . It should be understood that all quantities are calcu-
lated at this energy.

One measure of the Fermi contour anisotropy is the Jaco-
bian defined in~12!. In Fig. 3 we plot the inverse of this
quantity as a function of the angular position around the
Fermi contour, together with the ratio of the magnitude of
the velocity to the free-electron velocity\k/m* . We recall
that thek vector in this context is defined with respect to the
position of the subband minimum, and not the more usual
k-space origin. One consequence of this definition is that
there is only a small difference between the curves in Fig. 3,
indicating that the normal to the Fermi contour does not
deviate much from the direction ofk. In this respect, the
Fermi contour is still rather circular in nature, despite its
visual appearance. On the other hand, the fourfold variation
of J1

21~f! around the contour shows that the modified energy
dispersion has a dramatic effect on the electron velocity.
There are two effects coming into play. The first is the over-
all elongation along theky axis which is a result of a
magnetic-field enhancement of the effective mass in this di-
rection. As discussed previously,1 this leads to an enhance-
ment of the electronic density of states above the ideal 2D
value. It is this effect that accounts for the decrease in
J1

21~f! nearf5p. However, this same effect is swamped
nearf50 by a much larger reduction of the velocity coming
from the flattening of the energy bands. Only atf5p/2 is
there no effect of the Fermi contour anisotropy, as the de-
pendence of the energy onkx is unchanged by the parallel
magnetic field.

The difference in behavior of the energy dispersion near
f50 andf5p is a reflection of theky dependence of the

FIG. 3. The inverse Jacobianm*vn• k̂/\k, along the Fermi con-
tour of the first subband, for sample 2 in the presence of a 10-T
parallel magnetic field~solid line!. Also included for comparison is
the functionm* vn/\k ~dashed line!.
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electron wave functions. Electrons withky negative~f→p!
experience a magnetic potential which drives them into the
interface, whereas states with positiveky ~f→0! are pushed
away from the interface. The latter is a stronger effect, since
the confining potential in a direction away from the interface
is much softer, particularly when the background acceptor
density is low. These differences are illustrated in Fig. 4,
which shows the centroid of the subband probability densi-
ties as a function ofky . One can see that there is only a slight
change in the centroid position as the wave functions are
driven into the interface~p/2,f,p!, but there is a much
larger variation for those states being pushed in the opposite
direction ~0,f,p/2!.

The change in mean position has a dramatic effect on the
angular scattering rate~34!. It is particularly sensitive to the
wave-function position since the bare scattering potential is
an exponential function of the distance from the impurity
layer. Furthermore, those states which are further from the
interface experience the full screening effect of the 2DEG
which is interposed between them and the ionized donor im-
purities. The angular scattering rate depends on the two an-
gular variablesf andf8 which specify the orientation of the
initial and final wave vectors, respectively. Part of this angu-
lar dependence arises from the impurity form factoruI (q)u2
which depends on the momentum transferq5k82k. This
factor is common to the zero-field limit, and we therefore
choose to plot a normalized transition rate which has this
factor removed in order to isolate the effects associated with
the dependence of the scattering matrix elements on the sub-
band states. In particular, for the case of a single subband we
consider the quantity

P̄11~f,Df!5
A

uI ~q!u2
P11~f,f1Df!, ~36!

whereDf is the angle through which the electron starting at
the pointf is scattered. Because of the anisotropy of the
Fermi contour,P11~f,f1Df! is not a symmetric function of
the scattering angle, except at the special pointsf50 and
f5p. More generally, we have the symmetry
P11(f,f8)5P11(2p2f,2p2f8).

Figure 5 shows the normalized scattering rate as a func-
tion of the starting anglef for several scattering angles. For
a given scattering angleDf, the momentum transferq is
approximately constant, and the dependence onf is an indi-
cation of the strong anisotropy arising mainly from theky
dependence of the subband wave functions. The curve for
Df50 corresponds to the limit of small-angle scattering, and
shows a strong maximum atf5p. At this angle, the subband
states are closest to the impurities where the screened poten-
tial J(z,q) is relatively large. Asf→0 ~or 2p!, the subband
states move away from the impurities, and the scattering rate
diminishes accordingly. A similar behavior is seen for the
other scattering angles, although now an asymmetry with
respect to6Df is evident. The decreasing magnitude of the
scattering rate with increasing scattering angle is partly due
to the momentum transfer dependence of the screened poten-
tial J(z,q) which decreases with increasingq.

It is also of interest to consider the anisotropy of the quan-
tum lifetime defined in~8!. Given that the scattering rate
drops off rapidly with increasing momentum transferq, the
inverse quantum lifetime is dominated by small-angle scat-
tering. In Fig. 6 the anisotropy of the quantum lifetime is
illustrated for sample 1 at a field of 10 T. The lifetime shows
a fourfold variation between its maximum atf50 and its
minimum at f5p, the latter occurring when the angular
scattering rate has its maximum, as shown in Fig. 5. To
isolate the effects of the shape of the Fermi contour itself, we
can perform a model calculation in which the actual subband
wave functions are replaced by their zero-field limit. The
lifetime anisotropy in this case is shown by the dashed line in
Fig. 6. Since the angular scattering rate in~34! is now only a
function of the momentum transfer, its anisotropy is rela-
tively weak, and the lifetime anisotropy is dominated by the
Jacobian factor in~11!. As a result, the dashed curve in Fig.
6 mimics the behavior ofJ1

21~f! in Fig. 3. It is clear from a
comparison of the two curves in Fig. 6 that the full lifetime
anisotropy comes mainly from the magnetic-field depen-
dence of the subband wave functions. The variation with

FIG. 4. The centroid of the first subband wave function relative
to the interface, as a function of angular position on the Fermi
contour. The results are for sample 2 in the presence of a 10-T
parallel magnetic field.

FIG. 5. The angular scattering rateP̄11~f,Df! of the first sub-
band, for sample 2 with a 10-T parallel magnetic field. The scatter-
ing rate is normalized by the small-angle scattering rate atf5p.
The curves are labeled by the scattering angleDf, with the solid
curves corresponding to positive scattering angles and the dashed
curves to negative angles.
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parallel magnetic-field strength is shown in Fig. 7. The life-
time at zero field is of course isotropic, and the anisotropy
about this value is seen to increase approximately in propor-
tion to the parallel field.

To illustrate the effect of multiple-subband occupancy, we
have performed similar lifetime calculations for sample 2 at
an intermediate field~5 T! where both subbands are still
occupied. In this instance, we can define multiband quantum
lifetimes by the equation

tnn8
21

~f!5tnn8
21

~k!5(
k8

wnn8~k,k8!. ~37!

These lifetimes represent the unweighted probability of an
electron scattering from the statek~f! in subbandn to all
other states in subbandn8. The two-band quantum lifetimes
presented in Fig. 8 can be seen to exhibit quite different
anisotropies. Fort11, we basically have the same behavior
shown in Fig. 7 for the single-subband sample, but the mag-
nitude of the anisotropy is significantly larger because of the
smaller acceptor density in this sample.t22 has a similar
behavior, although the anisotropy is reduced because of the

smaller range ofky values in the second subband. Fort21 we
see a slight increase in the lifetime asf→p. This arises since
the second subband states nearf5p tend to experience a
slightly larger average momentum transfer when scattering
into the first subband than do the states nearf50. However,
the anisotropy of this intersubband lifetime is again small
due to the small size of the pocket of second subband states.
The variation oft12 is much more dramatic, covering almost
three orders of magnitude. This intersubband lifetime shows
a pronounced minimum nearf;p/8 which is the region
where the first Fermi contour comes closest to the second
subband. The reduced average momentum transfer for these
states results in a scattering ‘‘hot spot’’ at which the lifetime
is relatively small.

In the zero-field limit, the single-subband transport life-
time differs from the quantum lifetime by the appearance of
an additional~12cosf! weighting factor in the integrand of
~8!. In the presence of a parallel magnetic field, there unfor-
tunately is no similar expression which can be used to define
a transport lifetime. Instead, one must deal directly with the
nonequilibrium distribution function as determined by the
solution of the Boltzmann equation. This distribution func-
tion can always be expressed in the form

jn~f![E•Ln~f!, ~38!

which introduces the vector mean free pathLn~f!. In gen-
eral, the mean free path is not parallel to the velocity vector
at the pointf, and for this reason the conventional definition
of a transport lifetime is not appropriate. Nevertheless, for a
given direction of the electric field, it is possible to param-
etrize the mean free path in terms of a lifetime. For example,
for E5Ex̂ ~i.e., parallel to the in-plane magnetic field! we
can write

Lnx~f![vnx~f!tnx
tr ~f!. ~39!

Since the zeros ofjn~f! coincide by symmetry with those of
vnx~f! when the electric field is in thex direction,tnx

tr (f) is
a well-defined quantity. This is not the case if the electric
field is oriented in they direction, and a similarly defined
lifetime would exhibit singularities at certain points on the
Fermi contour which have no physical significance. We shall

FIG. 6. The first subband quantum lifetime, as a function of the
angular position on the Fermi contour, for sample 1 in the presence
of a 10-T parallel magnetic field. The solid line is the full calcula-
tion using theky-dependent wave functions, while the dashed line
has been computed using only the constant zero-field wave func-
tions as described in the text.

FIG. 7. As in Fig. 6, but for a range of parallel magnetic-field
strengths.

FIG. 8. The multiple-subband quantum lifetimestnn8~f! for
sample 2 in the presence of a 5-T parallel magnetic field, as a
function of the angular coordinate.
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therefore simply usetnx
tr (f) as a convenient parametrization

in order to visualize the anisotropy of the solution to the
Boltzmann equation.

Figure 9 shows the transport lifetime of sample 1 defined
according to~39!, normalized by the zero-field transport life-
time, at three magnetic fields. For lower fields we see a
monotonic angular variation similar to that of the quantum
lifetime, with those states atf→0 having a 50% greater
lifetime than those atf→p. The states nearf5p/2 which
contribute the most to the current have a lifetime very similar
to the zero-field lifetime. As the field strength increases, the
transport anisotropy changes in character, with additional
structure appearing nearf50. More importantly, the average
lifetime decreases with increasing field, and results in a posi-
tive parallel field magnetoresistance. This effect is illustrated
in Fig. 10, which shows the magnetoresistance for the cur-
rent parallel and perpendicular to the in-plane magnetic field.
The magnetoresistance is approximately parabolic, and of a
sizable magnitude for field strengths of the order of 10 T. In
addition, we see that the magnetoresistance is larger forJ'Bi

than for JiBi , in qualitative agreement with experiment,11

although it should be noted that the experimental anisotropy
seems to vary from sample to sample in an unpredictable
way.

We finally consider the transverse magnetoresistance
which arises with a perpendicular component of the mag-
netic field. This component induces a cyclotron motion of
the electrons around the Fermi contour, and leads to an av-
eraging of the anisotropic scattering rates. Figure 11 illus-
trates the behavior found for a series of parallel magnetic-
field strengths for a situation in which two subbands are
initially occupied. The model parameters in this case are
nA50.331011 cm22 and nD57.431011 cm22 ~nT is still
7.131011 cm22! instead of the valuesnA50.131011 cm22

andnD57.231011 cm22 used for sample 2. This adjustment
was made since the two subband mobilities for sample 2 are
almost identical, and no positive magnetoresistance is found
for zero parallel field. By increasing the acceptor concentra-
tion the calculated magnetoresistance corresponds more
closely to that observed experimentally, and a more mean-
ingful comparison of the parallel field dependence can be
made. In addition, with the adjusted parameters the second
subband depopulates at approximately 4 T, which is in better
agreement with the G590c sample of Leadleyet al.5

TheBi50 T curve in Fig. 11 is the usual positive magne-
toresistance associated with the different carriers in the two
subbands~although it should be stressed that the carriers are
not independent since intersubband scattering is included13!.
As the parallel magnetic field is increased, both the depth of
the magnetoresistance dip, and the field at which saturation
occurs, increase. This is in good qualitative agreement with
the observations of Leadleyet al.5 on their G590c sample,
although the saturation field we find is approximately twice
the value observed. Since saturation occurs whenvct.1, the
discrepancy can be explained in terms of the difference be-
tween our calculated mobility ofm537.7 m2/V s and the

FIG. 9. The effective transport lifetime of sample 1 as a function
of the angular coordinate, for an applied electric field parallel to the
in-plane magnetic field. The lifetime has been normalized by the
zero-field transport lifetime of the first subband. The curves are
labeled by the parallel magnetic field.

FIG. 10. Variation of the magnetoresistance as a function of the
in-plane magnetic field. The labelsxx and yy correspond toJiBi

andJ'Bi , respectively.

FIG. 11. The transverse magnetoresistance for a series of paral-
lel magnetic-field strengths. The parameters characterizing this
sample are described in the text. The second subband depopulates at
a parallel magnetic field of approximately 4 T. The curves have
been offset arbitrarily for clarity, but the scale of resistance varia-
tion is the same for each.
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experimental value of 94.0 m2/V s. Once the depopulation
field of about 4 T is exceeded, we find that the saturation
field decreases suddenly to a value below the zero parallel
field value due to the elimination of intersubband scattering
and then remains constant, in marked contrast to the behav-
ior found below the depopulation field. The increase of the
magnetoresistance with increasing parallel field in the single-
subband limit is simply a consequence of the increasing life-
time anisotropy shown in Fig. 7. This behavior is in excellent
qualitative agreement with that observed.

In Fig. 12 we give an example of the kind of anisotropy
that could be expected in the perpendicular field magnetore-
sistance. Figure 12~a! is for the same sample discussed in
Fig. 10, and shows a magnetoresistance which is only
slightly larger forJiBi than for J'Bi . Figure 12~b!, corre-
sponding to theBi55 T curve in Fig. 11, shows a much
larger anisotropy with the magnetoresistance still being
larger forJiBi than forJ'Bi . This relative magnitude of the
two magnetoresistances persists over a range of sample pa-
rameters, and is opposite to the relative magnitude observed
in one particular sample.11 We have no explanation for this
difference. It should also be noted that the experimental
magnetoresistance tends not to saturate, but passes through a
maximum before falling at higher magnetic fields.5,11

To further quantify our results, in Fig. 13 we show the
normalized magnetoresistance

Drxx
r0

5
rxx~B'5`!2rxx~B'50T!

rxx~B'50T!
~40!

for a range of acceptor densities with the total electron den-
sity fixed atnT57.131011 cm22. A decrease innA can be
induced by illumination. In agreement with observation, the
magnetoresistance increases with decreasingnA ; Fig. 14~a!
shows this dependence in a different way. This variation re-
flects the effect of illumination on the confining potential. As
nA decreases, the confining potential becomes softer, and the

subband states are more strongly affected by a parallel mag-
netic field. In fact, we have found thatDrxx/r0 is far more
sensitive to variations innA than in any of the other material
parameters. For example, Fig. 14~b! illustrates the effects of
varying the total electron densitynT , while keeping the par-
allel magnetic field constant. For low values ofnA , an in-
crease in total electron density translates into a reduction of
the anisotropy in the system and a lowerDrxx/r0. This is
mainly due to an increase in the confinement of the self-
consistent heterostructure potential with increasingnT . For
higher values ofnA , the acceptors are themselves providing
a stronger confining potential, and the effect of varyingnT is
greatly reduced.

FIG. 12. The transverse magnetoresistance forJiBi(xx) and
J'Bi(yy). ~a! and~b! correspond to samples 1 and 2, respectively,
both at a fieldBi55 T.

FIG. 13. The normalized transverse magnetoresistance as a
function of parallel magnetic-field strength. The different curves are
labelled by the acceptor densitynA , in units of 1011 cm22. All
samples have the same electron density of 7.131011 cm22. The
low-field termination of the curves occurs at the point where the
second subband becomes populated.

FIG. 14. ~a! The normalized magnetoresistance as a function of
nA at three different parallel magnetic fields, for the same set of
samples as in Fig. 13.~b! As in ~a!, but for a parallel magnetic field
of 10 T and varying electron-gas densitynT , in units of 10

11 cm22.
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A comparison of our results in Fig. 13 with the experi-
mental data of Leadleyet al. permits an estimate of the ac-
ceptor densities in the experimental samples. We find that
nA.0.3531011 cm22 is appropriate for the illuminated
sample~G590c!, while nA.1.2–1.431011 cm22 for the dark
sample~G590a!. These values indicate that the change in
acceptor density as a result of illumination isDnA.131011

cm22, which is consistent with the previously determined
value.3 Interestingly, our estimates suggest that a significant
residual acceptor density remains after illumination, in con-
trast to what is sometimes assumed. If the acceptor density
were eliminated completely, our calculations would yield a
much larger magnetoresistance than observed.

IV. CONCLUSIONS

We have performed extensive calculations of the transport
properties of a 2DEG in the presence of parallel and perpen-
dicular magnetic-field components. The in-plane component
leads to a significant perturbation of the electronic structure
which manifests itself as a distortion of the Fermi contours
and a magnetic-field depopulation of higher-lying subbands.
These features are one source of the anisotropy that emerges
in both the quantum and transport lifetimes. We have also
analyzed the impact of the parallel magnetic field on the
scattering of electrons from the long-range potential due to

remote ionized donors. The scattering at different points on
the Fermi contour is found to be highly anisotropic as a
result of the field dependence of the subband wave functions.
This detailed scattering information is then used in a Boltz-
mann transport theory which treats the perpendicular field
component semiclassically. Our general solution of the Bolt-
zmann transport equation includes fully the effects of the
electronic structure, intersubband scattering, and the anisot-
ropy of the nonequilibrium distribution function. Application
of the theory to a realistic heterojunction is found to yield
results which are in good qualitative agreement with experi-
ment. In particular, our calculations account for the observed
positive transverse magnetoresistance and its detailed depen-
dence on the magnitude of the in-plane magnetic field in
both the one- and two-subband regimes. It is clear from our
calculations that a careful treatment of the electronic struc-
ture, long-range impurity scattering, and transport behavior
are all needed to obtain a complete understanding of the
experimental results.
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10L. Smrčka, Helv. Phys. Acta65, 355 ~1992!.
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