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Electron-screening effects on the self-trapping of polarons
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In a polar semiconductor with a number of electrons or holes in the conduction or valence band, the
interactions of an external charge with the longitudinal optical phonon are screened by the electron/hole
density. Consequently the self-energy depends on the density. We show that, for any value ohlick Fro
electron-phonon coupling constaat an electronic densitp* can be found such that for density>n* the
Lee polaron theory for the intermediate couplifipt self-trapped polarohgives self-energies lower than
those of the strong couplingelf-trapped polaronsThis is due to the static and dynamical screening intro-
duced by the plasmon field on the electron-phonon interaction. This result is confirmed by applying the
path-integral technique to the problem and calculating both the self-energy and the renormalized mass. It is
found that the densitp* depends onv and % (the ratio of the high frequency dielectric constant to the static
ong. We note that typical charge carrier densities in highsuperconductors are larger thah for a wide
range of value otr. This indicates that no self-trapped polarons might have a role inThigluperconductors.

The aim of this work is to show that the peculiar proper- The aim of this work is to show that, even if the polaron
ties of the Fralich polaron (self-energy and magsare s self-trapped when the carrier density is small, increasing
strongly modified if a number of free charges screen thdhe electronic density, the static and dynamical screenings of
electron-electron and the electron-phonon interactions. lthe electron-phonon interaction delocalize the polaron.
particular, a self-trapped polaragistrong coupling regime The Hamiltonian of the system contains the kinetic energy
becomes untrapped increasing the free charge density amd the charge, the free phonons and plasmons energies, a
this occurs for any value of the electron-phonon couplingcoupling term between the phonons and the plasmons, the
constant. Frohlich! electron-phonon interaction, and the Overhaliser

It is well known that the polaron problem in the ltich  electron-plasmon interaction in the single pole approxima-
schemé can be treated within a variational scheme in thetion for the dispersive dielectric longitudinal function.

so-called intermediate coupling regifmehen the electron- Through a canonical transformation, the Hamiltonian be-
phonon interaction comes that of an external charge interacting with two nonin-
teracting boson fields,
1 e 1-9 p2 1
a=— — = Tt =
2 R, ho H 2m+% ﬁQl(k)(akak+ 2)
. . I 1
+
[e is the electron chargey, the optical Ion_gltudlnal _phonon +Z ﬁQZ(k)(IBKBIZ_F .
frequency, = e../€y, €9 and e, the static and high fre- K 2

quency dielectric constant®,= (%/2mw,)*'? the polaron

radius, andn the effective electronic band m3ss less than +> (V€ Tap+H.e)+ > (Vi .5 B+ H.c)
~10 and in the strong coupling regiffr higher values of K ' K ’

a. Furthermore it is also well known that the Feynman path- 1)
integral formalism, applied to the polaron problem, gives for

the self-energy values lower than those found with the variawith

tional method$;in the limits of small and larger the Feyn-

man results tend to the intermediate and strong coupling re- Vi =1ViF1,
sults, respectively. ~ )
Recently, in order to include static and dynamical screen- Via= ~1ViF2,
ing effects into the large polaron theory, the problem of an 1/2
external charge interacting with the longitudinal optical pho- Vi=—fo, @RL

non and plasmon fields has been studied. vV k'’
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All the above quantities depend on the electronic density so

1— RZ2—1 that the plasma-polaron self-energy and mass are also density
77+ 2 dependent. If the plasmon frequency is not spatially disper-
N R:  J1-9R, sive, Eys andm* are given by
* T IA-RYPENA L )]
Q,(K)=wR 1[>\2+1+( 1)i+1 Euy— — afiow i + i @)
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1/2
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We can also generalize the theory of the polaron in the
wherew,, is the plasma frequency of an electrole) gas strong coupling regim@,taking as trial variational wave
of densityn andV is the volume of the system. function

The variational procedure introduced by Bder the po-

laron problem can be generalized to this case. The unitary
transformation [y =[f1)[f2) (1), (6)

S NP, R
U = e'lQ~ Zklaparct B fiol-1 where|f,) depends only on the operatojak and aE, [f,)

- I
with #Q eigenvalue of the total momentum operator on B¢ and B, and

-)_ - — T N T R 3/2
P=p+2 fik(agait BB P e
k ¢(r)——/'773 7€
allows us to eliminate the electronic operators from the trans-

formed Hamiltonian. This transformation shows that, in thisiS the envelope self-trapoed electronic wave function. In this
approximation, the polaron moves as a free particle with b PP :

- . case the self-energy is found minimizing the energy with
wave vectorQ. The ground state energy and wave function

_ i : _ respect to statelf,), |f,), and the parametey. The mini-
are found with the variational method using the trial waveyi-ation with respect tdf,) and|f,) gives

function
=U,U,|0 i—2 ~
|'/f> 1 2| > e p_2 _'2 2 |Vk,i|2|Pk|2 @
with |0) the vacuum for the two boson fields and =\ ¢ 2m|?® < TRk
_ Eg(fl;’lalgfffvlat)‘
Ui=e o with
U= e™R kBT 50, B
— ik-r
The functionsf ; and f¢ , are found by the energy minimi- p= (e’ ¢).
zation. At Q=0 the energy minimunithe self-energyis
given by In the nondispersive case for the plasmon frequency, putting

vy=avy', we obtain

o v Vil?
self ™~ _2 Z A 2
e M 3 2(F2 F3
E=fiwa? =y 2=y \/—|=+=]]|. (8
and the plasma-polaron mass by 2 m Ry Ry
: Viil2 4% _ = . . ,
m*=m| 1+ 22 > — —(k-Q)?|, (3) It is possible to show that the renormalized frequenées
= A m and the quantitie®; =[(1—R?)?+\?(1— 5)]*? satisfy the

~ following relations, which are analogous to those found for
whereQ= Q/Q and the polariton problen:
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RIR5=\?7,
(1-RI)(1-RH)=—\3(1—19),

Q2Q2=)\%(1- n)(RE-R3)?,

2
Q_ 1R
Q2 NV1- 7]’
2 2 2_p2 i
Qi+Q3=(RI—R3)?, 5L
22 2n2 2_ 2 I
Q1R2+Q2R1:(R1_R2)2, I
O L | { | | | I ST 1 !
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252 2n2 2_ 2
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As a consequence of the above relations it can be shown that FIG. 1. «,, as a function of\ for =0.05. For values o# and
for A\ #0 \ above the curve, the self-energy in the strong coupling limit is
lower with respect to that in the intermediate regime; the opposite
Ff F% 1 occurs in the region below the curve. The electronic density in-
R_+R_: 11— (100 creases with\? and A=1 is an electronic density of-10
1 2 n om-3

This implies that the energ{8) does not depend on the elec-

tronic density. In fact the value’ =3(2/7)Yq1/(1— )] 5 om.

minimizes the energy which becomes SPP[F(t)]: — th 2
0

s _ 1 1 2 —
self 377(1_77)2ﬁw|a . (11) + 2 ﬁfﬂdtjﬁds ?Qi(t_)s) ’
o _ o i<122Jo  Jo T|r(t)—r(s)|
It is important to remark that such a value is not coincident
with that found in the strong coupling polaron theory, be- . ] i )
cause it contains the extra fact/(1— 5)2. This occurs WhereGg is theith boson field Green function
because the vacuum state of phonon and plasmon is not co-
incident with that of the operatorg; and B;. The strong
coupling self-energy11) is independent of the polarity of G.(u,B)= costihw(B/2—u))
the crystal because it can be written in a more transparent erT 2 sinfAwpl2)
way as

2 The problem is solved variationally by considering a trial
(12)  action'S; in which the retarded potentiaf(t)—r(s)|~* is

replaced by a harmonic retarded interaction, i.e., the interac-
with ag= #i2e./mé. tion of the_elgctron \{vith the boson fields is simulated through
a quadratic interaction

s 1 e
Eself: - g

N| =

Egoao

Since Elyy=— af(\,7) and ES=— a?g(7), the quan-

tity am=f(N,7)/g(») is such that fora<ea,, it results
s <Eget- In Fig. 1 is givena,, as a function ofn for a ) B m.

fixed value ofy. It is evident that, even for very large values S[r(t)]=— J dt > -
of «, for high A\, the intermediate coupling theory gives 0 !
lower self-energies. _ _ _ X[F(t)-F(s)]?

In the above discussion both fields were described in the
intermediate or strong coupling limits. However, this ap- _ o
proximation could be not appropriate. To be more confiden@nd¢i, w;, fori=1,2, are four variational parameters.
with the above conclusions, the plasma-polaron problem has A centrall quantity needed in the variational calculation is
been studied with the Feynnfhpath-integral formalism. the correlation function of the electron

The starting Hamiltonian is again given bi). Using the
path-integral representation and following Feynman’s analy-
sis for the polaron, we find that the two renormalized boson
fields give rise to independent contributions written in terms
of two dimensionless Fhiich-like constantsy;=aF? and Here( ) denotes a path-integral average with weight We
a,=aF3: find the expression

Ci B B
21,2 2 Jo dtJo dsGy(t=s)

<ei|Z[F<t>—F<s>]>:e—kzoppm—sl)_
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+2 E(wz,B,t)}, (13

2 2 2
wy(w]— w3)
whereE(w, 8,t) is an auxiliary function defined by

sinh(wt/2)sinh(w(B—1)/2)
wsinh( wB/2)

E(w,B,1)=

The new modesy, and w, are functions of the variational
parameters; they can be considered as independent var
tional parameters replacirg andc,. Sincec,; andc, must
not be negative, them;=max@4,v5)=w,=min(v{,v,5). The

function Dpp is temperature dependent and it is the correla-
tion function of the electron in the presence of two indepen-

dent fields.

In order to calculate an upper bound for the plasma-

polaron ground state energy, we take the limit of higghThe
result is
i-vD(w]

7 2 2
(0]~ w3)

3 3 —v3
Eppzih(wl“l‘ O)Z_U]__Uz)_ Zh

)

(w

w3

2 2.2 2
(w3=v7) (v~ @3)

+ow (14

2 wh(ef- )

with
A= @ jxdtD_llz(t)e_ﬁQit

iZ12\27Jo -
and
Dm(t): lim Dpp(t,ﬁ)
B—
_i vivs (03— v2)(wi—-v3) 1—e fert

2m wiw% wi(wi—wg) w1

2 2 2 2 -
(a)z_vl)(vz_wz) 1—6 ﬁwzt

2, 2 2
w5 (w7~ w3)

- 15

The integrals that appear here cannot be performed in closed

form so that a complete determination Bf requires nu-
merical integration.
Another quantity of interest is the effective mass, which

can be found extending the Feynman polaron scheme. When

B approachese we find

1

387 12

1+

Mei=M

o ocdttZDoc(t)—S/Ze—hQit) ,
0
(16)

where the best parameters obtainedEdnave to be inserted
in D, .

First of all we show how the Feynman polaron limit will
occur in our treatment. Whem —O0, then Q;— o,
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FIG. 2. The plasma-polaron self-energy as a function of the
density fora=8 and»=0.05 calculated with the intermediate re-
gime theory(dotted ling, with the strong coupling theorfull line),
and with the path-integral techniqééashed ling

0,—0, al—a, a2—0, and numerically we find that
w,ylv,=1. Consequently the Feynman resulgelf-energy
and masgfor the polaron are retrieved.

In Figs. 2 and 3 we show the self-energy as a function of
N\ for a=8 and «=15. The dotted, full, and dashed lines
give the results of the calculations in the intermediate re-
gime, in the strong limit, and in the path-integral formalism,
respectively. We see that fer=38 the strong coupling self-
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FIG. 3. The same quantities of Fig. 2 far=15 and»=0.05.
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FIG. 4. The plasma-polaron mass as a function of the density for 2 4 6 8 10
a=8 and »=0.05 calculated with the intermediate regime theory z
(dotted ling and with the path-integral techniqg@ashed ling The

divergent value of the mass far—0 in the intermediate regime is

not indicated. FIG. 5. The same quantities of Fig. 4 far=15 and»=0.05.

energy is always higher than the intermediate one, while thénaterlals go from an |solat_|ng phase _to a metalhc one ano_i
last is higher than the path-integral self-energy. Moreover"€n become superconducting. In the isolating phase there is
for any electron density, the path-integral values followEXperimental ewdencg, from far-infrared reflectivity mea-
closely the intermediate ones. This indicates that the plasmgtrements, of formation of self-trapped small polardns.
polaron is not always self-trapped. They seem to survive also in the metallic phase where the
For o= 15 we find that the strong coupling self-energy is polaronic absorption is superimposed to a Drude term which,
lower than the intermediate one for low electronic densitythen, controls the reflectivity. In our opinion, this experimen-
and then a crossover occurshdt~3. Forn<\* the plasma tal evidence suggests that electron-phonon interaction in
polaron is self-trapped and becomes untrapped\foin*. these materials is relevant and then both self-trapped small
This different behavior comes out because the plasma oscipolarons and not self-trapped electrghsleg are present. In
lations screen the electron-phonon interaction. Finally theparticular we focus our attention on the Drude contribution
path-integral results are lower with respect to the otheto the reflectivity and try to explain it in terms of mobile
curves and interpolate between the intermediate and strorigrge (not self-trappeg polarons. In this context the large
limit. The polaron self-trapped for low electronic density be-polarons discussed in this paper are better candidates since
comes not self-trapped in the opposite limit. This fact is alsahey are characterized by lower effective masses. Then the
confirmed b_y study_ing the _polaron mass changes increasingsult that even for very high electron-phonon coupling
the electronic density. In Figs. 4 and 5 we show the plasmaicreasing the carrier density(\) causes the large polarons
polaron masses as a function af again for =8 and {4 pecome mobile particles is, in our opinion, relevant for
a=15. The full, dashed, and dotted lines give the masses igjgh T_materials. On the other hand, we note that in a broad
strong coupling, path-integral, and intermediate approxmafange of values of, charge carrier masa and longitudinal

tion, respectively. Fora=8 the intermediate and path- ; * [y * ;
. e ) ical phonon ener n results lower than typi-
integral masses tend to be coincident for lakgavhile they optical phonon energy, (A™) results lower than typ

become different for smalh (A<4). We note that for gi‘g@i;‘gﬁigﬁgge carrier density in higih superconduct-
A—0 the intermediate regime approximation is not appropri- y . .
" . L We also mention that a charge carrier mass decreasing

ate becausm* —oo. This nonphysical limit is intrinsic to the ith the densi found in thi find .
intermediate approximation and cannot be eliminated eve\r’1wt the density, as found in this paper, finds support in

TS ; - “recent mass estimatithbased on the Hall effect and mag-
taking into account perturbatively the terms neglected in the . ; ;

e hetic penetration depth measurements in YBCO samples.

Lee variational procedure.

The a=15 case(Fig. 5 shows a similar behavior, but This work was partially supported by European Economic
now the increase of the mass in the path-integral calculatio@ommunity through Contract No. ERBCHRXT 930124 of
is greater and it appears at larger density. the Human Capital and Mobility Program. One of (@&C)

We end the paper with a brief discussion on the possiblés indebted to Dr. Brosens, Professor Devreese, and Profes-
relevance of our results for high, superconductors. It is sor Fomin (Antwerpen University for useful discussions
well known that increasing the doping level many hih  about the path-integral technique.



13502 IADONISI, CAPONE, CATAUDELLA, AND DE FILIPPIS 53

1H. Frohlich et al, Philos. Mag.41, 221 (1950; H. Frohlich, in Phys. Rev. B48, 12 966(1993.
Polarons and Excitonsedited by C.G. Kuper and G.A. Whit- 6A.W. Overhauser, Phys. Rev. & 1888(1971.
field (Oliver and Boyd, Edinburgh, 1963p. 1. 73.3. Hopfield, Phys. Rel12, 1555(1958.
2TD. Lee, F. Low, and D. Pines, Phys. R&Q, 297 (1953. 8D. Pines, inPolarons and ExcitongRef. 1), p. 155.
3S.1. Pekar, Zh. Esp. Teor. Fiz.16, 341 (1946; G.R. Allock, in 9G.A. Thomaset al, Phys. Rev. Lett61, 1796(1988; R.T. Col-
Polarons and ExcitongRef. 1), p. 54. lins et al, ibid. 63, 422(1989; K. Karamaset al, ibid. 64, 84
‘R.P. Feynman, C. Iddings, and P.M. Platzman, Phys. R2¥, (1990; M. Reedyk and T. Tismuskbid. 69, 2705 (1992; I.
1004 (1962. Poberaj and D. Mihailovic, Phys. Rev. B, 6426 (1994; M.
5V. Cataudella, G. ladonisi, and D. Ninno, Europhys. L&#. 709 Capizziet al, Physica C235 273(1995.

(1992; G. ladonisi, M. Chiofalo, V. Cataudella, and D. Ninno, °N. Athassopoulou and J.R. Coop@rivate communication



