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Conjugated polymers are modeled as a system of one-dimensionalp electrons interacting via a short-range
Coulomb interaction and coupled to an underlying harmonic lattice, i.e., as an extended Peierls-Hubbard
model. A perturbative bosonization procedure is employed to map the original Hamiltonian onto an effective
one describing a coupled, one-dimensional exciton-phonon gas~EPG!, which should be especially useful in
discussing nonlinear optics. This approach treats excitons as ideal Bose~quasi!particles subject to effective
interactions, which in turn are the microscopic origin of the nonlinear optics response of the material. In
particular, we derive effective interaction vertices for~i! exciton-exciton scattering,~ii ! exciton-phonon cou-
pling, and~iii ! ~nonlinear! exciton-light coupling within a semiclassical approximation. As an application of
the EPG model to nonlinear optics of conjugated polymers, we study, in the collisionless regime, the steady-
state response of a coherently pumped EPG with respect to a spectrally broad test laser. The EPG approach
discusses this particular four-wave-mixing experiment in terms of an externally driven, interacting two-
component Bose gas. It explains optical Stark effects and inverse Raman scattering as due to composite
excitations whose electronic and phononic degrees of freedom depend upon pump frequency and pump inten-
sity. @S0163-1829~96!05320-9#

I. INTRODUCTION

Conjugated polymers, such as polyacetylene~PA!, poly-
diacetylenes~PDA!, and poly~phenylene!vinylene~PPV!, are
quasi-one-dimensional~Q1D! organic semiconductors with
good mechanical, e.g., flexibility, and excellent optoelec-
tronic, e.g., large optical nonlinearities, properties. In con-
trast to inorganic semiconductors, e.g., GaAs, the properties
of a particular polymer can be varied over a wide range by
chemical means, e.g., by attaching different side groups or
by blending two different polymers. It is especially the latter
property of engineering the material properties by relatively
straightforward and cheap chemical means that makes con-
jugated polymers very attractive for technological applica-
tions in general and optoelectronic devices in particular.
Most previous application-oriented research centered around
PDA-based optical wave guides1 and all-optical switches.2

Both applications rely on an intrinsic nonlinear optical pro-
cess, namely, the change of the index of refraction with light
intensity. In recent years, interest has moved to include PPV-
based light-emitting diodes3 employing electroluminescence
of PPV and some of its derivatives. Since both PDA~Ref. 4!
and PPV~Ref. 5! are characterized by a strong low-lying
electronic excitation, a detailed understanding of the low-
energy energeticsand dynamicsis a prerequisite for any
well-controlled device design.

Consequently, there has been much effort, experimentally
and theoretically, to understand the low-energy photophysics
of conjugated polymers. In particular, time-resolved photo-
induced absorption,6 time-resolved four-wave mixing
~FWM!, and pump-and-probe techniques7 constitute power-
ful and flexible approaches to probing the dynamics of
photo-excitations down to very short-time scales. Especially
the coherent pump-and-probe experiments, employing a non-
resonant pump laser and thus creating virtual excitations, has
attracted much interest.4,8,9 It is well known from experi-

ments with low-dimensionalinorganic semiconductors, e.g.,
GaAs/AlxGa12xAs multiple-quantum-well structures,10 that
for a detailed understanding and accurate interpretation of
both steady-state and transient nonlinear optics response a
sound many-body theoretical description is essential. It is
therefore expected that a detailed understanding of nonlinear
spectroscopy, as well as of the dynamics of photoexcitations
in conjugated polymers, also requires a many-body theoreti-
cal description. This is even more true in view of the strong
Coulomb interaction and electron-phonon coupling in this
type of material.

This paper proposes such a many-body theoretical treat-
ment of nonlinear optics effects considering conjugated poly-
mers as Q1D semiconductors, i.e., we study conjugated poly-
mers in the long-chain limit. Although most theoretical
studies in the field of nonlinear optics of conjugated poly-
mers use~nonlinear! susceptibilities to characterize the non-
linear optical response of the material — thex3 formalism

11

— we adopt here a different approach that is more common
in ~inorganic! semiconductor physics. Namely, we discuss
nonlinear optics in terms of renormalized quasiparticles and
their coupling to external fields. In this sense it should be
considered complementary to thex3 formalism, although we
suggest that our approach has some advantages in terms of
transparency and flexibility.

Without going into mathematical details, the main points
of our approach are as follows.First, before studying the
coupling of the material to external, time-dependent~light!
fields, we transform the Hamiltonian modeling a generic
conjugated polymer into a representation that is more suit-
able to discuss nonlinear optics in terms of quasiparticles.
We choose collective electron-hole pairs@viz., excitons in
the Tamm-Dancoff approximation~TDA!, i.e., Wannier ex-
citons# and optical phonons as ‘‘bare’’ quasiparticles and ex-
plicitly derive effective interaction vertices between these
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‘‘undressed’’ quasiparticles. A very transparent method of
deriving effective interactions between excitons, i.e., be-
tween composite fermion pairs, and between excitons and
phonons is a bosonization technique for bilinear fermion op-
erators recently developed in nuclear structure theory by
Sakamoto and Kishimoto.12 Technically, we treat excitons as
Bose particles with effective interaction vertices describing
~i! exciton-exciton scattering,~ii ! exciton-phonon scattering,
and ~iii ! coupling to external fields.13 In all three, vertex
exchange corrections due to the Pauli principle are included.
In a secondstep, we then consider the full problem of an
externally driven~by light fields! conjugated polymer de-
scribed by interacting excitons and phonons, i.e., by an
exciton-phonon gas~EPG!. For simplicity we consider
pump-and-probe spectroscopy in the quasistationary approxi-
mation. We assume a pump pulse shorter than the relevant
relaxation times, i.e., collisionsless regime, and calculate the
steady-state response of the~nonresonantly! pumped EPG.
As pointed out by Schmitt-Rink, Chemla, and Haug,14 under
these conditions there is a close analogy between optically
pumped semiconducting structures and weakly interacting
Bose gases. We closely follow Schmitt-Rink, Chemla, and
Haug and discuss the optical Stark effect~OSE! and inverse
Raman scattering~IRS! in terms of composite quasiparticles
comprising excitonic and phononic degrees of freedom. Al-
though our theory of the OSE and IRS is very rudimentary,
we emphasize that more refined treatments are possible. In
fact, most of the techniques developed in the field of collec-
tive excitations of superfluids15 can, if appropriately modi-
fied, be applied to nonlinear optics as well.

The paper is organized as follows. Section II is devoted to
deriving the coupled exciton-phonon-gas representation for
conjugated polymers. In Sec. II A we introduce a generic
model for conjugated polymers that models this class of ma-
terials as a one-dimensional system of interactingp elec-
trons coupled to a harmonic lattice. In Sec. II B we define
bilinear fermion operators — exciton and scattering opera-
tors — and present their commutation rules. In Sec. II C we
present an approximate boson expansion for these operators
and finally express the original model in terms of two boson
fields, one for excitons and the other for~optical! phonons.
Particular emphasis is directed towards the discussion of ef-
fective interactions defining the EPG Hamiltonian. Section
III gives a detailed theoretical description of~nonresonant!
pump-and-probe spectroscopy in the collisionless regime.
Using the EPG respresentation, we derive in Sec. III A equa-
tions that determine the coherent ground state of a pumped
conjugated polymer. Section III B is then devoted to con-
structing equations to determine the excitation spectrum of
the pumped EPG, which is subsequently used in Sec. III C to
calculating the steady-state response to a weak test laser. In
Sec. III D we present numerical results for the OSE and IRS.
Section IV summarizes the paper and indicates some im-
provements to our approach that should enable us~i! to study
transient response functions and~ii ! to realistically treat
biexciton formation and signatures in nonlinear optics ex-
periments, e.g., two-photon absorption. For the sake of com-
pleteness and to specifiy our notation, we present in Appen-
dixes A and B, closely following Hayashi and Nasu,16

mathematical details for the mean-field approximation and
particle-hole representation, respectively. Finally, Appendix

C shows explicit expressions for the interaction vertices de-
fining the coupled EPG.

II. EXCITON-PHONON-GAS REPRESENTATION

A. Model Hamiltonian

Although conjugated polymers are extremely complicated
materials with many~coupled! degrees of freedom and, de-
pending on the particular synthesis route, a considerable
amount of structural imperfections and electronic disorder,17

the optical properties of this class of materials are, to a large
extent, determined by delocalized, multicenter bonds charac-
teristic of unsaturated organic compounds: thep electrons.
Following common recent practice,18 we will, therefore, con-
sider a simple model Hamiltonian describing an extended
p-electron system confined to one dimension, the polymer
backbone, and neglect all the other degrees of freedom. Spe-
cifically, we will use a Su-Schrieffer-Heeger model19 aug-
mented by HubbardU and V terms @i.e., a Peierls-~ex-
tended! Hubbard model# as a model for agenericconjugated
polymer ~the lattice constant is set to unity!:

H52(
l ,s

@ t02a~ul112ul !#@cls
† cl11s1H.c.#

1U(
l
nl↑nl↓1V(

l ,s,t
nlsnl11t

1(
l

FM2 u̇l
21

K

2
~ul112ul !

2G . ~1!

Here cls
† creates an electron in a Wannier orbital at sitel

with spin polarizations andnls5cls
† cls , the total charge on

site l with spins. The parameterst0 , a, U, andV are the
p-electron hopping integral, the electron-phonon coupling,
and the Hubbard parameters characterizing the short-range
electron-electron interaction, respectively.K andM repre-
sent the lattice compressibility~due tos bonds! and the mass
at each lattice site. Strictly speaking, the Hamiltonian Eq.~1!
applies only to linear chain polymers with originally one
atom ~site! per unit cell. Recent work, however, has shown
that the primary excitations in systems like PPV, and implic-
itly also like PDA, can be described withineffectivelinear
chain models of the form~1!.20 Representative model param-
eters for PDA are given in Table I. We study model~1! at
half-filling with periodic boundary conditions andN sites.

To complete our model description, we add a term that
accounts for the coupling betweenp electrons and light in a
semiclassical approximation. Furthermore, we assume homo-
geneous irradiation of the polymer sample and write in the
dipole approximation

dHp light52(
l ,s

m lcls
† clsE~ t !. ~2!

TABLE I. Representative parametrization of the model Hamil-
tonian for PDA.

t0 ~eV! a ~eV/Å! U ~eV! V ~eV! M ~a.u.! K ~eV/Å2)

2.5 3.6 5.0 2.5 13.0 21.0
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Herem l is the~electric! dipole moment andE(t) denotes the
electric component of the light field along the polymer back-
bone. For simplicity, we neglect phonon-assisted coupling
processes and take for the dipole moment

m l5
eN

4p
sin
2p

N
~ l21!. ~3!

This particular form of the dipole moment has been used in
the literature before18 and ensures that periodic boundary
conditions are satisfied and that in the large-N limit the di-
pole moment aquires the canonical formm l5e( l21). ~Note
that the origin of our coordinate system isl51.)

For the investigation of optical processes it is convenient
to rewrite model~1! in terms of particle and hole operators
defined with respect to a suitable ground state. In order to be
applicable to conjugated polymers, e.g., PA, PDA, and PPV,
the model parameters (t0 , U, V, a, M , andK) ought to be
such that the ground state of model~1! is a bond-order wave
~BOW!, i.e., the ground state is a dimerized Peierls semicon-
ductor with, at half filling, a full valence and an empty con-
duction band. In Appendix A we briefly review, primarily to
specify our notation, the mean-field theory of model Eq.~1!
in the BOW phase following Hayashi and Nasu.16 In contrast
to conventional inorganic semiconductors, the single-particle
gap separating the full valence from the empty conduction
band is due primarily to electron-phonon coupling~Peierls
instability! further stabilized by the next-neighbor Coulomb
interaction (V term!. As a consequence of the Peierls insta-
bility, the unit cell is doubled. Thus, instead of one~acoustic!
phonon branch we have two phonon branches, one acoustic
and one optic.

In the present context, the main result of the mean-field
approximation is to transform model~1!, which orginally
described a one-dimensional metal, into a one-dimensional
semiconductor with residual Coulomb and electron-phonon
interactions. With respect to the semiconducting Peierls-
dimerized ground state in the mean-field approximation, de-
noted byuM&, we then define particle~hole! operators~see
also Appendix A! p(h)ksuM&50 and optic-phonon opera-
tors ~we do not consider acoustic phonons! bquM&50. It is
then straightforward to express model~1! in terms of these
new operators, although the algebra involved is rather
lengthy.16 To fix our notation it suffices to relegate the main
mathematical steps to Appendix B and to restrict ourself here
to a discussion of the final result. In particular we point out
which terms have been neglected and emphasize the physical
meaning of the terms retained.

Let us first comment on the electronic part. We neglect all
umklapp processes (U processes! with respect to the unit cell
of the dimerized lattice. Furthermore, we ignore the scatter-
ing of a particle~hole! on a polarization wave~particle-hole
pair! as well as spontaneous creation of particle-hole pairs.
The former can be incorporated into a proper dielectric
constant,21,22 whereas the latter is suppressed due to the
single particle gap.23 Thus, as far as the electronic part is
concerned, we are left with the free@mean-field approxima-
tion ~MFA!# dispersion for the particles and holes, particle-
hole scattering giving rise to exciton formation and scatter-
ing within valence and conduction bands, which becomes

increasingly important if a finite concentration of particle-
hole pairs is created, e.g., by a pump laser.

Let us now turn to the phonon part. First of all, we do not
consider acoustic phonons and keep only the optic branch.
This is not to say that acoustic phonons do not affect optical
experiments at all. In fact, they are very important for relax-
ation and equilibration processes24 of hot carriers. Since we
study pump-and-probe spectroscopy in the collisionless re-
gime, i.e., we study processes faster than intrinsic relaxation
times, we can in a first approximation neglect the effect of
acoustic phonons and consider only the coupling of elec-
tronic excitations to optical phonons. In particular the optical
phonon in the center of the Brillouin zone~BZ! (q50) plays
a key role for coherent inverse Raman scattering. Further-
more, we do not account for scattering processes where a
~optical! phonon creates~annihilates! a particle-hole pair,
i.e., interband scattering events. Clearly, these processes play
a crucial role for the renormalization of~optic! phonons due
to the polarizability of electrons. It is well known25,26 that
this leads to a significant softening of theq50 optical pho-
non and can therefore be accounted for by a proper choice of
the ~optic-! phonon dispersion. Since we do not attempt to
present a fully self-consistent theory of the rather compli-
cated model~1!, we use the bare~optic! phonon. For a more
precise calculation one should, however, incorporate the
renormalized phonon frequencies. Finally, the coupling to
the light field is due only to creation~annihilation! of
particle-hole pairs and not due to scattering events within the
conduction~valence! band. For optics this approximation is
reasonable.

With these caveats and approximations, the Hamiltonian
that serves as the starting point for our investigation of non-
linear optics of conjugated polymers reads, in the particle-
hole representation, up to a constant comprising the total
MFA and the zero-point phonon energy,

H5(
k,s

Ek@pks
† pks1hks

† hks#1(
q

v~q!bq
†bq

2
1

N (
ki ,s,t

V1234
eh,d pk2t

† h2k4s̄
† h2k1s̄ pk3t

1
1

N (
ki ,s,t

V1234
eh,x pk2t

† h2k3 t̄
† h2k1s̄ pk4s

1
1

2N (
ki ,s,t

V1234
pp pk1s

† pk2t
† pk3tpk4s

1
1

2N (
ki ,s,t

V1234
hh h2k3 t̄

† h2k4s̄
† h2k1s̄h2k2t̄

1 (
k1 ,k2 ,q

(
s

W~k1 ,k2 ,q!@pk1s
† pk2s1h2k2s̄

† h2k1s̄#

3~bq1b2q
† !1(

k,s
@m̄~2!pks

† h2ks̄
† 1H.c.#E~ t !, ~4!

with i5ki , e.g.,V1234
w()5̂V(k1 ,k2 ,k3 ,k4)

(). Momentum sums
are over thereducedBZ corresponding to the unit cell of the
dimerized lattice, i.e.,2p/2<k,p/2. In terms describing
the Coulomb interaction they are constrained to
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k11k25k31k4 , while in the term denoting electron-phonon
coupling the momentum sum is restricted tok12k25q. No-
tice that~4! describesexcitationsof the polymer whose en-
ergies are measured with respect to the total BOW ground-
state energy~set to zero!. The first two terms on the right-
hand side~rhs! describe the free motion of particles, holes,
and ~optic! phonons. The next four terms depict~direct!
particle-hole scattering,~exchange! particle-hole scattering,
particle-particle, and hole-hole scattering, respectively. The
last two terms represent the particle~-hole!-phonon interac-
tion and the coupling to external~light! fields.pks

† creates an
electron with momentumk, spin polarizations, and energy
Ek in the ~MFA! conduction band, whereashks

† destroys an
electron with momentum2k, spin polarization2s, and
energyE2k5Ek in the ~MFA! valence band.bq

† is the cre-
ation operator for an optical phonon with momentumq and
energyv(q). The electronic mean-field dispersionEk and
the phonon dispersionv(q) are given in Appendix A, Eqs.
~A26! and ~A18!. The matrix elementsV1234

eh,d , V1234
eh,x , V1234

pp ,
V1234
hh , W(k1 ,k2 ,q), and m̄ (2) are defined in Appendix B,

Eqs. ~B7!, ~B8!, ~B10!, ~B11!, ~B21!, and ~B26!, respec-
tively.

B. Exciton and scattering operators

The main objective of this paper is to discuss optical pro-
cesses of an organic semiconductor in the presence of a finite
concentration of excitons~and, due to electron-phonon cou-
pling, a finite number of stimulated phonons! generated by a
strong pump laser. Under these conditions the usual strategy
to calculate excitonic absorption using the TDA for the two-
time two-body Green function in the particle-hole channel27

breaks down even without phonons. Considering the elec-
tronic problem alone, the reason is that TDA treats collective
particle-hole pairs, i.e., excitons, as bosons without internal
structure. Clearly, the internal structure matters only for con-
centrations when excitons begin to overlap. There are many
different ways to treat excitons beyond thequasiboson ap-
proximation inherent in TDA with no significant advantage
to any of them. Here we have chosen an algebraic technique
to study optical processes at finite exciton~and phonon! con-
centration: First, we employ an algebraic boson expansion
that treats excitons as bosons with effective interactions tak-
ing their internal structure into account and, second, a unitary
transformation approach to obtain the optical response of an
optically pumped organic semiconductor in the mean-field
approximation. To incorporate many-body correlations be-
yond the mean-field approximation it is, however, necessary
to use more sophisticated methods, e.g.,~bosonized! exciton
Green functions.30

We exclusively restrict our theory to the singlet sector of
the Hamiltonian~4! and base our treatment on bilinear fer-
mionic operators that create~annihilate! collective, singlet
particle-hole pairs, i.e., singlet excitons, defined by

SQm
† 5(

k,q
dQ,k1qFQ

m S k2q

2 DSkq† , ~5!

with

Skq
† 5

1

A2
@pk↑

† hq↓
† 1pk↓

† hq↑
† #. ~6!

HereSQm
† creates a singlet exciton with total~crystal! mo-

mentum Q and internal quantum numberm. Obviously,
uM& is the vacuum for exciton operators. The coefficient
FQ

m(q) is the exciton wave function as obtained, for instance,
from the solution of the Bethe-Salpeter equation in the TDA.
The indexm encompasses the whole spectrum of the two-
body problem: bound states and scattering states. In this
sense, we use the word ‘‘exciton’’ in an unconventional way,
calling both bound and unbound particle-hole pairs excitons.
q depicts the momentum associated with the relative motion
of the particle-hole pair. In Appendix C we will show that a
natural choice forFQ

m(q) is indeed the solution of the Bethe-
Salpeter equation in the TDA, which in the present context
leads to the Wannier equation for excitons based on model
~4!; it diagonalizes the leading term of the resulting EPG
Hamiltonian in the dilute limit.

Additionally, we introduce for technical reasons particle
and holescattering operators

Ckq
† 5(

s
pks
† pqs , ~7!

Dkq
† 5(

s
hks
† hqs . ~8!

The operators~5!, ~7!, and~8! statisfy commutation relations

@SKn ,SQm
† #5dKQdnm2

1

2(l PKn;Qm
1 ~ l ,l !CQ2 l ,K2 l

†

2
1

2(l PKn;Qm
2 ~ l ,l !DQ2 l ,K2 l

† , ~9!

@Ckq
† ,SKn

† #5(
Q,m

PKn;Qm
2 ~q,k!dQ,K1k2qSQm

† , ~10!

@Dkq
† ,SKn

† #5(
Q,m

PKn;Qm
1 ~q,k!dQ,K1k2qSQm

† , ~11!

@SKn ,SQm#50, ~12!

@Ckq
† ,D

k̃ q̃

†
#50, ~13!

with structure coefficients, anticipating exciton wave func-
tions to be real,

PKn;Qm
1 ~k,q!5FK

n SK2 2kDFQ
m SQ2 2qD , ~14!

PKn;Qm
2 ~k,q!5FK

n S 2
K

2
1kDFQ

m S 2
Q

2
1qD . ~15!

If it were not for the last two terms on the rhs of Eq.~9!
exciton operators would satisfy Bose statistics. Taking the
expectation value of Eq.~9!, we see, however, that correc-
tions to Bose statistics are linked to the density of particle-
hole pairs. In the case of a vanishing pair density we can
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therefore neglect the operators on the rhs of Eq.~9! and treat
excitons as ideal Bose particles without internal structure
leading to the TDA for particle-hole pairs and eventually to
the Wannier equation. At finite density the full commutator
relations have to be taken into account. In order to find a
boson representation for the electronic subsystem of model
~4! it is advantageous to express~4! in terms of the operators
SQm
† , Ckq

† , andDkq
† . Employing definitions~5!, ~7!, and~8!,

we immediately find

H5(
k
Ek@Ckk

† 1Dkk
† #1(

q
v~q!bq

†bq

1(
K,Q

(
n,m

Vnm
TDA~K !dKQSKn

† SQm

1
1

2N(
ki

V1234
pp Ck1k4

† Ck2k3
† 2

1

2N(
ki

V1234
pp dk2k4Ck1k3

†

1
1

2N(
ki

V1234
hh D2k32k2

† D2k42k1
†

2
1

2N(
ki

V1234
hh dk2k4D2k32k1

†

1 (
k1 ,k2 ,q

W~k1 ,k2 ,q!@Ck1k2
† 1D2k2 ,2k1

† #~bq1b2q
† !

2(
n

~mnS0n1H.c.!E~ t !, ~16!

with

mn5A2(
q

F0
n~q!m̄~2!, ~17!

Vnm
TDA~K !5(

q,r
FK

n ~q!GK~qr !FK
m~r !, ~18!

and the symmetric (N/23N/2) matrix

GK~qr !5GK~rq !

52
1

N FVeh,dS 2
K

2
1r ,

K

2
1q,

K

2
1r ,2

K

2
1qD

22Veh,xS 2
K

2
1r ,

K

2
1q,2

K

2
1q,

K

2
1r D G .

~19!

The remaining vertices and the dispersion for both phonons
and~mean-field! quasiparticles~holes! can be found, as indi-
cated in Sec. II A, in Appendixes A and B. Before we turn to
the approximate bosonization of~16! we wish to comment
on our restriction to singlet excitons. The~half-filled! ground
state is a spin singlet. Due to selection rules the absorption of
light leads to the creation of singlet excitons. As far as linear
absorption is concerned, triplet excitons are therefore forbid-
den and it suffices to exclusively restrict the theory to the
singlet sector. At finite exciton densities this is, however, no

longer clear. Singlet and triplet exciton operators denote not
truly independent excitations, which can be seen, for in-
stance, from the commutator

@SKn ,TQm1
† #52

1

A2(l FK
n SK2 2 l DCQ

m SQ2 2 l D pQ2 l↑
† pK2 l↓

2
1

A2(l FK
n S 2

K

2
1 l D

3CQ
m S 2

Q

2
1 l DhQ2 l↑

† hK2 l↓ , ~20!

with them51 triplet exciton defined by

TQm1
† 5(

k,q
dQ,k1qCQ

m S k2q

2 DTkq1† ~21!

and

Tkq1
† 5pk↑

† hq↑
† . ~22!

HereCQ
m(q) is the wave function for a triplet exciton corre-

sponding to the solution of the Bethe-Salpeter equation for
the two-time two-body Green function in the triplet particle-
hole channel.30 Clearly, the operators on the rhs of Eq.~20!
flip the spin of a particle and a hole, respectively, and their
expectation values in a finite density exciton gas are zero as
long as we allow only spin-conserving scattering processes.
Additonally, particle-hole symmetry also plays an important
role in determining whether singlet and triplet sectors
are indeed decoupled or not. Since in the high-density re-
gime excitons are ionized, it is conceivable that triplet and
singlet sectors are not strictly decoupled. This is even
more problematic if the finite lifetime of excitons is taken
into account with different decay channels for singlet and
triplet excitations. In the following we assume, however,~i!
that excitons created by the pump laser have, as far as ex-
perimental timescales are concerned, ‘‘infinite’’ lifetimes
and ~ii ! that the ground state of the pumped organic semi-
conductor is not too far from the BOW ground state, i.e.,
from uM&. Under these restrictions it is appropriate to ne-
glect the triplet sector.

C. Approximate boson representation

Up to this point there was nothing new in our treatment of
the extended Peierls-Hubbard model and all we have done is
to rewrite the original Hamiltonian in terms of exciton, scat-
tering, and phonon operators defined with respect to the
semiconducting Peierls-dimerized ground state of model~1!.
Recall, however, that on the way from~1! to ~16! we ne-
glected certain terms that we consider as unimportant for the
investigation of optical properties of conjugated polymers,
e.g., acoustic phonons orU processes. Since we otherwise
carefully kept residual interactions, no serious approxima-
tions have yet been made.

Physically speaking, Eq.~16! still describes a system of
coupled electrons and phonons driven by an external~light!
field and to study the optical properties of this rather com-
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plicated model we could derive equations of motion for
SQm
† , Ckq

† , Dkq
† , and bq

† similar to density-matrix
approaches.28 In these approaches one encounters the prob-
lem of decoupling expectation values such as^SKm

† Dkq
† &,

which is far from trivial. In most of these approaches an
implicit bosonization has been applied so that it is natural to
express~16! in terms of boson fields from the start and then
use either equations of motion or other many-body tech-
niques to study the optical reponse in the EPG representa-
tion.

We apply a perturbative bosonization technique for
fermion-pair operators developed in nuclear structure theory,
which enables us to express fermionic pair operators as infi-
nite polynomials of boson operators~viz., infinite series of
normally ordered products of boson operators!.12 Although
the physics involved is quite simple, due primarily to the
microscopic nature of the technique, the notations and formal
manipulations are nevertheless very involved. For technical
details and a discussion of mathematical subtleties we there-
fore refer the reader to the original papers by Sakamoto and
Kishimoto12,29and to Ref. 30. For the purpose of this paper it
suffices to recall the main points. First, it is important to note
that instead of expanding bare fermion pairs, e.g.,Skq

† , col-
lective fermion pairs, i.e.,SKn

† , are expressed in terms of a
Taylor series of normally ordered products of boson opera-
tors. Thus minimal dynamical studies have been done in the
fermion space and hopefully the most important correlations
have been summed up exactly. Specifically, it is convenient
to determine collective pairs, i.e., excitons, within the TDA
for the Bethe-Salpeter equation in the~singlet! particle-hole
channel. In quantum chemical terms, this procedure is
equivalent to a single–configuration-interaction calculation.
Second, once the collective pairs have been defined, the
mapping procedure~from fermion to boson space! is a purely
kinematic problem,31 in the sense that only the algebra
obeyed bySKn

† , Ckq
† , andDkq

† , Eqs.~9!–~13!, matters. De-
spite mathematical subtleties it can be shown that infinite,
normally ordered boson polynomials constructed in a sys-
tematic procedure employing an Usui operator12 satisfy the
algebra obeyed by the original fermion pair operators, i.e.,
matrix elements as well as equations of motion are con-
served. Unfortunately, from a practical point of view the
polynomials have to be truncated at some order. In particu-
lar, we present here only the lowest-order polynomials for
SKn
† , Ckq

† , andDkq
† and leave a detailed discussion of con-

vergence properties aside. The interested reader is invited to
consult Refs. 12, 29, and 30 for more details.

In terms of boson operators, we can write for the exciton
operator

~SQm
† !B5AQm

† 2
1

4 (
K1 ,n1 ,K2 ,n2 ,K3 ,n3

Y~Qm;K1n1K2n2K3n3!

3dQ,K11K22K3
AK1n1

† AK2n2

† AK3n3
1O~Y2!, ~23!

where therearrangement coefficient, which in fact is the
expansion parameter, reads

Y~Q1m1 ;K1n1K2n2K3n3!

51
1

2(l PK1n1 ;Q1m1

1 ~ l ,l !PK2n2 ;K3n3

2 ~Q12 l ,K12 l !

1
1

2(l PK1n1 ;Q1m1

2 ~ l ,l !PK2n2 ;K3n3

1 ~Q12 l ,K12 l !.

~24!

It is easy to verify thatY accounts for the deviation of the
overlap of two-exciton states from the corresponding overlap
of two-boson states. ThusY takes care of the internal struc-
ture of excitons.30 The scattering operators can be expressed
as bilinear boson forms

~Ckq
† !B5(

K,n
(
Q,m

PKn;Qm
2 ~k,q!dK,Q1k2qAKn

† AQm , ~25!

~Dkq
† !B5(

K,n
(
Q,m

PKn;Qm
1 ~k,q!dK,Q1k2qAKn

† AQm . ~26!

The structure coefficientsP6 entering Eqs.~24!–~26! are
defined in Eqs.~14! and ~15!.

Using Eqs. ~23!, ~25!, and ~26!, we can then express
model ~16! in terms of two boson fields, namely, one field
for optical phononsbq→BQ and another field for excitons
AKm . In Appendix C we will give details of this straightfor-
ward procedure. Finally, we obtain a Hamiltonian that des-
ribes a conjugated polymer~i.e., PA, PDA, or PPV! coupled
to external light fields as acoupled exciton-phonon gas
driven by external time-dependent electric fields. Specifi-
cally, the EPG Hamiltonian — the final result of Sec. II —
reads

H5(
K,n

Vn~K !AKn
† AKn1(

Q
v~Q!BQ

†BQ

1 (
Ki ,n i

dK11K2 ,K31K4
W 1234A1

†A2
†A3A4

1(
K,Q

(
n,m

Mnm~K;Q!AK1Qn
† AKm~BQ1B2Q

† !

2(
n

~mnA0n1H.c.!E~ t !1 (
Ki ,n i

m̃~K1n1K2n2K3n3!

3dK3 ,K11K2@AK1n1

† AK2n2

† AK3n3
1H.c.#E~ t !, ~27!

with i5Kin i . Herev(Q) andVn(K) depict, respectively,
the optic-phonon branch defined in Appendix A, Eq.~A18!,
and the TDA disperison for singlet excitons given by the
solution of Eq.~C2! in Appendix C. Explicit expressions for
the interaction vertices are provided in Appendix C, Eqs.
~C8!, ~C10!, and ~C13!, while the dipole momentmn is de-
fined in Eq. ~17!. Both fields, the exciton and the phonon,
satisfy Bose statistics and are independent of each other. The
first two terms on the rhs of Eq.~27! represent the free mo-
tion of TDA particle-hole pairs~excitons! and phonons. The
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third and fourth terms describe, respectively, exciton-exciton
and exciton-phonon scattering; both give rise to optical non-
linearities. The last two terms stand for linear and nonlinear
coupling to classical light fields.

Since the analytic expressions for the various vertices de-
fining our EPG model are rather complicated, which might
obscure the simple physics they contain, we present in Figs.
3–5 these vertices graphically in terms of mode-mode-
coupling diagrams.32 We emphasize that these ‘‘diagrams’’
are not Feynmann diagrams in the canonical sense and we
use them only to make the rather complicated analytic ex-
pressions of Appendix C transparent and to provide some
insight into the physics contained in the EPG Hamiltonian
~27!. In Sec. III we apply ordinary perturbation theory to
obtain the nonlinear response of the optically pumped EPG.
It is then important to keep in mind that the interaction ver-
tices, albeit depicted as black boxes, are in fact composite
entities with a complicated internal structure.

Let us represent the exciton wave funtionFK
n (q) as a

wavy up-going line that merges into a particle~up-going!
line and a hole~down-going! line. The exciton line is labeled
by the total~crystal! momentumK and the internal quantum
numbern, whereas the particle and hole carryK1q/2 and
K2q/2, respectively. As shown in Fig. 1, we can interpret
FK

n (q), assuming an artifical time going upward, as an an-
nihilation of an exciton and, correspondingly,FK

n (q)* as a
creation of an exciton. In fact, we will choose exciton wave
functions to be real, but to give ‘‘rules’’ for constructing
mode-mode coupling diagrams it is helpful to work with
complex wave functions. Additionally, we representVTDA,
Eq. ~18!, as shown in Fig. 2. Note that, althoughVTDA is
diagonal inK space, it is still nondiagonal in terms of the
internal quantum numbersm andn.

With Figs. 1 and 2 as building blocks, the exciton-exciton
vertex Eq.~C8! can be represented as shown in Fig. 3 and
consists of three parts:~i! the Pauli correction to the TDA
result ~the first two and last two terms!, ~ii ! the particle-
particle scattering~the third term!, and ~iii ! the hole-hole
scattering~the fourth term!. As expected, the interaction of
excitons due to the Pauli principle is given by the rearrange-
ment coefficientY. The remaining two processes describe

the exciton-exciton interaction due to the Coulomb interac-
tion. Specifically, the third term can be interpreted as an
exciton-exciton scattering event where only the particles are
subject to the Coulomb interaction: Two TDA modes decay
with the holes traveling unperturbed~exchange!, whereas the
particles scatter on the Coulomb potential. Finally, particles
and holes combine to form two~new! TDA modes. The situ-
ation is similar for hole-hole scattering~the fourth term!,
except that now particles travel without scattering. It is easy
to check that momentum conservation given by the Kro-
necker delta function in Eq.~C8! is satisfied with our par-
ticular choice of diagrams for the exciton wave function. The
black circle stands for the~short-range! particle-particle and
hole-hole potentialsVpp andVhh, respectively.

The exciton-phonon vertex Eq.~C10! contains scattering
of particles and scattering of holes and is represented in Fig.
4. Again, it is easy to check that momentum is conserved.
The gray circle stands for the electron-phonon vertex and the
zigzag line for an optical phonon. Figure 4~a! shows the
decay of a TDA mode into its constituent particle and hole,
subsequent scattering of the particle on a~optical! phonon,
and, finally, the merging of the scattered particle with the
unperturbed traveling hole to form a new TDA mode. In Fig.
4~b!, the role of the particle and hole is interchanged.

Finally, we consider exciton-light interaction Eqs.~17!
and ~C13!. Both the linear and the nonlinear terms act like
source or sink terms for excitons since they do not conserve

FIG. 1. Graphical representation of TDA wave functions
FK

n (q): ~a! annihilation of a TDA pair and~b! creation of a TDA
pair.

FIG. 2. Graphical representation ofVnm
TDA(K).

FIG. 3. Graphical representation of the exciton-exciton vertex.
The first two and the last two terms represent exchange corrections
to the TDA result. The third and fourth terms describe, respectively,
particle-particle and hole-hole scattering.

FIG. 4. Graphical representation of the exciton-phonon vertex:
~a! particle-phonon scattering and~b! hole-phonon scattering.
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the number of excitations. We will depict only the source
terms; the box with a cross in it stands for the interaction
with the ~classical! light field. The linear term is trivially
represented by Fig. 5~a! and needs no further comment; it is
simply the creation of an exciton. The nonlinear terms are
symbolized in Figs. 5~b! and 5~c!. Clearly, it can be inter-
preted as the creation of an exciton due to the light field and
subsequent decay of this exciton into a particle and a hole.
Then exchange interactions with already existing excitons
occur. Figure 5~b! depicts particle exchange and Fig. 5~c!
hole exchange. Finally, recombination takes place and two
excitons leave the vertex. Obviously, these processes are due
purely to statistics and, moreover, take place only at finite
density. This is the well-known phase-space filling effect,33

which is included in our boson representation in the form of
a nonlinearexciton-light interaction.

III. HAMILTONIAN THEORY OF „NONRESONANT…
PUMP-AND-PROBE SPECTROSCOPY

Within the simple conceptual frame of considering exci-
tons as Bose particles with residual interaction among them-
selves, due to the Coulomb interaction and Pauli principle,
and residual interaction with phonons, the following analogy
of ~nonresonant! pump-and-probe spectroscopy and weakly
interacting Bose gases emerges.14 The nonresonant~strong!
pump laser creates avirtual ‘‘condensate’’ of pump-induced
excitons and pump-stimulated optical phonons. Within the
rotating-wave approximation, the pump frequencyvp acts
like a ‘‘chemical potential’’ that pins the condensate, thus
opening the door to a quasi-equilibrium description of this
involved many-body problem. Residual interactions ‘‘de-
plete the condensate’’ and renormalize the excitation spec-
trum of the pumped EPG seen by the second~weak! test
laser. Specifically, excitations above the condensate arecom-
posite quasiparticleswhose excitonic and phononic compo-
nents, and thus the coupling to the test laser, are determined
by pump frequency and intensity. In this section we present
the lowest-order calculation for the optical Stark effect and
inverse Raman scattering in close analogy to Bogoliubov’s
theory of a weakly interacting Bose gas. Specifically, we
describe the ground state of the pumped EPG as a coherent

superposition of excitons and phonons and the excitations in
terms of a bilinear form of shifted exciton and phonon op-
erators~viz., Hamiltonian theory!, which can be diagonalized
by a Bogoliubov transformation leading to composite quasi-
particles, which in turn couple to the test laser and give rise
to OSE and IRS.

A. The coherent ground state

We consider a pump field~frequencyvp below the opti-
cal gap! and a test field (E t!Ep) of the form

E~ t !5Epe
2 ivpt1E te

2 iv tt1c.c. ~28!

Since the frequency of the pump fieldvp is below the optical
gap, onlyvirtual particle-hole pairs~i.e., excitons! are cre-
ated. In contrast toreal particle-hole pairs whose lifetime is
determined byintrinsic equilibration mechanisms, such as
exciton-exciton and/or exciton-phonon scattering, the life-
time of virtual excitations is exclusively determined by the
offset of the pump frequency from the lowest optical transi-
tion. Thus, according to Heisenberg’s uncertainty principle,
excitons created by the~nonresonant! pump laser have a life-
time roughly given by

Dt;
h

V12vp
, ~29!

whereV1 denotes the lowest exciton transition~optical gap!.
If, on the other hand, intrinsic scattering mechanisms giving
rise to, e.g.,~polarization! dephasing, occur on a time scale
Tx@Dt, lifetimes of pump-induced excitons can be ignored.
Hence the pump laser creates excitonscoherently. In the fol-
lowing we will adopt a quasistationary approximation and
neglect all dynamic aspects associated with pump-induced
excitons and, due to exciton-phonon interaction, with pump-
stimulated phonons. Ourcollisionlesstheory applies, there-
fore, to experiments with a smooth, ultrashort~compared to
exciton lifetimes!, and sufficiently nonresonant pump laser
pulse. For more details about the validity of the quasi-
stationary theory we refer to Ref. 34.

For the lowest-order theory of OSE and IRS we need to
consider only excitons and phonons with total momentum
K50. Excitons and phonons with finite momentum appear
only in higher order, e.g., in theT matrix for multiple exci-
ton scattering, which would be necessary for a proper de-
scription of biexcitons and their optical signatures. In the
rotating frame of the pump laser, the EPG Hamiltonian~27!,
neglecting fast oscillating terms;e2 i t2vp or ;2 i t (v t1vp),
reduces therefore to

H5(
n

@Vn2vp#An
†An1v0B

†B

1 (
n,m,l,k

V nmlkAn
†Am

†AlAk1(
n,m

MnmAn
†Am~B1B†!

2(
n

~mnAn@Ep1E te
2 iDt#1 H.c.!

1(
n,i

~m̃nmlAn
†Am

†Al@Ep1E te
2 iDt#1H.c.!, ~30!

FIG. 5. Graphical representation of exciton-light vertices.~a!
denotes linear exciton-light coupling. Nonlinear exciton-light cou-
pling is depicted in~b! ~particle exchange! and~c! ~hole exchange!.
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with D5v t2vp ~offset between pump and test frequency!,
Vn5Vn(0), v05v(0), An5A0n , andB5B0 . The interac-
tion vertices are obtained from the general expressions given
in Appendix C, Eqs.~C8!, ~C10!, and ~C13!, by setting all
momenta to zero. Since no confusion is possible, we will
from now on suppress the momentum label for the exciton
wave functions. After some algebra the~symmetrized!
exciton-exciton vertex reads

V nmlk5
1

4
@W nmkl1W mnkl1W nmlk1W mnlk#

5
1

8(q @8Eq2Vn2Vm2Vl2Vk#

3Fn~q!Fm~q!Fl~q!Fk~q!

1
u12v
2N

@dnldmk1dkndlm#, ~31!

with W nmkl5W 0n0m0k0l . For the exciton-phonon vertex
we find

Mnm[Mnm~0;0!

528lA 1

2dv0N
(
q

sin~q!
Dq

2Eq
Fn~q!Fm~q!,

~32!

with Eq andDq given in Appendix A, Eqs.~A26! and~A11!,
respectively, andN the number of sites. The nonlinear cou-
pling to the light fields is given by

m̃nml[m̃~0n0m0l!5
1

4(k,q mkFn~q!Fm~q!Fl~q!Fk~q!.

~33!

Employing definition~17!, we find for the dipole matrix el-
ement

mn5A2
e

2t0
(
l

Fn~ l !, ~34!

which describes the linear exciton-light coupling. For sim-
plicity we performed a gauge transformationAn

†→ iAn
† ,

which allows us to work with a real dipole matrix element
@instead of with Eq.~B26!#. FQ

m(q) andVn denote the exci-
ton wave function and exciton energy, respectively, as ob-
tained in Appendix C by solving the Bethe-Salpeter equation
in the TDA, i.e., Eq.~C2!.

In the rotating frame, neglecting the envelope of the pump
pulse, the pump field acts like a time independent source
~sink! for excitons; only the coupling to the test laser is still
time dependent. Therefore the ground state of the joint sys-
tem of pump field, excitons, and phonons is no longer
uM& as specified in Eq.~A27!, Appendix A. Instead, the
ground state of the pumped system contains a finite number
of excitons~particle-hole pairs! as well as phonons and is
conveniently expressed in terms of a coherent state corre-
sponding to a~unitary! Glauber transformation of Eq.~30!.
Using standard notation,35 we write, for the ground state of
the pumped EPG in the rotating frame,

uz;g&5UGuM&[expS (
n

@An
†zn2hc# De@B†g2hc#uM&,

~35!

where uM& denotes the vacuum of the exciton operators
An ~full valence and empty conduction band! and the
vacuum of the phonon operatorB ~dimerized lattice!. As
usual, the~unitary! Glauber transformationUG introduces
new quasiparticles that annihilate the new ground state
uz;g&. The new quasiparticles are related to the old quasipar-
ticles by ac-number shift

an5UGAnUG
† 5An2zn , ~36!

b5UGBUG
† 5B2g. ~37!

To determinezn andg, we rewrite the static part ofH,
Eq. ~30!, in terms of new excitonic (an) and phononic (b)
quasiparticle operators and force all linear terms (;an

and/or ;b) to vanish. This procedure leads to a set of
coupled nonlinear equations for the set of shift parameters
($zn ,g%) and corresponds to mean-field equations of a
driven, weakly interacting two-component Bose gas. With
the previously described notation, the condition to make all
linear parts vanish can be written in a very compact form

~Vn2vp!zn1(
m

@Qnm1Pnm1Gnm#zm5mnEp , ~38!

v0g1(
n,m

Mnmznzm50, ~39!

where we used the fact thatzn andg are real quantities. Here
Q is the Hartree self-energy due to exciton-exciton interac-
tion, P due to ~nonlinear! exciton-light interaction, andG
due to exciton-phonon interaction~lattice-relaxation energy!.
Explicitly, they are defined as

Qnm52(
l,k

V nlkmzkzl , ~40!

Pnm53(
l

m̃nmlzlEp , ~41!

Gnm52Mnmg, ~42!

where we used various symmetries of the interaction vertices
Eqs.~31! and ~33!.

In physical terms,zn and g correspond to the pump-
induced polarization and -stimulated phonons, respectively.
More specifically,n5(nnn5(nuznu2 stands for the total
pump-induced (K50) exciton population, whereas
nph5ugu2 depicts the pump-stimulated population of
(Q50) optical phonons. For not too strong nonresonant
pump fields the coupled set of mean-field equations can be
solved iteratively. The ground state of the pumped EPG is
then specified in terms ofzn andg. In Sec. III D we present
numerical results fornn andg as a function ofvp and Cou-
lomb interaction strengthsU andV.
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B. Collective excitations

We now calculate the excitation spectrum with respect to
the coherent ground state of the pumped EPG employing the
harmonic approximation, i.e., we rewrite the time-
independent part ofH in terms of shifted quasiparticles,
Eqs. ~36! and ~37!, and keep only terms that are at most
bilinear in a andb. Note that all linear terms vanish due to
Eqs. ~38! and ~39!. This is similar to the Bogoliubov ap-
proximation for the weakly interacting Bose gas.36 Neglect-
ing residual interaction terms~e.g., terms such as
;V za†aa), the excitation spectrum of the pumped EPG is
described by the quadratic form

Hp
~2!5E~z;g!1(

n,m
Anman

†am1v0b
†b1

1

2(n,m @Bnman
†am

†

1Bnmanam#1(
n

@Dnan
†b†1Dnan

†b1H.c.#. ~43!

Here we attached a subscriptp to indicate that Eq.~43! de-
scribes the EPG in the presence of the pump laser and a
superscript to denote the harmonic approximation. Thec
number E(z;g) is the total ground-state energy of the
pumped EPG. Since this energy does not show up in the
optical response of the pumped system, we will not need the
explicit form of E(z;g). It suffices to mention that it is ob-
tained by replacing all exciton operators in the time-
independent part ofH by z and all phonon operators by
g. We also introduced two real, symmetric (N/23N/2) ma-
tricesA andB and a real (N31) matrixD

Anm5~Vn2vp!dnm1M̄nm
11 , ~44!

Bnm52M̄nm
20 , ~45!

Dn5(
m
Mnmzm . ~46!

The static part of thenormal self-energy containing contri-
butions from exciton-exciton, exciton-phonon, and~nonlin-
ear! exciton-light interaction is given by

M̄nm
115(

k,l
4V nlkmzlzk1(

l
2Mnmg14m̃nlmEpzl

~47!

and describes scattering events between excitons residing in
the condensate and excitons outside the condensate. To make
the various contributions to the normal self-energy more
transparent, we show graphically in Fig. 6 the various terms
of Eq. ~47!. Black boxes stand for the exciton-exciton vertex
and gray circles and boxes with a cross for exciton-phonon
and exciton-pump interaction vertices, respectively. Solid
straight and solid wavy lines represent, respectively, excitons
and phonons above the condensate, whereas dashed straight
and dashed wavy lines correspond to excitons and phonons
residing in the condensate, respectively.

The static part of theanomalousself-energy comprising
terms due to exciton-exciton and~nonlinear! exciton-light
interaction reads

M̄nm
205(

k,l
V nmlkzlzk1(

l
m̃nlmEpzl ~48!

and describes spontaneous creation~annihilation! of excitons
outside the condensate and thus fluctuations around the con-
densate. It is graphically depicted in the first part of Fig. 7.
The physical meaning ofDn is that of a mixing amplitude
between excitons and phonons outside the condensate giving
rise to number-conserving as well as number-nonconserving
processes. The scattering term is schematically depicted in
the second part of Fig. 7. In contrast to thestatic phonon-
mediated exciton-exciton interaction due to pump-stimulated
phonons@the middle term in Eq.~47!#, this contribution
gives rise to adynamic, i.e., resonant, interaction between
excitons outside the condensate.

It is important to recall that within the harmonic approxi-
mation as specified by thestaticself-energies, Eqs.~47! and
~48!, multiple scattering of excitons is ignored. Thus it is not
possible to consider biexciton formation. Furthermore, since
there are many frequency-dependentdynamic self-energy
diagrams that are also ofO(z2) or O(zEp), the harmonic
theory of ~nonresonant! pump-and-probe spectroscopy is,
similar to Bogoliubov’s theory of a weakly interacting Bose
gas, not completely consistent. Nevertheless, in the region
near the optical gap, i.e., forvp1v0;v t;V1 , it should
give qualitatively correct results.

The bilinear form~43! can be diagonalized with a general
Bogoliubov transformation35 that amounts to the definition

FIG. 6. Static part of the normal self-energyM̄11. The first and
third diagrams are, respectively, due to exciton-exciton and~NL!
exciton-light interactions. The second diagram depicts the phonon-
mediatedstaticexciton-exciton interaction.

FIG. 7. Static part of the anomalous self-energyM̄20. The first
diagram and the second diagram are due to exciton-exciton interac-
tion and~NL! exciton-light interaction, respectively.D denotes the
‘‘mixing of exciton and phonon degrees of freedom’’ giving rise to
the phonon-mediateddynamicexciton-exciton interaction.
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of new compositequasiparticles. In terms of the new quasi-
particle operator Eq.~43! reads

Hp
~2!5(

j
e jdj

†dj1E~z;g!1
1

2 F(
j

e j2(
n
Ann2v0G ,

(49)

with theN/211 eigenenergiese j given by the solution of a
nonsymmetric eigenvalue problem@of rank 23(N/211)#

S A D B D

D̃ v0 D̃ 0

B D A D

D̃ 0 D̃ v0

D S X j

Vj

Y j

Wj
D 5e jS I 0 0 0

0 1 0 0

0 0 2I 0

0 0 0 21
D

3S X j

Vj

Y j

Wj

D . ~50!

The matricesA andB are defined in Eqs.~44! and ~45!,
respectively, andD̃ is the transposite ofD, given in Eq.~46!.
X j andY j denoteN/2 vectors, whereasVj andWj describe
ordinaryc numbers.I stands for the (N/23N/2) unit ma-
trix andv0 for the optical (Q50) phonon frequency.

The eigenmodes (X ,V,Y ,W) of Eq. ~50! describe the
relation between the ‘‘old’’ and the ‘‘new’’ quasiparticles.
Specifically, we find

an5(
j

@X n
j dj1Y n

j dj
†#, ~51!

b5(
j

@Vjdj1Wjdj
†#. ~52!

From the inverse of Eqs.~51! and ~52!, it is clear that the
eigenmodes (X ,V,Y ,W), which depend on the pump pa-
rametersvp andEp , determine the composition of the new
excitations, i.e., phonon vs exciton contribution, and in turn
their coupling to the test laser.

C. Linear response

The full optical response of the pumped EPG contains not
only absorption but also optical gain and is most conve-
niently obtained from general linear-response theory in terms
of normal and anomalous~bosonized! exciton Green
functions.30 Here, however, we are interested only in the
leading-order steady-state absorption spectrum of the EPG,
which can be calculated with Fermi’s golden rule.

We rewrite the time-dependent part ofH, Eq. ~30!, in
terms of~Glauber-shifted! quasiparticles, i.e.,A→a. Keep-
ing only terms linear in the new quasiparticles and calling all
time-dependent terms of Eq.~30! H t(t), we obtain, neglect-
ing c-number contributions,

H t~ t !52(
n

mn@12 f n#an
†
E te

2 iDt

2(
n

mn@12 f n#anE te
iDt

1(
n

mngnanE te
2 iDt1(

n
mngnan

†
E te

iDt.

~53!

Here we defined correction factorsf n andgn , which come
from the nonlinear exciton-light coupling and are explicitly
given by

f n52gn52(
m,l

m̃nml

mn
zmzl

5
1

2(l (
k,m,l

mk

mn
Fk~ l !Fn~ l !Fm~ l !Fl~ l !zmzl , ~54!

where we used Eq.~33!. zn is the pump-induced polarization
obtained by a self-consistent solution of Eqs.~38! and ~39!.
The product of exciton wave functions reflecting the internal
structure of excitons is always smaller than one. Hence, for
low pump intensities (;uEpu2) and not too small detunings
(V12vp), leading tozn,1, we expectf n to be very small.
All our numerical calculations have been made in thisweak-
coupling regime. Therefore, instead of considering the full
~time-dependent! perturbation given in Eq.~53!, we neglect
all contributions; f n(gn) and work approximately with

H t~ t !>2(
n

mn$an
†
E te

2 iDt1H.c.%. ~55!

In order to apply Fermi’s golden rule, we rewrite Eq.~55! in
terms of composite quasi-particles defined through the or-
thogonality transformation~51! and ~52!, which leads to

H t~ t !52(
n, j

$mn@Y n
j dj1X n

j dj
†#E te

2 iDt1H.c.%. ~56!

Furthermore, anticipatingY!X and keeping only the reso-
nant term;e2 iDt, we finally get

H t~ t !52(
n, j

mnX n
j dj

†
E te

2 iDt. ~57!

We can now formally apply Fermi’s golden rule to obtain for
the ~linear! absorption spectrum of the pumped EPG a very
compact expression

a~v!58p2e2(
j

u f j u2d~v t2vp2e j !, ~58!

wherev t , vp , ande j are, respectively, the frequency of the
test laser, the pump frequency, and the excitation energies of
the optically pumped EPG determined by the eigenvalue
problem Eq.~50!. The oscillator strength is given by

f j5(
n,l

Fn~ l !X n
j , ~59!
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where we used definition~34! for the dipole matrix element
mn . In addition to the excitonic enhancement factorFn there
is now another oscillator strength renormalizationX j due to
pump-induced exciton-exciton, exciton-phonon, and~nonlin-
ear! exciton-light interaction.

D. Numerical results

We now present numerical results for the steady-state re-
sponse of a coherently pump EPG in the collisionless regime
with emphasis on the OSE and IRS. Specifically, we study a
half-filled N5160 site system with periodic boundary con-
ditions and two sets of model parameters. The first set, indi-
cated in Table I, is representative for PDA~strong Coulomb
interaction!, whereas the second set is identical to the first
one except for the Coulomb interaction, which is chosen to
beU52V50.4t0 ~weak Coulomb interaction!. With the first
set of parameters, model~1! exhibits a strong~bound! exci-
ton resonance atV151.92 eV that dominates the~linear!
absorption spectrum and is comparable to the optical gap in
polydiacetylene.8 The exciton binding energy in this case is
eb50.675 eV, which is larger than the optical phonon fre-
quencyv050.183 eV. In contrast, the second set of param-
eters gives no bound exciton. In that caseV150.96 eV and
eb50.02 eV, comparable to the discreteness of energy levels
due to finite-size effects and much smaller than the optical
phonon frequency.

In both cases of a strong and a weak Coulomb interaction,
we take for the pump field strengthEp50.001, which corre-
sponds to a pump intensity of roughlyI p513 MW/cm2, a
typical value for actual laser intensities in pump-and-probe
spectroscopy. Keeping the pump field strength fixed, we vary
the pump frequencyvp and analyze pump-induced changes
near the optical gap. In particular we consider pump and test
frequencies such thatv t;V1;vp1v0 . In the following we
measure energies in units of 2t0 and, introducing a parameter
Q5(V12vp) /v0 , the detuning of the pump frequency
from the optical gap in units ofv0 .

First, we consider the coherent ground state of the
pumped EPG. An iterative solution of the mean-field equa-
tions, Eqs.~38! and~39!, gives numerical data for the pump-
induced polarizationzn and stimulated phononsg. Figure 8
shows the corresponding pump-induced exciton population
nn5uznu2 for a strong and a weak Coulomb interaction in
semilogarithmic scale forQ51. Clearly, in the case of a
strong Coulomb interaction the bound exciton state (n51) is
much more populated than the scattering states (n>2), i.e.,
n1@nn for n>2. For a weak Coulomb interaction the lowest
state is no longer as distinct and the distribution ofnn is
much smoother; nevertheless, the lowest states do still domi-
nate. In our calculations of the steady-state response of the
pumped EPG, we kept the whole two-particle spectrum,
which is consistent with our assumption of ultrashort pulses
with a width much smaller than intrinsic relaxation times.
We point out that even forresonantexcitation with ultrashort
pulses it is not possible to ignore scattering states and restrict
the theory to an effective few-level system, e.g., ground state
and exciton. This has been nicely demonstrated experimen-
tally using time-resolved FWM in quantum wells.37

In Fig. 9 we show the population of the lowest exciton
state as a function ofQ for strong and weak Coulomb inter-

actions. Theexcitonic enhancementof the occupancy of the
lowest state can be clearly seen. Finally, Fig. 10 showsg as
a function ofQ. It is obvious from Figs. 9 and 10 that, only
for Q;1, i.e.,vp;V12v0 , there is a considerable amount
of stimulated excitons and phonons. Both consitute acoher-
ent condensatewhose excitations in turn are measured by the
second weak test field.

Employing a Ullah-Rowe algorithm,38 the eigenvalue
problem Eq.~50! can be straightforwardly solved and gives
the excitation spectrum of the pumped EPG. These excita-
tions arecomposite quasiparticleswhose phononic and exci-
tonic degrees of freedom depend on pump parameters. More-
over, since light couples exclusively to the excitonic
component, we expect that the oscillator strength associated
with these quasiparticles also varies significantly withvp
andEp . This is demonstrated in Fig. 11, which depicts, for
the strong Coulomb interaction alone, the normalized oscil-
lator strength for the two lowest excitations of the pumped
EPG. ForQ;1, the lowest excitation of the pumped EPG
becomes ‘‘brighter,’’ i.e., with increasing oscillator strength,
whereas the next highest excitation loses oscillator strength.
In Fig. 12 we depict the energetic position of these reso-
nances as a function ofQ. For largeQ, i.e., large detuning,
the lowest resonance closely followsvp1v05V1
2(Q21)v0 , indicating its phononic precursor and its con-
nection to IRS.39 The second resonance starts out from the
bare exciton energyV1 and begins to deviate from that value
as Q approaches 1~see Fig. 13!. From Figs. 11, 12, and
especially Fig. 13 we see that forQ;1, the excitations of the
optically pumped EPG are significantly modified compared
to the excitations of the unperturbed EPG. In other words,
pump photons with frequencyvp5V12v0 start to initiate a
strong mixing, i.e., renormalization, of the bare quasiparti-
cles, optical phonon, and TDA exciton.

Experimentally, strong renormalization effects can be
seen in the differential absorption spectrum as a function of
temporal delay between~finite! pump and test pulses. Since
we take into account neither the finite width of the laser
pulses nor the delay between pump and test pulses, a sound
calculation of thedifferential absorption spectrumis outside
our simplified Hamiltonian theory for the steady-state re-
sponse of the pumped EPG. As a crude approximation we
can, however, study thedifference absorption spectrum, i.e.,
absorption of the test laser field with the pump fieldonminus
the test beam absorption with the pump laseroff. Although
@Eq. ~58! with Lorentzian broadening of 0.001# not quite
accurate, it should give at least a qualitative picture for the
differential absorption spectrum at zero time delay and
pulses much shorter than intrinsic relaxation times~see Sec.
III A !. Figures 14 and 15 show, for the case of a strong and
a weak Coulomb interaction, respectively, the difference ab-
sorption near the optical gap of the unperturbed EPG, i.e.,
v t;V1 , for various values ofQ. The peak at the high-
energy side originates from the shifted exciton resonance
~i.e., OSE!, whereas the signature at the low-energy side de-
picts the appearance of the IRS resonance. As is also the case
in atomic physics,39 the line shape of the IRS resonance
strongly depends on the pump frequency, i.e., onu. This is
due primarily to the interference of the OSE with the IRS
and can be clearly seen in both Figs. 14 and 15. For instance,
in Fig. 14 the shape of the IRS signal~low-energy feature!
changes from absorptiveQ51.12 to dispersiveQ51.0 to
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transmissiveQ50.96 and back to dispersiveQ50.88. Simi-
lar changes, although less pronounced, occur for the case of
weak Coulomb interaction, Fig. 15. The qualitative change
of the IRS line shape has been experimentally observed by
Blanchardet al.4,9

Our primary objective is to provide amicroscopic under-
standing of pump-and-probe spectroscopy. Therefore, we
now address the question as to what extent the various inter-
actions, such as exciton-exciton, exciton-phonon, and~non-
linear! exciton-light coupling, give rise to renormalization of
the quasiparticles of the pumped EPG. In Figs. 16 and 17 we
depict forQ51 and both cases of strong and weak Coulomb
interaction how the difference absorption spectrum would
look if we had kept as nonlinearities only~i! the exciton-
exciton, ~ii ! the exciton-phonon, or~iii ! the ~nonlinear!
exciton-light interaction alone. Both Figs. 16 and 17 show
that the ~nonlinear! exciton-light interaction only slightly
renormalizes the excitation spectrum of the pumped EPG
resulting in a small blueshift of the optical gap. In contrast,
the exciton-exciton interaction causes a large blueshift, indi-
cating a significant effect on the excitations of the pumped
EPG. Obviously, the stronger the original Coulomb interac-
tion, the stronger this effect. The exciton-phonon interaction
gives rise in both cases to a double-peak structure due to the
IRS resonance and shifted optical gap. Comparing the full
response~all interaction processes taken together! for strong
and weak Coulomb interactions, respectively, we see that the
double-peak structure persists, although in the case of the
strong Coulomb interaction a significant redistribution of os-
cillator strength occurs; the ‘‘phononic’’ part of the double-
peak structure is less pronouced in the case of a strong Cou-
lomb interaction.

Thus, within our simplified theory, neglecting transient
aspects of the light-matter coupling~delay, pulse shapes!, it
is exclusively the relative strength of the Coulomb and the
electron-phonon interaction giving rise tostatic exciton-
exciton, exciton-phonon, and~nonlinear! exciton-light cou-
pling, which controls, for fixed detuningQ and pump inten-
sity I p;uEpu2, the excitation spectrum of the pumped EPG
and hence the shape of the difference spectrum. As far as
measured differential absorption spectra are concerned, it is,
however, thedynamicweighting of these interactions due to

transient aspects, such as impulsive laser excitation and tem-
poral delay between the pump and test pulses, that strongly
affects the observed line shapes.

IV. CONCLUSION

We have proposed, following the seminal work of
Schmitt-Rink, Chemla, and Haug,14 an alternative descrip-
tion of nonlinear optics of conjugated polymers in terms of
an externally driven EPG, i.e., a two-component Bose gas,
emphasizing throughout the paper the importance of~i!
exciton-exciton, ~ii ! exciton-phonon, and~iii ! ~nonlinear!
exciton-light coupling. Starting from a model for interacting
p electrons coupled to a one-dimensional lattice, we utilized
the Sakamoto-Kishimoto boson expansion technique12 and
presented a detailed and transparent derivation of an effec-
tive EPG Hamiltonian based on~one-dimensional! TDA ex-
citons calculated with respect to the Peierls-dimerized
ground state. We gave expressions for the interaction verti-
ces and employed mode-mode coupling diagrams to visual-
ize the physics content. The harmonic-oscillator interpreta-
tion of nonlinear optics effects, or, equivalently, the boson

FIG. 8. Pump-induced population of optically
active excitons forQ51. Circles denote the case
of a strong Coulomb interaction, while squares
depict the case of a weak Coulomb interaction.

FIG. 9. Pump-induced population of the lowest exciton state.
Circles denote the case of a strong Coulomb interaction~bound
particle-hole pair!, while squares stand for a weak Coulomb inter-
action ~no bound state!.
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representation chosen in this paper, dates back to the begin-
ning of nonlinear optics.40 It is, however, only recently in the
field of conjugated polymers that such an approach has been
applied.41 Although the authors of Ref. 41 do not explicitly
introduce a bosonic quasiparticle description for the elec-
tronic subsystem, there are, nevertheless, similarities to our
approach, which is not surprising since both approaches are
from a technical point of view perturbative extensions of
standard harmonic approximations: the TDA in our case and
the random-phase approximation~RPA! in Ref. 41.

The discussion of pump-and-probe spectroscopy was re-
stricted to the steady-state response of a coherently pumped
EPG in the collisionless regime. Specifically, we explained
the OSE and IRS in terms ofcomposite excitationswhose
excitonic and phononic degrees of freedom are determined
by the parameter of the pump laser, i.e., pump frequency and
pump intensity. Except for the classical treatment of the light
field, these composite quasiparticles are related tophonori-
tons introduced in Ref. 42 to study similar effects in inor-
ganic ~bulk! semiconductors. We showed how Coulomb in-
teractions affect the coherent optical response and discussed
the relative importance of various interaction processes on
the excitation spectrum of the pumped EPG and hence on the

difference absorption spectrumDa.
For a detailed comparison with experiments our EPG ap-

proach is not yet developed completely enough, and in con-
trast to phenomenological multimode Brownian oscillator
models,43 we are not yet able to reproduce all experimental
features. One drawback of these phenomenological models
is, however, that they do not clarify the underlying many-
body processes and are in this sensead hoc. We, on the other
hand, are able to determine the consequences of various
many-body effects on the excitation spectrum of the pumped
conjugated polymer and to give amicroscopic understanding
of the underlying physics in terms of~renormalized! quasi-
particles. For a more advanced treatment of pump-and-probe
spectroscopy we should solve, however, the full externally
driven Beliaev equations for the normal and anomalous ex-
citon Green functions,30 taking finite pulse shapes, delays,
and possibly alsodynamicself-energies due to higher-order
correlations of the coupled EPG into account. The latter is
important for a treatment of the driven EPG beyond the
mean field approximation, for instance, to take correlations
between excitons into account. Conjugated polymers are

FIG. 10. Stimulated optical phonons. Circles denote the case of
a strong Coulomb interaction, while squares stand for a weak Cou-
lomb interaction.

FIG. 11. Normalized oscillator strength of the two lowest exci-
tations of the pumped EPG. Circles denote the IRS resonance~low-
est excitation!, while squares depict the shifted optical gap~OSE!.

FIG. 12. Energetic position of the two lowest excitations of the
pumped EPG. Circles denote the IRS resonance~lowest excitation!,
while squares depict the shifted optical gap~OSE!. Dotted and
dashed lines stand forvp1v0 andV1 , respectively.

FIG. 13. Energetic position of the two lowest excitations of the
pumped EPG forQ;1. Circles denote the IRS resonance~lowest
excitation!, while squares depict the shifted optical gap~OSE!. Dot-
ted and dashed lines stand forvp1v0 andV1 , respectively.
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wide-gap semiconductors and it is conceivable that for a suf-
ficiently strong Coulomb interaction biexcitons and perhaps
even higher-order bound complexes — so-calledn strings44

— stabilized by low dimensionality can be formed. To take
biexciton formations into account and to study their signa-
tures in nonlinear spectroscopy, e.g., in two-photon absorp-
tion, it is required to calculate theT matrix for mutiple-
exciton scattering, which indeed gives rise to frequency-
dependent, i.e., dynamic, self-energies. Another important
issue for the photophysics of low-dimensional conjugated
polymers is disorder due to electronic and/or mechanic im-
perfections arising in the course of the synthesis or due to
deliberate doping and/or blending of polymers. Especially
due to the Q1D nature of these materials, it is expected that
for a complete microscopic understanding of transient spec-
troscopy it is necessary to treat disorder not only in the low-
est approximation, e.g., Born approximation, giving rise to
decay rates, but to higher order where disorder induces lo-

calized states. Whether an exciton localizes as a whole or
breaks up into its constituents, a particle and a hole, which
then in turn localize individually, is an open question and
deserves, also from a fundamental point of view, more atten-
tion. We hope that the EPG approach presented can be uti-
lized to shed light on this interesting problem.

APPENDIX A: MEAN-FIELD APPROXIMATION

Following Hayashi and Nasu,16 the mean-field approxi-
mation for model~1! consists of~i! an unrestricted Hartree-
Fock approximation for the Coulomb interaction and~ii ! a
Born-Oppenheimer approximation for the electron-lattice
coupling. First, it is convenient to define a dimensionless
lattice field

FIG. 14. Difference absorption spectrum near the optical gap for
the case of strong Coulomb interactions and various values of pump
detuningQ: Q51.12 ~solid line!, Q51.04 ~dotted line!, Q51.0
~dashed line!, Q50.96 ~long-dashed line!, and Q50.88 ~dot-
dashed line!. The curves are artifically shifted on the vertical axis.

FIG. 15. Difference absorption spectrum near the optical gap for
the case of weak Coulomb interactions and various values of pump
detuningQ: Q51.12 ~solid line!, Q51.04 ~dotted line!, Q51.0
~dashed line!, Q50.96 ~long-dashed line!, and Q50.88 ~dot-
dashed line!. The curves are artifically shifted on the vertical axis.

FIG. 16. Difference absorption spectrum for the case of a strong
Coulomb interaction andQ51 as obtained by considering~i!
exciton-exciton ~dot-dashed line!, ~ii ! ~nonlinear! exciton-light
~dashed line!, and ~iii ! excition-phonon interactions~long-dashed
line! separately. The solid line depicts the completeDa with all
interaction processes taken into account. For reference, we also
show the unperturbed exciton line~dotted!.

FIG. 17. Difference absorption spectrum for the case of a weak
Coulomb interaction andQ51 as obtained by considering~i!
exciton-exciton ~dot-dashed line!, ~ii ! ~nonlinear! exciton-light
~dashed line!, and ~iii ! exciton-phonon interactions~long-dashed
line! separately. The solid line depicts the completeDa with all
interaction processes taken into account. For reference, we also
show the unperturbed exciton line~dotted line!.
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ql5
K

2a
ul , ~A1!

together with dimensionless coupling constantsu5U/2t0 ,
v5V/2t0 , andl52a2/Kt0 and a dimensionless lattice mass
~adiabaticity parameter! d5l/(v0/2t0)

2, which allows us to
measure energies in units of 2t0 , i.e.,H→H/2t0 . Anticipat-
ing the BOW~Peierls-dimerized! ground state, we divide the
~dimensionless! lattice field into a static part~dimerization!
and a dynamic part~phonons!

ql~ t !5q~2 ! l1x l~ t ! ~A2!

and write for the charge (nls5cls
† cls) and bond

(mls5cls
† cl11s) densities~anticipating half filling and again

the Peierls instability!

^nls&5
1

2
, ~A3!

^mls&5^mls
† &5m̄1~21! ldm. ~A4!

The three parameterm̄, dm, and q, related to bandwidth
renormalization and to the single-particle gap, will be deter-
mined self-consistently at the end of this appendix. Using the
well-known operator identity

ÂB̂5Â^B̂&1B̂^Â&2^Â&^B̂&1@Â2^Â&#@B̂2^B̂&#
~A5!

to decouple an effective single-particle part from an explicit
two-body contribution, we regroup Eq.~1! into

H5HMF1Hph
0 1dHe-e1dHe-ph. ~A6!

HereHMF andHph
0 denote, respectively, the electronic and

the phononic one-body part, whereasdHe2e anddHe2ph de-
pict two-body terms due to~residual! electron-electron and
electron-phonon interactions. Furthermore, we define in the
extended BZ, i.e.,2p<k,p, electronic operators~unit lat-
tice constant!

cks5
1

AN(
l
e2 iklcls ~A7!

and phonon operators

x l5
1

AN(
q

eiqlA 1

2dv~q!
@bq1b2q

† #. ~A8!

Specifically in momentum space, we then obtain in there-
duced BZ, i.e.,2p/2<k,p/2 ~doubling of the unit cell due
to Peierls instability!, for the electronic single-particle part,

HMF5H̄1(
k,s

@ek~ck6ps
† ck6ps2cks

† cks!1 iDk~ck6ps
† cks

2cks
† ck6ps!#, ~A9!

with

ek52t̃0cosk, ~A10!

Dk54ãũsink, ~A11!

and

t̃05
1

2
1vm̄, ~A12!

2ãũ5lq1vdm, ~A13!

H̄5NFu41v12v~m̄21dm2!12lq2G . ~A14!

In the extended BZ, the free phonon part becomes

Hph
0 5(

q
Fv~q!bq

†bq1
1

2G , ~A15!

whereas in the reduced BZ, introducing acoustic-
(b1q5bq) and optic- (b2q5bq6p) phonon operators, it reads

Hph
0 5(

l,q
vl~q!Fbql

† bql1
1

2G , ~A16!

with acoustic- and optic-phonon branches given, respec-
tively, by

v1~q!5A4l

d Usinq2 U, ~A17!

v2~q!5A4l

d
cos

q

2
. ~A18!

Residual electron-electron and electron-phonon interactions
read, in the extended BZ~: : denote normal ordering!,

dHe-e5
1

2N (
k1 ,k2 ,k3 ,k4 ,s,t

u~k12k4!:ck1s
† ck2t

† ck3tck4s :,

~A19!

dHe-ph5 (
k1 ,k2 ,q

g~k1 ,k2 ,q!@bq1b2q
† #:ck1s

† ck2s :,

~A20!

with interaction vertices defined in momentum space

u~q!5u12vcos~q!, ~A21!

g~k1 ,k2 ,q!5 ilA 1

2dv~q!N
@sink12sink2#. ~A22!

Due to translational invariance the momentum summations
in Eqs. ~A19! and ~A20! are, respectively, restricted to
k11k25k31k4 andk12k25q. In Appendix B we eventu-
ally work out expressions for~A19! and~A20! in the reduced
BZ. The phonon dispersion in Eq.~A22! has the form given
in Eq. ~A17!; note, however, thatq in Eq. ~A20! covers the
extended BZ.

The ~bilinear! single-particle HamiltonianHMF is diago-
nalized by a Bogoliubov transformation specifying new
mean-field quasiparticlesaks6 related to bare electrons via

cks5akaks21bkaks1 , ~A23!

ck6ps52 ibkaks21 iakaks1 . ~A24!

In terms of quasiparticle operators, we find
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HMF5(
k,s

Ek@aks1
† aks12aks2

† aks2#1H̄, ~A25!

with the MFA dispersion given by

Ek5A@~112vm̄!cosk#21@~2lq12vdm!sink#2

~A26!

and the BOW ground state written as

uM&5Pksaks2
† u0&. ~A27!

The phonon part ofuM& corresponds to the vacuum ofbq
and is included inu0&, which is also the vacuum for the bare
electrons. To make the analogy with semiconductors as
transparent as possible, we now define in the reduced BZ
particle and hole operators

pks5aks1 , ~A28!

hks5a2ks̄2
† ~A29!

and finally obtain for the electronic single-particle Hamil-
tonian

HMF5(
k,s

Ek@pks
† pks1hks

† hks#1EMFA . ~A30!

Using Eq.~A14! the total MFA ground-state energy is given
by

EMFA52(
k,s

Ek1NFu41v12v~m̄21dm2!12lq2G .
~A31!

The three parameterm̄, dm, andq, which, in fact, are only
two sincedm5q in the BOW phase, are determined from a
set of coupled nonlinear self-consistency equations involving
complete elliptic integrals of the first (K ) and the second
(E) kind.16 In our notation the set of self-consistency equa-
tions read30

c5
2mc~l1v !

p~m22c2!
@K ~y!2E~y!#, ~A32!

m5
2m2v

p~m22c2! FE~y!2S cm D 2K ~y!G11, ~A33!

with c52(l1v)q, m5112vm̄, and y5A12(c/m)2. In
terms ofc andm the mean-field single-particle gap separat-
ing at half filling the full valence from the empty conduction
band and the renormalized bandwidth are given, respec-
tively, byEgap52Ep/252c andWband52E052m. To obtain
quantitative results forEgapandWband, we solve the coupled
set of nonlinear equations~A32! and~A33! numerically. For
later reference, we conclude this appendix with explicit ex-
pressions for the Bogoliubov amplitudes

ak5AEk1ek
2Ek

, ~A34!

bk5AEk2ek
2Ek

sgn~k!, ~A35!

with ek and Ek defined in Eqs.~A10! and ~A26!, respec-
tively.

APPENDIX B: PARTICLE-HOLE REPRESENTATION

Because our notations are somewhat different from Ref.
16 and also to make clear what kind of processes are left out
in Eq. ~4!, we briefly recall the transformation of model~1!
into particle-hole representation. First, we consider the re-
sidual electron-electron interaction

dHe-e5
1

2N (
k1 ,k2 ,k3 ,k4 ,s,t

u~k12k4!:ck1s
† ck2t

† ck3tck4s :,

~B1!

with u(q) defined in Eq.~A21! and momentum sums over
the extended BZ, i.e.,2p<k,p, and restricted by
k11k25k31k4 . We regroup Eq.~B1! into

dHe-e5dHe-e
TDA1dHe-e

RPA1dHe-e
pp1dHe-e

hh1dH̃e-e .
~B2!

The physical meaning of the various terms is as follows. The
first term denotes scattering of particle-hole pairs and con-
sists of a direct and an exchange term. The second term
describes the spontaneous creation and annihilation of
particle-hole pairs leading to RPA correlations, whereas the
next two terms stand for the mutual interaction of particles in
the conduction band and holes in the valence band, respec-
tively. Finally, the last term contains all remaining processes
for which we do not give explicit expressions.

In the reduced BZ, i.e.,2p/2<k,p/2, Eq.~B1! leads to
81 terms. To keep the Hamiltonian as simple as possible, we
retain only those terms which are important for optical pro-
cesses. In particular we disregard all umklapp processes (U
processes! with respect to the reduced BZ, i.e., processes for
which momentum is conserved only up to a multiple ofp
~reciprocal lattice vector of the dimerized lattice!. Further-
more, we ignore all terms that describe the scattering of a
particle ~hole! via creating or annihilating a particle-hole
pair, e.g., terms'pk1s

† pk2t
† pk3t hk4s

† . These type of pro-

cesses gives rise to a polarization of electronic orbitals and
can be taken into account by a proper dielectric constant.21,22

Separating the processes retained in the way indicated in Eq.
~B2!, we obtain, in the reduced BZ,

dHe-e
TDA52

1

N (
ki ,s,t

V1234
eh,d pk2t

† h2k4s̄
† h2k1s̄ pk3t

1
1

N (
ki ,s,t

V1234
eh,x pk2t

† h2k3 t̄
† h2k1s̄ pk4s , ~B3!

dHe-e
RPA5

1

2N (
ki ,s,t

@V1234
RPA pk1s

† pk2t
† h2k3 t̄

† h2k4s̄
† 1H.c.#,

~B4!

dHe-e
pp5

1

2N (
ki ,s,t

V1234
pp pk1s

† pk2t
† pk3tpk4s , ~B5!

dHe-e
hh5

1

2N (
ki ,s,t

V1234
hh h2k3 t̄

† h2k4s̄
† h2k1s̄h2k2t̄, ~B6!
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where, as before, the momentum summation is constrained
to k11k25k31k4 . The interaction vertices are given by

V1234
eh,d5uF123422vC1234cos~k12k4!, ~B7!

V1234
eh,x5uF123412vC1234cos~k12k4!, ~B8!

V1234
RPA52uF123422vC1234cos~k12k4!, ~B9!

V1234
pp 5uF123422vC1234cos~k12k4!, ~B10!

V1234
hh 5uF123422vC1234cos~k12k4!. ~B11!

Here numerical indices stand for momentum variables, e.g.,

V1234
~ ! →V~k1 ,k2 ,k3 ,k4!

~ !, ~B12!

and we employed auxiliary functions

F12345 f 12
1 f 34

1 1g12
2g34

2 , ~B13!

C12345 f 12
2 f 34

2 2g12
1g34

1 , ~B14!

together with

f 12
6 5a1b26b1a2 , ~B15!

g12
6 5a1a26b1b2 , ~B16!

wherea1 andb1 are Bogoliubov amplitudes defining MFA
quasiparticles as given in Appendix A, Eqs.~A34! and
~A35!. Expressions~B3!–~B6! are identical to the ones given
in Ref. 16, except with slighly different notations. Since
spontaneous creation or annihilation of particle-hole pairs is
suppressed due to the presence of a single-particle gap
(;2 eV in PDA!, we do not considerdHe2e

RPA in the main
text. A bosonization technique based on RPA collective pairs
is possible, although it is algebraically much more
involved.45

Let us now turn to residual electron-phonon interaction.
For completeness we give the full expression~exceptU pro-
cesses! including intraband and interband scattering events
as well as optic and acoustic phonons. In the main part of the
paper, however, we consider only intraband scattering of op-
tic phonons. In the reduced BZ we split Eq.~A20! into intra-
and interband processes

dHe-ph5dHe-ph
intra1dHe-ph

inter . ~B17!

Neglecting umklapp scattering with respect to the reduced
BZ and using acoustic-~optic-! phonon operators~see Ap-
pendix A! we explicitly find

dHe-ph
intra5 (

j51,2
(

k1 ,k2 ,q
(
s

Wj
intra~k1 ,k2 ,q!@pk1s

† pk2s

1h2k2s̄
† h2k1s̄ #~bq j1b2q j

† !, ~B18!

dHe-ph
inter5 (

j51,2
(

k1 ,k2 ,q
(
s

@Wj
inter~k1 ,k2 ,q!

3pk1s
† h2k2s̄

† ~bq j1b2q j
† !1H.c.#, ~B19!

where the momentum sums are restricted tok12k25q and
the interaction vertices have the form

W1
intra~k1 ,k2 ,q!52 ilA 1

2dv1~q!N
@sink12sink2#g12

2 ,

~B20!

W2
intra~k1 ,k2 ,q!52lA 1

2dv2~q!N
@sink11sink2# f 12

1 ,

~B21!

W1
inter~k1 ,k2 ,q!5 ilA 1

2dv1~q!N
@sink12sink2# f 12

1 ,

~B22!

W2
inter~k1 ,k2 ,q!52lA 1

2dv2~q!N
@sink11sink2#g12

2 .

~B23!

The two auxiliary functionsf 12
1 andg12

2 are defined in Eqs.
~B15! and ~B16!, respectively, while the dispersions for
acoustic and optic phonons are given in Appendix A, Eqs.
~A17! and ~A18!.

Finally, the coupling to external light fields, Eq.~2!, is
recast into the form

dHp light5(
k,s

m̄~1!@pks
† pks1h2ks̄h2ks̄

† #E~ t !

1(
k,s

@m̄~2!pks
† h2ks̄

† 1H.c.#E~ t !, ~B24!

with intra- and interband dipole moments defined, respec-
tively, by

m̄~1!5
e

2t0
, ~B25!

m̄~2!52 i
e

2t0
. ~B26!

Due to scaling, the coupling constants~dipole moments! are
given by the electron charge in units of 2t0 . In the main part
of this work we consider only interband processes, i.e., cre-
ation ~annihilation! of particle-hole pairs due to interaction
with light.

Finally, the total particle-hole Hamiltonian upon which
we base our treatment of nonlinear optics of conjugated
polymers reads

H5HMF1Hph
0 1dHe-e

TDA1dHe-e
pp1dHe-e

hh1dHe-ph
intra

1dHp light . ~B27!

If we disregard acoustic phonons inH ph
0 anddHe-ph

intra , intra-
band processes indHp light , the zero-point motion of
phonons, and the constantEMFA , this is identical to the
Hamiltonian given by Eq.~4! in Sec. I.
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APPENDIX C: INTERACTION VERTICES
OF THE COUPLED EPG

We give a brief account of the derivation of the interac-
tion vertices defining the coupled EPG.30 The Usui operator
that formally maps fermionic operators onto bosonic opera-
tors is unitary. To obtain the bosonic version of the total
Hamiltonian Eq. ~16!, we simply have to replaceSKn

† ,
Ckq
† , and Dkq

† by their respective boson expansions
(SKn

† )B , (Ckq
† )B , and (Dkq

† )B . Therefore, employing Eqs.
~23!, ~25!, and ~26!, we find for the free particle-hole pair
plus particle-hole scattering terms of Eq.~16!

(
k
Ek@Ckk

† 1Dkk
† #1(

K,Q
(
n,m

Vnm
TDA~K !dKQSKn

† SQm

→ (
K,n,m

(
r ,q

FK
n ~q!@~EK/21q1EK/22q!dqr

1GK~qr !#FK
m~r !AKn

† AKm

2
1

4 (
Ki ,n i

dK11K2 ,K31K4(n
Vn1n
TDA~K1!

3Y~K1n;K4n4K3n3K2n2!AK1n1

† AK2n2

† AK3n3
AK4n4

2
1

4 (
Ki ,n i

dK11K2 ,K31K4(n
Vn4n
TDA~K4!

3Y~K4n;K1n1K2n2K3n3!

3AK1n1

† AK2n2

† AK3n3
AK4n4

. ~C1!

By choosing the exciton wave functionFK
n to be real, we

already anticipated that we takeFK
n as the solution of the

symmetriceigenvalue problem

(
r

@~EK/21q1EK/22q!dqr1GK~qr !#FK
m~r !

5Vm~K !FK
m~q!, ~C2!

with the symmetric (N/23N/2) matrixGK(rq) defined in
Eq. ~19!. It can be shown that Eq.~C2! is equivalent to the
solution of the two-time Green function for singlet particle-
hole pairs in the TDA.30 With the help of Eq.~C2! we can
then rewriteVTDA, Eq. ~18!, in a very compact form

Vnm
TDA~K !5(

q
@Vm~K !2EK/21q2EK/22q#FK

n ~q!FK
m~q!

~C3!

and the first term on the rhs of Eq.~C1! becomes diagonal.
More specifically, we obtain, employing the orthogonality of
the exciton wave functionsFK

n ,

(
K,n,m

(
r ,q

FK
n ~q!@~EK/21q1EK/22q!dqr

1GK~qr !#FK
m~r !AKn

† AKm

→(
K,n

Vn~K !AKn
† AKn . ~C4!

Consequently, the first term on the rhs of Eq.~C1! describes
bare TDA excitons, i.e., it is the leading term at vanishing
pair density. The next two terms on the rhs of Eq.~C1!
couple TDA excitons and originate from the Pauli exclusion
principle. In this sense, these terms constitute purelykine-
maticeffects.31

Again using Eqs.~25! and ~26!, we find, after normal
ordering of the boson operators, for the interaction between
particles in the conduction band@fourth and fifth terms of Eq.
~16!#

1

2N(
ki

V1234
pp Ck1k4

† Ck2k3
† 2

1

2N(
ki

V1234
pp dk2k4Ck1k3

†

→
1

2N (
Ki ,n i

dK11K2 ,K31K4

3(
kq

Vpp~K12K31k,K22K41q,q,k!

3PK1n1 ;K3n3

2 ~K12K31k,k!PK2n2 ;K4n4

2

3~K22K41q,q!AK1n1

† AK2n2

† AK3n3
AK4n4

~C5!

and, similarly for the interaction among holes in the valence
band@sixth and seventh terms of Eq.~16!#,

1

2N(
ki

V1234
hh D2k32k2

† D2k42k1
† 2

1

2N(
ki

V1234
hh dk2k4D2k32k1

†

→
1

2N(
Kin i

dK11K2 ,K31K4(k,q Vhh~k,q,K32K11q,K4

2K21k)PK1n1 ;K3n3

1 ~K12K32q,2q!

3PK2n2 ;K4n4

1 ~K22K42k,2k!

3AK1n1

† AK2n2

† AK3n3
AK4n4

. ~C6!

In contrast to the two-body terms of Eq.~C1!, these coupling
terms originate from both the Pauli principle and the under-
lying Coulomb interaction. In this sense, Eqs.~C5! and~C6!
containkinematicas well asdynamicprocesses. Collecting
terms, we finally obtain, for the exciton-exciton interaction
~numerical indices stand forKn),
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H int
ex-ex5 (

Ki ,n i
dK11K2 ,K31K4

W 1234A1
†A2

†A3A4 , ~C7!

with the exciton-exciton vertex defined by

W1234[W~K1n1K2n2K3n3K4n4!

52
1

4(n
Vn1n
TDA~K1!Y~K1n;K4n4K3n3K2n2!

2
1

4(n
Vn4n
TDA~K4!Y~K4n;K1n1K2n2K3n3!

1
1

2N(
k,q

Vpp~K12K31k,K22K41q,q,k!

3PK1n1 ;K3n3

2 ~K12K31k,k!PK2n2 ;K4n4

2

3~K22K41q,q!1
1

2N(
k,q

Vhh~k,q,K32K1

1q,K42K21k!PK1n1 ;K3n3

1 ~K12K32q,2q!

3PK2n2 ;K4n4

1 ~K22K42k,2k!. ~C8!

The interaction verticesV( )( ) are defined in Appendix B,
Eqs. ~B7!–~B11!, whereasVTDA is given in Eq.~C3!. The
rearrangement coefficientY and the structure coefficients
P6 are denoted in Eqs.~24!, ~14!, and~15!, respectively. To
clarify the physical content, we visualize Eq.~C8! in Fig. 3
employing mode-mode coupling diagrams.32

Next, with the help of Eqs.~25! and ~26!, it is easy to
express the coupling between particles~holes! and optical
phonons in terms of boson operators. Considering only intra-
band processes we write

(
k1 ,k2 ,q

W2
intra~k1 ,k2 ,q!~bq1b2q

† !@Ck1k2
† 1D2k2 ,2k1

† #

→(
K,Q

(
n,m

Mnm~K;Q!AK1Qn
† AKm~BQ1B2Q

† !, ~C9!

with the exciton-phonon vertex given by

Mnm~K;Q!5(
k
W2

intra~k1Q,k,Q!PK1Qn;Km
2 ~k1Q,k!

1(
k
W2

intra~k1Q,k,Q!

3PK1Qn;Km
1 ~2k,2k2Q! ~C10!

andW2
intra(k1 ,k2 ,q) defined in Eq.~B21!. The first term in

Eq. ~C9! originates form scattering processes between
phonons and particles in the conduction band, whereas the
second term arises from scattering of phonons on holes in the
valence band. Furthermore, translational invariance restricts
phonon and exciton momenta. The internal quantum number
n of an exciton is, however, unconstrained. Consideringn as
a ‘‘band index,’’ this means that we have both scattering
events within a band (n5m, intraband! and between bands

(nÞm, interband!. With the exciton-phonon vertex defined
in Eq. ~C10!, we write, for the exciton-phonon coupling,

H int
ex-ph5(

K,Q
(
n,m

Mnm~K;Q!AK1Qn
† AKm~BQ1B2Q

† !.

~C11!

Figure 4 represents the exciton-phonon vertex in terms of
mode-mode coupling diagrams.

Finally, using the expansion~23!, we obtain for the
matter-light coupling, taking into account only interband
transitions resulting in either the creation or annihilation of
excitons,

2(
n

~mnS0n1H.c.!E~ t !→2(
n

~mnA0n1H.c.!E~ t !

1 (
Ki ,n i

m̃~K1n1K2n2K3n3!

3dK3 ,K11K2
@AK1n1

† AK2n2

†

3AK3n3
1 H.c.]E~ t !,

~C12!

with the nonlinear exciton-light vertex written as

m̃~K1n1K2n2K3n3!5
1

4(n
mnY~0n;K1n1K2n2K3n3!

~C13!

and the rearrangement coefficientY given by Eq.~24!. The
first term on the rhs of~C12! does not modify the material
system and gives rise to linear absorption in the TDA~viz.,
the Elliott formula for absorption33!. In contrast, the second
~nonlinear! coupling term leads to self-energy corrections,
thus modifying the material system. In terms of bosons, it is
this term that describes the so-called phase-space-filling
effect.33 Thus exciton-light coupling consists of two terms
explicitly given by

H int
ex-light5H int

ex-light,L1H int
ex-light,NL

52(
n

~mnA0n1H.c.!E~ t !

1 (
Ki ,n i

m̃~K1n1K2n2K3n3!dK3 ,K11K2

3@AK1n1

† AK2n2

† AK3n3
1H.c.#E~ t !. ~C14!

In Fig. 5 we depict linear and nonlinear exciton-light cou-
pling in terms of mode-mode coupling diagrams. Attaching
the free optic phonon and exciton Hamiltonians to Eqs.~C7!,
~C11!, and~C14!, we obtain the EPG Hamiltonian

H5(
K,n

Vn~K !AKn
† AKn1(

Q
v~Q!BQ

†BQ

1H int
ex-ex1H int

ex-ph1H int
ex-light. ~C15!

Neglecting contributions from acoustic phonons, we finally
find the EPG model as displayed in Sec. II, Eq.~27!.
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ibid. 173, 149 ~1992!.
25M. Nakahara and K. Maki, Synth. Met.13, 149 ~1986!.
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