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Coupled solitons in resonant Raman interaction of intense polaritons
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The generation of three-wave solitoBWS'’s) in the resonant LO-phonon — mediated interaction of two
intense coherent polaritons is proposed and analyzed. These TWS’s consist of the mutually coupled two
polariton and LO-phonon nonlinear waves and propagate without dispersive spreading with an anomalous
soliton velocity. Starting with an initial microscopic picture of the exciton — LO-phonomliirto interaction
and exciton-photon polariton coupling in polar direct-band-gap semiconductors, we derive a closed set of five
macroscopic equations for a resonant triplet: polariton 1 — polariton 2 — LO phonon. An adequate method of
finding the fundamental TWS'’s of these nonlinear equations is developed. This approach treats the LO-phonon
— mediated polariton-polariton interaction beyond the standard perturbation theory, which deals with the
lowest nonlinear susceptibilitieg® and y(®. A classification of the fundamental Raman solitons by their
dispersion is given in terms @fuasipolaritonandquasiphonofifWS'’s. For the quasipolariton TWS’s, one of
the mutually coupled nonlinear polaritons is a giant parametric solitary pulse, the common soliton velocity
v decreases with the intensities of the polaritons. The quasiphonon Raman TWS’s have no analogy in classical
nonlinear optics. These coupled solitons are accompanied by a giant LO-phonon solitary pulsg,irand
creases with the optical pump intensif0163-18206)06419-3

[. INTRODUCTION an exciton level, induces a polariton consisting of the exciton
and photon component€ach of these components requires,

For more than two decades, polariton solitons in bulkin principle, a separate description in Raman scattering. Only
semiconductors have been an intriguing problem in solidhe excitonic component, i.e., the polarization, couples with
state nonlinear optics. Single-mode polariton solitons due tthe phonon field. Due to translational invariance, bulk
self-interaction of an intense coherent polariton have beephonons are characterized by their wave vectors and disper-
modeled in detailsee, e.g., Refs))1The optical nonlinearity  sion. Therefore, the momentum conservation holds in Raman
responsible for these solitons originates from the effectivescattering of polaritons.

Coulombic interaction between virtual excitons of the coher- In resonant Raman interactiofRRI), the two coherent
ent polariton. These polariton solitons are at the same time polaritons and resonant LO phonon are treated on an equal
manifestation of the optical exciton Stark effeéh self-  basis within the coupled macroscopic wave equations. Be-
interaction of the pump polariton. The Keldysh set of twocause each of the interacting fields has a well-defined carrier
macroscopic equatiorighe Maxwell equation and the equa- wave vector, we refer the coupled polariton Raman solitons
tion for the polarization with a Kerr-type nonlinear term to three-wave solitonéTWS’s). A theory of electromagnetic
«|P|?P (P is the excitonic polarization is well-suited for ~TWS'’s has been developed already in the early days of non-
the corresponding theoretical analysis. However, up untilinear opticst® within coupled nonlinear wave equations for
now there has not been clear-cut experimental evidence fdhe electric light fields. This phenomenological model oper-
single-mode polariton solitons. ates with the lowest-order nonlinear susceptibijty).

In the present work, we analyze the coupled traveling Two of the nonlinear waves of the polariton TWS's are
solitons in resonant LO-phonon mediated interaction besolitary. These coupled solitary waves, or bright solitons,
tween two coherent excitonic polaritons. Such coupled soliform a steady-state traveling nonlinear perturbation in a cw
tons are similar tdRaman solitonsecently observed in rota- background of the third wave, which can be treated as a
tional and vibrational stimulated Raman scatteriBRS in nonlinear pump wave. The most interesting case corresponds
CO,-pumped para-H.*® A so-called anomalous pump- to a lower-frequency pump polariton in the resonant triplet.
depletion reversal coupled to a corresponding dark soliton iin this case, the solitary LO phonon is generated by an ex-
the quasi-continous-wave background of the Stokes signalhange of virtual excitons between the two intense polaritons
represents an observable structure of the Raman solitonig coherent phonon-mediated RRI. For the coupled polariton
The theory of Raman solitons has been developed in #8tail solitons, the leading half part of the solitary polariton ini-
within a generalized set of the Maxwell-Bloch equations. tiates stimulated inverse Raman scattering, while its trailing

Two important features, the polariton effect and the transhalf part is involved in stimulated normal scattering. This
lational invariance of a crystal lattice, distinguish three-wavescenario of the energy exchange between nonlinear waves,
interaction in semiconductors from mentioned above SRS invhich is similar to self-induced transparency in the system of
molecular optics. The incoming light, which resonates withtwo-level atoms, is characteristic for TWS’s.

0163-1829/96/5@0)/1348215)/$10.00 53 13482 © 1996 The American Physical Society



53 COUPLED SOLITONS IN RESONANT RAMAN INTERACTION ... 13483

The dispersion of the solitary polariton in the resonantphysical properties are introduced.
triplet of TWS's reveals a rich and complicated structure. It In Sec. V, the quasipolariton fundamental TWS’s are ana-
originates from the mutual hybridization of the initial polar- lyzed. In the coupled resonant triplet, the solitary polariton is
iton and LO-phonon dispersions, similarly as the polaritona giant parametric pulse, while both the dédkp) and anti-
dispersion develops from the exciton and photon spectradark (spike solitons can be formed in the cw background of
This dynamical renormalization of the spectrum relates tdhe pump nonlinear polariton, depending on the scattering
the phonoriton transient excitations of a semiconductor in 9€0mMetry. _ _ _ o
the presence of the given intense coherent polafitolfThe In Sec. VI, we investigate the quasiphonon TWS'’s within
phonoriton dispersion follows dynamically the optical pump @ ger_lerahzed set of the reduged polarization equations. In the
intensity and gives rise to the phonon-mediated exciton Opguasmhonon TWS's, t_he exciton and phqton components de-
tical Stark effect? However, for the Raman TWS's the couple from the polariton balance. In this case, the TWS'’s

renormalized dispersion is even more complicated than thzﬂCt_ua"y consist of four components. Now, one has to de-
of the phonoriton, because the two coupled nonlinear polariSCiPe separately the excit@polarization and photorfelec-

tons have comparable intensities. The renormalized spectrufFPmagne“C fielgl components of the nonlinear pump polar-

of the solitary polariton consists of several separate dispeﬂzagiyzzg unusual properties of the quasiphonon TWS'’s are

sion branches. Parts of them approach the unperturbed polzﬁ h bilit f th ioh d .
iton branches, while the other branches are close to the initial " S€C- VI, the stabilities of the quasiphonon and quasi-

LO-phonon dispersion shifted by the carrier frequency of théDOI‘?lriton TWS's Iare exz;zmined.%lvv\?S(?istzAusbs_aLsg_ possiple e?-
pump polariton. This property gives rise to the natural clagPeriments on polariton Raman S. A brie IS(EUS§IOI’] 0
sification of polariton TWS's. an adoptation of our model to the polariton TWS’s in non-

[I-VI direct-band-gap polar semiconductors like CdS andpolar conjugated polymers and I11-V compound semiconduc-

CdSe possess a well-developed polariton effect, as well as'q's concludes this section.
strong exciton—LO-phonon Hnéich coupling. These ionic
crystals are, therefore, well suited for the generation of the Il. MODEL
coupled polariton solitons in RRI. Due to the large optical o ] ) S
nonlinearities and high optical densities in the semiconduc- 1he initial microscopic Hamiltonian is given by
tors, the scales for the time, the optical length and the pump
intensity reduce from ns, m, and GW/émrespectively, for H=Ho+Hy_,+Hy_pn,
Raman solitons in molecular optft§ to ps, um, and
MW/cm? for the polariton Raman TWS'’s. For moderate op-
tical excitations, the phonon-mediated exciton-exciton cou- ~ Ho=2>, Al w*(p)BIBp+ 0?(p) ey + QoChc,],
pling in RRI should be more pronounced than the exciton- P
exciton Coulombic interaction, due to itssonantcharacter.
Therefore, we expect the polariton TWS’s, with its rather hQ.
specific signatures, to be observed more easily than the fovzz [ o
single-mode polariton solitons. Moreover, an observation of
related polariton solitons in a resonant exciton-biexciton 5 ‘ "
three-wave interaction has been already repdrted. + 407(p) (apta_p)(apt ap)},
In Sec. Il, we discuss the initial exciton-photon—LO-
phonon microscopic Hamiltonian of ionic direct-band-gap
semiconductors in the presence of a well-developed polariton _N _ t _t
effect and strong exciton—LO-phonon “Rlich coupling. Hipn % M- (P~ K)LBpBi(Cp— Coprid ], (1
The closed set of five macroscopic equations for the exciton
and photon components of two interacting coherent polariwhereB,, «,, andc, are the exciton, photon, and optical
tons and the correspondong resonant LO phonon is derivgghonon  operators,  respectively; w*(p) = w¢+ p%/2M,
on the basis of this Hamiltonian. Various limiting cases of w?(p)=cp/\e,, andQ, are the corresponding dispersions;
these basic equations, i.e., Hopfield’s polariton equations, thg, is the background optical dielectric constant for the exci-
equations for spontaneous polariton Raman scattering, ancfn resonanceyl is the exciton translational magsew, is the
the phonoriton macroscopic equations, are discussed. energy of a transverse exciton. Two basic interactions,
In Sec. Ill, we costruct the simplest traveling nonlinearexciton-photoon_y and exciton-phonorH, ,,, enter the
solutions of the five basic equations. The main point is toHamiltonian (1), which describe the exciton-photon-phonon
reduce the initial set to three coupled equations forghe  system of a direct-band-gap semiconductor.
larization fields, for which analytic solutions for the funda-  The HamiltonianH,.,, of Eq. (1) describes the exciton-
mental traveling TWS’s are derived. Three relationships betransverse light field interaction, which follows the momen-
tween seven initial parameters are established. We specitym conservation. The oscillator strendih, (polariton pa-

the four free parameters in accordance with possible expertametey of the exciton-photon coupling is determined by
ments.

In Sec. IV, the relationships between the initial param- 0 477'5 2
eters of the TWS's are examined. We classify the fundameng —» /5~ (ﬂ)" r=0 :< ) o =orw

tal coupled TWS'’s by the dispersion of the solitary polariton. ¢ Vhw, \ Mo ol ) &g ' A
The quasipolariton and quasiphonon TWS’s with different 2

» 1/2
t
(al+a_p)(B,—B' )

0”(p)
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whereﬁ is the dimensionless polariton oscillator strength,[ 92 1

J
w); is the polariton longitudinal-transverse splittir't;j@(r) is WJF §thﬁ+ﬂg (£ 1)
the exciton ground state wave function in real space,
Peo=—(Up¢|V|u_p,) is the momentum matrix element be- o
tween the Bloch functions of the conduction and valence =——=Py(EDPI(ED), (40
bands. Ho+H, , reduces to Hopfield's quadratic \/;“’t

Hamiltonian® Formally, a polariton is an eigenstate of this

quadratic form. 8—3’9—22——22 EL(¢ t)=—4—727(9—22P(+)(§ t), (4d
Raman spectroscopy of semiconductors is well c® gt* 9% T2 ¢t gt 2

developed® Raman scattering of excitons is determined ) )

both by the deformation potentidDP) and by the Fiblich | 9° 1 ,d W2 o I PL(E)

(#) mechanisnt®!® The short-range DP mechanism gives|dt> 2" gt ' 2M g9¢?| 2

rise to “allowed” Raman processes, which are independent X
of the scattering angle. The¢" mechanism stems from the L TEe(+) B o(+) 5_
macroscopic electric field, which accompanies a LO phonon = w?BES(£,1) — wrlp ZPLT(£) PP

in polar semiconductors, and determines *forbidden” Ra_Here ¢ is the coordinate axis along the direction of propa
man scattering Wit .pi(p— k)<|p—k| in the Hamiltonian gation,I'*/2 andI"P"2 are the inverse coherence lifetimes of

Hy.pn (Ref. 20. .7 forbidden Raman scattering strongly . : .
dominates in a spectral vicinity of the exciton resonance infe.xCltons and .LO phonons, respectively, and the macroscopic
ields are defined by

polar semiconductors. Only this mechanism is included in
our model as responsible for the resonant phonon-mediated gy t)=E(*)(r t)+E(")(r 1)
interaction of the polaritons. "

The matrix elementM,_ ,(p—k) of the exciton—-LO- B 2mhep| ™ ipr_ treya—ipr
phonon.7 interaction, which involves the ground exciton _zp: v g ap(e™ —ap(t)e ],
level n=1 in intraband# scattering, is given &Y

PUI(EY). (49

B hoB 2 .
P =P () +P(r=2 | —y-| elBy(te™
p

A 1/2
My p(P—k) =% m} lp—k|,

+Bi(t)e "],

ay

M

1/2

: )

me—mh)z( &0

:(Z>: Qo|: n

% 1/2
o) )(r.t)= _
& O(r,t)=0H(r,t)+P (r,t)—% (W) (—i)
whereV is the crystal volumeg, is the exciton Bohr radius, . e
go is the static dielectric constant,. is the high-frequency X[cp(t)e'P —cy(t)e™ P, )
dielectric constant for the LO—phonon resonarnzek is the wherep is the crystal density. The LO-phonon scalar poten-
phonon wave vectorn, (my) is the electron(hole) mass  tjg| ¢ (*)(& t) determines the corresponding lattice displace-
(M fme+.mh), andu is the reduced exciton mass. Equation ment field ulh(&,t) by u) (g ) =adH(£,t)/9¢. Equa-
(3) is valid for a small momentum transfép—k|a,<1.  tions (4a—(4e) for the coherent macroscopic fields are
Here,p andk are the wave vectors of the polaritons with gerived from the initial Hamiltoniar(1) within a method
polarizationse, and g, respectively, which are involved in developed in Refs. 11 and 15.
RRI. The intraband” mechanism contributes only to diag- Equations(4a and (4b) describe théfirst polariton (€
onal g)fle RRI, irrespective of the crystal symmetry, if the andpP,) in the resonant triplet. The wave equatigte) for
excitons are assumed to be |sot_roﬁ10. _ the electric componerf, contains the linear source on the
In order to investigate the simplest TWS's, we restrictyight-hand side(r.h.s), due to the excitonic polarization
ourselves to the one-dimension@D) geometry withp|k.  p, . The first term on the r.h.s. of the polarization E4b)
The corresponding closed set of the macroscopic equationguples the excitons with the resonant light, while the second
for the positive-frequency components of the electric fieldsyne stems from the RRI of the two coherent polaritons.
Ej-12(£,t) and excitonic polarization®;_; A¢,t) of the  Equations4d) and(4e), which describe theecondpolariton
two interacting polaritons and for the scalar potentiaI(E2 andP,) in the RRI, have the similar physical interpre-
®(¢,t) of the resonant LO phonon is given by tation. Finally, Eq.(4c) describes the evolution of the coher-
ent LO phonon, which is generated in the RRI of the two

3(9_2_ 3_2 ECH (gt = — _5_2P(+)( 0, (4a polaritons. The macroscopic Eq#la)—(4e) are derived un-
2 a2 gg|Fr BTz P e, der the assumption that the carrier frequencyf the polar-
3
iton 1 belongs to a spectral vicinity of the anti-Stokes reso-
2 1 9 hw, 92 nancewy+ (1, of the polariton 2 with the carrier frequency

2

e 2 ﬁer‘_mﬁ_Ezp(lﬂ(f,t) oy, .6, 0=o+Qq.

Equations(4a) and (4b) and (4c)—(4e) reduce to the two
independent identical sets of Hopfield’s polariton equatfons,
if one neglects the” exciton—LO-phonon interaction, i.e.,
sets #=0. Then, the linear macroscopic Egs.

- 5
=wfﬁE&“(&t)—wtfp_%Pg“(g,t)a—gzqﬂ”(f,t), (4b)
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(48 and (4b) [or Egs.(40)—(4e)] with £=0 describe the
first (second free polariton. In order to treat spontaneous
Raman scatteringSRS of polariton 1, one can use Egs.
(40—(4e). In this case, the first polariton(E;(¢,1),
P,(¢,1)) has to be considered as a given pulse, while the
Stokes polariton 2 E,,P5) is a small signal. The main fea-
ture of this approach to SRS is an explicit inclusion of the
polariton effects. The corresponding theory of SRS is devel-
oped, e.g., in Ref. 22. If the coherent polariton 2 is consid-
erably stronger than the first one, E¢4a—(4e) decouple

into the two independent sets of E¢4a)—(4c) and Eqs(4d) e (k,,) fe Ys

and (4e). Then, the second polariton is a given coherent —5s
pump wave with the polarizatioR,= Py.exp(—iwt+ik§) _50 ! ! | !

and Eqs.(4a)—(4c) describe the phonoriton excitatidhs'® A5 100 05 0 05 10 15
of a semiconductor. The phonoriton dispersion, i.e., the dy- Wave vector (10°cm™)

namical coherent photon—exciton—LO-phonon spectrum, de-

velops in the spectral vicinity of the anti-Stokes resonance FIG. 1. Scheme of the resonant polariton-polariton Raman in-

w,+ Qg of the pump polariton 2. teraction. Polariton 1 —, w); polariton 2 — K, ), p|Kk| £ axis;
The approximation of the single intermediate exciton states is the velocity of the coupled solitons. The following CdS pa-

n=1 for RRI holds if Qy<Q.. With increasing exciton rameters have been used in the calculatiohsi=2.552 eV,

radius (decreasing exciton binding energy), this approxi- 7%®,=1.9 meV, £,=£,=9.3, Me=0.2my, mMy=m;,, =0.7m,,

mation becomes invalid, because the polariton parametéh=28 A, 71Q,=38 meV,e,=5.8.

QO.xa; *?[see Eq(2)] decreases. On the other hand, accord-

ing to Eq.(3) the matrix elemenM,_ a2, i.e., an in- E}“(g,t)zﬁj(r)exp(—iwjt+ipj§),

crease ofa, results in an enhancement of th€ interaction.

It seems that CdS and CdSe direct-band-gap polar semicon- -

ductors are best suited for the compromise between these P (&,1)=Pj(r)exp —iwjt+ip;é),

opposite trends. For CdS, e.ghQ.~=140 meV and

7 Qy=38 meV, while|p—k|a,=0.1 — 0.2. Therefore, the +) ~ _ _

macroscopic Eqsi4a)—(4e) are appropriate for the descrip- D€ ) =D(r)exd —i(w1—w)t+i(pr—p2)€]. (6)

tion of plane-wave RRI in CdS and CdSe in the geometry

e,le andpl|k| & L c axis of a crystal. Here, (i,01)=(p,w) for the first polariton and
Mathematically, the five Eq34a—(4e) are the nonlinear (p,,w,)=(—k,w) for the second polariton;=t— &/vg is

set of a generalized type for Raman solitons. Conventionahe retarded time. The considered geometry of the RRI is

studies of the TWS'qRef. 10 deal with three nonlinear shown schematically in Fig. 1. The positiyeegative sign

wave equations for the light fields resonantly coupled, due t@f v corresponds to backwattbrward scattering, when the

the lowest-order nonlinear susceptibiligf?). In the macro- interacting coherent polaritons counterpropag@epropa-

scopic Eqs(4a—(4e) the nonlinear terms are presented only gate.

in the “matter” Eqgs.(4b), (4c), and(4e). The main point of In order to simplify the initial set of Eq94a)—(4e), we

our approach is that one cannot analyze RRI by means afse the slowly varying envelope approximati¢8VEA)

perturbation theory for high intensitids andl, of the co- (see, e.g., Ref. 20Within the SVEA Eqs(4a—(4e) reduce

herent polariton$'*° Equations(4a—(4e) include explicitly  to the following set of the first order nonlinear differential

the entire series of the nonlinear susceptibiliti¢®, within  equations:

the initial microscopic model given by the Hamiltoniéh).

_|dlEi+C1E1:|5151+ '}/151, (7a)

IIl. NONLINEAR TRAVELING SOLUTIONS OF THE
MACROSCOPIC EQUATIONS a,P;—ib,P,=vP,d+ioP,d' + o, (7b)

For further analysis, we will concentrate on the simplest _ - o
traveling TWS's solutions of the set of Eqda)—(4€). These apn®—ibp @' = VphP§ Py, (70
nonlinear solutions are also called thendamentakolitons.
The fundamental Raman TWS's describe three coupled el- = -~ -
ementary nonlinear waves, two polaritons and one LO pho- —idaEy+CEy=16,P5+ v2Ps, (7d)
non, propagating without dispersive spreading with a com-
mon group velocitw . Taking into account the matching of
the carrier frequencies and wave vectors in the resonant trip-
let (polariton 1 — polariton 2 — LO phongnwe will treat o o
the interacting macroscopic fields of Eqda—(4e) in the  whereF’'=dF/dr (F=E;,P;,®) and the coefficients are
following form (j=1,2): given by

az’ﬁz_ibzsé:Vﬁla’)*_ia'ﬁl(a’)*),"‘agz, (7e)
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5 5 hoy 5 ho, ac_:tic_)n involves only the excitonic components. Moreover,
j= oy~ i+ ij , bj=2lwj+ U—ij ' within Egs.(1089—(100), one avoids a treatment of the non-
S linear optical processes by means of a perturbation theory.
. o The analysis+41° of RRI of the intense polaritons shows
cj=p?- C—gwf dj=2| Fo;+ v—’ , that the corresponding total resonant susceptibility
s x(p, o= 0w+ Qq,|E,|?) or x(k,ox=w—Qg,|E;|?), for the
Ao 8 first (second polariton: con_tains an additional in_tensity-
Y=zl §=—7o, dependent term in its  resonant denominator
c ¢ Aw=ow—w,—Qy. Consequently, one cannot expand the to-

tal susceptibilityy in a power series ofE,|2 (or |E4|?) near
the poleA=0 and keep only the lowest-order resonant opti-
cal susceptibilities¢®® and ). The treatment of the polar-
izations P; rather than the electric fields; in Egs.(109-

€
_ . 25_%92 —02 2
a=w;B= 4WQ°’ =05~ (0—wy)*,

b (e _ L = (100 deals with theinverse total susceptibility y(™%).
ph=2(0—wy),  Vpn © \/;'6’ Therefore, this approach includes, within the initial micro-
‘ scopic model of Eq(1), a whole sef{ x(M} and avoids an
(p+k) 7 expansion ofy in a frequency vicinity of the polé =0.
o=2wp % — v=0npZ(p+k)2 (8 The first term on the r.h.s. of Eqé10a and (100 de-
S

scribes the polariton effects. The conditigp=0 (j=1,2)

In the macroscopic equationda—(7e), both the exciton 9ives the polariton d|sper3|omj=wp°'(pj)_. The second
and LO-phonon incoherent scattering are neglected, i.e!®rm characterizes the coherent generation or decay of a
[*=TP'=0. Therefore, we analyze coherent three-wave ingIven polariton in the Raman interaction of the LO phonon
teraction (polariton 1—polariton 2—coherent LO phorjon a.n.d. conjugated polarlton. The eyen-order Raman suscepti-
due to the conservative nonlinearity. This assumption is validilities x'*” are responsible for this process. The third term
in the high-intensity limit for a hypertransient regime, when On the r.n.s. of Eqs10a and (109 results from a whole set
a characteristic durationr; of the LO-phonon—mediated Of the odd-order susceptibilitieg®"** (n=1). One can
polariton-polariton interaction is shorter than the coherenc@lso attribute this nonlinearity to the phonon-mediated
times, i.e., re=min{(I'’*/2)"1,(I'"/2)~1} at a given point polar!ton—polarlton mtgractmn. There is no phonon-mediated
¢. Mathematically, the solitonlike solutions of the initial set Polariton self-interaction, becaudé, o(|p—k|=0)=0, ac-
of Egs.(4a—(4e) can exist only in this regime. In Sec. VI, cording to Eq.(3). The second_term on the_ r.h.s. of the re-
we will discuss this assumption in more detail. duced LO-phonon wave equati¢hOb) describes a coherent

In the SVEA one can express, from E¢ga) and(7d), the phonon generation in the RRI of the two intense coherent

envelopesE;_; , of the electric fields through the envelopes poI_;‘:_lrr]itons'. oal diff o he fund I I
P;_1,, of the corresponding excitonic polarizations: € principal difference between the fundamental travel-

ing Raman TWS'’s in molecular systems and in semiconduc-
~ Y= tors is that the vibrations or rotations are located at mol-
EJ:FPPL c o+ < Py. 9 ecules, while the bulk phonons are propagating modes with
] ! J well-defined eigenwave vectors. Therefore, one can intro-

Then, the substitution of Eq9) in Egs. (7b) and (7e) re-  duce an unique retarded timefor the all components of the

djvi|~,

duces Eqgs(7a—(7e) to traveling Raman TWS’s in a semiconductor. As a result,
_ _ o o Egs. (109—(100 are theordinary differential equations. In
P1=—iq1P1—ip1|P2|?P1+iB,P,®, (108  molecular optics, the fundamental TWS’s can be modeled
_ _ o only within a set of thepartial differential equation$;® be-
Q' =—iqp®+iBpP3 Py, (10b) cause there are two different times, i.e., a located tiore
coordinate for the vibrations or rotations and a retarded time
Py=—iq,P,—ip,|P1|2P,+iB8,P D" . (109  for the two traveling optical fields.
. ) ) Introducing the real amplitudes;, z and phasesp; (]
The coefficients in Eq9108—(100) are given by [=1,2) =1,2), ¢ of the complex envelopes of the polarizations,
_ 3ph _ Vph L, a d;j By e®  Hegdl
QPh_bphv ﬁph_bph' Aj=b;+ c; 5+ S } Pi=x;e'¥, d=ze", (12)

one obtains from Eqg10a—(100):

. O'Bph _ 1 _ 1 ’}/J
Pi= A IBJ_A_j(V"‘O'Qph): Qj_A_j aj_ac_j' X1 = B1X,2sinO, (13a
(11)
. ) . X5=— ByX1ZSinO, (13b
The closed set of the coupled nonlinear differential Egs.
(108—(10¢ contains the coherent polarizations as the vari- 2/ = — BykaXoSin®, (130

ables rather than the electromagnetic fields as it is usually
supposed in nonlinear optics. The physical reason of this . )
feature is that the phonon-mediated polariton-polariton inter- X1¢1=—(Q1F p1X3) X1+ B1X,2C0MD, (13d
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X205 == (Ua poxT)Xa+ B2X12C0M), (139 = P1X5o+ Qo+ U2 — 01 o 2p1%2,
2’ = — Qoz-+ BprXXaCOM. (13f) Xo2V (= B1) Bpn Xo2V(— B1) Bph

(17)

Here, © =, —¢,— ¢ is the phase-matching angle for the | pqs (16), the derivativeF =dF/dT is taken with respect
interacting polarization waves. 10 the dimensionless tirme:
The first three amplitude Eq$13a—(13¢) obey three

Manley-Rowe relations: T= %0\~ B1) Bone (18)
BoXi+ B1x5=Cy, —BoXi+B2°=C,, Introducing dimensionless variablesandv by
ﬁphxi_l' B17°=Cs, (14) u=Ycod®, v=YsinO, (19

whereC;_, , zare the constants of the motion. Only two of the set of Eqs(16) can be rewritten as

these relationships are independent. The Manley-Rowe inte-
grals of the motion are due to the conservative three-wave
resonant interaction in our model. In the resonant nonlinear . 5 2. = 5 2
triplet of the fundamental TWS'’s, two of the nonlinear v=1-3u"—v "+ Bu+ku(u+v"). (20)

waves are solitary, i.e., their amplitudes vanish whenone can treati andv as the canonically conjugated vari-

7— . Therefore, for the traveling fundamental solitons, ataples and then construct formally a generating Hamiltonian
least one of the constan® in Eqgs.(14) has to be zero. for Egs. (20):

If C,=0, the coherent LO phonon is a nonlinear pump
wave in the traveling soliton triplet. This case involves a
preliminary resonant generation of the intense coherent cw H(u,v)=
LO phonon and can hardly be realized. The conditions
C,=0 or C3;=0 correspond to possible experimental situa-H(u,v) is an integral of the motion of Eq§20). The asymp-
tions, when the first or the second coherent polariton, respedetic stationary points of Eq920), which characterize the
tively, acts as a nonlinear pump. However, the dase0,  coupled fundamental solitons at-*+ o, are given by
when a pump polariton has the higher carrier frequeacy -
(0> wy), corresponds to unstable TWS’s. The physical ori- Btk
gin of this instability stems from the spontaneous Raman Uee = 2
decay of the pump polaritop (polariton 1) into LO phonon . . ] ] .
p—k and its Stokes componekt (polariton 2). This insta- Therefore, one finds the following algebraic relationship be-
bility leads to stimulated Raman scattering, which can endWeenu andv:
up in the formation of stable TWS’s. However, the structure ~
of these TWS’s corresponds to a pump polariton at the H(U,0)=H(U, ,0..)= 2B+«
Stokes frequencw, . Such a scenario is responsible for the ’ e 4
generation of Raman solitons in parg-#8 Therefore, we ) ) .
will analyze the most interesting and important case, when Using the integral of the motiof23) and Eqs.(15), one
Cs=0 and the second lower-frequency polariton acts as &erives from Eqgs(20) and Eqgs.(133—(13f) the intensity

U=2uv —Bv — kv (U2+0?),

B «
— 4+ —

> 4(u2+v2)—u(u2+uz—1). (21)

(E+ K)? 12

4

, vmzi[l (22

(23

nonlinear pump(see Fig. L profiles z2, szzl,z and the phase-matching angh of the
For C3=0, one obtains from Eqs14) fundamental traveling TWS's:
o Pio o0 5 Bph o o X2=[1F D (2779 ]x2 2o ZPY g, (27/ 76) X2
X1=— B_Z(on_xz)- z :,3_2()(02_)(2)' (15 2 = S0 (xR, /02
Wherex02=52(7—> + o) is the cw amplitude of the excitonic > Bpn 2
polarization of the pump polariton 2. “= =8y . (27/75)Xpg, (249
In accordance with Eq€8) and(11), the real parameter
Bpn>0. From Egs(15), one concludes that the final nonlin- 2[(1—B?/4)(k?+ 2Bk +4)]Y%sinh(27/ 75)

ear solutions have to be2 consisteqt with the condition ®:_arCtanB(K2+ZBK+4)IIZCOS|"(27'/TS)i2(K+B) ;
B1<0, becauses; / By,=—X3/z*<0. With Egs.(15), Egs.

(133—(13f) reduce to the following coupled equations for (24b)
the dimensionless amplitud® =x,/x,, and the phase- Where the functiond.(27/75) and the coefficient8 are
matching angled: given by

2 4(1-B?)

v —2Y |co® + kY2, C (27179 = (2 BT 4) oS 2170 = (BrI2+ 2)’
(16) (25

Y=(1-Y?)sin®, O=B+

where the parameteé and k are given by B=—- (K+§). (26)
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In Egs. (24) and (25), we returned to the dimensional re- zation implies that the polaritons 1 and 2 are induced by two
tarded timer (7= 0 refers to a center of the coupled solitpns optical pulses of given frequencieg = w andw,= w, . The

and the characteristic soliton duratiegis optical pulse 2 with the frequenay,=w;— Qg and the in-
P tensity | ,=1, has a duration?> r,. This pulse generates
o= Xop (—,31),3ph(1——) } _ 27) the pump polant(_)n 2. The intensity, determines the cw
4 polarization amplitudey,e 1, by
According to Egs(249, the two mutually coupled polar- ) Q‘c‘ ( 83/2) Ny(wy)
iton 1 and coherent LO phonon are solitary waves, which Xgo=1 , (31
P Y 210~ w2 | Brc) [nwo + 12 P

have similar profilesz?(27/ 7)) = (Bpn/(— B1))X2(27/ 75). A
kind of the Raman TWS’s is determined by a sign of thewhere the polariton refraction index n,(wy)
parameterB,. For 8,<0 [the upper sign in Eq924) and = \/sg[w“/(wt—wk)]z\/s—g, becausev;— w,> w; (see Fig.
(25)], the two coupled bright solitons “burn” a traveling 1). In Eqg. (31), the reflection from a crystal surface is in-
steady-state dip in the cw intensity of the nonlinear polaritoncluded explicitly for normal incidence of the external optical
2. The odd-order nonlinear susceptibilitig€’"**) give x  pulses. The optical pulse 1 of the duratigdf’< 7(?) induces
#0 and prevent a decrease of the amplitude of the nonlineahe solitary polariton 1, withre=71), i.e., determines the
pump down to zero, even at the exact Raman resonanc®liton durationzs. In this picture, the coupled traveling
w—w=Qg. A finite amplitude of the dip at-=0 corre-  solitons can be generated only during the finite time interval
sponds to the so-called gray solitthFor x=0, this gray  of the polariton 1—polariton 2 interaction, i.e., a steady-state
soliton transforms to a dark one, which can be also interperturbation(dip or spikg at the quasi-continuous-wave pro-
preted as a kink structure in the cw complex amplituBlgs file of the long pump pulse arises at its leading edge and
andE, of the second polariton. Fg8,>0 [the lower sign in  disappears at its trailing edge. Therefore, we deal with “tran-
Egs. (24) and (25)], the two coupled solitary waves form a sient solitons™ in the terminology of Ref. 7.
spike in the cw intensity profile of the pump polariton 2, i.e.,
an antidark soliton according to the terminology of Ref. 23. IV. CLASSIFICATION OF THE FUNDAMENTAL
Again, k#0 prevents an explosive instabili{,when the TRAVELING SOLITONS
denominators in Eqs(24) and (25 are equal to zero at
=0 for o — w,=Qyg.

The fundamental solutions given by E¢24a and(24b
do not exhaust the description of the three-wave couple
solitons. According to Eqs(8), (11), and (27), the carrier
frequencies ;-1 ,=(w,wyy, and wave Vvectorsp;_;,
=(p,k) of the interacting polaritons, the characteristic soli- ho e e
ton durationrs and velocityvs, and the cw amplitude of the — a,c,— ay,= ( wl— wi+ —tkz) ( k2— —§w§> — S w02
pump polariton 2 are involved as the seven parameters in M ¢ ¢
Egs. (24) and (25). However, not all of them are indepen- =0. (32)
dent. E.g., Eq(27) is one of the relationships between these
parameters. The requirement of the absence of the phadéis dispersion corresponds to a free propagation of the

After parametrization, one has to find, from Ed27),
(299, and (29b), the other three parameteps_; ,=(p.k)
nd vs. The dispersion Eq(29b) determines the carrier
wave vectoik=Kk(wy) of the pump polariton 2 and reduces
to the usual polariton dispersion:

modulation atr— oo (or T— o) pump polariton 2 in the absence of the coupled solitary
pulses, i.e., if 7|> 7.
@1]rmr0= 05| ={"|;+=0 (28) Equations(27) and (299 are a closed set of algebraic

gives rise to other links between the initial parameters. Equa?hqeuig?r?zrf(xat\?ee 5;';';[8:_\/&?'2520 S(fiwgf'):ﬁé' TSSC))"?QS/
- y Wk A02:7s,

tions (28) imply a solitonlike behavior of the polarization polariton 1. This set reduces to an algebraic dispersion equa-
phasese, ¢, and{ of the fundamental TWS's. From Egs. tion of ninth order for the wave vectqr. We study numeri-

gﬁ()),vvtirne; gré%itlizc?r?z.a(llrgglj)a;igr?sﬂhizgq (24b), one obtains the cally this equation in order to find the real rogis which
’ correspond to the traveling nonlinear waves of Hgs. All

01+ Qo= —p1X3,, (293  the numerical calculations in our work are given for a CdS
crystal. The typical dispersiop=p(w,wy,Xqy,7s) for the
q,=0. (29b) given values ofw,, lg, (0Or Xgy) and 74 is shown in Fig. 2.

) ] ] ) We classify the fundamental traveling TWS'’s according to
Equations(293 and (29b) are the dispersion equations for he gispersion of the solitary polariton 1.

the first and second coupled nonlinear polaritons, respec- The various dispersion branches 1(s&e Fig. 2 for the

tively. From Eqs.(26), (293, and(29b), one gets solitary polariton 1 stem from mutual hybridization and
splitting of the initial LO phonor{dashed line in Fig. Pand
B= — 20pn (30) polariton dispersions in the presence of a nonlinear pump
XOZ*/(_Bl)IBph. polariton 2. This strong spectral modification occurs in a

spectral vicinity of the anti-Stokes resonance of the pump
The further analysis depends on a selection of the foupolariton, i.e., whenw=w,+€,, and gives rise to the
free parameters. We choosg, Xg,=|P,(7— * )| andr,  closed dispersion curves 4-5 and to the dispersion anomalies
as the independent ones. Experimentally, such a parametiir the branches 1-3. With decreasing pump interigjtipa-
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Fus(p+K)gure>1. (34b)

The inequalitieg349 and(34b) hold for the upper sectors of
the spectral droplets 4—5 and for the anomalous dispersion of
the branch 3. These sectors coincide with the LO-phonon-
like phonoriton branchetsee Ref. 15 The phonoriton dy-
namical modification of the initial LO-phonon term is ac-
L e S e - S companied by a finite LO-phonon effective massecause
IMy_ph(P—K)|?=(p—k)? [see Eq.(1)]. The finite pump-
-2 induced LO-phonon effective mass has a negative sign and is
-30 -15 0 s 15 30 «|y. This result explains why the spectral droplets 4-5 ap-
Wave vector p {10 c’) pear below the unperturbed LO-phonon disperdidashed
line in Fig. 2. The spectral range of validity of the inequali-
FIG. 2. The nonlinear dispersiqn=p(w) of the solitary polar-  ties (348 and (34b) increases with the soliton duration .
iton 1, hw=2513 eV [fi(w;—w—Qo)=1 meV], 1,=500 The regions of anomalous dispersion of the branches 1-3
MW/cm?, 7=15 ps; 1-2 — the dispersion branches of the quasi-and the lengths of the spectral droplets 4-5 also increase

polariton TWS's; 3—-5 — the dispersion branches of the quaith increase ofrs. Numerical calculations confirm these
siphonon TWS’s6 — the upper polariton dispersion branch. conclusions.

W-w, (mev)

) Along a given dispersion branch, the soliton veloaity
rameterxoy), the spectral regions of anomalous slope of thenas g definite sign. On the dispersion branches 1, 3, and 5,

branches 1 and 2 decrease and these dispersion curves evojqg velocityv << 0, while along the curves 2 and#,>0. Al
continuously to the unperturbed lower polariton branchesgf our numerical simulations justify this conclusion, al-
The spectral curve 6 is the upper polariton branch. If thgnough we have failed to prove it analytically. The sign of
dispersion of the solitary polariton 1 in the soliton triplet is v determines a geometry of interaction of the first and sec-
given by the branch 1 or 2, we will attribute these travelinggng polaritons. Backscattering configuration corresponds to
fundamental TWS’s to coupleqpa3|polarl_tonsollto.ns. The v>0, the initally generated polariton 1 and polariton 2
second class of the TWS's, which we will cgiasiphonon  ,ropagate in the opposite directions. In the forward scatter-
solitons, refers to the dispersion branches 3-5. In a Sensfg geometryw < 0. For the spectral droplets 4, 5 and for the

these dispersion _branches are the “topological fragments”_ofight part (p>0, see Fig. 2of the quasiphonon branch 3, the
the LO-phonon dispersion. The closed curves 4 and 5, whicRg rier wave vectop of the solitary polariton 1 and its soli-
resemble spectral “droplets,” disappear with decreasinggp, velocityv have the opposite signs

s .

pump intensityly. . _ _ . The quasiphonon TWS’s cannot be obtained within the
The complicated dispersion for the bright polariton Soli- standard perturbation approach, which deals with the lowest
ton 1 is similar to the phonoriton dispersibin*®which onlinear susceptibilityy.1° A dispersion of the Raman

descrrilbes a transient ]Enodifice}tion of the gxc;}ton, photon, a? olitons in molecular optics is also considered as unperturbed
LO-phonon spectra of a semiconductor in the presence of g, gjighily perturbed® In our case only, the quasipolariton

quasistationary coherent pump polariton 2. However, in thigjisnersions 1 and 2 can be obtained by the continuous defor-

case, the first polariton is so weak 1,=1¢) that it does | ations of the unperturbed polariton branches.
not disturb the cw profile of the pump polariton. The weak

probe polariton 1 only tests the phonoriton dispersion, which
is given by V. QUASIPOLARITON SOLITONS

s o hog LN, ey, 5 2 According to numerical simulations, at the quasipolariton
S A v S A S [(0— @)= Qp] dispersion branch 1, the parametgs= B,(w,wy,lq,7s)
<0 in Egs.(139—(13f) and the corresponding fundamental
167w #? ) ol 5 Eg o TWS's are given by Eqs(248 and (24b) with the upper
onz(p_k) (p T 2@ ) sign. For the quasipolariton branch@> 0, thus one has to

gre use the lower sign in Eqg24a and (24b). Therefore, the
89,2 2 A2 kind of fundamental nonlinear pump polariton 2 in the qua-
— 2o Q0= w) = 0] =0. (33 sipolariton TWS’s depends on the interaction configuration,

i.e., a gray soliton occurs in the forwardscattering geometry
The dispersion Eq(33) is analyzed in detail in Ref. 15. (pbranch 1 and an antidark soliton in the backscattering ge-
Physically, both the phonoriton dispersion E§3) and the  ometry (branch 2. This result is due to the strong depen-
dispersion of the solitary polariton 1, Eq7) and (298,  dence(3) of the.7 matrix elementM,_;;, on the LO-phonon
originate from the coherent phonon-mediated resonant oscilvave vectorp—k. Typical amplitude profiles of the two
lations between the polaritons 1 and 2. coupled nonlinear polaritons of the quasipolariton TWS's
Equations(27) and (299 show that for given, andw  calculated with Eqs(243 and(24b) and (299 and(29b) are
the dispersion of the solitary polariton 1 coincides with theshown in Figs. 8) and 3b) [see also Fig. ®)]. Both of the
corresponding phonoriton dispersion provided that pairs of the coupled solitons of Figs(a3 and 3b) (see the
) 2 solid and dashed lingfhave the same group velocity. In
Opn7s>1, (348 accordance with Eqg244a, (24b), and (27), for fixed w,
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FIG. 4. Quasipolariton TWS’s, backscattering polariton-
polariton interaction(the dispersion brancB). The soliton enve-
lopes e, .= @1 A7), ¥=y(7) (solid lineg, and the phase-matching

FIG. 3. Quasipolariton TWS's. The amplitude profiles angle ®=0(7) (dashed ling 1,=50 MW/cn?, fiw,=2.511 eV
x;=[P1(7)| andx;=[P(7)| of the coupled nonlinear polaritons [# (w,— w,—Qg)=3 meV], 7= 10 ps, the exact Raman resonance
1 and 2, respectively@) forward scatterindthe dispersion branch  A4=0 (the corresponding amplitude profiles are shown in Fig.
1); (b) backscatterindthe dispersion branch)21,=50 MW/cn?,  3(h) by the solid lines The soliton envelope of the phase
hay=2.511 eV[h(w;—wc— o) =3 meV], the soliton velocity , —, (7) of the electric fieldE,=y,e'”2 of the pump polariton
vs=0.49<10"2 (c/ey?) are the same for all the plotted coupled 2 (dash-dotted ling
solitons. The exact Raman resonandew=0 — solid lines
(7s=10.0 p3; the detuninghAw=7%(w—wy—Qy)=—0.04 meV  _ _

— dashed lines[r.=19.3 ps for forward scatteringa) and |P2(7—*%)|>1, both for backscattering and forward scat-
7s=12.0 ps for backscatteringp)]. tering. The dependenc&s=K(l,), for the several values of
75, are shown in Fig. 5 K=K, for backscattering and

Xo2, andvg, the TWS’s have a minimum duration at the K=K for forward scattering _

exact Raman resonanee= w,+ o (B=0). Such a behav- The dependences of the soliton velocu¥=v5(c_u) for

ior is clearly seen in Figs.(d) and 3b). given wy, s and two values of the pump mt_ensﬁyg are
According to Eqs(22) and(26), the coordinate ., of the shown'm Fig. 6, both for 'the fqrward scattering anq back-

asymptotic stationary points will be real provided thatScattering polariton-polariton interactions. According to

|B|<2. With Eq.(30), this condition reduces to

Time T (ps)

25

|Gpr =@ — 0k — Qo| <Xo2V(— B1) Bpn (395

For the considered parametrizatiom;(,,, Xgp, 7s), the 20
inequality (35) holds, due to Eq(27) for arbitrary detuning

Aw=w—w—Q( from the exact Raman resonance. How- K
ever, the best-developed quasipolariton TWS’s occur for A 5
Aw=0. The dimensionless detuning is given by the param- s
eterBx (w— wy—Qg) of Eq. (30). =
Typical gquasipolariton soliton envelopes of the polariza- =
tion phasesej=¢;(7), ¥=4(7), and the corresponding 2%_

w

phase-matching angl®=®(7) are shown in Fig. 4(the

solid and dashed lines, respectivefpr the backscattering
interaction at the exact Raman resonadce=0 (B=0). | | . 1
For the quasipolariton TWS's, A@ZQ(T—>+OO) UU 100 200 300 400 500
—0O(r——o)=17if Aw=0. This is an unique behavior for
the Raman TWS'4-8 The 7 jump initiates a constructive
change of stimulated inverse scattering on the normal one. FIG. 5. Quasipolariton TWS’s. The maximum amplitude

However, in our case ther_ Jump of the phase-matching X7®{(r=0) of the giant parametric solitary polariton 1 normalized
angle® occurs for the polarization envelopes rather than o e oy amplitudexy; of the polariton 2 versus intensity. Solid

the electric fields. _ ~ lines — the backscattering geomettthe dispersion brancle,
From Egs.(248, one concludes that the solitary polariton g = K,); dashed lines — the forward scattering geométhe dis-
1 is a giant parametric pulse in the soliton triplet, because fopersion branchl, K=K;); fw,=2.511 eV [ (w— w— Qo) =3

the quasipolariton TWS'& =xT®(7=0)/xg,=|P1(7=0)|/  meV], the exact Raman resonanse = 0.

K

Intensity 1, (MW /cm?)
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both coupled polariton solitons, because for a free linear po-
lariton Ej= (v, /c;)P; [see Eqs(9)]. In other words, for the
quasipolarlton TWS s the LO-phonon — mediated polariton-
polariton interaction does not destroy the balance between
exciton and photon components in the first and second po-
laritons.

For the quasiphonon Raman TWS's, i.e., along the disper-
sion branches 3-5, Eq®6a and(36b) are satisfied only for
1o=1{"(7), while Eq. (360 is always broken, due to the
small values of the soliton velocity,. The threshold inten-
sity 1{})(r5) decreases with increasing soliton duratiqrand
is about 100—-200 MW/crhfor 7,=15 ps. If Eq.(9) does

FIG. 6. Quasipolariton TWS’s. The dependences of the solitomot hold for the pump polarito=2 of the quaSIphonon
E’;'(OC'W Us™ l’)s(‘*é) me(\ijO“d 1'6“‘;2 a;?;l) |ﬁwk2_og f/llv%//cniv TWS'’s, one has to describe explicitly the polarizat®nand

Wy T = , s e .

%)) I0=500 M\;)V/cm2 (the Iefts part — forward socattering; the right electric fieldE,. Therefore, in the set of Eq$108—(100),
part — backscattering Dashed lines indicate the unperturbed po- one has_ to treat Eqd7d) a_nd (78 instead of Eq.(100.
lariton group velocityy o= v oo ®). Introdum_ng the real amplitudes and phases for aII. the
po pol
polarization fields by Egs.(12) and for the electric

these graphs, the soliton velocity has a minimum at the field E2—y2e”2 one can rewrite this generalized set in the
exact Raman resonance; with increasing deturirg the  following form:

soliton velocityv¢(w) approaches the polariton group veloc-

ity vpo= &wpo,(p)/ap|p=p(w) (dashed lines in Fig.)6 where X1 = B1X,oZ Sin®, (379
wpol(P) Is the unperturbed polariton dispersion. The soliton

velocity v of the quasipolariton TWS’s decreases with in-

tensityl, of the pump polariton 2 and is always less than the Xp= b y23|nA BoX,Z SinO, (37b
corresponding o Such a behavior ob is due to an in- 2

crease of the LO-phonon component in the soliton triplet,

with increasingl, or decreasing/Aw|. This LO-phonon z' = — BprX1%2Sin®, (370
component “slows down” the soliton propagation, because
for the unperturbed LO-phonon dispersian o=dQg/

&p| p~>0: 0.

-0y (meV)

Velocity v (108cm/s)

doy5= — Y2X,SINA — 8,X5C0SA + So0XoSiNA, (370

VI. QUASIPHONON SOLITONS X101 = = (Q1+ p1X5) X1+ B1XoZ COP, (378

The initial set of the macroscopic Eqda)—(4e) reduces

- iti : ! T+ @ B
to Eqgs.(133—(13f) under the conditions: Xo@h= —(qZ+p2X§)X2+ b—2y2009\+,32><12 cod,

¢ (363 (379
Vg ——,
) 2ths\/@—g

Zy' = — QprZ+ BprX1X2C0M; (379

2 €9 &g P
— >2 - —, 36h .
Ts p Ezw ‘Ezw Ug ( ) d2y27],:_C2y2+ 72X2COS/\—52X’SIHA+ 52X2QD’COSA.
2 2 2
(37h
8

7o k?— C2 wy|>2 2“’k’L Ve (360 Here, A= ¢,— 7, and in addition to the notations given by

Egs.(8) and (1),

The inequality(363 allows the SVEA. Equationi9), which
gives the electric component of a polariton through its polar- o8 ~  vtoq
ization component, are derived under the condit@dBh) To=—, Po= ph, )= ph_
and (360 for the first and second polaritons, respectively. b> b b
The validity of Egs.(369—(360) depends strongly on which
dispersion branch they are tested. This dependence stemsFor the set of Eqs(37a—(37h), only the last Manley-
mainly from a value of the soliton velocitys in Egs.(36a—  Rowe relation of Eqs(14) is preserved in the same form
(360. with C3=0. Thus, in accordance with E¢L5), the coupled

Along the quasipolariton dispersion branches 1 and 2solitary LO phonon and polariton 1 have again similar am-
Egs. (369—(360 hold provided that the cw intensity of the plitude envelopes for the quasiphonon TWS's. For a numeri-
pump polariton 2 is not too highy<1GW/cn?. The condi- cal evaluation of the traveling fundamental quasiphonon
tions (36h) and (36¢) imply that on the r.h.s. of Eq%9) the = TWS's within Eqs.(379—(37h), one has to find at first the
second term is considerably smaller than the first one. Thisorresponding asymptotic stationary points. These points of
denotes a slightly perturbed internal polariton structure of théegs. (378—(37h) are given by

(39
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FIG. 7. Quasiphonon TWS’'Sa) The magnified region of the 10
quasiphonon dispersion branch(B) the corresponding soliton ve-
locity vs=v(w); hw,=2.511 eV [A(w— o — Q=3 meV], 05+
7s=15 ps, and1) 1,=200 MW/cn?, (2) 1,=500 MW/cn?.
0
-50

a,

Xloo:O1 Z]_oczo, X200 = X2, yZWZyOZZZXOL Time T (ps)

FIG. 8. Quasiphonon and quasipolariton TWS's in the forward-
B scattering geometryv(<<0). The amplitude profiles;=[P(7)|,
—— Y%n —. X,=|Pa(7)|, Y2=|E2(7)|, andz=|®(7)| of the coupled resonant
Xo2V (= B1) Bph 2 triplet: (a) the quasiphonon TWS's of the dispersion branciib3,
(39 the quasipolariton TWS'’s of the dispersion branch 1. The exact
Raman resonanceA@=0), |,=200 MW/cn?, fw,=2.512 eV

The conditiong28) for the set of Eqs(37a—(37h result  [fi(wi— wx—Q0)=2 meV], and 7s=10 ps.

again in the dispersion Eq&9a and(29b). In order to find
gain | ISpers ae29a (290 ! mum value at the exact Raman resonanee wy+ (g

the soliton characteristic duratiory, one can treat analyti- o = : .
cally the asymptotic behavior of the soliton solutions of Eqs.EAQ“;)__O)' For Aw=0, one gets from the dispersion Eq.

(379—(37h at 7— * o, i.e. in a vicinity of the stationary

Ao=¢@2— 12,=0, coB.,

points given by Eq(39). Linearization of Eqs(378—(37h ng;gzk
around these points yields the exponential envelopes of the v(w=wyt+Qp)=— —=—————ly, 41
solitary waves atr— = o: QB — )
wherew,= o+ wy; is the frequency of the longitudinal exci-
X1(7— o) =Xeexp F 7/75), ton, the parameter® and 8 are defined by Eq.3) and Eqgs.
(2), respectively. Equatiof4l) is derived under the condi-
27—+ 0) = ZgexQ F 7/ 7y, (40  tions |w,— w|>#k?*M andp<k. These conditions hold for

the quasiphonon TWS’s, because for branch 3 the exact Ra-
where X, and Z, are the constants and the characteristic"2!" resonancw=0 corresponds tp=0.
Typical amplitude envelopes (7), X»(7), Y2(7), and

dura_tlon 7s IS again given _by_Eq(27). Therefqre, all the (7) of the traveling fundamental quasiphonon TWS’s, ac-
relationships between the initial parameters, i.e., Eqgs. (27)ZOrding to Eqs.(373—(37H), are shown in Fig. @). For

and (29a) and (29b), are preserved for the generalized set q omparison, the corresponding envelopes for the quasipolari-
Eas. (37a)—(3jh) . . . ton TWS’s of branch 1 are also shown in FighB The

_ The quasiphonon dispersion droplets 4 an@ée Fig. 2 ampjitude envelope,(7) of the electric field of the pump
d_|sappear with decreasing. Branch 5 always disappears polariton 2 is normalized t0/,.=Yg,. The set of Egs.
first, e.g., foriw,=2.513 _eV andr;=15 ps, both spectral (133—(13f) together with Egs(9) give the same envelopes
droplets 4 and 5 exist forly=350 MW/cnf, for for the quasipolariton solitons as the generalized set of Egs.
350 MW/cnt=1,=200 MW/cn? only spectral droplet 5 oc- (378—(37h). Figure 8b) with y,=y,(7) very similar to
curs, and forl ;<200 MW/cn? there are no spectral drop- X,=X,(7) clearly indicates that, for the quasipolariton
lets. We will concentate mainly on the the central qua-TWS's, the LO-phonon—mediated polariton-polariton inter-
siphonon dispersion branch 3. This dispersion is shown imction does not disturb the internal polariton structure of the
detail in Fig. 1a) for two values ofl ;. The region of anoma- pump. Both TWS’s of Figs. @ and &b), quasiphonon and
lous dispersion with negative slope increases with the intenquasipolariton, can be generated simultaneously in the for-
sity of the pump polariton 2. This anomalous dispersion carward scattering configuratiorv(<0).
be treated as a slightly deformed sector of the unperturbed According to Figs. 8) and &b), the ratioz™®/x;"* of the
LO-phonon dispersiom, + Q, [dashed line in Fig. @]. maximum amplitudeg™®= z(7=0) andx]®=x,(7=0) of

The corresponding dependences of the soliton velocityhe coupled solitary LO phonon and polariton 1 is consider-

vs=vg¢(w) are presented in Fig.(@). The velocityvs of the  ably larger for the quasiphonon TWS's. Thus, the qua-
quasiphonon TWS'’s is anomalously smalk<10® cm/s in  siphonon TWS’s are accompanied by a giant coherent LO
Fig. 7(b)], increases with pump intensity, and has a maxi- phonon. On the other hand, the solitary polariton 1 of the
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branches 3-5 and the unperturbed polariton dispersea

Fig. 2). Both the quasipolariton and the quasiphonon TWS'’s
propagate only due to their photon and exciton components,
because the unperturbed LO-phonon group velocity
vLo=0. Contrary to the quasipolariton TWS's, the admixture
of the photon and exciton components of the quasiphonon
Raman solitons increases with the intengigyof the pump
polariton 2 resulting in the increase of. If the condition
(360 becomes invalid, a strong perturbation of the polariton
internal structure[y,/X,=Ygo/Xgo=a,/a=7y,/c, — see

Eq. (32)] of the pump polariton 2 occurs in the presence of
the coupled solitary LO phonon and polariton 1, i.e., in the
region of the polariton-polariton Raman interaction. There-
fore, the quasiphonon Raman TWS's can be understood as
four coupled nonlinear fields: excitoR, and photonE, of

the polariton 2, polariton 1 with the unperturbed internal
structure €,E,=v,P;), and coherent phonot.

Phase

Time T (ps)

FIG. 9. Quasiphonon TWS'’s of the dispersion brancke® Fig.
2). The soliton envelopes of the phasgs= 7,(7) (dash-dotted
line), ¢1,=¢1A7), y=y(7) (solid lineg, and the corresponding
phase-matching angl® =®(7) (dashed ling The exact Raman VIl. DISCUSSION
resonance Aw=0, 1,=200 MW/cn?, fw=2511 eV

[ (@~ wp— 0g)=3 meV], and 7,10 ps The stability against small amplitude or phase perturba-
t— Wk~ 3L0) = ) 5= .

tions is crucial for fundamental solitons. In order to examine

: , . , X this property for the quasiphonon TWS’s, we linearize Egs.
quasiphonon TWS's has a maximum amplitud™ of the (379—(37h) around the corresponding soliton solutions. Af-

same order as, [see Fig. )] and cannot be considered as . . . ;
a giant parametric pulse. Typical quasiphonon soliton enve;[-jer I|nedar|%[at|ok:1, Iqu(?éa);f?h)?)gecog?le w;)t;) the ;Wé) in-
lopes of the phases;=¢;(7) (j=1.2), ¢y=y(7), and the ~ZEPENCENt SUDSELS O 4873, (379, (378, (379 and Egs.

corresponding phase-matching an@le= ®(r) are shown in (370, (370, (37, (37N, respectively. The first one deals

Fig. 9 for branch 3 under exact Raman resonance conditiofith the perturbationsx,, 6z, d¢,, and éy. The corre-
Aw=0. The phase-matching angl® of the polarization sponding linear solutionsxexp(5{),t) are stable, i.e.,
phases again undergoesrgump. However, the sign of this Re€{6{1}<0. The second set fobx,, dy,, d¢,, and 67,
jump is opposite to that of the quasipolariton TWSsee 9IVe€sS
Fig. 4. This —a jump of @=¢;—¢,— ¢ for the qua-
siphonon TWS'’s follows the- /2 jump of the coherent
phonon phase) and the—3#/2 jump of the polarization
phaseg; of the solitary polariton 1(see Fig. 9.

According to the numerical simulations, the quasiphonon
TWS’s have extremely small variations of the amplitude
yo(7) [see Fig. &)] and the phasey, (see Fig. 9 of the ~ Where the real parameters on the r.h.s. are defined by Egs.

[
592:__(a2d2+ b2C2+ a52), (44)
dab,

electric fieldE, of the pump polariton 2: (8). The imaginary value of the Lyapunov factor corresponds
to a so-calledmarginal behavior, i.e., small perturbations
Yo Y€1, | 92(7)— 9o(7— +)|<0.001 rad. oscillate with the constant amplitudes on the background of a

(42 fundamental soliton.
Equations(42) are derived from Eq937d and(37h under The Imaginary Lyapunov factof(, given by Eq.(44) of
the condition the pump polariton 2 of the quasiphonon fundamental
TWS’s has the following physical origin. At the leading and
£q UsTsQ% trailing edges of the solitary LO phonon a_nd polariton 1, i.e.,
2 ca (43)  at|r|> 7 whenx,;—0 andz—0, the coupling of these syn-
chronous solitons with the polariton 2 is significantly re-
The inequality(43) holds, due to the anomalously small  duced. Therefore, the pump wave should propagate as a free
of the quasihonon TWS's. This result shows that generatiominperturbed polariton. On the other hand, the antidark
of the quasiphonon TWS’s cannot be observed in the cvgray) soliton in the cw profile of the pump polariton propa-
background of the pump pulggolariton 2), because only gates withvg, which for the quasiphonon TWS's strongly
the electromagnetic component of a polariton is observabldiffers from the corresponding polariton group velocity
Figure 9 shows also a small variation of the polarizationv . The large difference between anduv y, results in the
phase{ of polariton 2. specific phase and amplitude modulations of the polariton
The extremely small velocityw of the quasiphonon 2 with the frequencys(), of Eq. (44). Formally, these
TWS'’s stems from the large LO-phonon contributidnto ~ modulations do not destroy the fundamental solitons. How-
these coupled solitons. Such a structure of the quasiphonaver, numerical simulations show that small, but finite, per-
TWS'’s originates from the large differences between theurbations can initiate a decay of the TWS’s. Quasiphonon
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order to induce resonantly interacting polaritons. In a similar
way as Raman solitons in para,t4° the polariton TWS's
can probably be stimulated by introducingraphase seed in
the long ‘“quasi-continuous-wave” optical pulse, which
transforms to the pump polariton. On the other hand, Raman
solitons in molecular optics can also be formed from quan-
tum noise of thesingleoptical pump pulse in SR%® Such a
possibility is still unclear for the polariton TWS's.

For a pump intensity 1,=100 MW/cn? and

— w,=Q,, the concentratiolox3, of virtual excitons in

Time T (ps) CdS is about X 10*” cm™3, according to Eq(31). The cor-
responding Mott factoNaf(’:O.Gx 10 2 is still considerably

FIG. 10. The stability of the quasiphonon TW$the dispersion less than unity, but exciton-exciton Coulombic interaction
branch 3. The exact Raman resonandes=0, fiw,=2.511 eV can already interfere with RRI. According to Keldysh’s
[fi(wt—wk—ﬂo)7=3 meV), and 7= 10 ps;|o=200 MW/cn?* — equations, the additional cubic _Kerr-type terms
the stable TYVS s(glas_h-dotted Iln_es_!o=40 MW/c_m2 — tﬁe un- o (|Py|2+|P,|2) P, and =(|P4|?+|P,|2)P, will appear on
stable TWS's(solid lineg. The initial perturbation atr=0 is the r.h.s. of Eqs(10a and (100, respectively, due to Cou-
%z 1%02=0.025. lombic interaction. However, the polariton Raman TWS's
are mainly determined by the quadratesonantterms on
the r.h.s. of Eqs(109—(10¢). This conclusion resembles the
argument in theory of superconductivity, that the Coulomb
electron-electron nonresonant interaction does not destroy
phonon-mediated coherent pairing.

The Raman TWS’s can be generated not only in polar

Thus, the qua5|ph0non TWS's are stable only above emiconductors with strong exciton—LO-phonontich in-
pump intensity threshold(?(w, wy, 7). According to nu-  oracrion. Conjugated polymers are also well suited for the
me_rlcal simulations, for the given value of (azr)nphtude pertur-paman TWS's, due to their extremly large phonon-mediated
bation (5X2/X02:O 025), one receivesly'=100-300  gptical nonlinearitie€® For example, quasi-one-dimensional
MW/em? and 1{P=1{). The frequency band of the stable polydiacetylene — para-toluene-sulfong&DA-pTS), which
quasiphonon sohtons is located in the region of the anomais a quasi-one-dimensional semiconductor, can be prepared
lous dispersion of branch 3 and in the upper sectors of théh a high-quality single crystalline forf. The lowest exci-
spectral droplets 4—Eee Fig. 2 These sectors of the qua- ton state of this polymer exhausts most of the interband os-
siphonon branches 3-5 are the reminiscents of the unpegillator strength and is well separated in energy from any
turbed LO-phonon dispersion The conditiofi363 and  other dipole-active electronic excitation. The phonon-
(36b) hold forl0>l( also, only for these frequencies. The mediated optical Stark effedphonoriton renormalization
soliton velocity vs of the quasiphonon TWS's reaches a has been already observed in PDA-pF$Vithin our model,
maximum value in this frequency baisee Fig. T)]. the main specific feature of PDA-pTS is nonpolar exciton-

The quasipolariton TWS'’s are stable within Eq$3a phonon interaction. Although in this case the matrix element
—(13f) (Re{oQ2}<0). Numerical simulations confirm this M, g, is independent of the phonon wave numperk, the
conclusion. However, for extremely high pump intensitiesdispersion equation for the nonlinear polariton 1 has the
o= 0.5-1.0 GW/cn, the inequality Eq.(360 does not same order and form as E@99. Therefore, the developed
hold and the quasipolariton TWS's should be analyzed wittclassification of the TWS’s by the dispersion of the solitary
the generalized set of Eq&379—(37h). For these high in- polariton 1 is still correct. The quasiphonon dispersion
tensities, the marginal behavior with the imaginarybranch3 stems from the unique evolution of the initial un-
Lyapunov factor of Eq(44) occurs also for quasipolariton perturbed dispersions towards the modified spect(sae
TWS's. Fig. 2, i.e., is an universal property of ER93.

The hypertransient regime of Eqggla—(4e) implies that Raman spectroscopy of the exciton states has been devel-
the phonon-mediated nonlinearity is well developed in com-oped in detail for 1I-V compound semiconductdfs?’ For
parison with the corresponding damping constdritsand these semiconductors, e.g., GaAs, the assumption of the
I'Ph i.e., the renormalized dispersion of the solitary polaritonsingle intermediate exciton resonanece=(1) is brokent® at
1 is not masked by dephasing. The corresponding pump ifeast for the pump polariton 2, due @y>Q.>¢€*. This
tensity threshold is the same as for the phonoriton effect antheans that bound and ionizédontinuum exciton states
is aboutl y= 10-50 MW/cnt for CdS*® Furthermore, in  have to be included in the initial Hamiltonigf) and in the
the hypertransient regimerg<min{(I'*/2)"%, (I'Pv2)~1 polarization Eq(4€). Moreover, allowed and forbidden scat-
=2/lP" for T<77 K. The typical coherence timesI2/' of  tering can interferé® Both of these corrections complicate
LO phonons are mainly due to the lattice anharmonicity andhe modeling of Raman TWS's.
occur in the 10—30 ps scaté This dictates the correspond-
ing optimal values of the soliton duratiar . VIIl. CONCLUSIONS

The initial conditions appropriate for an effective genera-
tion of the polariton TWS's are beyond the scope of this In this paper, we develop the theory of coupled three-
paper. Our approach involvewo external optical pulses in wave solitons in resonant Raman interaction of two coherent

Amplitude (arb. units)

TWS'’s, which are stable and unstable against a finite ampli:
tude perturbatiodx, /xg,=0.025, are shown in Fig. 10. The
amplitude modulation of the unstable pump polariton 2 of
Fig. 10 (the upper solid lingindeed coincides witlQ), of
Eq. (44).
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intense polaritons, due to the Tlich mechanism. The fol- RRI, while in the backscattering geometry an antidark soli-
lowing conclusions summarize our analysis. ton is found. A solitary polariton of the quasipolariton
(i) A closed set of the five nonlinear macroscopic equa-TWS's is a giant parametric pulse of the nonlinear resonant
tions for the photon and exciton components of two polari-triplet.
tons and for the corresponding resonant LO phonon is de- (iv) The quasiphonon TWS'’s refer to those dispersion
rived self-consistently on the basis of the exciton-photon —hranches that are the “topological reminiscents” of the un-
LO-phonon microscopic Hamiltonian. A mathematical ap-perturbed LO-phonon dispersiom,+Q,. These qua-
proach, which treats within the initial microscopic model thesiphonon Raman TWS'’s propagate with an anomalously
polariton effects, as well as the entire seriesy8?, is de-  small velocity @ ¢=10° cm/9, are accompanied by a giant
veloped for the fundamental Raman TWS's. solitary LO phonon, and are stable only in a close vicinity of

(ii) The classification of fundamental polariton TWS's is the Raman resonance for the pump intensnjﬁg 100-300
given in accordance with the dispersion of the solitary polarqw/cm?2.

iton of the resonant triplet. Quasipolariton and quasiphonon
Raman solitons are formed. The quasiphonon TWS'’s have
no qpalogy in clf';\ssmgl nonlinear optlcs.. _ ACKNOWLEDGMENTS
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