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The generation of three-wave solitons~TWS’s! in the resonant LO-phonon – mediated interaction of two
intense coherent polaritons is proposed and analyzed. These TWS’s consist of the mutually coupled two
polariton and LO-phonon nonlinear waves and propagate without dispersive spreading with an anomalous
soliton velocity. Starting with an initial microscopic picture of the exciton – LO-phonon Fro¨hlich interaction
and exciton-photon polariton coupling in polar direct-band-gap semiconductors, we derive a closed set of five
macroscopic equations for a resonant triplet: polariton 1 — polariton 2 — LO phonon. An adequate method of
finding the fundamental TWS’s of these nonlinear equations is developed. This approach treats the LO-phonon
– mediated polariton-polariton interaction beyond the standard perturbation theory, which deals with the
lowest nonlinear susceptibilitiesx (2) and x (3). A classification of the fundamental Raman solitons by their
dispersion is given in terms ofquasipolaritonandquasiphononTWS’s. For the quasipolariton TWS’s, one of
the mutually coupled nonlinear polaritons is a giant parametric solitary pulse, the common soliton velocity
vs decreases with the intensities of the polaritons. The quasiphonon Raman TWS’s have no analogy in classical
nonlinear optics. These coupled solitons are accompanied by a giant LO-phonon solitary pulse, andvs in-
creases with the optical pump intensity.@S0163-1829~96!06419-3#

I. INTRODUCTION

For more than two decades, polariton solitons in bulk
semiconductors have been an intriguing problem in solid
state nonlinear optics. Single-mode polariton solitons due to
self-interaction of an intense coherent polariton have been
modeled in detail~see, e.g., Refs. 1!. The optical nonlinearity
responsible for these solitons originates from the effective
Coulombic interaction between virtual excitons of the coher-
ent polariton. These polariton solitons are at the same time a
manifestation of the optical exciton Stark effect2 in self-
interaction of the pump polariton. The Keldysh set of two
macroscopic equations,3 the Maxwell equation and the equa-
tion for the polarization with a Kerr-type nonlinear term
}uPu2P (P is the excitonic polarization!, is well-suited for
the corresponding theoretical analysis. However, up until
now there has not been clear-cut experimental evidence for
single-mode polariton solitons.

In the present work, we analyze the coupled traveling
solitons in resonant LO-phonon mediated interaction be-
tween two coherent excitonic polaritons. Such coupled soli-
tons are similar toRaman solitonsrecently observed in rota-
tional and vibrational stimulated Raman scattering~SRS! in
CO2-pumped para-H2 .

4–6 A so-called anomalous pump-
depletion reversal coupled to a corresponding dark soliton in
the quasi-continous-wave background of the Stokes signal
represents an observable structure of the Raman solitons.
The theory of Raman solitons has been developed in detail7,8

within a generalized set of the Maxwell-Bloch equations.
Two important features, the polariton effect and the trans-

lational invariance of a crystal lattice, distinguish three-wave
interaction in semiconductors from mentioned above SRS in
molecular optics. The incoming light, which resonates with

an exciton level, induces a polariton consisting of the exciton
and photon components.9 Each of these components requires,
in principle, a separate description in Raman scattering. Only
the excitonic component, i.e., the polarization, couples with
the phonon field. Due to translational invariance, bulk
phonons are characterized by their wave vectors and disper-
sion. Therefore, the momentum conservation holds in Raman
scattering of polaritons.

In resonant Raman interaction~RRI!, the two coherent
polaritons and resonant LO phonon are treated on an equal
basis within the coupled macroscopic wave equations. Be-
cause each of the interacting fields has a well-defined carrier
wave vector, we refer the coupled polariton Raman solitons
to three-wave solitons~TWS’s!. A theory of electromagnetic
TWS’s has been developed already in the early days of non-
linear optics,10 within coupled nonlinear wave equations for
the electric light fields. This phenomenological model oper-
ates with the lowest-order nonlinear susceptibilityx (2).

Two of the nonlinear waves of the polariton TWS’s are
solitary. These coupled solitary waves, or bright solitons,
form a steady-state traveling nonlinear perturbation in a cw
background of the third wave, which can be treated as a
nonlinear pump wave. The most interesting case corresponds
to a lower-frequency pump polariton in the resonant triplet.
In this case, the solitary LO phonon is generated by an ex-
change of virtual excitons between the two intense polaritons
in coherent phonon-mediated RRI. For the coupled polariton
solitons, the leading half part of the solitary polariton ini-
tiates stimulated inverse Raman scattering, while its trailing
half part is involved in stimulated normal scattering. This
scenario of the energy exchange between nonlinear waves,
which is similar to self-induced transparency in the system of
two-level atoms, is characteristic for TWS’s.5
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The dispersion of the solitary polariton in the resonant
triplet of TWS’s reveals a rich and complicated structure. It
originates from the mutual hybridization of the initial polar-
iton and LO-phonon dispersions, similarly as the polariton
dispersion develops from the exciton and photon spectra.
This dynamical renormalization of the spectrum relates to
the phonoriton transient excitations of a semiconductor in
the presence of the given intense coherent polariton.11–16The
phonoriton dispersion follows dynamically the optical pump
intensity and gives rise to the phonon-mediated exciton op-
tical Stark effect.12 However, for the Raman TWS’s the
renormalized dispersion is even more complicated than that
of the phonoriton, because the two coupled nonlinear polari-
tons have comparable intensities. The renormalized spectrum
of the solitary polariton consists of several separate disper-
sion branches. Parts of them approach the unperturbed polar-
iton branches, while the other branches are close to the initial
LO-phonon dispersion shifted by the carrier frequency of the
pump polariton. This property gives rise to the natural clas-
sification of polariton TWS’s.

II-VI direct-band-gap polar semiconductors like CdS and
CdSe possess a well-developed polariton effect, as well as a
strong exciton–LO-phonon Fro¨hlich coupling. These ionic
crystals are, therefore, well suited for the generation of the
coupled polariton solitons in RRI. Due to the large optical
nonlinearities and high optical densities in the semiconduc-
tors, the scales for the time, the optical length and the pump
intensity reduce from ns, m, and GW/cm2, respectively, for
Raman solitons in molecular optics4–6 to ps, mm, and
MW/cm2 for the polariton Raman TWS’s. For moderate op-
tical excitations, the phonon-mediated exciton-exciton cou-
pling in RRI should be more pronounced than the exciton-
exciton Coulombic interaction, due to itsresonantcharacter.
Therefore, we expect the polariton TWS’s, with its rather
specific signatures, to be observed more easily than the
single-mode polariton solitons. Moreover, an observation of
related polariton solitons in a resonant exciton-biexciton
three-wave interaction has been already reported.17

In Sec. II, we discuss the initial exciton-photon–LO-
phonon microscopic Hamiltonian of ionic direct-band-gap
semiconductors in the presence of a well-developed polariton
effect and strong exciton–LO-phonon Fro¨hlich coupling.
The closed set of five macroscopic equations for the exciton
and photon components of two interacting coherent polari-
tons and the correspondong resonant LO phonon is derived
on the basis of this Hamiltonian. Various limiting cases of
these basic equations, i.e., Hopfield’s polariton equations, the
equations for spontaneous polariton Raman scattering, and
the phonoriton macroscopic equations, are discussed.

In Sec. III, we costruct the simplest traveling nonlinear
solutions of the five basic equations. The main point is to
reduce the initial set to three coupled equations for thepo-
larization fields, for which analytic solutions for the funda-
mental traveling TWS’s are derived. Three relationships be-
tween seven initial parameters are established. We specify
the four free parameters in accordance with possible experi-
ments.

In Sec. IV, the relationships between the initial param-
eters of the TWS’s are examined. We classify the fundamen-
tal coupled TWS’s by the dispersion of the solitary polariton.
The quasipolariton and quasiphonon TWS’s with different

physical properties are introduced.
In Sec. V, the quasipolariton fundamental TWS’s are ana-

lyzed. In the coupled resonant triplet, the solitary polariton is
a giant parametric pulse, while both the dark~dip! and anti-
dark ~spike! solitons can be formed in the cw background of
the pump nonlinear polariton, depending on the scattering
geometry.

In Sec. VI, we investigate the quasiphonon TWS’s within
a generalized set of the reduced polarization equations. In the
quasiphonon TWS’s, the exciton and photon components de-
couple from the polariton balance. In this case, the TWS’s
actually consist of four components. Now, one has to de-
scribe separately the exciton~polarization! and photon~elec-
tromagnetic field! components of the nonlinear pump polar-
iton. The unusual properties of the quasiphonon TWS’s are
analyzed.

In Sec. VII, the stabilities of the quasiphonon and quasi-
polariton TWS’s are examined. We discuss also possible ex-
periments on polariton Raman TWS’s. A brief discussion of
an adoptation of our model to the polariton TWS’s in non-
polar conjugated polymers and III-V compound semiconduc-
tors concludes this section.

II. MODEL

The initial microscopic Hamiltonian is given by

H5H01Hx2g1Hx2ph,

H05(
p

\@vx~p!Bp
†Bp1vg~p!ap

†ap1V0cp
†cp#,

Hx2g5(
p

H i \Vc

2 F v t

vg~p!
G1/2~ap

†1a2p!~Bp2B2p
† !

1
\Vc

2

4vg~p!
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†1a2p!~ap1a2p
† !J ,

Hx2ph5(
p,k

i\Mx2ph~p2k!@Bp
†Bk~cp2k2c2p1k

† !#, ~1!

whereBp , ap , andcp are the exciton, photon, and optical
phonon operators, respectively;vx(p)5v t1p2/2M ,
vg(p)5cp/A«g, andV0 are the corresponding dispersions;
«g is the background optical dielectric constant for the exci-
ton resonance;M is the exciton translational mass;\v t is the
energy of a transverse exciton. Two basic interactions,
exciton-photonHx-g and exciton-phononHx-ph, enter the
Hamiltonian~1!, which describe the exciton-photon-phonon
system of a direct-band-gap semiconductor.

The HamiltonianHx-g of Eq. ~1! describes the exciton-
transverse light field interaction, which follows the momen-
tum conservation. The oscillator strengthVc ~polariton pa-
rameter! of the exciton-photon coupling is determined by

Vc52A2p
e

A\v t
S pcvm0

D f̃0~r50!5S 4pb̃

«g
D 1/2v t5A2v l tv t,

~2!
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where b̃ is the dimensionless polariton oscillator strength,
v l t is the polariton longitudinal-transverse splitting,f̃0(r ) is
the exciton ground state wave function in real space,
pcv52^up,cu¹uu2p,v& is the momentum matrix element be-
tween the Bloch functions of the conduction and valence
bands. H01Hx2g reduces to Hopfield’s quadratic
Hamiltonian.9 Formally, a polariton is an eigenstate of this
quadratic form.

Raman spectroscopy of semiconductors is well
developed.18 Raman scattering of excitons is determined
both by the deformation potential~DP! and by the Fro¨hlich
(F ) mechanism.18,19 The short-range DP mechanism gives
rise to ‘‘allowed’’ Raman processes, which are independent
of the scattering angle. TheF mechanism stems from the
macroscopic electric field, which accompanies a LO phonon
in polar semiconductors, and determines ‘‘forbidden’’ Ra-
man scattering withMx-ph(p2k)}up2ku in the Hamiltonian
Hx-ph ~Ref. 20!. F forbidden Raman scattering strongly
dominates in a spectral vicinity of the exciton resonance in
polar semiconductors.21 Only this mechanism is included in
our model as responsible for the resonant phonon-mediated
interaction of the polaritons.

The matrix elementMx-ph(p2k) of the exciton–LO-
phononF interaction, which involves the ground exciton
level n51 in intrabandF scattering, is given by20

Mx-ph~p2k!5LF \

2V0V
G1/2up2ku,

L5V0FpSme2mh

M D 2S «0
«`

21D ax3m G1/2, ~3!

whereV is the crystal volume,ax is the exciton Bohr radius,
«0 is the static dielectric constant,«` is the high-frequency
dielectric constant for the LO-phonon resonance,p2k is the
phonon wave vector,me (mh) is the electron~hole! mass
(M5me1mh), andm is the reduced exciton mass. Equation
~3! is valid for a small momentum transferup2kuax!1.
Here,p and k are the wave vectors of the polaritons with
polarizationsep andek, respectively, which are involved in
RRI. The intrabandF mechanism contributes only to diag-
onal epiek RRI, irrespective of the crystal symmetry, if the
excitons are assumed to be isotropic.21

In order to investigate the simplest TWS’s, we restrict
ourselves to the one-dimensional~1D! geometry withpik.
The corresponding closed set of the macroscopic equations
for the positive-frequency components of the electric fields
Ej51,2(j,t) and excitonic polarizationsPj51,2(j,t) of the
two interacting polaritons and for the scalar potential
F(j,t) of the resonant LO phonon is given by
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Here,j is the coordinate axis along the direction of propa-
gation,Gx/2 andGph/2 are the inverse coherence lifetimes of
excitons and LO phonons, respectively, and the macroscopic
fields are defined by
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wherer is the crystal density. The LO-phonon scalar poten-
tial F (1)(j,t) determines the corresponding lattice displace-
ment field u(1)(j,t) by u(1)(j,t)5]F (1)(j,t)/]j. Equa-
tions ~4a!–~4e! for the coherent macroscopic fields are
derived from the initial Hamiltonian~1! within a method
developed in Refs. 11 and 15.

Equations~4a! and ~4b! describe thefirst polariton (E1
andP1) in the resonant triplet. The wave equation~4a! for
the electric componentE1 contains the linear source on the
right-hand side~r.h.s.!, due to the excitonic polarization
P1 . The first term on the r.h.s. of the polarization Eq.~4b!
couples the excitons with the resonant light, while the second
one stems from the RRI of the two coherent polaritons.
Equations~4d! and~4e!, which describe thesecondpolariton
(E2 andP2) in the RRI, have the similar physical interpre-
tation. Finally, Eq.~4c! describes the evolution of the coher-
ent LO phonon, which is generated in the RRI of the two
polaritons. The macroscopic Eqs.~4a!–~4e! are derived un-
der the assumption that the carrier frequencyv of the polar-
iton 1 belongs to a spectral vicinity of the anti-Stokes reso-
nancevk1V0 of the polariton 2 with the carrier frequency
vk , i.e.,v.vk1V0 .

Equations~4a! and ~4b! and ~4c!–~4e! reduce to the two
independent identical sets of Hopfield’s polariton equations,9

if one neglects theF exciton–LO-phonon interaction, i.e.,
sets L50. Then, the linear macroscopic Eqs.
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~4a! and ~4b! @or Eqs. ~4c!–~4e!# with L50 describe the
first ~second! free polariton. In order to treat spontaneous
Raman scattering~SRS! of polariton 1, one can use Eqs.
~4c!–~4e!. In this case, the first polariton„E1(j,t),
P1(j,t)… has to be considered as a given pulse, while the
Stokes polariton 2 (E2 ,P2) is a small signal. The main fea-
ture of this approach to SRS is an explicit inclusion of the
polariton effects. The corresponding theory of SRS is devel-
oped, e.g., in Ref. 22. If the coherent polariton 2 is consid-
erably stronger than the first one, Eqs.~4a!–~4e! decouple
into the two independent sets of Eqs.~4a!–~4c! and Eqs.~4d!
and ~4e!. Then, the second polariton is a given coherent
pump wave with the polarizationP25P02exp(2ivkt1 ikj)
and Eqs.~4a!–~4c! describe the phonoriton excitations11–16

of a semiconductor. The phonoriton dispersion, i.e., the dy-
namical coherent photon–exciton–LO-phonon spectrum, de-
velops in the spectral vicinity of the anti-Stokes resonance
vk1V0 of the pump polariton 2.

The approximation of the single intermediate exciton state
n51 for RRI holds if V0!Vc . With increasing exciton
radius~decreasing exciton binding energyex), this approxi-
mation becomes invalid, because the polariton parameter
Vc}ax

23/2 @see Eq.~2!# decreases. On the other hand, accord-
ing to Eq.~3! the matrix elementMx2ph}ax

23/2, i.e., an in-
crease ofax results in an enhancement of theF interaction.
It seems that CdS and CdSe direct-band-gap polar semicon-
ductors are best suited for the compromise between these
opposite trends. For CdS, e.g.,\Vc.140 meV and
\V0.38 meV, while up2kuax.0.1 – 0.2. Therefore, the
macroscopic Eqs.~4a!–~4e! are appropriate for the descrip-
tion of plane-wave RRI in CdS and CdSe in the geometry
epiek andpikij 'c axis of a crystal.

Mathematically, the five Eqs.~4a!–~4e! are the nonlinear
set of a generalized type for Raman solitons. Conventional
studies of the TWS’s~Ref. 10! deal with three nonlinear
wave equations for the light fields resonantly coupled, due to
the lowest-order nonlinear susceptibilityx (2). In the macro-
scopic Eqs.~4a!–~4e! the nonlinear terms are presented only
in the ‘‘matter’’ Eqs.~4b!, ~4c!, and~4e!. The main point of
our approach is that one cannot analyze RRI by means of
perturbation theory for high intensitiesI 1 and I 2 of the co-
herent polaritons.11,15 Equations~4a!–~4e! include explicitly
the entire series of the nonlinear susceptibilitiesx (n), within
the initial microscopic model given by the Hamiltonian~1!.

III. NONLINEAR TRAVELING SOLUTIONS OF THE
MACROSCOPIC EQUATIONS

For further analysis, we will concentrate on the simplest
traveling TWS’s solutions of the set of Eqs.~4a!–~4e!. These
nonlinear solutions are also called thefundamentalsolitons.
The fundamental Raman TWS’s describe three coupled el-
ementary nonlinear waves, two polaritons and one LO pho-
non, propagating without dispersive spreading with a com-
mon group velocityvs . Taking into account the matching of
the carrier frequencies and wave vectors in the resonant trip-
let ~polariton 1 — polariton 2 — LO phonon!, we will treat
the interacting macroscopic fields of Eqs.~4a!–~4e! in the
following form ( j51,2):

Ej
~1 !~j,t !5Ẽj~t!exp~2 iv j t1 ip jj!,

Pj
~1 !~j,t !5 P̃j~t!exp~2 iv j t1 ip jj!,

F~1 !~j,t !5F̃~t!exp@2 i ~v12v2!t1 i ~p12p2!j#. ~6!

Here, (p1 ,v1)5(p,v) for the first polariton and
(p2 ,v2)5(2k,vk) for the second polariton,t5t2j/vs is
the retarded time. The considered geometry of the RRI is
shown schematically in Fig. 1. The positive~negative! sign
of vs corresponds to backward~forward! scattering, when the
interacting coherent polaritons counterpropagate~copropa-
gate!.

In order to simplify the initial set of Eqs.~4a!–~4e!, we
use the slowly varying envelope approximation~SVEA!
~see, e.g., Ref. 10!. Within the SVEA Eqs.~4a!–~4e! reduce
to the following set of the first order nonlinear differential
equations:

2 id1Ẽ181c1Ẽ15 id1P̃181g1P̃1 , ~7a!

a1P̃12 ib1P̃185n P̃2F̃1 is P̃2F̃81aẼ1 , ~7b!

aphF̃2 ibphF̃85nphP̃2* P̃1 , ~7c!

2 id2Ẽ281c2Ẽ25 id2P̃281g2P̃2 , ~7d!

a2P̃22 ib2P̃285n P̃1F̃*2 is P̃1~F̃* !81aẼ2 , ~7e!

where F̃8[dF̃/dt (F̃5Ẽj ,P̃j ,F̃) and the coefficients are
given by

FIG. 1. Scheme of the resonant polariton-polariton Raman in-
teraction. Polariton 1 — (p,v); polariton 2 — (k,vk), pikij axis;
vs is the velocity of the coupled solitons. The following CdS pa-
rameters have been used in the calculations:\v t52.552 eV,
\v l t51.9 meV, «`5«g59.3, me50.2m0 , mh5mh'50.7m0 ,
ax528 Å, \V0538 meV,«055.8.
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In the macroscopic equations,~7a!–~7e!, both the exciton
and LO-phonon incoherent scattering are neglected, i.e.,
Gx5Gph50. Therefore, we analyze coherent three-wave in-
teraction~polariton 1—polariton 2—coherent LO phonon!,
due to the conservative nonlinearity. This assumption is valid
in the high-intensity limit for a hypertransient regime, when
a characteristic durationts of the LO-phonon–mediated
polariton-polariton interaction is shorter than the coherence
times, i.e.,ts<min$(Gx/2)21,(Gph/2)21% at a given point
j. Mathematically, the solitonlike solutions of the initial set
of Eqs.~4a!–~4e! can exist only in this regime. In Sec. VII,
we will discuss this assumption in more detail.

In the SVEA one can express, from Eqs.~7a! and~7d!, the
envelopesẼj51,2 of the electric fields through the envelopes
P̃j51,2 of the corresponding excitonic polarizations:

Ẽj5
g j

cj
P̃ j1

i

cj
Fd j1

djg j

cj
G P̃j8. ~9!

Then, the substitution of Eq.~9! in Eqs. ~7b! and ~7e! re-
duces Eqs.~7a!–~7e! to

P̃1852 iq1P̃12 ir1uP̃2u2P̃11 ib1P̃2F̃, ~10a!

F̃852 iqphF̃1 ibphP̃2* P̃1 , ~10b!

P̃2852 iq2P̃22 ir2uP̃1u2P̃21 ib2P̃1F̃* . ~10c!

The coefficients in Eqs.~10a!–~10c! are given by (j51,2)

qph5
aph
bph

, bph5
nph
b ph

, D j5bj1
a

cj
Fd j1

djg j

cj
G ,

r j5
sbph

D j
, b j5

1

D j
~n1sqph!, qj5

1

D j
Faj2a

g j

cj
G .
~11!

The closed set of the coupled nonlinear differential Eqs.
~10a!–~10c! contains the coherent polarizations as the vari-
ables rather than the electromagnetic fields as it is usually
supposed in nonlinear optics. The physical reason of this
feature is that the phonon-mediated polariton-polariton inter-

action involves only the excitonic components. Moreover,
within Eqs.~10a!–~10c!, one avoids a treatment of the non-
linear optical processes by means of a perturbation theory.
The analysis11,14,15 of RRI of the intense polaritons shows
that the corresponding total resonant susceptibility
x(p,v.vk1V0 ,uẼ2u2) or x(k,vk.v2V0 ,uẼ1u2), for the
first ~second! polariton, contains an additional intensity-
dependent term in its resonant denominator
Dv5v2vk2V0 . Consequently, one cannot expand the to-
tal susceptibilityx in a power series ofuẼ2u2 ~or uẼ1u2) near
the poleD50 and keep only the lowest-order resonant opti-
cal susceptibilitiesx (2) andx (3). The treatment of the polar-
izations P̃j rather than the electric fieldsẼj in Eqs. ~10a!–
~10c! deals with the inverse total susceptibility x (21).
Therefore, this approach includes, within the initial micro-
scopic model of Eq.~1!, a whole set$x (n)% and avoids an
expansion ofx in a frequency vicinity of the poleD50.

The first term on the r.h.s. of Eqs.~10a! and ~10c! de-
scribes the polariton effects. The conditionqj50 ( j51,2)
gives the polariton dispersionv j5vpol(pj ). The second
term characterizes the coherent generation or decay of a
given polariton in the Raman interaction of the LO phonon
and conjugated polariton. The even-order Raman suscepti-
bilities x (2n) are responsible for this process. The third term
on the r.h.s. of Eqs.~10a! and~10c! results from a whole set
of the odd-order susceptibilitiesx (2n11) (n>1). One can
also attribute this nonlinearity to the phonon-mediated
polariton-polariton interaction. There is no phonon-mediated
polariton self-interaction, becauseMx-ph(up2ku50)50, ac-
cording to Eq.~3!. The second term on the r.h.s. of the re-
duced LO-phonon wave equation~10b! describes a coherent
phonon generation in the RRI of the two intense coherent
polaritons.

The principal difference between the fundamental travel-
ing Raman TWS’s in molecular systems and in semiconduc-
tors is that the vibrations or rotations are located at mol-
ecules, while the bulk phonons are propagating modes with
well-defined eigenwave vectors. Therefore, one can intro-
duce an unique retarded timet for the all components of the
traveling Raman TWS’s in a semiconductor. As a result,
Eqs. ~10a!–~10c! are theordinary differential equations. In
molecular optics, the fundamental TWS’s can be modeled
only within a set of thepartial differential equations,4–8 be-
cause there are two different times, i.e., a located time~or
coordinate! for the vibrations or rotations and a retarded time
for the two traveling optical fields.

Introducing the real amplitudesxj , z and phasesw j ( j
51,2), c of the complex envelopes of the polarizations,

P̃j5xje
iw j , F̃5zeic, ~12!

one obtains from Eqs.~10a!–~10c!:

x185b1x2zsinQ, ~13a!

x2852b2x1zsinQ, ~13b!

z852bphx1x2sinQ, ~13c!

x1w1852~q11r1x2
2!x11b1x2zcosQ, ~13d!
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x2w2852~q21r2x1
2!x21b2x1zcosQ, ~13e!

zc852qphz1bphx1x2cosQ. ~13f!

Here,Q5w12w22c is the phase-matching angle for the
interacting polarization waves.

The first three amplitude Eqs.~13a!–~13c! obey three
Manley-Rowe relations:

b2x1
21b1x2

25C1 , 2bphx1
21b2z

25C2 ,

bphx1
21b1z

25C3 , ~14!

whereCi51,2,3 are the constants of the motion. Only two of
these relationships are independent. The Manley-Rowe inte-
grals of the motion are due to the conservative three-wave
resonant interaction in our model. In the resonant nonlinear
triplet of the fundamental TWS’s, two of the nonlinear
waves are solitary, i.e., their amplitudes vanish when
t→6`. Therefore, for the traveling fundamental solitons, at
least one of the constantsCi in Eqs.~14! has to be zero.

If C150, the coherent LO phonon is a nonlinear pump
wave in the traveling soliton triplet. This case involves a
preliminary resonant generation of the intense coherent cw
LO phonon and can hardly be realized. The conditions
C250 or C350 correspond to possible experimental situa-
tions, when the first or the second coherent polariton, respec-
tively, acts as a nonlinear pump. However, the caseC250,
when a pump polariton has the higher carrier frequencyv
(v.vk), corresponds to unstable TWS’s. The physical ori-
gin of this instability stems from the spontaneous Raman
decay of the pump polaritonp ~polariton 1) into LO phonon
p2k and its Stokes componentk ~polariton 2). This insta-
bility leads to stimulated Raman scattering, which can end
up in the formation of stable TWS’s. However, the structure
of these TWS’s corresponds to a pump polariton at the
Stokes frequencyvk . Such a scenario is responsible for the
generation of Raman solitons in para-H2 .

4–8 Therefore, we
will analyze the most interesting and important case, when
C350 and the second lower-frequency polariton acts as a
nonlinear pump~see Fig. 1!.

For C350, one obtains from Eqs.~14!

x1
252

b1

b2
~x02

2 2x2
2!, z25

bph

b2
~x02

2 2x2
2!, ~15!

wherex025 P̃2(t→6`) is the cw amplitude of the excitonic
polarization of the pump polariton 2.

In accordance with Eqs.~8! and ~11!, the real parameter
bph.0. From Eqs.~15!, one concludes that the final nonlin-
ear solutions have to be consistent with the condition
b1,0, becauseb1 /bph52x1

2/z2,0. With Eqs. ~15!, Eqs.
~13a!–~13f! reduce to the following coupled equations for
the dimensionless amplitudeY5x2 /x02 and the phase-
matching angleQ:

Ẏ5~12Y2!sinQ, Q̇5B̃1F12Y2

Y
22YGcosQ1kY2,

~16!

where the parametersB̃ andk are given by

B̃5
r1x02

2 1qph1q22q1

x02A~2b1!bph

, k52
2r1x02

2

x02A~2b1!bph

.

~17!

In Eqs.~16!, the derivativeḞ5dF/dT is taken with respect
to the dimensionless timeT:

T5tx02A~2b1!bph. ~18!

Introducing dimensionless variablesu andv by

u5YcosQ, v5YsinQ, ~19!

the set of Eqs.~16! can be rewritten as

u̇52uv2B̃v2kv~u21v2!,

v̇5123u22v21B̃u1ku~u21v2!. ~20!

One can treatu and v as the canonically conjugated vari-
ables and then construct formally a generating Hamiltonian
for Eqs.~20!:

H~u,v !5F B̃2 1
k

4G~u21v2!2u~u21v221!. ~21!

H(u,v) is an integral of the motion of Eqs.~20!. The asymp-
totic stationary points of Eqs.~20!, which characterize the
coupled fundamental solitons att→6`, are given by

u`5
B̃1k

2
, v`56F12

~B̃1k!2

4 G1/2. ~22!

Therefore, one finds the following algebraic relationship be-
tweenu andv:

H~u,v !5H~u` ,v`!5
2B̃1k

4
. ~23!

Using the integral of the motion~23! and Eqs.~15!, one
derives from Eqs.~20! and Eqs.~13a!–~13f! the intensity
profiles z2, xj51,2

2 and the phase-matching angleQ of the
fundamental traveling TWS’s:

x2
25@17F6~2t/ts!#x02

2 , x1
25

~2b1!

~7b2!
F6~2t/ts!x02

2 ,

z25
bph

~7b2!
F6~2t/ts!x02

2 , ~24a!

Q52arctan
2@~12B2/4!~k212Bk14!#1/2sinh~2t/ts!

B~k212Bk14!1/2cosh~2t/ts!62~k1B!
,

~24b!

where the functionF6(2t/ts) and the coefficientB are
given by

F6~2t/ts!5
4~12B2!

~k212Bk14!1/2cosh~2t/ts!6~Bk/212!
,

~25!

B52~k1B̃!. ~26!
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In Eqs. ~24! and ~25!, we returned to the dimensional re-
tarded timet (t50 refers to a center of the coupled solitons!
and the characteristic soliton durationts is

ts5Fx02A~2b1!bphS 12
B2

4 D 1/2G21

. ~27!

According to Eqs.~24a!, the two mutually coupled polar-
iton 1 and coherent LO phonon are solitary waves, which
have similar profilesz2(2t/ts)5„bph/(2b1)…x1

2(2t/ts). A
kind of the Raman TWS’s is determined by a sign of the
parameterb2 . For b2,0 @the upper sign in Eqs.~24! and
~25!#, the two coupled bright solitons ‘‘burn’’ a traveling
steady-state dip in the cw intensity of the nonlinear polariton
2. The odd-order nonlinear susceptibilitiesx (2n11) give k
Þ0 and prevent a decrease of the amplitude of the nonlinear
pump down to zero, even at the exact Raman resonance
v2vk5V0 . A finite amplitude of the dip att50 corre-
sponds to the so-called gray soliton.23 For k50, this gray
soliton transforms to a dark one, which can be also inter-
preted as a kink structure in the cw complex amplitudesP̃2

andẼ2 of the second polariton. Forb2.0 @the lower sign in
Eqs. ~24! and ~25!#, the two coupled solitary waves form a
spike in the cw intensity profile of the pump polariton 2, i.e.,
an antidark soliton according to the terminology of Ref. 23.
Again, kÞ0 prevents an explosive instability,24 when the
denominators in Eqs.~24! and ~25! are equal to zero at
t50 for v2vk5V0 .

The fundamental solutions given by Eqs.~24a! and~24b!
do not exhaust the description of the three-wave coupled
solitons. According to Eqs.~8!, ~11!, and ~27!, the carrier
frequencies v j51,25(v,vk… , and wave vectorspj51,2
5(p,k) of the interacting polaritons, the characteristic soli-
ton durationts and velocityvs , and the cw amplitude of the
pump polariton 2 are involved as the seven parameters in
Eqs. ~24! and ~25!. However, not all of them are indepen-
dent. E.g., Eq.~27! is one of the relationships between these
parameters. The requirement of the absence of the phase
modulation att→6` ~or T→6`)

w18ut→6`5w28ut→6`5z8ut→6`50 ~28!

gives rise to other links between the initial parameters. Equa-
tions ~28! imply a solitonlike behavior of the polarization
phasesw, c, and z of the fundamental TWS’s. From Eqs.
~28!, treating Eqs.~13d!–~13f! and ~24b!, one obtains the
following additional relationships:

q11qph52r1x02
2 , ~29a!

q250. ~29b!

Equations~29a! and ~29b! are the dispersion equations for
the first and second coupled nonlinear polaritons, respec-
tively. From Eqs.~26!, ~29a!, and~29b!, one gets

B52
2qph

x02A~2b1!bph

. ~30!

The further analysis depends on a selection of the four
free parameters. We choosev j , x025uP̃2(t→6`)u andts
as the independent ones. Experimentally, such a parametri-

zation implies that the polaritons 1 and 2 are induced by two
optical pulses of given frequenciesv15v andv25vk . The
optical pulse 2 with the frequencyv2.v12V0 and the in-
tensity I 25I 0 has a durationt (2)@ts . This pulse generates
the pump polariton 2. The intensityI 0 determines the cw
polarization amplitudex02}AI 0 by

x02
2 5I 0

Vc
4

vkv t~v t2vk!
2 S «g

3/2

8pcD nx~vk!

@nx~vk!11#2
, ~31!

where the polariton refraction index nx(vk)
5A«g@v l t /(v t2vk)#.A«g, becausev t2vk@v l t ~see Fig.
1!. In Eq. ~31!, the reflection from a crystal surface is in-
cluded explicitly for normal incidence of the external optical
pulses. The optical pulse 1 of the durationt (1)!t (2) induces
the solitary polariton 1, withts.t (1), i.e., determines the
soliton durationts . In this picture, the coupled traveling
solitons can be generated only during the finite time interval
of the polariton 1–polariton 2 interaction, i.e., a steady-state
perturbation~dip or spike! at the quasi-continuous-wave pro-
file of the long pump pulse arises at its leading edge and
disappears at its trailing edge. Therefore, we deal with ‘‘tran-
sient solitons’’ in the terminology of Ref. 7.

IV. CLASSIFICATION OF THE FUNDAMENTAL
TRAVELING SOLITONS

After parametrization, one has to find, from Eqs.~27!,
~29a!, and ~29b!, the other three parameterspj51,25(p,k)
and vs . The dispersion Eq.~29b! determines the carrier
wave vectork5k(vk) of the pump polariton 2 and reduces
to the usual polariton dispersion:

a2c22ag25S v t
22vk

21
\v t

M
k2D S k22 «g

c2
vk
2D2

«g
c2

vk
2Vc

2

50. ~32!

This dispersion corresponds to a free propagation of the
pump polariton 2 in the absence of the coupled solitary
pulses, i.e., ifutu@ts .

Equations~27! and ~29a! are a closed set of algebraic
equations for the soliton velocityvs5vs(v,vk ,x02,ts) and
the carrier wave vectorp5p(v,vk ,x02,ts) of the solitary
polariton 1. This set reduces to an algebraic dispersion equa-
tion of ninth order for the wave vectorp. We study numeri-
cally this equation in order to find the real rootsp, which
correspond to the traveling nonlinear waves of Eqs.~6!. All
the numerical calculations in our work are given for a CdS
crystal. The typical dispersionp5p(v,vk ,x02,ts) for the
given values ofvk , I 0 , ~or x02) andts is shown in Fig. 2.
We classify the fundamental traveling TWS’s according to
the dispersion of the solitary polariton 1.

The various dispersion branches 1–6~see Fig. 2! for the
solitary polariton 1 stem from mutual hybridization and
splitting of the initial LO phonon~dashed line in Fig. 2! and
polariton dispersions in the presence of a nonlinear pump
polariton 2. This strong spectral modification occurs in a
spectral vicinity of the anti-Stokes resonance of the pump
polariton, i.e., whenv.vk1V0 , and gives rise to the
closed dispersion curves 4–5 and to the dispersion anomalies
in the branches 1–3. With decreasing pump intensityI 0 ~pa-
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rameterx02), the spectral regions of anomalous slope of the
branches 1 and 2 decrease and these dispersion curves evolve
continuously to the unperturbed lower polariton branches.
The spectral curve 6 is the upper polariton branch. If the
dispersion of the solitary polariton 1 in the soliton triplet is
given by the branch 1 or 2, we will attribute these traveling
fundamental TWS’s to coupledquasipolaritonsolitons. The
second class of the TWS’s, which we will callquasiphonon
solitons, refers to the dispersion branches 3–5. In a sense,
these dispersion branches are the ‘‘topological fragments’’ of
the LO-phonon dispersion. The closed curves 4 and 5, which
resemble spectral ‘‘droplets,’’ disappear with decreasing
pump intensityI 0 .

The complicated dispersion for the bright polariton soli-
ton 1 is similar to the phonoriton dispersion,11,14,15 which
describes a transient modification of the exciton, photon, and
LO-phonon spectra of a semiconductor in the presence of a
quasistationary coherent pump polariton 2. However, in this
case, the first polariton is so weak (I 1!I 25I 0) that it does
not disturb the cw profile of the pump polariton. The weak
probe polariton 1 only tests the phonoriton dispersion, which
is given by

S v t
22v21

\v t

M
p2D S p22 «g

c2
v2D @~v2vk!

22V0
2#

2
16pv t

2
L2

«gVc
2 x02

2 ~p2k!2S p22 «g
c2

v2D
2

«g
c2

v2Vc
2@~v2vk!

22V0
2#50. ~33!

The dispersion Eq.~33! is analyzed in detail in Ref. 15.
Physically, both the phonoriton dispersion Eq.~33! and the
dispersion of the solitary polariton 1, Eqs.~27! and ~29a!,
originate from the coherent phonon-mediated resonant oscil-
lations between the polaritons 1 and 2.

Equations~27! and ~29a! show that for givenI 0 andvk
the dispersion of the solitary polariton 1 coincides with the
corresponding phonoriton dispersion provided that

qph
2 ts

2@1, ~34a!

1
2 vs~p1k!qphts

2@1. ~34b!

The inequalities~34a! and~34b! hold for the upper sectors of
the spectral droplets 4–5 and for the anomalous dispersion of
the branch 3. These sectors coincide with the LO-phonon-
like phonoriton branches~see Ref. 15!. The phonoriton dy-
namical modification of the initial LO-phonon term is ac-
companied by a finite LO-phonon effective mass,15 because
uMx2ph(p2k)u2}(p2k)2 @see Eq.~1!#. The finite pump-
induced LO-phonon effective mass has a negative sign and is
}I 0 . This result explains why the spectral droplets 4–5 ap-
pear below the unperturbed LO-phonon dispersion~dashed
line in Fig. 2!. The spectral range of validity of the inequali-
ties ~34a! and ~34b! increases with the soliton durationts .
The regions of anomalous dispersion of the branches 1–3
and the lengths of the spectral droplets 4–5 also increase
with increase ofts . Numerical calculations confirm these
conclusions.

Along a given dispersion branch, the soliton velocityvs
has a definite sign. On the dispersion branches 1, 3, and 5,
the velocityvs,0, while along the curves 2 and 4,vs.0. All
of our numerical simulations justify this conclusion, al-
though we have failed to prove it analytically. The sign of
vs determines a geometry of interaction of the first and sec-
ond polaritons. Backscattering configuration corresponds to
vs.0, the initally generated polariton 1 and polariton 2
propagate in the opposite directions. In the forward scatter-
ing geometryvs,0. For the spectral droplets 4, 5 and for the
right part (p.0, see Fig. 2! of the quasiphonon branch 3, the
carrier wave vectorp of the solitary polariton 1 and its soli-
ton velocityvs have the opposite signs.

The quasiphonon TWS’s cannot be obtained within the
standard perturbation approach, which deals with the lowest
nonlinear susceptibilityx (2).10 A dispersion of the Raman
solitons in molecular optics is also considered as unperturbed
or slightly perturbed.4–8 In our case only, the quasipolariton
dispersions 1 and 2 can be obtained by the continuous defor-
mations of the unperturbed polariton branches.

V. QUASIPOLARITON SOLITONS

According to numerical simulations, at the quasipolariton
dispersion branch 1, the parameterb25b2(v,vk ,I 0 ,ts)
,0 in Eqs.~13a!–~13f! and the corresponding fundamental
TWS’s are given by Eqs.~24a! and ~24b! with the upper
sign. For the quasipolariton branch 2b2.0, thus one has to
use the lower sign in Eqs.~24a! and ~24b!. Therefore, the
kind of fundamental nonlinear pump polariton 2 in the qua-
sipolariton TWS’s depends on the interaction configuration,
i.e., a gray soliton occurs in the forwardscattering geometry
~branch 1! and an antidark soliton in the backscattering ge-
ometry ~branch 2!. This result is due to the strong depen-
dence~3! of theF matrix elementMx2ph on the LO-phonon
wave vectorp2k. Typical amplitude profiles of the two
coupled nonlinear polaritons of the quasipolariton TWS’s
calculated with Eqs.~24a! and~24b! and~29a! and~29b! are
shown in Figs. 3~a! and 3~b! @see also Fig. 8~b!#. Both of the
pairs of the coupled solitons of Figs. 3~a! and 3~b! ~see the
solid and dashed lines! have the same group velocityvs . In
accordance with Eqs.~24a!, ~24b!, and ~27!, for fixed vk ,

FIG. 2. The nonlinear dispersionp5p(v) of the solitary polar-
iton 1, \vk52.513 eV @\(v t2vk2V0)51 meV#, I 05500
MW/cm2, ts515 ps; 1–2 — the dispersion branches of the quasi-
polariton TWS’s; 3–5 — the dispersion branches of the qua-
siphonon TWS’s, 6 — the upper polariton dispersion branch.
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x02, and vs , the TWS’s have a minimum duration at the
exact Raman resonancev5vk1V0 (B50). Such a behav-
ior is clearly seen in Figs. 3~a! and 3~b!.

According to Eqs.~22! and~26!, the coordinatev` of the
asymptotic stationary points will be real provided that
uBu<2. With Eq. ~30!, this condition reduces to

uqphu.uv2vk2V0u<x02A~2b1!bph. ~35!

For the considered parametrization (v j51,2, x02, ts), the
inequality ~35! holds, due to Eq.~27! for arbitrary detuning
Dv5v2vk2V0 from the exact Raman resonance. How-
ever, the best-developed quasipolariton TWS’s occur for
Dv50. The dimensionless detuning is given by the param-
eterB}(v2vk2V0) of Eq. ~30!.

Typical quasipolariton soliton envelopes of the polariza-
tion phasesw j5w j (t), c5c(t), and the corresponding
phase-matching angleQ5Q(t) are shown in Fig. 4~the
solid and dashed lines, respectively! for the backscattering
interaction at the exact Raman resonanceDv50 (B50).
For the quasipolariton TWS’s, DQ5Q(t→1`)
2Q(t→2`)5p if Dv50. This is an unique behavior for
the Raman TWS’s.4–8 The p jump initiates a constructive
change of stimulated inverse scattering on the normal one.
However, in our case thep jump of the phase-matching
angleQ occurs for the polarization envelopes rather than for
the electric fields.

From Eqs.~24a!, one concludes that the solitary polariton
1 is a giant parametric pulse in the soliton triplet, because for
the quasipolariton TWS’sK5x1

max(t50)/x025uP̃1(t50)u/

uP̃2(t→6`)u@1, both for backscattering and forward scat-
tering. The dependencesK5K(I 0), for the several values of
ts , are shown in Fig. 5 (K5Kb for backscattering and
K5Kf for forward scattering!.

The dependences of the soliton velocityvs5vs(v) for
given vk , ts and two values of the pump intensityI 0 are
shown in Fig. 6, both for the forward scattering and back-
scattering polariton-polariton interactions. According to

FIG. 3. Quasipolariton TWS’s. The amplitude profiles
x15uP̃1(t)u and x25uP̃2(t)u of the coupled nonlinear polaritons
1 and 2, respectively:~a! forward scattering~the dispersion branch
1!; ~b! backscattering~the dispersion branch 2!. I 0550 MW/cm2,
\vk52.511 eV @\(v t2vk2V0)53 meV#, the soliton velocity
vs50.4931022 (c/«g

1/2) are the same for all the plotted coupled
solitons. The exact Raman resonanceDv50 — solid lines
(ts510.0 ps!; the detuning\Dv5\(v2vk2V0)520.04 meV
— dashed lines@ts519.3 ps for forward scattering~a! and
ts512.0 ps for backscattering~b!#.

FIG. 4. Quasipolariton TWS’s, backscattering polariton-
polariton interaction~the dispersion branch2!. The soliton enve-
lopesw1,25w1,2(t), c5c(t) ~solid lines!, and the phase-matching
angleQ5Q(t) ~dashed line!. I 0550 MW/cm2, \vk52.511 eV
@\(v t2vk2V0)53 meV#, ts510 ps, the exact Raman resonance
Dv50 ~the corresponding amplitude profiles are shown in Fig.
3~b! by the solid lines!. The soliton envelope of the phase
h25h2(t) of the electric fieldẼ25y2e

ih2 of the pump polariton
2 ~dash-dotted line!.

FIG. 5. Quasipolariton TWS’s. The maximum amplitude
x1
max(t50) of the giant parametric solitary polariton 1 normalized
to the cw amplitudex02 of the polariton 2 versus intensityI 0 . Solid
lines — the backscattering geometry~the dispersion branch2,
K5Kb); dashed lines — the forward scattering geometry~the dis-
persion branch1, K5Kf); \vk52.511 eV @\(v t2vk2V0)53
meV#, the exact Raman resonanceDv50.
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these graphs, the soliton velocityvs has a minimum at the
exact Raman resonance; with increasing detuningDv, the
soliton velocityvs(v) approaches the polariton group veloc-
ity vpol5]vpol(p)/]pup5p(v) ~dashed lines in Fig. 6!, where
vpol(p) is the unperturbed polariton dispersion. The soliton
velocity vs of the quasipolariton TWS’s decreases with in-
tensityI 0 of the pump polariton 2 and is always less than the
correspondingvpol . Such a behavior ofvs is due to an in-
crease of the LO-phonon component in the soliton triplet,
with increasing I 0 or decreasinguDvu. This LO-phonon
component ‘‘slows down’’ the soliton propagation, because
for the unperturbed LO-phonon dispersionvLO5]V0 /
]pup→050.

VI. QUASIPHONON SOLITONS

The initial set of the macroscopic Eqs.~4a!–~4e! reduces
to Eqs.~13a!–~13f! under the conditions:

vs@
c

2v ttsA«g
, ~36a!

tsUp22 «g
c2

v2U@2U«gc2 v2
p

vs
U, ~36b!

tsUk22 «g
c2

vk
2U@2U«gc2 vk1

k

vs
U, ~36c!

The inequality~36a! allows the SVEA. Equation~9!, which
gives the electric component of a polariton through its polar-
ization component, are derived under the conditons~36b!
and ~36c! for the first and second polaritons, respectively.
The validity of Eqs.~36a!–~36c! depends strongly on which
dispersion branch they are tested. This dependence stems
mainly from a value of the soliton velocityvs in Eqs.~36a!–
~36c!.

Along the quasipolariton dispersion branches 1 and 2,
Eqs. ~36a!–~36c! hold provided that the cw intensity of the
pump polariton 2 is not too highI 0<1GW/cm2. The condi-
tions ~36b! and ~36c! imply that on the r.h.s. of Eqs.~9! the
second term is considerably smaller than the first one. This
denotes a slightly perturbed internal polariton structure of the

both coupled polariton solitons, because for a free linear po-
lariton Ẽj5(g j /cj ) P̃j @see Eqs.~9!#. In other words, for the
quasipolariton TWS’s the LO-phonon – mediated polariton-
polariton interaction does not destroy the balance between
exciton and photon components in the first and second po-
laritons.

For the quasiphonon Raman TWS’s, i.e., along the disper-
sion branches 3–5, Eqs.~36a! and~36b! are satisfied only for
I 0>I th

(1)(ts), while Eq. ~36c! is always broken, due to the
small values of the soliton velocityvs . The threshold inten-
sity I th

(1)(ts) decreases with increasing soliton durationts and
is about 100–200 MW/cm2 for ts515 ps. If Eq.~9! does
not hold for the pump polaritonj52 of the quasiphonon
TWS’s, one has to describe explicitly the polarizationP̃2 and
electric fieldẼ2 . Therefore, in the set of Eqs.~10a!–~10c!,
one has to treat Eqs.~7d! and ~7e! instead of Eq.~10c!.
Introducing the real amplitudes and phases for all the
polarization fields by Eqs.~12! and for the electric
field Ẽ25y2e

h2, one can rewrite this generalized set in the
following form:

x185b1x2z sinQ, ~37a!

x285
a

b2
y2sinL2b̃2x1z sinQ, ~37b!

z852bphx1x2sinQ, ~37c!

d2y2852g2x2sinL2d2x28cosL1d2w28x2sinL, ~37d!

x1w1852~q11r1x2
2!x11b1x2z cosQ, ~37e!

x2w2852~ q̃21 r̃2x1
2!x21

a

b2
y2cosL1b̃2x1z cosQ,

~37f!

zc852qphz1bphx1x2cosQ; ~37g!

d2y2h2852c2y21g2x2cosL2d2x28sinL1d2x2w28cosL.

~37h!

Here,L5w22h2 and in addition to the notations given by
Eqs.~8! and ~11!,

q̃25
a2
b2
, r̃25

sbph

b2
, b̃25

n1sqph
b2

. ~38!

For the set of Eqs.~37a!–~37h!, only the last Manley-
Rowe relation of Eqs.~14! is preserved in the same form
with C350. Thus, in accordance with Eq.~15!, the coupled
solitary LO phonon and polariton 1 have again similar am-
plitude envelopes for the quasiphonon TWS’s. For a numeri-
cal evaluation of the traveling fundamental quasiphonon
TWS’s within Eqs.~37a!–~37h!, one has to find at first the
corresponding asymptotic stationary points. These points of
Eqs.~37a!–~37h! are given by

FIG. 6. Quasipolariton TWS’s. The dependences of the soliton
velocity vs5vs(v) ~solid lines! for \vk52.511 eV
@\(v t2vk2V0)53 meV#, ts510 ps, and~1! I 05200 MW/cm2,
~2! I 05500 MW/cm2 ~the left part — forward scattering; the right
part — backscattering!. Dashed lines indicate the unperturbed po-
lariton group velocityvpol5vpol(v).
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x1`50, z1`50, x2`5x02, y2`5y025
a2
a
x02,

L`5w2`2h2`50, cosQ`5
qph

x02A~2b1!bph

52
B

2
.

~39!

The conditions~28! for the set of Eqs.~37a!–~37h! result
again in the dispersion Eqs.~29a! and~29b!. In order to find
the soliton characteristic durationts , one can treat analyti-
cally the asymptotic behavior of the soliton solutions of Eqs.
~37a!–~37h! at t→6`, i.e. in a vicinity of the stationary
points given by Eq.~39!. Linearization of Eqs.~37a!–~37h!
around these points yields the exponential envelopes of the
solitary waves att→6`:

x1~t→6`!5X0exp~7t/ts!,

z~t→6`!5Z0exp~7t/ts!, ~40!

where X0 and Z0 are the constants and the characteristic
duration ts is again given by Eq.~27!. Therefore, all the
relationships between the initial parameters, i.e., Eqs. (27)
and (29a) and (29b), are preserved for the generalized set of
Eqs. (37a)–(37h).

The quasiphonon dispersion droplets 4 and 5~see Fig. 2!
disappear with decreasingI 0 . Branch 5 always disappears
first, e.g., for\vk52.513 eV andts515 ps, both spectral
droplets 4 and 5 exist for I 0>350 MW/cm2, for
350 MW/cm2>I 0>200 MW/cm2 only spectral droplet 5 oc-
curs, and forI 0<200 MW/cm2 there are no spectral drop-
lets. We will concentate mainly on the the central qua-
siphonon dispersion branch 3. This dispersion is shown in
detail in Fig. 7~a! for two values ofI 0 . The region of anoma-
lous dispersion with negative slope increases with the inten-
sity of the pump polariton 2. This anomalous dispersion can
be treated as a slightly deformed sector of the unperturbed
LO-phonon dispersionvk1V0 @dashed line in Fig. 7~a!#.

The corresponding dependences of the soliton velocity
vs5vs(v) are presented in Fig. 7~b!. The velocityvs of the
quasiphonon TWS’s is anomalously small@vs<105 cm/s in
Fig. 7~b!#, increases with pump intensityI 0 , and has a maxi-

mum value at the exact Raman resonancev5vk1V0
(Dv50). For Dv50, one gets from the dispersion Eq.
~29a!:

vs~v5vk1V0!52
x02
2
L2k

V0b̃~v l
22v2!

}I 0 , ~41!

wherev l5v t1v l t is the frequency of the longitudinal exci-
ton, the parametersL andb̃ are defined by Eq.~3! and Eqs.
~2!, respectively. Equation~41! is derived under the condi-
tions uv l2vu@\k2/M andp!k. These conditions hold for
the quasiphonon TWS’s, because for branch 3 the exact Ra-
man resonanceDv50 corresponds top50.

Typical amplitude envelopesx1(t), x2(t), y2(t), and
z(t) of the traveling fundamental quasiphonon TWS’s, ac-
cording to Eqs.~37a!–~37h!, are shown in Fig. 8~a!. For
comparison, the corresponding envelopes for the quasipolari-
ton TWS’s of branch 1 are also shown in Fig. 8~b!. The
amplitude envelopey2(t) of the electric field of the pump
polariton 2 is normalized toy2`5y02. The set of Eqs.
~13a!–~13f! together with Eqs.~9! give the same envelopes
for the quasipolariton solitons as the generalized set of Eqs.
~37a!–~37h!. Figure 8~b! with y25y2(t) very similar to
x25x2(t) clearly indicates that, for the quasipolariton
TWS’s, the LO-phonon–mediated polariton-polariton inter-
action does not disturb the internal polariton structure of the
pump. Both TWS’s of Figs. 8~a! and 8~b!, quasiphonon and
quasipolariton, can be generated simultaneously in the for-
ward scattering configuration (vs,0).

According to Figs. 8~a! and 8~b!, the ratiozmax/x1
maxof the

maximum amplitudeszmax5z(t50) andx1
max5x1(t50) of

the coupled solitary LO phonon and polariton 1 is consider-
ably larger for the quasiphonon TWS’s. Thus, the qua-
siphonon TWS’s are accompanied by a giant coherent LO
phonon. On the other hand, the solitary polariton 1 of the

FIG. 7. Quasiphonon TWS’s.~a! The magnified region of the
quasiphonon dispersion branch 3,~b! the corresponding soliton ve-
locity vs5vs(v); \vk52.511 eV @\(v t2vk2V0)53 meV#,
ts515 ps, and~1! I 05200 MW/cm2, ~2! I 05500 MW/cm2.

FIG. 8. Quasiphonon and quasipolariton TWS’s in the forward-
scattering geometry (vs,0). The amplitude profilesx15uP̃1(t)u,
x25uP̃2(t)u, y25uẼ2(t)u, andz5uF̃(t)u of the coupled resonant
triplet: ~a! the quasiphonon TWS’s of the dispersion branch 3,~b!
the quasipolariton TWS’s of the dispersion branch 1. The exact
Raman resonance (Dv50), I 05200 MW/cm2, \vk52.512 eV
@\(v t2vk2V0)52 meV#, andts510 ps.
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quasiphonon TWS’s has a maximum amplitudex1
max of the

same order asx02 @see Fig. 8~a!# and cannot be considered as
a giant parametric pulse. Typical quasiphonon soliton enve-
lopes of the phasesw j5w j (t) ( j51,2), c5c(t), and the
corresponding phase-matching angleQ5Q(t) are shown in
Fig. 9 for branch 3 under exact Raman resonance condition
Dv50. The phase-matching angleQ of the polarization
phases again undergoes ap jump. However, the sign of this
jump is opposite to that of the quasipolariton TWS’s~see
Fig. 4!. This 2p jump of Q5w12w22c for the qua-
siphonon TWS’s follows the2p/2 jump of the coherent
phonon phasec and the23p/2 jump of the polarization
phasew1 of the solitary polariton 1~see Fig. 9!.

According to the numerical simulations, the quasiphonon
TWS’s have extremely small variations of the amplitude
y2(t) @see Fig. 8~a!# and the phaseh2 ~see Fig. 9! of the
electric fieldẼ2 of the pump polariton 2:

y2~t!/y02!1, uh2~t!2h2~t→6`!u<0.001 rad.
~42!

Equations~42! are derived from Eqs.~37d! and ~37h! under
the condition

A«g
4

vstsVc
2

cV0
!1. ~43!

The inequality~43! holds, due to the anomalously smallvs
of the quasihonon TWS’s. This result shows that generation
of the quasiphonon TWS’s cannot be observed in the cw
background of the pump pulse~polariton 2), because only
the electromagnetic component of a polariton is observable.
Figure 9 shows also a small variation of the polarization
phasez of polariton 2.

The extremely small velocityvs of the quasiphonon
TWS’s stems from the large LO-phonon contributionF to
these coupled solitons. Such a structure of the quasiphonon
TWS’s originates from the large differences between the

branches 3–5 and the unperturbed polariton dispersion~see
Fig. 2!. Both the quasipolariton and the quasiphonon TWS’s
propagate only due to their photon and exciton components,
because the unperturbed LO-phonon group velocity
vLO50. Contrary to the quasipolariton TWS’s, the admixture
of the photon and exciton components of the quasiphonon
Raman solitons increases with the intensityI 0 of the pump
polariton 2 resulting in the increase ofvs . If the condition
~36c! becomes invalid, a strong perturbation of the polariton
internal structure@y2 /x25y02/x02.a2 /a5g2 /c2 — see
Eq. ~32!# of the pump polariton 2 occurs in the presence of
the coupled solitary LO phonon and polariton 1, i.e., in the
region of the polariton-polariton Raman interaction. There-
fore, the quasiphonon Raman TWS’s can be understood as
four coupled nonlinear fields: excitonP2 and photonE2 of
the polariton 2, polariton 1 with the unperturbed internal
structure (c1E15g1P1), and coherent phononF.

VII. DISCUSSION

The stability against small amplitude or phase perturba-
tions is crucial for fundamental solitons. In order to examine
this property for the quasiphonon TWS’s, we linearize Eqs.
~37a!–~37h! around the corresponding soliton solutions. Af-
ter linearization, Eqs.~37a!–~37h! decouple into the two in-
dependent subsets of Eqs.~37a!, ~37c!, ~37e!, ~37g! and Eqs.
~37b!, ~37d!, ~37f!, ~37h!, respectively. The first one deals
with the perturbationsdx1 , dz, dw1 , and dc. The corre-
sponding linear solutions}exp(d V1t) are stable, i.e.,
Re$dV1%,0. The second set fordx2 , dy2 , dw2 , anddh2
gives

dV252
i

d2b2
~a2d21b2c21ad2!, ~44!

where the real parameters on the r.h.s. are defined by Eqs.
~8!. The imaginary value of the Lyapunov factor corresponds
to a so-calledmarginal behavior, i.e., small perturbations
oscillate with the constant amplitudes on the background of a
fundamental soliton.

The imaginary Lyapunov factordV2 given by Eq.~44! of
the pump polariton 2 of the quasiphonon fundamental
TWS’s has the following physical origin. At the leading and
trailing edges of the solitary LO phonon and polariton 1, i.e.,
at utu@ts whenx1→0 andz→0, the coupling of these syn-
chronous solitons with the polariton 2 is significantly re-
duced. Therefore, the pump wave should propagate as a free
unperturbed polariton. On the other hand, the antidark~or
gray! soliton in the cw profile of the pump polariton propa-
gates withvs , which for the quasiphonon TWS’s strongly
differs from the corresponding polariton group velocity
vpol . The large difference betweenvs andvpol results in the
specific phase and amplitude modulations of the polariton
2 with the frequencydV2 of Eq. ~44!. Formally, these
modulations do not destroy the fundamental solitons. How-
ever, numerical simulations show that small, but finite, per-
turbations can initiate a decay of the TWS’s. Quasiphonon

FIG. 9. Quasiphonon TWS’s of the dispersion branch 3~see Fig.
2!. The soliton envelopes of the phasesh25h2(t) ~dash-dotted
line!, w1,25w1,2(t), c5c(t) ~solid lines!, and the corresponding
phase-matching angleQ5Q(t) ~dashed line!. The exact Raman
resonance Dv50, I 05200 MW/cm2, \vk52.511 eV
@\(v t2vk2V0)53 meV#, andts510 ps.
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TWS’s, which are stable and unstable against a finite ampli-
tude perturbationdx2 /x0250.025, are shown in Fig. 10. The
amplitude modulation of the unstable pump polariton 2 of
Fig. 10 ~the upper solid line! indeed coincides withdV2 of
Eq. ~44!.

Thus, the quasiphonon TWS’s are stable only above a
pump intensity thresholdI th

(2)(v,vk ,ts). According to nu-
merical simulations, for the given value of amplitude pertur-
bation (dx2 /x0250.025), one receivesI th

(2).1002300
MW/cm2 and I th

(2)>I th
(1) . The frequency band of the stable

quasiphonon solitons is located in the region of the anoma-
lous dispersion of branch 3 and in the upper sectors of the
spectral droplets 4–5~see Fig. 2!. These sectors of the qua-
siphonon branches 3–5 are the reminiscents of the unper-
turbed LO-phonon dispersion. The conditions~36a! and
~36b! hold for I 0.I th

(1) also, only for these frequencies. The
soliton velocity vs of the quasiphonon TWS’s reaches a
maximum value in this frequency band@see Fig. 7~b!#.

The quasipolariton TWS’s are stable within Eqs.~13a!
–~13f! ~Re$dV%,0). Numerical simulations confirm this
conclusion. However, for extremely high pump intensities
I 0> 0.5–1.0 GW/cm2, the inequality Eq.~36c! does not
hold and the quasipolariton TWS’s should be analyzed with
the generalized set of Eqs.~37a!–~37h!. For these high in-
tensities, the marginal behavior with the imaginary
Lyapunov factor of Eq.~44! occurs also for quasipolariton
TWS’s.

The hypertransient regime of Eqs.~4a!–~4e! implies that
the phonon-mediated nonlinearity is well developed in com-
parison with the corresponding damping constantsGx and
Gph, i.e., the renormalized dispersion of the solitary polariton
1 is not masked by dephasing. The corresponding pump in-
tensity threshold is the same as for the phonoriton effect and
is aboutI 0. 10–50 MW/cm2 for CdS.11,15 Furthermore, in
the hypertransient regimets<min$(Gx/2)21, (Gph/2)21%
52/Gph for T,77 K. The typical coherence times 2/Gph of
LO phonons are mainly due to the lattice anharmonicity and
occur in the 10–30 ps scale.28 This dictates the correspond-
ing optimal values of the soliton durationts .

The initial conditions appropriate for an effective genera-
tion of the polariton TWS’s are beyond the scope of this
paper. Our approach involvestwo external optical pulses in

order to induce resonantly interacting polaritons. In a similar
way as Raman solitons in para-H2,

4–6 the polariton TWS’s
can probably be stimulated by introducing ap-phase seed in
the long ‘‘quasi-continuous-wave’’ optical pulse, which
transforms to the pump polariton. On the other hand, Raman
solitons in molecular optics can also be formed from quan-
tum noise of thesingleoptical pump pulse in SRS.8,5 Such a
possibility is still unclear for the polariton TWS’s.

For a pump intensity I 05100 MW/cm2 and
v t2vk.V0 , the concentrationN}x02

2 of virtual excitons in
CdS is about 231017 cm23, according to Eq.~31!. The cor-
responding Mott factorNax

3.0.631022 is still considerably
less than unity, but exciton-exciton Coulombic interaction
can already interfere with RRI. According to Keldysh’s
equations,3 the additional cubic Kerr-type terms
}(uP̃1u21uP̃2u2) P̃1 and }(uP̃1u21uP̃2u2) P̃2 will appear on
the r.h.s. of Eqs.~10a! and ~10c!, respectively, due to Cou-
lombic interaction. However, the polariton Raman TWS’s
are mainly determined by the quadraticresonantterms on
the r.h.s. of Eqs.~10a!–~10c!. This conclusion resembles the
argument in theory of superconductivity, that the Coulomb
electron-electron nonresonant interaction does not destroy
phonon-mediated coherent pairing.

The Raman TWS’s can be generated not only in polar
semiconductors with strong exciton–LO-phonon Fro¨hlich in-
teraction. Conjugated polymers are also well suited for the
Raman TWS’s, due to their extremly large phonon-mediated
optical nonlinearities.25 For example, quasi-one-dimensional
polydiacetylene – para-toluene-sulfonate~PDA-pTS!, which
is a quasi-one-dimensional semiconductor, can be prepared
in a high-quality single crystalline form.26 The lowest exci-
ton state of this polymer exhausts most of the interband os-
cillator strength and is well separated in energy from any
other dipole-active electronic excitation. The phonon-
mediated optical Stark effect~phonoriton renormalization!
has been already observed in PDA-pTS.12Within our model,
the main specific feature of PDA-pTS is nonpolar exciton-
phonon interaction. Although in this case the matrix element
Mx-ph is independent of the phonon wave numberp2k, the
dispersion equation for the nonlinear polariton 1 has the
same order and form as Eq.~29a!. Therefore, the developed
classification of the TWS’s by the dispersion of the solitary
polariton 1 is still correct. The quasiphonon dispersion
branch3 stems from the unique evolution of the initial un-
perturbed dispersions towards the modified spectrum~see
Fig. 2!, i.e., is an universal property of Eq.~29a!.

Raman spectroscopy of the exciton states has been devel-
oped in detail for III-V compound semiconductors.18,27 For
these semiconductors, e.g., GaAs, the assumption of the
single intermediate exciton resonance (n51) is broken,19 at
least for the pump polariton 2, due toV0.Vc.ex. This
means that bound and ionized~continuum! exciton states29

have to be included in the initial Hamiltonian~1! and in the
polarization Eq.~4e!. Moreover, allowed and forbidden scat-
tering can interfere.18 Both of these corrections complicate
the modeling of Raman TWS’s.

VIII. CONCLUSIONS

In this paper, we develop the theory of coupled three-
wave solitons in resonant Raman interaction of two coherent

FIG. 10. The stability of the quasiphonon TWS’s~the dispersion
branch 3!. The exact Raman resonanceDv50, \vk52.511 eV
@\(v t2vk2V0)53 meV!, and ts510 ps; I 05200 MW/cm2 —
the stable TWS’s~dash-dotted lines!; I 0540 MW/cm2 — the un-
stable TWS’s ~solid lines!. The initial perturbation att50 is
dx2 /x0250.025.
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intense polaritons, due to the Fro¨hlich mechanism. The fol-
lowing conclusions summarize our analysis.

~i! A closed set of the five nonlinear macroscopic equa-
tions for the photon and exciton components of two polari-
tons and for the corresponding resonant LO phonon is de-
rived self-consistently on the basis of the exciton-photon –
LO-phonon microscopic Hamiltonian. A mathematical ap-
proach, which treats within the initial microscopic model the
polariton effects, as well as the entire series ofx (n), is de-
veloped for the fundamental Raman TWS’s.

~ii ! The classification of fundamental polariton TWS’s is
given in accordance with the dispersion of the solitary polar-
iton of the resonant triplet. Quasipolariton and quasiphonon
Raman solitons are formed. The quasiphonon TWS’s have
no analogy in classical nonlinear optics.

~iii ! The quasipolariton TWS’s are attributed to the polari-
tonlike dispersion branches of a solitary polariton. For these
coupled nonlinear waves, a gray soliton in the cw back-
ground of the pump polariton is formed in forward scattering

RRI, while in the backscattering geometry an antidark soli-
ton is found. A solitary polariton of the quasipolariton
TWS’s is a giant parametric pulse of the nonlinear resonant
triplet.

~iv! The quasiphonon TWS’s refer to those dispersion
branches that are the ‘‘topological reminiscents’’ of the un-
perturbed LO-phonon dispersionvk1V0 . These qua-
siphonon Raman TWS’s propagate with an anomalously
small velocity (vs.105 cm/s!, are accompanied by a giant
solitary LO phonon, and are stable only in a close vicinity of
the Raman resonance for the pump intensitiesI 0> 100–300
MW/cm2.
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