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In a polar semiconductor with a number of electrons or holes in the conduction or valence band, the
interactions of an external charge with the longitudinal optical phonon are screened by the electron/hole
density. Consequently the self-energy depends on the density. We show that, for any value of the Fro¨hlich
electron-phonon coupling constanta, an electronic densityn* can be found such that for densityn.n* the
Lee polaron theory for the intermediate coupling~not self-trapped polarons! gives self-energies lower than
those of the strong coupling~self-trapped polarons!. This is due to the static and dynamical screening intro-
duced by the plasmon field on the electron-phonon interaction. This result is confirmed by applying the
path-integral technique to the problem and calculating both the self-energy and the renormalized mass. It is
found that the densityn* depends ona andh ~the ratio of the high frequency dielectric constant to the static
one!. We note that typical charge carrier densities in highTc superconductors are larger thann* for a wide
range of value ofa. This indicates that no self-trapped polarons might have a role in highTc superconductors.

The aim of this work is to show that the peculiar proper-
ties of the Fro¨hlich polaron ~self-energy and mass! are
strongly modified if a number of free charges screen the
electron-electron and the electron-phonon interactions. In
particular, a self-trapped polaron~strong coupling regime!
becomes untrapped increasing the free charge density and
this occurs for any value of the electron-phonon coupling
constant.

It is well known that the polaron problem in the Fro¨hlich
scheme1 can be treated within a variational scheme in the
so-called intermediate coupling regime2 when the electron-
phonon interaction
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@e is the electron charge,v l the optical longitudinal phonon
frequency,h5 e`/e0 , e0 and e` the static and high fre-
quency dielectric constants,Rp5(\/2mv l)

1/2 the polaron
radius, andm the effective electronic band mass# is less than
;10 and in the strong coupling regime3 for higher values of
a. Furthermore it is also well known that the Feynman path-
integral formalism, applied to the polaron problem, gives for
the self-energy values lower than those found with the varia-
tional methods;4 in the limits of small and largea the Feyn-
man results tend to the intermediate and strong coupling re-
sults, respectively.

Recently, in order to include static and dynamical screen-
ing effects into the large polaron theory, the problem of an
external charge interacting with the longitudinal optical pho-
non and plasmon fields has been studied.5

The aim of this work is to show that, even if the polaron
is self-trapped when the carrier density is small, increasing
the electronic density, the static and dynamical screenings of
the electron-phonon interaction delocalize the polaron.

The Hamiltonian of the system contains the kinetic energy
of the charge, the free phonons and plasmons energies, a
coupling term between the phonons and the plasmons, the
Fröhlich1 electron-phonon interaction, and the Overhauser6

electron-plasmon interaction in the single pole approxima-
tion for the dispersive dielectric longitudinal function.

Through a canonical transformation, the Hamiltonian be-
comes that of an external charge interacting with two nonin-
teracting boson fields,5
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wherevp is the plasma frequency of an electron~hole! gas
of densityn andV is the volume of the system.

The variational procedure introduced by Lee2 for the po-
laron problem can be generalized to this case. The unitary
transformation
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with \QW eigenvalue of the total momentum operator
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allows us to eliminate the electronic operators from the trans-
formed Hamiltonian. This transformation shows that, in this
approximation, the polaron moves as a free particle with
wave vectorQW . The ground state energy and wave function
are found with the variational method using the trial wave
function
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with u0& the vacuum for the two boson fields and
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The functionsf kW ,1 and f kW ,2 are found by the energy minimi-
zation. At QW 50 the energy minimum~the self-energy! is
given by
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and the plasma-polaron mass by
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whereQŴ 5 QW /Q and
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All the above quantities depend on the electronic density so
that the plasma-polaron self-energy and mass are also density
dependent. If the plasmon frequency is not spatially disper-
sive,Eself

in andm* are given by
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We can also generalize the theory of the polaron in the
strong coupling regime,3 taking as trial variational wave
function

uc&5u f 1&u f 2&f~r !, ~6!

whereu f 1& depends only on the operators12ak andakW
† , u f 2&

on bkW andbkW
† , and

f~r !5
g3/2

p3/4e
2~g2/2!r2

is the envelope self-trapped electronic wave function. In this
case the self-energy is found minimizing the energy with
respect to statesu f 1&, u f 2&, and the parameterg. The mini-
mization with respect tou f 1& and u f 2& gives
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In the nondispersive case for the plasmon frequency, putting
g5ag8, we obtain
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It is possible to show that the renormalized frequenciesRi

and the quantitiesQi5@(12Ri
2)21l2(12h)#1/2 satisfy the

following relations, which are analogous to those found for
the polariton problem:7
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As a consequence of the above relations it can be shown that
for lÞ0
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This implies that the energy~8! does not depend on the elec-
tronic density. In fact the valueg85 1
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Eself
s 52

1

3p

1

~12h!2
\v la

2. ~11!

It is important to remark that such a value is not coincident
with that found in the strong coupling polaron theory, be-
cause it contains the extra factor1/(12h)2. This occurs
because the vacuum state of phonon and plasmon is not co-
incident with that of the operatorsakW and bkW . The strong
coupling self-energy~11! is independent of the polarity of
the crystal because it can be written in a more transparent
way as
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with a05 \2e`/me2 .
SinceEself

in 52a f (l,h) andEself
s 52a2g(h), the quan-

tity am5 f (l,h)/g(h) is such that fora,am it results
Eself
in ,Eself

s . In Fig. 1 is givenam as a function ofl for a
fixed value ofh. It is evident that, even for very large values
of a, for high l, the intermediate coupling theory gives
lower self-energies.

In the above discussion both fields were described in the
intermediate or strong coupling limits. However, this ap-
proximation could be not appropriate. To be more confident
with the above conclusions, the plasma-polaron problem has
been studied with the Feynman4 path-integral formalism.

The starting Hamiltonian is again given by~1!. Using the
path-integral representation and following Feynman’s analy-
sis for the polaron, we find that the two renormalized boson
fields give rise to independent contributions written in terms
of two dimensionless Fro¨hlich-like constantsa15aF1

2 and
a25aF2

2:
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whereGV i
is the i th boson field Green function
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.

The problem is solved variationally by considering a trial
action St in which the retarded potentialurW(t)2rW(s)u21 is
replaced by a harmonic retarded interaction, i.e., the interac-
tion of the electron with the boson fields is simulated through
a quadratic interaction
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andci , wi , for i51,2, are four variational parameters.
A central quantity needed in the variational calculation is

the correlation function of the electron

^eik
W @rW~ t !2rW~s!#&5e2k2DPP~ ut2su!.

Here^ & denotes a path-integral average with weighteSt. We
find the expression

FIG. 1. am as a function ofl for h50.05. For values ofa and
l above the curve, the self-energy in the strong coupling limit is
lower with respect to that in the intermediate regime; the opposite
occurs in the region below the curve. The electronic density in-
creases withl2 and l51 is an electronic density of;1019

cm23.

53 13 499ELECTRON-SCREENING EFFECTS ON THE SELF-TRAPPING . . .



DPP~ t !5
1

2 F v12v22v1
2v2

2 tS 12
t

b D
12

~v1
22v1

2!~v1
22v2

2!

v1
2~v1

22v2
2!

E~v1 ,b,t !

12
~v2

22v1
2!~v2

22v2
2!

v2
2~v1

22v2
2!

E~v2 ,b,t !G , ~13!

whereE(v,b,t) is an auxiliary function defined by

E~v,b,t !5
sinh~vt/2!sinh„v~b2t !/2…
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.

The new modesv1 andv2 are functions of the variational
parameters; they can be considered as independent varia-
tional parameters replacingc1 andc2 . Sincec1 andc2 must
not be negative, thenv1>max(v1,v2)>v2>min(v1,v2). The
functionDPP is temperature dependent and it is the correla-
tion function of the electron in the presence of two indepen-
dent fields.

In order to calculate an upper bound for the plasma-
polaron ground state energy, we take the limit of highb. The
result is
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The integrals that appear here cannot be performed in closed
form so that a complete determination ofEPP requires nu-
merical integration.

Another quantity of interest is the effective mass, which
can be found extending the Feynman polaron scheme. When
b approaches̀ we find
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0

`

dtt2D`~ t !23/2e2\V i tD ,
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where the best parameters obtained forE have to be inserted
in D` .

First of all we show how the Feynman polaron limit will
occur in our treatment. Whenl→0, then V1→v l ,

V2→0, a1→a, a2→0, and numerically we find that
v2 /v251. Consequently the Feynman results~self-energy
and mass! for the polaron are retrieved.

In Figs. 2 and 3 we show the self-energy as a function of
l for a58 anda515. The dotted, full, and dashed lines
give the results of the calculations in the intermediate re-
gime, in the strong limit, and in the path-integral formalism,
respectively. We see that fora58 the strong coupling self-

FIG. 2. The plasma-polaron self-energy as a function of the
density fora58 andh50.05 calculated with the intermediate re-
gime theory~dotted line!, with the strong coupling theory~full line!,
and with the path-integral technique~dashed line!.

FIG. 3. The same quantities of Fig. 2 fora515 andh50.05.
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energy is always higher than the intermediate one, while the
last is higher than the path-integral self-energy. Moreover,
for any electron density, the path-integral values follow
closely the intermediate ones. This indicates that the plasma
polaron is not always self-trapped.

For a515 we find that the strong coupling self-energy is
lower than the intermediate one for low electronic density
and then a crossover occurs atl*;3. Forl,l* the plasma
polaron is self-trapped and becomes untrapped forl.l* .
This different behavior comes out because the plasma oscil-
lations screen the electron-phonon interaction. Finally the
path-integral results are lower with respect to the other
curves and interpolate between the intermediate and strong
limit. The polaron self-trapped for low electronic density be-
comes not self-trapped in the opposite limit. This fact is also
confirmed by studying the polaron mass changes increasing
the electronic density. In Figs. 4 and 5 we show the plasma-
polaron masses as a function ofl again for a58 and
a515. The full, dashed, and dotted lines give the masses in
strong coupling, path-integral, and intermediate approxima-
tion, respectively. Fora58 the intermediate and path-
integral masses tend to be coincident for largel, while they
become different for smalll (l<4). We note that for
l→0 the intermediate regime approximation is not appropri-
ate becausem*→`. This nonphysical limit is intrinsic to the
intermediate approximation and cannot be eliminated even
taking into account perturbatively the terms neglected in the
Lee variational procedure.8

The a515 case~Fig. 5! shows a similar behavior, but
now the increase of the mass in the path-integral calculation
is greater and it appears at larger density.

We end the paper with a brief discussion on the possible
relevance of our results for highTc superconductors. It is
well known that increasing the doping level many highTc

materials go from an isolating phase to a metallic one and
then become superconducting. In the isolating phase there is
experimental evidence, from far-infrared reflectivity mea-
surements, of formation of self-trapped small polarons.9

They seem to survive also in the metallic phase where the
polaronic absorption is superimposed to a Drude term which,
then, controls the reflectivity. In our opinion, this experimen-
tal evidence suggests that electron-phonon interaction in
these materials is relevant and then both self-trapped small
polarons and not self-trapped electrons~holes! are present. In
particular we focus our attention on the Drude contribution
to the reflectivity and try to explain it in terms of mobile
large ~not self-trapped! polarons. In this context the large
polarons discussed in this paper are better candidates since
they are characterized by lower effective masses. Then the
result that even for very high electron-phonon couplinga,
increasing the carrier densityn (l) causes the large polarons
to become mobile particles is, in our opinion, relevant for
highTc materials. On the other hand, we note that in a broad
range of values ofa, charge carrier massm and longitudinal
optical phonon energyv l , n* (l* ) results lower than typi-
cal values of charge carrier density in highTc superconduct-
ors (n;1020–1021).

We also mention that a charge carrier mass decreasing
with the density, as found in this paper, finds support in
recent mass estimation10 based on the Hall effect and mag-
netic penetration depth measurements in YBCO samples.

This work was partially supported by European Economic
Community through Contract No. ERBCHRXT 930124 of
the Human Capital and Mobility Program. One of us~G.C.!
is indebted to Dr. Brosens, Professor Devreese, and Profes-
sor Fomin ~Antwerpen University! for useful discussions
about the path-integral technique.

FIG. 4. The plasma-polaron mass as a function of the density for
a58 andh50.05 calculated with the intermediate regime theory
~dotted line! and with the path-integral technique~dashed line!. The
divergent value of the mass forl→0 in the intermediate regime is
not indicated. FIG. 5. The same quantities of Fig. 4 fora515 andh50.05.
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