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Nonlinear optics of conjugated polymers: A coupled exciton-phonon-gas approach
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Conjugated polymers are modeled as a system of one-dimensiogiaktrons interacting via a short-range
Coulomb interaction and coupled to an underlying harmonic lattice, i.e., as an extended Peierls-Hubbard
model. A perturbative bosonization procedure is employed to map the original Hamiltonian onto an effective
one describing a coupled, one-dimensional exciton-phonor(Efa€), which should be especially useful in
discussing nonlinear optics. This approach treats excitons as ideal(Bass)particles subject to effective
interactions, which in turn are the microscopic origin of the nonlinear optics response of the material. In
particular, we derive effective interaction vertices forexciton-exciton scatteringdji) exciton-phonon cou-
pling, and(iii) (nonlineaj exciton-light coupling within a semiclassical approximation. As an application of
the EPG model to nonlinear optics of conjugated polymers, we study, in the collisionless regime, the steady-
state response of a coherently pumped EPG with respect to a spectrally broad test laser. The EPG approach
discusses this particular four-wave-mixing experiment in terms of an externally driven, interacting two-
component Bose gas. It explains optical Stark effects and inverse Raman scattering as due to composite
excitations whose electronic and phononic degrees of freedom depend upon pump frequency and pump inten-
sity. [S0163-18206)05320-9

[. INTRODUCTION ments with low-dimensiondhorganic semiconductors, e.g.,
GaAs/Al,Ga _,As multiple-quantum-well structuré$, that

Conjugated polymers, such as polyacetyléRd), poly- for a detailed understanding and accurate interpretation of
diacetylenesPDA), and polyphenylengvinylene(PPV), are  both steady-state and transient nonlinear optics response a
guasi-one-dimensiondlQ1D) organic semiconductors with sound many-body theoretical description is essential. It is
good mechanical, e.g., flexibility, and excellent optoelec-therefore expected that a detailed understanding of nonlinear
tronic, e.g., large optical nonlinearities, properties. In con-spectroscopy, as well as of the dynamics of photoexcitations
trast to inorganic semiconductors, e.g., GaAs, the propertieig conjugated polymers, also requires a many-body theoreti-
of a particular polymer can be varied over a wide range bytal description. This is even more true in view of the strong
chemical means, e.g., by attaching different side groups otoulomb interaction and electron-phonon coupling in this
by blending two different polymers. It is especially the latter type of material.
property of engineering the material properties by relatively " This paper proposes such a many-body theoretical treat-
straightforward and cheap chemical means that makes coRsent of nonlinear optics effects considering conjugated poly-
jugated polymers very attractive for technological applica-qrg 55 Q1D semiconductors, i.e., we study conjugated poly-
tions in general and optoelectronic devices in partlcularmerS in the long-chain limit. Although most theoretical

Most previous a_pplication—ori%]erved research cente.red a%roun&udies in the field of nonlinear optics of conjugated poly-
PDA-basgd qptlcal wave gul i.ind. aII—op.tlcaI SWII.Che " mers usgnonlineaj susceptibilities to characterize the non-
Both applications rely on an intrinsic nonlinear optical pro_{inear optical response of the material — thgformalismi

cess, namely, the change of the index of refraction with ligh dont h diff h that i
intensity. In recent years, interest has moved to include PPV-" we adopt here a different approach that is more common

based light-emitting diodéemploying electroluminescence N (inorganio semiconductor physics. Namely, we discuss
of PPV and some of its derivatives. Since both PRef. 4 noqlmear qptlcs in terms of renormallged qua3|part|cles and
and PPV(Ref. 5 are characterized by a strong low-lying their coupling to external fields. In this sense it should be
electronic excitation, a detailed understanding of the low-considered complementary to tiyg formalism, although we
energy energeticsand dynamicsis a prerequisite for any suggest that our approach has some advantages in terms of
well-controlled device design. transparency and flexibility.

Consequently, there has been much effort, experimentally Without going into mathematical details, the main points
and theoretically, to understand the low-energy photophysicef our approach are as followsirst, before studying the
of conjugated polymers. In particular, time-resolved photo-coupling of the material to external, time-dependéight)
induced absorptiof, time-resolved four-wave mixing fields, we transform the Hamiltonian modeling a generic
(FWM), and pump-and-probe techniglie®nstitute power- conjugated polymer into a representation that is more suit-
ful and flexible approaches to probing the dynamics ofable to discuss nonlinear optics in terms of quasiparticles.
photo-excitations down to very short-time scales. EspecialljyWe choose collective electron-hole pajrgz., excitons in
the coherent pump-and-probe experiments, employing a northe Tamm-Dancoff approximatiofTDA), i.e., Wannier ex-
resonant pump laser and thus creating virtual excitations, hastons| and optical phonons as “bare” quasiparticles and ex-
attracted much intere$€® It is well known from experi- plicitly derive effective interaction vertices between these
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53 NONLINEAR OPTICS OF CONJUGATED POLYMERS: A ... 13457
“undressed” quasiparticles. A very transparent method of TABLE I. Representative parametrization of the model Hamil-
deriving effective interactions between excitons, i.e., beionian for PDA.
tween composite fermion pairs, and between excitons and 2
phonons is a bosonization technique for bilinear fermion oplo (8Y) @ (eVIA) U (eV) V(eV) M (au) K(eVA%
erators recently developed in nuclear structure theory by g 3.6 5.0 25 13.0 21.0
Sakamoto and Kishimottf. Technically, we treat excitons as
Bose particles with effective interaction vertices describing
(i) exciton-exciton scatterindji) exciton-phonon scattering, C shows explicit expressions for the interaction vertices de-
and (iii) coupling to external fields® In all three, vertex fining the coupled EPG.
exchange corrections due to the Pauli principle are included.
In a secondstep, we then consider the full problem of an [l. EXCITON-PHONON-GAS REPRESENTATION
externally driven(by light field9 conjugated polymer de-
scribed by interacting excitons and phonons, i.e., by an
exciton-phonon gas(EPG. For simplicity we consider Although conjugated polymers are extremely complicated
pump-and-probe spectroscopy in the quasistationary approxinaterials with manycoupled degrees of freedom and, de-
mation. We assume a pump pulse shorter than the relevapending on the particular synthesis route, a considerable
relaxation times, i.e., collisionsless regime, and calculate themount of structural imperfections and electronic disotder,
steady-state response of tteonresonantly pumped EPG. the optical properties of this class of materials are, to a large
As pointed out by Schmitt-Rink, Chemla, and Hdiginder ~ extent, determined by delocalized, multicenter bonds charac-
these conditions there is a close analogy between opticallieristic of unsaturated organic compounds: theslectrons.
pumped semiconducting structures and weakly interactingrollowing common recent practic@we will, therefore, con-
Bose gases. We closely follow Schmitt-Rink, Chemla, andsider a simple model Hamiltonian describing an extended
Haug and discuss the optical Stark eff@@SE and inverse m-electron system confined to one dimension, the polymer
Raman scatteringRS) in terms of composite quasiparticles backbone, and neglect all the other degrees of freedom. Spe-
comprising excitonic and phononic degrees of freedom. Al<ifically, we will use a Su-Schrieffer-Heeger motfeaug-
though our theory of the OSE and IRS is very rudimentarymented by HubbardJ and V terms[i.e., a Peierls-(ex-
we emphasize that more refined treatments are possible. tanded Hubbard modglas a model for genericconjugated
fact, most of the techniques developed in the field of collecpolymer (the lattice constant is set to unity
tive excitations of superfluids can, if appropriately modi-
fied, be applied to nonlinear optics as well. _ _ _ t
The paper is organized as follows. Section Il is devoted to H= % [to~ a(Ui-1 =) CisCraot H.C

deriving the coupled exciton-phonon-gas representation for
conjugated polymers. In Sec. Il A we introduce a generic
model for conjugated polymers that models this classg,J of ma- " UEI n'Tn'i+V|;T Malli+1s
terials as a one-dimensional system of interactinglec-
trons coupled to a harmonic lattice. In Sec. Il B we define M., K —u)2

5 - ; - + 2 | 5 UE+ S (U —up?. D
bilinear fermion operators — exciton and scattering opera- T2 2
tors — and present their commutation rules. In Sec. Il C we T , ) , ,
present an approximate boson expansion for these operatdrTe Ci Creates an electron in a Wannier orbital at site
and finally express the original model in terms of two bosorith spin polarizationr andn,,= ¢, the total charge on
fields, one for excitons and the other f@ptica) phonons.  Site! with spin o The parametery, «, U, andV are the
Particular emphasis is directed towards the discussion of efg-electron hopping integral, the electron-phonon coupling,
fective interactions defining the EPG Hamiltonian. Sectionand the Hubbard parameters characterizing the short-range
Il gives a detailed theoretical description 6fonresonant ~ €lectron-electron interaction, respectively.and M repre-
pump-and-probe spectroscopy in the collisionless regimeSent the lattice compressibilitdue too bondg and the mass
Using the EPG respresentation, we derive in Sec. Ill A equa@t €ach lattice site. Strictly speaking, the Hamiltonian @&g.
tions that determine the coherent ground state of a pumpedPplies only to linear chain polymers with originally one
conjugated polymer. Section 11l B is then devoted to con-atom(site) per unit cell. Recent work, however, has shown
structing equations to determine the excitation spectrum ofhat the primary excitations in systems like PPV, and implic-
the pumped EPG, which is subsequently used in Sec. Ill C tifly also like PDA, can be described withieffectivelinear
calculating the steady-state response to a weak test laser. $hain models of the fornil).*° Representative model param-
Sec. Ill D we present numerical results for the OSE and IRSeters for PDA are given in Table I. We study mod#] at
Section IV summarizes the paper and indicates some infalf-filling with periodic boundary conditions ard sites.
provements to our approach that should enabl@)us study To complete our model description, we add a term that
transient response functions arii) to realistically treat accounts for the coupling betweenelectrons and light in a
biexciton formation and signatures in nonlinear optics ex-semiclassical approximation. Furthermore, we assume homo-
periments, e.g., two-photon absorption. For the sake of congeneous irradiation of the polymer sample and write in the
pleteness and to specifiy our notation, we present in Apperflipole approximation
dixes A and B, closely following Hayashi and Na$u,
mat_hematlcal details for_ the mean-f_leld ap_proxmaﬂon ar)d 5Hw|ight:_2 M|C|TUC|05('€)- )
particle-hole representation, respectively. Finally, Appendix lo

A. Model Hamiltonian
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Herey, is the(electrig dipole moment and’(t) denotes the increasingly important if a finite concentration of particle-
electric component of the light field along the polymer back-hole pairs is created, e.g., by a pump laser.

bone. For simplicity, we neglect phonon-assisted coupling Let us now turn to the phonon part. First of all, we do not
processes and take for the dipole moment consider acoustic phonons and keep only the optic branch.
This is not to say that acoustic phonons do not affect optical
experiments at all. In fact, they are very important for relax-
ation and equilibration proces$ésf hot carriers. Since we
study pump-and-probe spectroscopy in the collisionless re-
gime, i.e., we study processes faster than intrinsic relaxation

This particular form of the dipole moment has been used iffimes, we can in a first approximation neglect the effect of
the literature beford and ensures that periodic boundary @coustic phonons and consider only the coupling of elec-

_eN 2T I—1 3
MI_ES”“W( -1). 3

conditions are satisfied and that in the lafgdimit the di- tronic excitations to optical phonons. In particular the optical
pole moment aquires the canonical fopy=e(l—1). (Note ~ Phonon in the center of the Brillouin zoiiBZ) (q=0) plays
that the origin of our coordinate systemlis 1.) a key role for coherent inverse Raman scattering. Further-

For the investigation of optical processes it is convenienfNré, we do not account for scattering processes where a
to rewrite model(1) in terms of particle and hole operators (OPtica) phonon createsannihilates a particle-hole pair,
defined with respect to a suitable ground state. In order to bk€-» intérband scattering events. Clearly, these processes play
applicable to conjugated polymers, e.g., PA, PDA, and PPV crucial role for the renormalization édptic) phonons due
the model parameters, U, V, @, M, andK) ought to be  tO the polarizability of electrons. It is well knowh?® that
such that the ground state of mod#J is a bond-order wave this leads to a significant softening of the=0 optical pho_—
(BOW), i.e., the ground state is a dimerized Peierls semicon?0" and can therefore be accounted for by a proper choice of
ductor with, at half filling, a full valence and an empty con- the (optic-) phonon dispersion. Since we do not attempt to
duction band. In Appendix A we briefly review, primarily to present a fully self-consistent theqry of the rather compli-
specify our notation, the mean-field theory of model Bg. ~ ¢ated modell), we use the baréoptic) phonon. For a more
in the BOW phase following Hayashi and N&€un contrast ~ Precise calculation one should, however, incorporate the
to conventional inorganic semiconductors, the single-particié€normalized phonon frequencies. Finally, the coupling to
gap separating the full valence from the empty conductiot"€ light field is due only to creatiofannihilatior) of
band is due primarily to electron-phonon couplitReierls particle-hole pairs and not due to scattering events within the
instability) further stabilized by the next-neighbor Coulomb ¢onduction(valencg band. For optics this approximation is
interaction I term). As a consequence of the Peierls insta-féasonable.

bility, the unit cell is doubled. Thus, instead of ofeoustid With these caveats and approximations, the Hamiltonian
phonon branch we have two phonon branches, one acoust"iﬁat serves as the starting point for our investigation of non-
and one optic. linear optics of conjugated polymers reads, in the particle-

In the present context, the main result of the mean-field'0/€ representation, up to a constant comprising the total
approximation is to transform modél), which orginally ~MFA and the zero-point phonon energy,
described a one-dimensional metal, into a one-dimensional
semiconductor with residual Coulomb and electron-phonon _ + t t
interactions. With respect to the semiconducting Peierls- H gf Ek[pk”pk”+hk“hk”]+% ©(a)bgbg
dimerized ground state in the mean-field approximation, de-
noted by|.#), we then define particléhole) operatorgsee _ i E yehd pT ht —p
also Appendix A p(h),,|.#)=0 and optic-phonon opera- Nk 1234 Pl =g kg o Fkgr
tors (we do not consider acoustic phon@orh§|.//z>=0. It is 1
then straightforward to express modé) in terms of these - ehx ~t nt _
new operators, although the algebra involved is rather - Nki%,f V1234 Pl = M-t P
lengthy® To fix our notation it suffices to relegate the main
mathematical steps to Appendix B and to restrict ourself here
to a discussion of the final result. In particular we point out
which terms have been neglected and emphasize the physical 1
meaning of the terms retained. - hh ot T o
Let us first comment on the electronic part. We neglect all * 2N E r VlZSﬁ*kaﬂq*Mﬁ’kl"h’sz
umklapp processed)(processeswith respect to the unit cell
of the dimerized lattice. Furthermore, we ignore the scatter- + t
ing of a particle(hole) on a polarization wavéparticle-hole +k1%,q g W(kl'kz’Q)[pklapkza+ h_y
pair) as well as spontaneous creation of particle-hole pairs.
The former can be incorporated into a proper dielectric t )" K
constant!?? whereas the I[IJatter is supprer)se?j due to the Mbq“’ﬂ”% (L7 Peh- gt HelZV), @)
single particle gap® Thus, as far as the electronic part is
concerned, we are left with the frémean-field approxima- with i=k;, e.9.,V,%9,=V(ky,k»,k3,ks)0. Momentum sums
tion (MFA)] dispersion for the particles and holes, particle-are over theeducedBZ corresponding to the unit cell of the
hole scattering giving rise to exciton formation and scatterdimerized lattice, i.e..- m/2<k< /2. In terms describing
ing within valence and conduction bands, which becomeshe Coulomb interaction they are constrained to

O, T

1
toof
+ mkz’,f V2234 P, oPicy PP o

ANid
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k,+ks=ks+Kk,, while in the term denoting electron-phonon

coupling the momentum sum is restrictedkto- k,=q. No-

tice that(4) describesexcitationsof the polymer whose en-
ergies are measured with respect to the total BOW grounohere ST

state energyset to zerd. The first two terms on the right-

hand side(rhs) describe the free motion of particles, holes,

and (optic) phonons. The next four terms depitdirect

particle-hole scatteringiexchangg particle-hole scattering,
particle-particle, and hole-hole scattering, respectively. Th

last two terms represent the parti¢aole)-phonon interac-
tion and the coupling to externéight) fields.p|, creates an
electron with momenturk, spin polarizatiorno, and energy
Ey in the (MFA) conduction band, whereatég destroys an
electron with momentum-Kk, spin polarization— o, and
energyE_,=Ey in the (MFA) valence bandb] is the cre-
ation operator for an optical phonon with momentgnand
energyw(q). The electronic mean-field dispersidj and

the phonon dispersiom(q) are given in Appendix A, Egs.

(A26) and (A18). The matrix element¥Shs, VEhx VP

Vs W(ky,k,,q), and u™ are defined in Appendix B,

Egs. (B7), (B8), (B10), (B11), (B21), and (B26), respec-

13459

Sl [[pmh L ApEht (6)

creates a singlet exciton with totédrysta) mo-
mentqu and internal quantum numbes. Obviously,

®g(q) is the exciton wave function as obtained, for instance,

rom the solution of the Bethe-Salpeter equation in the TDA.

he indexu encompasses the whole spectrum of the two-
body problem: bound states and scattering states. In this
sense, we use the word “exciton” in an unconventional way,
calling both bound and unbound particle-hole pairs excitons.
g depicts the momentum associated with the relative motion
of the particle-hole pair. In Appendix C we will show that a
natural choice forP5(q) is indeed the solution of the Bethe-
Salpeter equation in the TDA, which in the present context
leads to the Wannier equation for excitons based on model
(4); it diagonalizes the leading term of the resulting EPG
Hamiltonian in the dilute limit.

Additionally, we introduce for technical reasons particle

and holescattering operators

tively.

Chq= 2 PioPao (7)
B. Exciton and scattering operators 7
The main objective of this paper is to discuss optical pro- + +
cesses of an organic semiconductor in the presence of a finite Dyq= 2{; Moo - ®

concentration of excitong&nd, due to electron-phonon cou-
pling, a finite number of stimulated phongmgenerated by a The operatorg5), (7), and(8) statisfy commutation relations
strong pump laser. Under these conditions the usual strategy
to calculate excitonic absorption using the TDA for the two-
time two-body Green function in the particle-hole chafhel
breaks down even without phonons. Considering the elec-
tronic problem alone, the reason is that TDA treats collective
particle-hole pairs, i.e., excitons, as bosons without internal
structure. Clearly, the internal structure matters only for con-
centrations when excitons begin to overlap. There are many

1
[Sky+Sb,]= kP — EZ Piuou(lDCH- 1 ki

2 Priou(DDS 1 k1 (9)

different ways to treat excitons beyond theasiboson ap- [Cly Sk1= 2 Piyiou(@.K) Sgkik-qSh,.  (10)
proximationinherent in TDA with no significant advantage Qs

to any of them. Here we have chosen an algebraic technique

to study optical processes at finite excit@md phonopcon- kq, 1=2 Py, 0u(3:K) 8o k k- qSQw (11)
centration: First, we employ an algebraic boson expansion Quu

that treats excitons as bosons with effective interactions tak-

ing their internal structure into account and, second, a unitary [S«.:Squl=0, (12)
transformation approach to obtain the optical response of an o

optically pumped organic semiconductor in the mean-field [qu, ;~]=O, (13

approximation. To incorporate many-body correlations be-
yond the mean-field approximation it is, however, necessar}’/‘”th structure coefficientsanticipating exciton wave func-
to use more sophisticated methods, elgosonizedl exciton ~ UONS to be real,
Green functions®

We exclusively restrict our theory to the singlet sector of
the Hamiltonian(4) and base our treatment on bilinear fer-
mionic operators that creat@nnihilate collective, singlet
particle-hole pairs, i.e., singlet excitons, defined by

v K Q
PKv;Q,u.(kvq):q)lz<§_k>¢6(5_q)1 (14)

O « k| D& Q 15

k| 5 Tk]Po —5+al. (19

If it were not for the last two terms on the rhs of EH®)
exciton operators would satisfy Bose statistics. Taking the
expectation value of Eq9), we see, however, that correc-
tions to Bose statistics are linked to the density of particle-
hole pairs. In the case of a vanishing pair density we can

PIZV,Q;L(k’q) =
k—q
Sct)u:kzq 5Q,k+qq)6<7> S;:q' ®)

with
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therefore neglect the operators on the rhs of @pgand treat  longer clear. Singlet and triplet exciton operators denote not
excitons as ideal Bose particles without internal structurdruly independent excitations, which can be seen, for in-
leading to the TDA for particle-hole pairs and eventually tostance, from the commutator

the Wannier equation. At finite density the full commutator
relations have to be taken into account. In order to find a
boson representation for the electronic subsystem of mOddISKV’Tg,ul:l: - = 2
(4) it is advantageous to expre@h in terms of the operators \/5 !

Sb,. Clq» andD],. Employing definitiong5), (7), and(8),

Q
|>‘I’6(§—|>p5_mp|<-u

1 K
we immediately find - q>v( ——
y ﬁZ K =5
H=>, EJCl +D/ ]+ bibg Q
2 B{Cu+ DL+ 2 (@) XWh| ==+ |hh_he ), (20
> > VTDA(K)5KQS’,L So with them=1 triplet exciton defined by
KO o vk
—q
1 1 T! 2 Soksa V4 ( )T (21)
2N; VE§34Cl1k4Cl2k3_ m; V?§345k2k4cl1k3 Qul— Qk+a™Q kat
|
1 and
+o=> V%D Dy«
2N% 37 %2 47Ky qulzplIhIn' 22)
1 E vhho s . pt Here¥5(q) is the wave function for a triplet exciton corre-
" 2N 123490K,k, 2 — k3~ K,
Ki spondlng to the solution of the Bethe-Salpeter equation for
the two-time two-body Green function in the triplet particle-
+ 2 Wki ko, @)[CL +DT o T(bg+bT ) hole channef? Clearly, the operators on the rhs of EG0)
ki.k2.q 12 2t a flip the spin of a particle and a hole, respectively, and their

expectation values in a finite density exciton gas are zero as
—> (1,59, +H.C)AD), (169  long as we allow only spin-conserving scattering processes.
v Additonally, particle-hole symmetry also plays an important
_ role in determining whether singlet and triplet sectors
with are indeed decoupled or not. Since in the high-density re-
gime excitons are ionized, it is conceivable that triplet and
_ v\ TT2) singlet sectors are not strictly decoupled. This is even
v \EE Po(@)u (7 more problematic if the finite lifetime of excitons is taken
into account with different decay channels for singlet and
triplet excitations. In the following we assume, however,
VIPAK) =2, dg(9)Gr(grdE(r), (18)  that excitons created by the pump laser have, as far as ex-
ar perimental timescales are concerned, “infinite” lifetimes
and (ii) that the ground state of the pumped organic semi-
conductor is not too far from the BOW ground state, i.e.,
). Under these restrictions it is appropriate to ne-

and the symmetricN/2X N/2) matrix

Gk(qr)=Gk(rq) glect the triplet sector.
S VU (S P S
- N 2 hptegThT T
C. Approximate boson representation
_oyehx| _ 5 5 — 5 5 Up to this point there was nothing new in our treatment of
2V +r,-+q, +q,5+r : :
2 2 2 2 the extended Peierls-Hubbard model and all we have done is

(19)  to rewrite the original Hamiltonian in terms of exciton, scat-
tering, and phonon operators defined with respect to the

The remaining vertices and the dispersion for both phononsemiconducting Peierls-dimerized ground state of mébel
and(mean-field quasiparticlegholeg can be found, as indi- Recall, however, that on the way frofl) to (16) we ne-
cated in Sec. Il A, in Appendixes A and B. Before we turn toglected certain terms that we consider as unimportant for the
the approximate bosonization ¢£6) we wish to comment investigation of optical properties of conjugated polymers,
on our restriction to singlet excitons. Tkiealf-filled) ground  e.g., acoustic phonons & processes. Since we otherwise
state is a spin singlet. Due to selection rules the absorption afarefully kept residual interactions, no serious approxima-
light leads to the creation of singlet excitons. As far as lineations have yet been made.
absorption is concerned, triplet excitons are therefore forbid- Physically speaking, Eq16) still describes a system of
den and it suffices to exclusively restrict the theory to thecoupled electrons and phonons driven by an extefligit)
singlet sector. At finite exciton densities this is, however, ndield and to study the optical properties of this rather com-
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plicated model we could derive equations of motion fory(Q,u,;K,vK,v,Kzv3)

Sh,.. Ciq. Diy and bl similar to density-matrix L
approache® In these approaches one encounters the prob- _ + Ez P;lVl'Qll’“l(l :|)P|Z2V2-K3V3(Q1—|,K1—|)
: ; ;

lem of decoupling expectation values such (& ,Dy),

which is far from trivial. In most of these approaches an

implicit bosonization has been applied so that it is natural to 1 _ N

expresg16) in terms of boson fields from the start and then + §2| PKlvl;Qlul(l 'I)PKZVZ;K3V3(Q1_|’Kl_l)-

use either equations of motion or other many-body tech- (24)
nigques to study the optical reponse in the EPG representa-
tion. It is easy to verify thaty accounts for the deviation of the

We apply a perturbative bosonization technique foroverlap of two-exciton states from the corresponding overlap
fermion-pair operators developed in nuclear structure theory2f two-boson states. Thué takes care of the internal struc-
which enables us to express fermionic pair operators as inffire of excitons” The scattering operators can be expressed
nite polynomials of boson operatofsiz., infinite series of S bilinear boson forms
normally ordered products of boson operatdfsAlthough
the physics involved is quite simple, due primarily to the Ty — - T
micrgscopic nature of theqtechniqug, the not§tions a¥1d formal (Cre sz QE,M Prrqullo®dcgricaAon: (29
manipulations are nevertheless very involved. For technical
details and a discussion of mathematical subtleties we there- t + +
fore refer the reader to the original papers by Sakamoto and (Dkq)BZE Pi:0u(K ) Sk, +k-qAkiAqu - (26)

ichi 2,29 . . Koy Q.u
Kishimoto'??°and to Ref. 30. For the purpose of this paper it
suffices to recall the main points. First, it is important to note
that instead of expanding bare fermion pairs, éﬁq,, col- The structure coefficient®= entering Eqs.(24)—(26) are

lective fermion pairs, i.e.S\,, are expressed in terms of a defined in Egs(14) and (15).

Taylor series of normally ordered products of boson opera- Using Egs.(23), (25), and (26), we can then express
tors. Thus minimal dynamical studies have been done in thg'0del (16) in terms of two boson fields, namely, one field
fermion space and hopefully the most important correlationd0" Optical phononsb,—Bgq and another field for excitons

have been summed up exactly. Specifically, it is convenienfk, - In Appendix C we will give details of this straightfor-

to determine collective pairs, i.e., excitons, within the TDA vygrd proce_duret. gina:ly, we otl)atzinP%Zamiléo;ian th?tocljes-
for the Bethe-Salpeter equation in tf@ngled particle-hole ribes a conjugated polymére., PA, , or PPY couple

channel. In quantum chemical terms, this procedure i§0 external light fields as aoupled exciton-phonon gas

. . . o . . _driven by external time-dependent electric fields. Specifi-
equivalent to a single—configuration-interaction calculation.

Second, once the collective pairs have been defined, tca{illé/,sthe EPG Hamiltonian — the final result of Sec. Il
mapping procedurérom fermion to boson spagés a purely
kinematic problem® in the sense that only the algebra
obeyed byS,, Cl,, andD{,, Egs.(9)—(13), matters. De- 7/:; Q,(K)ALA+ 2 0(Q)BEBg
spite mathematical subtleties it can be shown that infinite, i Q
normally ordered boson polynomials constructed in a sys-
tematic procedure employing an Usui oper&taatisfy the +K2 5K1+K2,K3+K47//'1234°~IAZA3A4
algebra obeyed by the original fermion pair operators, i.e., P
matrix elements as well as equations of motion are con- , N "
served. Unfortunately, from a practical point of view the +KE > A (KQALL g, Au(Bo+BL o)
polynomials have to be truncated at some order. In particu- Qs
lar, we present here only the lowest-order polynomials for -
Sk,. Ciq. andD], and leave a detailed discussion of con- _EV (“vAOVJFH-C-)‘/((t)’LKEV p(K1v1KovaKavs)
vergence properties aside. The interested reader is invited to v
consult Refs. 12, 29, and 30 for more details. X &, Kot Kz[AﬁlylAﬁzvaKstr H.cl#t), (27
In terms of boson operators, we can write for the exciton
operator
with i=K;»;. Here 0(Q) and Q ,(K) depict, respectively,
the optic-phonon branch defined in Appendix A, E418),
) and the TDA disperison for singlet excitons given by the
(Su)e=Ag.~ 2 K1’V1’K§V2’K3’V3 Y(QuiK1v1KavoKsvs)  solution of Eq.(C2) in Appendix C. Explicit expressions for
the interaction vertices are provided in Appendix C, Egs.
X 8q K,y + Ky KAk, Ak Ak, T O(Y?),  (23) (C8), (C10), and(C13), while the dipole momeng, is de-
fined in Eq.(17). Both fields, the exciton and the phonon,
satisfy Bose statistics and are independent of each other. The
where therearrangement coefficientvhich in fact is the first two terms on the rhs of Eq27) represent the free mo-
expansion parameter, reads tion of TDA particle-hole pairdexcitons and phonons. The
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a b

FIG. 1. Graphical representation of TDA wave functions
®(q): (a) annihilation of a TDA pair andb) creation of a TDA
pair.

third and fourth terms describe, respectively, exciton-exciton
and exciton-phonon scattering; both give rise to optical non-

linearities. The last two terms stand for linear and nonllnearl.he first two and the last two terms represent exchange corrections

CO“F’"”Q to ClaSSIC"."l light f'e'F’S- . . to the TDA result. The third and fourth terms describe, respectively,
Since the analytic expressions for the various vertices deﬁarticle-particle and hole-hole scattering.

fining our EPG model are rather complicated, which might
obscure the simple physics they contain, we present in Figs

3-5 these vertices graphically in terms of mode—mode:[he exciton-exciton interaction due to the Coulomb interac-

coupling diagramé? We emphasize that these “diagrams” tion_. Specifjcally, the .third term can be interpreteq as an
are not Feynmann diagrams in the canonical sense and /fxciton-exciton scattering event where only the particles are
use them only to make the rather complicated analytic ex-Sl.JbJeCt to the Coulqmb interaction: Two TDA modes decay
pressions of Appendix C transparent and to provide som&‘”th_the holes traveling unperturbéelxcha_ngh \_/vhereas th_e
insight into the physics contained in the EPG Hamiltonianpart'des scatter on the Coulomb potential. Finally, pa_rt|cles
(27). In Sec. lll we apply ordinary perturbation theory to and holes combine to form tw@ew) TDA modes. The situ-

obtain the nonlinear response of the optically pumped Epcation is similar for hole-hole scatteringhe fourth term,

It is then important to keep in mind that the interaction ver-€xcept that now particles travel without scattering. It is easy

tices, albeit depicted as black boxes, are in fact compositE0 check that momentum conservation given by the Kro-
entities with a complicated internal structure. necker delta function in EqC8) is satisfied with our par-
Let us represent the exciton wave funtidrt,(q) as a ticular choice of diagrams for the exciton wave function. The

wavy up-going line that merges into a partidlep-going black circle stands for théshort-rangg particle-particle and

- jaly/PP hh i
line and a holédown-going line. The exciton line is labeled hole-hole potentialy®" and V™, respectively.

by the total(crysta) momentumK and the internal quantum of Tgreticgza(glf:(;pshc%rztoer:ir\wler:)?);wsg(s:laa dc?)sn:zlnrséssgri[;?jrlirr]ngi
numberv, whereas the particle and hole cakyt+qg/2 and P 9 P 9.

; i . 4. Again, it is easy to check that momentum is conserved.
K—aq/2, respectively. As shown in Fig. 1, we can interpret ;
” . o : ; The gray circle stands for the electron-phonon vertex and the
d(q), assuming an artifical time going upward, as an an

A . i ) zigzag line for an optical phonon. Figurga# shows the
nihilation of an exciton and, correspondingipy (a)* as a decay of a TDA mode into its constituent particle and hole,

creation of an exciton. In fact, we will choose exciton waveg hsequent scattering of the particle ofioatica) phonon
functions to be regl, bgt to give “_rules” for constructing gnq; finally, the merging of the scattered particle with the
mode-mode coupling diagrams it is helpful to work with ynperturbed traveling hole to form a new TDA mode. In Fig.
complex wave functions. Additionally, we represéfit™, 4 “the role of the particle and hole is interchanged.

FIG. 3. Graphical representation of the exciton-exciton vertex.

H H DA ; . : . . . .
Eq. (18), as shown in Fig. 2. Note that, aI_thougH IS Finally, we consider exciton-light interaction Eq&7)
diagonal inK space, it is still nondiagonal in terms of the gnqg(C13). Both the linear and the nonlinear terms act like
internal quantum numbeys and ». source or sink terms for excitons since they do not conserve

With Figs. 1 and 2 as building blocks, the exciton-exciton
vertex Eq.(C8) can be represented as shown in Fig. 3 and
consists of three partgi) the Pauli correction to the TDA
result (the first two and last two terms(ii) the particle-
particle scatteringthe third term), and (iii) the hole-hole
scattering(the fourth termi. As expected, the interaction of
excitons due to the Pauli principle is given by the rearrange- Mo = +
ment coefficientY. The remaining two processes describe

VA a b

FIG. 4. Graphical representation of the exciton-phonon vertex:
FIG. 2. Graphical representation VﬁEA(K). (a) particle-phonon scattering arfd) hole-phonon scattering.
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superposition of excitons and phonons and the excitations in
terms of a bilinear form of shifted exciton and phonon op-
erators(viz., Hamiltonian theory, which can be diagonalized
by a Bogoliubov transformation leading to composite quasi-
particles, which in turn couple to the test laser and give rise

a
to OSE and IRS.
A. The coherent ground state
We consider a pump fielfrequencyw, below the opti-
cal gap and a test field {;< ) of the form
b

Z(t)=Zpe o+ e et c.c (28)

Since the frequency of the pump fielg, is below the optical
gap, onlyvirtual particle-hole pairgi.e., excitong are cre-
FIG. 5. Graphical representation of exciton-light vertices. ~ ated. In contrast teeal particle-hole pairs whose lifetime is
denotes linear exciton-light coupling. Nonlinear exciton-light cou- determined byintrinsic equilibration mechanisms, such as
pling is depicted inb) (particle exchangeand(c) (hole exchange  €XcCiton-exciton and/or exciton-phonon scattering, the life-
time of virtual excitations is exclusively determined by the
the number of excitations. We will depict only the sourceoffset of the pump frequency from the lowest optical transi-
terms; the box with a cross in it stands for the interactiontion. Thus, according to Heisenberg’s uncertainty principle,
with the (classical light field. The linear term is trivially —excitons created by th@onresonantpump laser have a life-
represented by Fig.(8) and needs no further comment; it is time roughly given by
simply the creation of an exciton. The nonlinear terms are
symbolized in Figs. &) and Hc). Clearly, it can be inter- A h
preted as the creation of an exciton due to the light field and ™ Q- wp’
subsequent decay of this exciton into a particle and a hole. . o
Then exchange interactions with already existing excitongvhere(2; denotes the lowest exciton transiti@ptical gap.
occur. Figure ®) depicts particle exchange and Figch I1_‘, on the other ha_nd,_lntr|n5|c scattering mecham_sms giving
hole exchange. Finally, recombination takes place and twéSe to, €.g.(polarizatior) dephasing, occur on a time scale
excitons leave the vertex. Obviously, these processes are dle> A7, lifetimes of pump-induced excitons can be ignored.
purely to statistics and, moreover, take place only at finitd1ence the pump laser creates excitonberently In the fol-
density. This is the well-known phase-space filling efféct, lowing we will adopt a quasistationary approximation and
which is included in our boson representation in the form offeglect all dynamic aspects associated with pump-induced

(29

a nonlinear exciton-light interaction. excitons and, due to exciton-phonon interaction, with pump-
stimulated phonons. Ouwollisionlesstheory applies, there-
lIl. HAMILTONIAN THEORY OF  (NONRESONANT) fore, to experiments with a smooth, ultrash@ompared to
PUMP-AND-PROBE SPECTROSCOPY exciton lifetimeg, and sufficiently nonresonant pump laser

pulse. For more details about the validity of the quasi-

L . . . stationary theory we refer to Ref. 34.

Within the simple conceptual frame of considering exci- For the lowest-order theory of OSE and IRS we need to
tons as Bose particles with residual interaction among them- " — ; :
selves, due to the Coulomb interaction and Pauli principleco_nsIder qnly excitons and phqnons_wnh total momentum
and residual interaction with phonons, the following analog _0.' Exgtons and phonqns with f|n.|te momentum appear
of (nonresonantpump-and-probe spectroscopy and Weaklyonly in hlgher orde_r, e.g., in th& matrix for multiple exci-
interacting Bose gases emerd&g.he nonresonanstrong ton scattering, Wh'Ch would be_ necessary for a proper de-
pump laser createswirtual “condensate” of pump-induced scription of biexcitons and their optical signatures. In the

excitons and pump-stimulated optical phonons. Within the otating frame of the pump laser, the EPG Hamiltor(an,

: ; : —it2w —it(wi+ o
rotating-wave approximation, the pump frequensy acts neglecting fast oscillating terms-e v or ~ e,
like a “chemical potential” that pins the condensate, thusreduces therefore to
opening the door to a quasi-equilibrium description of this
involved many-body problem. Residual interactions “de- ,%:E [Qy—wp]AIAﬁwoBTB
plete the condensate” and renormalize the excitation spec- v
trum of the pumped EPG seen by the secdweak) test
laser. Specifically, excitations above the condensateare + > 7 aAAIAA+DY 2, AA,(B+BT)
posite quasiparticlesvhose excitonic and phononic compo- Vi N K Vil
nents, and thus the coupling to the test laser, are determined
by pump frequency and intensity. In this section we present — 2 (WA [Z,+ £e M+ He)

the lowest-order calculation for the optical Stark effect and

inverse Raman scattering in close analogy to Bogoliubov’'s

theory of a weakly interacting Bose gas. Specifically, we +> (ﬁVMxAIALAA[?prF Ze M+ H.c), (30)
describe the ground state of the pumped EPG as a coherent Vi
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with A= w;— w, (offset between pump and test frequency , . BTy ha
Q,=0,(0), wo=w(0), A,=A,,, andB=B,. The interac- |Z:7>=UG|~%>E€XP(E [A,z,—hc]|e® "¢ 7),
tion vertices are obtained from the general expressions given ! (35)

in Appendix C, Eqs(C8), (C10), and (C13), by setting all

momenta to zero. Since no confusion is possible, we willwhere |.Z) denotes the vacuum of the exciton operators

from now on suppress the momentum label for the excitora | (full valence and empty conduction banénd the

wave functions. After some algebra theymmetrizedd vacuum of the phonon operat® (dimerized latticg As

exciton-exciton vertex reads usual, the(unitary) Glauber transformatiot g introduces
new quasiparticles that annihilate the new ground state

1[%/- |z; ¥). The new quasiparticles are related to the old quasipar-

" = /a
7 o= g L7 oot 7 on 7 it 7 ] ticles by ac-number shift
1 — t—_A _
:gg [8E,—Q,—Q,—Q,—Q,] a,=UgAUs=A,—2,, (36)
- f_p_
X ¥(q)PH(q) P (q)P*(q) b=UcBUg=B~. St
u+2 To determinez, and y, we rewrite the static part of7,
TN [5”\5 «F OerOnul, (32) Eq. (30), in terms of new excitonicd,) and phononic if)

quasiparticle operators and force all linear termsay
With 77, .= 7 ovopoxon - FOI the exciton-phonon vertex and/or ~b) to vanish. This procedure leads to a set of
we find coupled nonlinear equations for the set of shift parameters
y ({z,.y}) and corresponds to mean-field equations of a

A yu=1,,(00) driven, weakly interacting two-component Bose .gé4th
the previously described notation, the condition to make all

: Aq : . o
> s|n(q)f(b”(q)(br“(q), linear parts vanish can be written in a very compact form

=8NV 250N 4

(32 (Q,=0p)2,+ 2 [0,,+11,,+T,,12,~ u,E,, (39

with Eq andA given in Appendix A, Eqs(A26) and(A11), ”

respectively, andN the number of sites. The nonlinear cou-

pling to the light fields is given by w0y+2 M y2,2,=0, (39)
Vi

~ - 1
Moyun=p(0vOuON) = ZE ., D7(q) PH(q) PN ) P*(q). where we used the fact thag andy are real quantities. Here
o 0 is the Hartree self-energy due to exciton-exciton interac-
(33 : . ) e .
tion, I due to(nonlineay exciton-light interaction, and’
Employing definition(17), we find for the dipole matrix el- due to exciton-phonon interactidlattice-relaxation energy

ement Explicitly, they are defined as
= 2t02 (1), (34) Vﬂzzg‘: 7 cnZiZn s (40)

which describes the linear exciton-light coupling. For sim-

plicity we performed a gauge transformatiok! —iAT, =33 %, 7 (41)
which allows us to work with a real dipole matrix element e FvndEop

[instead of with Eq(B26)]. ®5(q) and{}, denote the exci-

ton wave function and excnon energy, respectively, as ob- r,,=2.,,v, (42
tained in Appendix C by solving the Bethe-Salpeter equation
in the TDA, i.e., Eq.(C2). where we used various symmetries of the interaction vertices

In the rotating frame, neglecting the envelope of the pumg=Egs. (31) and(33).
pulse, the pump field acts like a time independent source In physical terms,z, and y correspond to the pump-
(sink) for excitons; only the coupling to the test laser is still induced polarization and -stimulated phonons, respectively.
time dependent. Therefore the ground state of the joint sysMore specifically,n==,n,==,|z,|? stands for the total
tem of pump field, excitons, and phonons is no longempump-induced K=0) ex0|ton population, whereas
|.#) as specified in Eq(A27), Appendix A. Instead, the np,=|y|?> depicts the pump-stimulated population of
ground state of the pumped system contains a finite numbéfQ=0) optical phonons. For not too strong nonresonant
of excitons(particle-hole pairsas well as phonons and is pump fields the coupled set of mean-field equations can be
conveniently expressed in terms of a coherent state corresolved iteratively. The ground state of the pumped EPG is
sponding to aunitary) Glauber transformation of Eq30).  then specified in terms &, andy. In Sec. |l D we present
Using standard notatioft,we write, for the ground state of numerical results fon, andy as a function ofw, and Cou-
the pumped EPG in the rotating frame, lomb interaction strengthld andV.



53 NONLINEAR OPTICS OF CONJUGATED POLYMERS: A ... 13 465

FIG. 6. Static part of the normal self-enert*’. The first and
third diagrams are, respectively, due to exciton-exciton @xid) FIG. 7. Static part of the anomalous self-eneM$°. The first
exciton-light interactions. The second diagram depicts the phonorgjagram and the second diagram are due to exciton-exciton interac-
mediatedstatic exciton-exciton interaction. tion and(NL) exciton-light interaction, respectivel denotes the
] o “mixing of exciton and phonon degrees of freedom” giving rise to
B. Collective excitations the phonon-mediatedynamicexciton-exciton interaction.
We now calculate the excitation spectrum with respect to
the coherent ground state of the pumped EPG employing thgnd describes scattering events between excitons residing in
harmonic approximation, i.e., we rewrite the time-the condensate and excitons outside the condensate. To make
independent part of7Z in terms of shifted quasiparticles, the various contributions to the normal self-energy more
Egs. (36) and (37), and keep only terms that are at mosttransparent, we show graphically in Fig. 6 the various terms
bilinear ina andb. Note that all linear terms vanish due to of Eq. (47). Black boxes stand for the exciton-exciton vertex
Egs. (38) and (39). This is similar to the Bogoliubov ap- and gray circles and boxes with a cross for exciton-phonon
proximation for the weakly interacting Bose g&Neglect- and exciton-pump interaction vertices, respectively. Solid
ing residual interaction terms(e.g., terms such as straight and solid wavy lines represent, respectively, excitons
~7za'aa), the excitation spectrum of the pumped EPG isand phonons above the condensate, whereas dashed straight
described by the quadratic form and dashed wavy lines correspond to excitons and phonons
residing in the condensate, respectively.
, 1 ) The static part of theanomalousself-energy comprising
"742):E(Z;7’)+; A yudjay,+ wob'b+ EVE [Auaial, terms due to exciton-exciton anghonlineaj exciton-light
” * interaction reads

+.7,,8,8,]+> [AalbT+Aalb+Hel. (43

//512/2.:2 ‘7/.VM>\KZ>\ZK+E TLV)\/.LEPZ)\ (48)
Here we attached a subscriptto indicate that Eq(43) de- KA A
scribes the EPG in the presence of the pump laser and a
superscript to denote the harmonic approximation. The and describes spontaneous creatamnihilation of excitons
number E(z;y) is the total ground-state energy of the outside the condensate and thus fluctuations around the con-
pumped EPG. Since this energy does not show up in théensate. It is graphically depicted in the first part of Fig. 7.
optical response of the pumped system, we will not need th&he physical meaning o, is that of a mixing amplitude
explicit form of E(z;y). It suffices to mention that it is ob- between excitons and phonons outside the condensate giving
tained by replacing all exciton operators in the time-rise to number-conserving as well as number-nonconserving
independent part of”Z by z and all phonon operators by processes. The scattering term is schematically depicted in
v. We also introduced two real, symmetrid/@xX N/2) ma-  the second part of Fig. 7. In contrast to thtatic phonon-

tricesA andB and a real NX1) matrix A mediated exciton-exciton interaction due to pump-stimulated
L phonons[the middle term in Eq.(47)], this contribution
.;%W:(QV—wp)aer,,//zi}“ (44)  gives rise to adynamic i.e., resonant, interaction between
excitons outside the condensate.
B =02 20 (45) It_ is importan_t_to recall thgt within the _harmonic approxi-
VK Vi mation as specified by th&tatic self-energies, Eq$47) and
(48), multiple scattering of excitons is ignored. Thus it is not
A= M2, (46)  Possible to consider biexciton formation. Furthermore, since
u there are many frequency-dependetynamic self-energy

. . . diagrams that are also @(z?) or O(zE,), the harmonic
Thg static part of .thenormal self—energy containing contri- theory of (nonresonant pump-and-probe spectroscopy is,
butions from exciton-exciton, exciton-phonon, afinlin-  gimilar to Bogoliubov’s theory of a weakly interacting Bose

eaj exciton-light interaction is given by gas, not completely consistent. Nevertheless, in the region
near the optical gap, i.e., fab,+wg~w~,, it should
TS 47 224 2 ) 44T Eoz give qualll_tatlvely correct results.. . .
v % PMRENTK 2 v YT TR EpEN The bilinear form(43) can be diagonalized with a general

(47 Bogoliubov transformatioft that amounts to the definition
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of new compositequasiparticles. In terms of the new quasi-

particle operator Eq43) reads T ==2 w1-1,]alse A
1 ) & AlA
742):2 EJdrdJ+E(Z’7)+§ 2 Ej_EV sz,_wo , _21/ Mv[l_fv]av(gtel ‘
(49)

+2 w9850 MY ug.al st
with the N/2+ 1 eigenenergies; given by the solution of a v v

nonsymmetric eigenvalue probleof rank 2x (N/2+1)] (53
/A % A _ Here we defined correction factofs andg,, which come
; : 21 7 0 from the nonlinear exciton-light coupling and are explicitly
A wg A O Vi 0 1 given by
B A A 2 = 6] g ~
7 ’ % 0 0 -7 O . ILLVM)\Z ,
A 0 A (O] w! 0 0 0 -1 v 9, =~ u, HEN
1 Mo K v N
2 =52 2 O () P PNDzZ,z,, (54
. I ku N My
]
% V ) (500  Where we used E@33). z, is the pump-induced polarization
Z obtained by a self-consistent solution of E(38) and (39).
Wi The product of exciton wave functions reflecting the internal
structure of excitons is always smaller than one. Hence, for
The matrices # and.# are defined in Eqs(44) and (45, oW pump intensities {-|#,|?) and not too small detunings

respectively, and is the transposite o, given in Eq.(46).  ({}1~ wp), leading toz,<1, we expect, to be very small.
21 and 7/ denoteN/2 vectors, whereag’ andW! describe All our numerical calculations have been made in theak-
ordinaryc numbers.7 stands for the /2X N/2) unit ma-  COUPIing regime Therefore, instead of considering the full
trix and w, for the optical Q=0) phonon frequency. (t|me-de'peqdemtperturbanon given in Eq(53), we ngglect

The eigenmodes. £V, 7,W) of Eq. (50) describe the all contributions~f (g,) and work approximately with
relation between the “old” and the “new” quasiparticles.

Specifically, we find T(t=-2 pfalZfe M+ Hel. (55)
ay=2 [%ﬂ-vdﬁ?/jvd;r], (51) In order to apply Fermi’s golden rule, we rewrite E§5) in
]

terms of composite quasi-particles defined through the or-
thogonality transformatio51) and (52), which leads to

b=2 [Vid;+Wid]]. B2 )= {ulZd+2id17e M+ He). (56
v

From the inverse of Eqg51) and (52), it is clear that the Furthermore, agticipati_ng/<<%"and keeping only the reso-
eigenmodes. ¢V, %,W), which depend on the pump pa- nant term~e™'%‘, we finally get
rametersw, andE,, determine the composition of the new
excitations, i.e., phonon vs exciton contribution, and in turn (1) = 2igfze-iat

. . S = w0, Ai C1€ . 5
their coupling to the test laser. (¥ ;’ HoZW B 57

_ We can now formally apply Fermi’s golden rule to obtain for
C. Linear response the (linear absorption spectrum of the pumped EPG a very
The full optical response of the pumped EPG contains noEompact expression
only absorption but also optical gain and is most conve-
niently obtained from general linear-response theory in terms 0. 2.2 2
of ngrmal and anogmalous(bosonizealj3 exciton éreen a(w)=8m"e 2 |fi| o= wp=€)), (58)
functions®® Here, however, we are interested only in the
leading-order steady-state absorption spectrum of the EP@herew;, w,, ande; are, respectively, the frequency of the
which can be calculated with Fermi's golden rule. test laser, the pump frequency, and the excitation energies of
We rewrite the time-dependent part ¢, Eq. (30), in  the optically pumped EPG determined by the eigenvalue
terms of (Glauber-shiftell quasiparticles, i.e A—a. Keep- Problem Eq.(50). The oscillator strength is given by
ing only terms linear in the new quasiparticles and calling all
_time-dependent terms _of E(B0) .7,(t), we obtain, neglect- fj:z q)VU)%jw (59)
ing c-number contributions, v
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where we used definitioB84) for the dipole matrix element actions. Thesxcitonic enhancemewf the occupancy of the

u, - In addition to the excitonic enhancement faciofthere  lowest state can be clearly seen. Finally, Fig. 10 sheves

is now another oscillator strength renormalizatiés due to  a function of®. It is obvious from Figs. 9 and 10 that, only

pump-induced exciton-exciton, exciton-phonon, @nonlin-  for ®~1, i.e.,w,~Q;—wo, there is a considerable amount

eal exciton-light interaction. of stimulated excitons and phonons. Both consituteker-
ent condensatehose excitations in turn are measured by the
second weak test field.

D. Numerical results Employing a Ullah-Rowe algorithif the eigenvalue

We now present numerical results for the steady-state riroblem Eq.(50) can be straightforwardly solved and gives

sponse of a coherently pump EPG in the collisionless regim
with emphasis on the OSE and IRS. Specifically, we study

he excitation spectrum of the pumped EPG. These excita-
jons arecomposite quasiparticleghose phononic and exci-

; . . - Fonic degrees of freedom depend on pump parameters. More-
half-filled N=160 site system with periodic boundary con- over, since light couples exclusively to the excitonic

ditions and two sets of model parameters. The first set, indigomponent, we expect that the oscillator strength associated
cated in Table |, is representative for P#trong Coulomb it these quasiparticles also varies significantly ws
interaction, whereas the second set is identical to the firstyq #,. This is demonstrated in Fig. 11, which depicts, for
one except for the Coulomb interaction, which is chosen tqhe strong Coulomb interaction alone, the normalized oscil-
beU=2V=0.4, (weak Coulomb interactionWith the first  |ator strength for the two lowest excitations of the pumped
set of parameters, modél) exhibits a strongbound exci-  EPG. For®~1, the lowest excitation of the pumped EPG
ton resonance af);=1.92 eV that dominates théinean  becomes “brighter,” i.e., with increasing oscillator strength,
absorption spectrum and is comparable to the optical gap ivhereas the next highest excitation loses oscillator strength.
polydiacetylené. The exciton binding energy in this case is In Fig. 12 we depict the energetic position of these reso-
€,=0.675 eV, which is larger than the optical phonon fre-nances as a function &. For large®, i.e., large detuning,
quencyw,=0.183 eV. In contrast, the second set of paramthe lowest resonance closely followsw, + wo= Q4
eters gives no bound exciton. In that cd3¢=0.96 eV and —(®—1)w,, indicating its phononic precursor and its con-
€,=0.02 eV, comparable to the discreteness of energy levelgection to IRS® The second resonance starts out from the
due to finite-size effects and much smaller than the opticabare exciton energ$), and begins to deviate from that value
phonon frequency. as ® approaches Isee Fig. 18 From Figs. 11, 12, and

In both cases of a strong and a weak Coulomb interactionespecially Fig. 13 we see that fér~ 1, the excitations of the
we take for the pump field strengtf},=0.001, which corre-  optically pumped EPG are significantly modified compared
sponds to a pump intensity of roughly=13 MW/cn?, a  to the excitations of the unperturbed EPG. In other words,
typical value for actual laser intensities in pump-and-probegsump photons with frequenay,=Q; — w, start to initiate a
spectroscopy. Keeping the pump field strength fixed, we vargtrong mixing, i.e., renormalization, of the bare quasiparti-
the pump frequencyw, and analyze pump-induced changescles, optical phonon, and TDA exciton.
near the optical gap. In particular we consider pump and test Experimentally, strong renormalization effects can be
frequencies such that;~Q;~w,+ wg. In the following we  seen in the differential absorption spectrum as a function of
measure energies in units of2and, introducing a parameter temporal delay betweetiinite) pump and test pulses. Since
0=(Q;-wp) /v, the detuning of the pump frequency we take into account neither the finite width of the laser
from the optical gap in units ob. pulses nor the delay between pump and test pulses, a sound

First, we consider the coherent ground state of thecalculation of thedifferential absorption spectruiis outside
pumped EPG. An iterative solution of the mean-field equaour simplified Hamiltonian theory for the steady-state re-
tions, Eqs(38) and(39), gives numerical data for the pump- sponse of the pumped EPG. As a crude approximation we
induced polarizatiorz, and stimulated phonong. Figure 8  can, however, study thdifference absorption spectryre.,
shows the corresponding pump-induced exciton populatio@bsorption of the test laser field with the pump fieldminus
n,=|z,|? for a strong and a weak Coulomb interaction in the test beam absorption with the pump las#r Although
semilogarithmic scale fo®=1. Clearly, in the case of a [Eq. (58) with Lorentzian broadening of 0.0QIot quite
strong Coulomb interaction the bound exciton state ) is  accurate, it should give at least a qualitative picture for the
much more populated than the scattering staiesZ), i.e.,  differential absorption spectrum at zero time delay and
n,>n, for v=2. For a weak Coulomb interaction the lowest pulses much shorter than intrinsic relaxation tinlese Sec.
state is no longer as distinct and the distributionngfis Il A). Figures 14 and 15 show, for the case of a strong and
much smoother; nevertheless, the lowest states do still domé& weak Coulomb interaction, respectively, the difference ab-
nate. In our calculations of the steady-state response of theorption near the optical gap of the unperturbed EPG, i.e.,
pumped EPG, we kept the whole two-particle spectrumw;~€);, for various values ofd. The peak at the high-
which is consistent with our assumption of ultrashort pulseenergy side originates from the shifted exciton resonance
with a width much smaller than intrinsic relaxation times. (i.e., OSH, whereas the signature at the low-energy side de-
We point out that even falesonantexcitation with ultrashort  picts the appearance of the IRS resonance. As is also the case
pulses it is not possible to ignore scattering states and restrigt atomic physics® the line shape of the IRS resonance
the theory to an effective few-level system, e.g., ground statetrongly depends on the pump frequency, i.e.,foiThis is
and exciton. This has been nicely demonstrated experimemlue primarily to the interference of the OSE with the IRS
tally using time-resolved FWM in quantum wefis. and can be clearly seen in both Figs. 14 and 15. For instance,

In Fig. 9 we show the population of the lowest excitonin Fig. 14 the shape of the IRS sign@w-energy feature
state as a function dd for strong and weak Coulomb inter- changes from absorptiv® =1.12 to dispersive®=1.0 to
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transmissive® = 0.96 and back to dispersi¥@=0.88. Simi-  transient aspects, such as impulsive laser excitation and tem-
lar changes, although less pronounced, occur for the case pbral delay between the pump and test pulses, that strongly
weak Coulomb interaction, Fig. 15. The qualitative changeaffects the observed line shapes.
of the IRS line shape has been experimentally observed by
Blanchardet al*°

Our primary objective is to provide microscopic under-
standing of pump-and-probe spectroscopy. Therefore, we We have proposed, following the seminal work of
now address the question as to what extent the various inteBchmitt-Rink, Chemla, and Haug,an alternative descrip-
actions, such as exciton-exciton, exciton-phonon, @mh- tion of nonlinear optics of conjugated polymers in terms of
linean exciton-light coupling, give rise to renormalization of an externally driven EPG, i.e., a two-component Bose gas,
the quasiparticles of the pumped EPG. In Figs. 16 and 17 wemphasizing throughout the paper the importance(ipf
depict for® =1 and both cases of strong and weak CoulombeXciton-exciton, (i) exciton-phonon, andiii) (nonlineay

interaction how the difference absorption spectrum wouldeXciton-light coupling. Starting from a model for interacting
look if we had kept as nonlinearities onl§) the exciton- 7 electrons coupled to a one-dimensional lattice, we utilized

exciton, (i) the exciton-phonon, ofiii) the (nonlineay  the Sakamoto-Kishimoto boson expansion techriigaad
exciton-light interaction alone. Both Figs. 16 and 17 showPresented a detailed and transparent derivation of an effec-
that the (nonlineaj exciton-light interaction only slightly tive EPG Hamiltonian based done-dimensionalTDA ex-
renormalizes the excitation spectrum of the pumped EPGitOﬂS calculated with respect to the Peierls-dimerized
resulting in a small blueshift of the optical gap. In contrast,ground state. We gave expressions for the interaction verti-
the exciton-exciton interaction causes a large blueshift, indices and employed mode-mode coupling diagrams to visual-
cating a significant effect on the excitations of the pumpedze the physics content. The harmonic-oscillator interpreta-
EPG. Obviously, the stronger the original Coulomb interaction of nonlinear optics effects, or, equivalently, the boson
tion, the stronger this effect. The exciton-phonon interaction

gives rise in both cases to a double-peak structure due to the 0.07
IRS resonance and shifted optical gap. Comparing the full
responsdall interaction processes taken togejHer strong

and weak Coulomb interactions, respectively, we see that the
double-peak structure persists, although in the case of the

IV. CONCLUSION

0.06 -

0.05

strong Coulomb interaction a significant redistribution of os- 004 |
cillator strength occurs; the “phononic” part of the double- “‘:_
peak structure is less pronouced in the case of a strong Cou- ~— o003 |

lomb interaction.

Thus, within our simplified theory, neglecting transient
aspects of the light-matter coupliridelay, pulse shapgsit
is exclusively the relative strength of the Coulomb and the
electron-phonon interaction giving rise ttatic exciton- 0.00
exciton, exciton-phonon, anghonlineay exciton-light cou-
pling, which controls, for fixed detunin@ and pump inten-
sity 1,~]#,|?, the excitation spectrum of the pumped EPG  FIG. 9. Pump-induced population of the lowest exciton state.
and hence the shape of the difference spectrum. As far &Sircles denote the case of a strong Coulomb interactmund
measured differential absorption spectra are concerned, it iparticle-hole pai, while squares stand for a weak Coulomb inter-
however, thedynamicweighting of these interactions due to action(no bound state

0.02 -

0.01
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%::Loi?ge?;&:gnmb Interaction, while squares stand for a weak Co while squares depict the shifted optical g&pSE). Dotted and

) dashed lines stand fas,+ wy and{),, respectively.

representation chosen in this paper, dates back to the begiai'fference absorption spectruf
ning of non!mear opticé” It is, however, only recently in the For a detailed comparison Wit.h experiments our EPG ap-
field of conjugated polymers that such an approach has be

applied*! Although the authors of Ref. 41 do not explicitly Bloach is not yet developed completely enough, and in con-

. . L o trast to phenomenological multimode Brownian oscillator
introduce a bosonic quasiparticle description for the elec-

. L models?® we are not yet able to reproduce all experimental
tronic subsystem, there are, nevertheless, similarities to OYL ~tures. One drawback of these phenomenological models

approach, which is not surprising since both approaches arig’ however, that they do not clarify the underlying many-

o 8 e pon of iew peruballie exensons Ofyody rocesses and are i s seadoc We, o e ot
pp ' and, are able to determine the consequences of various

the randqm-phgse approximati@RPA) in Ref. 41, many-body effects on the excitation spectrum of the pumped
The discussion of pump-and-probe spectroscopy was re-

. conjugated polymer and to givenaicroscopic understandin
stricted to the steady-state response of a coherently pumpe t#legundeirjlyizg physics ir? terms Qfengrmalizeai quasi-g

EPG in the collisionless regime. Spgcificall_y, we exIOI""inecjparticles. For a more advanced treatment of pump-and-probe
the_OS_E and IRS in Ferms aomposite excnanonwhose_ pectroscopy we should solve, however, the full externally
excitonic and phononic degrees of freedom are determine riven Beliaev equations for the normal and anomalous ex-
by the_parameter of the pump Iaser,_l.e., pump frequency_ anfiton Green functiond? taking finite pulse shapes, delays,
pump intensity. Except for th_e cla_lssmal treatment of thg IIghtand possibly alsalynamicself-energies due to higher-order
f|eld,_these composite quasiparticles are relatepnoporl- correlations of the coupled EPG into account. The latter is
tonsintroduced in Ref. 42 to study similar effects in inor- important for a treatment of the driven EPG beyond the
ganlc(bulk) semiconductors. We ;howed how Coulomb N" mean field approximation, for instance, to take correlations
teractions affect the coherent optical response and dlscussggetween excitons into account. Conjugated polymers are
the relative importance of various interaction processes on '
the excitation spectrum of the pumped EPG and hence on the
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FIG. 13. Energetic position of the two lowest excitations of the
FIG. 11. Normalized oscillator strength of the two lowest exci- pumped EPG fo® ~ 1. Circles denote the IRS resonantawest
tations of the pumped EPG. Circles denote the IRS reson@mee  excitation, while squares depict the shifted optical J&SBE. Dot-
est excitation, while squares depict the shifted optical g&SE. ted and dashed lines stand fop+ v, and{},, respectively.
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FIG. 14. Difference absorption spectrum near the optical gap for FIG. 16. Difference absorption spectrum for the case of a strong
the case of strong Coulomb interactions and various values of pumgoulomb interaction and=1 as obtained by considering)
detuning®: ©=1.12 (solid line), ©®=1.04 (dotted ling, ®=1.0  exciton-exciton (dot-dashed ling (i) (nonlineay exciton-light
(dashed ling ©®=0.96 (long-dashed ling and ®=0.88 (dot-  (dashed ling and (iii) excition-phonon interactionfong-dashed
dashed ling The curves are artifically shifted on the vertical axis. [ine) separately. The solid line depicts the complate with all

interaction processes taken into account. For reference, we also

wide-gap semiconductors and it is conceivable that for a sufshow the unperturbed exciton liridotted.
ficiently strong Coulomb interaction biexcitons and perhaps
even higher-order bound complexes — so-catiestring€* calized staj[es. .\Nhether' an exciton chalizes as a whole' or
— stabilized by low dimensionality can be formed. To takebreak_s up into its constituents, a part|cle and a hol_e, which
biexciton formations into account and to study their signathen in turn localize individually, is an open question and

tures in nonlinear spectroscopy, e.g., in two-photon absorPQeserves, also from a fundamental point of view, more atten—.
tion, it is required to calculate th& matrix for mutiple-  tion. We hope that the EPG approach presented can be uti-

exciton scattering, which indeed gives rise to frequency/ized to shed light on this interesting problem.
dependent, i.e., dynamic, self-energies. Another important

issue for the photophysics of low-dimensional conjugated APPENDIX A: MEAN-FIELD APPROXIMATION
polymers is disorder due to electronic and/or mechanic im-

erfections arising in the course of the synthesis or due to_ 0hoWing Hayashi and Nastf, the mean-field approxi-
P 9 y mation for model(1) consists of(i) an unrestricted Hartree-

deliberate doping and/or blending of polymers. EspeciaIIyFOCk approximation for the Coulomb interaction afiid a

due to the Q1D nature of these materials, it is expected thaé . L .
. . . ; orn-Oppenheimer approximation for the electron-lattice
for a complete microscopic understanding of transient spec-

o . . coupling. First, it is convenient to define a dimensionless
troscopy it is necessary to treat disorder not only in the IOWTattice field
est approximation, e.g., Born approximation, giving rise to

decay rates, but to higher order where disorder induces lo-
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w2, FIG. 17. Difference absorption spectrum for the case of a weak

Coulomb interaction and®=1 as obtained by considering)
FIG. 15. Difference absorption spectrum near the optical gap foexciton-exciton (dot-dashed ling (i) (nonlineaj exciton-light
the case of weak Coulomb interactions and various values of pumfdashed ling and (iii) exciton-phonon interactionfong-dashed
detuning®: ®=1.12 (solid ling), ®=1.04 (dotted ling, ®=1.0 line) separately. The solid line depicts the complate with all
(dashed ling ©®=0.96 (long-dashed ling and ®=0.88 (dot- interaction processes taken into account. For reference, we also
dashed ling The curves are artifically shifted on the vertical axis. show the unperturbed exciton liridotted ling.
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K and

o] _Zul ’ (Al) N 1 o
together with dimensionless coupling constants U/2t, t0=§+vm, (A12)
v=V/2ty, and\ =2a?/Kt, and a dimensionless lattice mass .
(adiabaticity parametei=\/(w/2t)2, which allows us to 2au=Aq+vém, (A13)
measure energies in units of2 i.e., H—H/2t,. Anticipat-
ing the BOW(Peierls-dimerizedground state, we divide the HeN
(dimensionlesslattice field into a static partdimerizatiorn) B
and a dynamic pariphonon$

u
Z+v+2u(mz+ Sm?)+2nq?|. (A14)

In the extended BZ, the free phonon part becomes

a(=a(—)"+x() (A2) 1
0 _ T
and write for the charge n((,chrach,) and bond th_% @(q)bgbg+ AN (A15)
(my,= CLC,HU) densitieganticipating half filling and again _ ) ) _
the Peierls instability whereas in the reduced BZ, introducing acoustic-
(b1q=Dbg) and optic- b,q="Dbg- ) phonon operators, it reads
1
(Nig)=73, (A3) 1
2 th=% o\ (0)| bl by, + 5| (A16)
—/mbt o |
(M) =(my,)=m+(-1) 6m. (A4) " with acoustic- and optic-phonon branches given, respec-
The three parametem, om, and g, related to bandwidth tively, by
renormalization and to the single-particle gap, will be deter- i
mined self-consistently at the end of this appendix. Using the w0 ()= \/— sing , (A17)
well-known operator identity 6| 2
AB=A(B)+B(A)—(A)(B) +[A—(A)][B—(B)] 4 g
(A5) wo(q)= 700%— . (A18)
to decouple an effective single-particle part from an explicitresiqual electron-electron and electron-phonon interactions
two-body contribution, we regroup Edl) into read, in the extended BZ : denote normal ordering
H=Hye+H+ SHeet SHepn. (AB) 1 -
He-e:mk1,k2 k3. kg 0,7 U(kl_ k4) ' CklUCkZTCkSTCk“U B

Here Hye and th denote, respectively, the electronic and
the phononic one-body part, wherestd,_ and SH_, de- (A19)
pict two-body terms due téresidual electron-electron and

electron-phonon interactions. Furthermore, we define in the SH. = k. Kk b.+b" 1:¢f o -
extended BZi.e., — m<k<, electronic operator&init lat- eph kl% q 9(k1 ko, Q)b + b= ]G Cie

tice constant (A20)

with interaction vertices defined in momentum space

1 )
- —ikl
Cro \/Nzl e ¢, (A7) u(g)=u+_2vcogq), (A21)
and phonon operators ) 1 i i
g(kl,kz,q)=|)\ W[smkl—smkz]. (A22)
1 , 1
X|:\/—N§q: el / 25w(q)[bq+ b'yl. (A8)  Due to translational invariance the momentum summations

in Egs. (A19) and (A20) are, respectively, restricted to
Specifically in momentum space, we then obtain inthe  K;+k,=Ksz+k, andk; —k,=q. In Appendix B we eventu-
duced BZi.e., — m/2<k< m/2 (doubling of the unit cell due ally work out expressions fqA19) and(A20) in the reduced
to Peierls instability, for the electronic single-particle part, BZ. The phonon dispersion in EGA22) has the form given
in Eq. (A17); note, however, thay in Eq. (A20) covers the
extended BZ.

HMF_HJF;, L €(Cis o Chx o~ ChioChtor) 1Akl e 0 Cicr The (bilinean single-particle HamiltoniaH - is diago-
nalized by a Bogoliubov transformation specifying new
~CyChx o) ], (A9)  mean-field quasiparticles,,.. related to bare electrons via
with Cko= ¥kBko— T BrBko+ (A23)
€= 2toC0, (A10) Ck o= | Br8ko— + i @Ky - (A24)

A =4ausirk, (Al11) In terms of quasiparticle operators, we find
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: : — with €, and E, defined in Egs(A10) and (A26), respec-
Hue= 2 Bl @+ 8+~ 8p-o- 1T H,  (A25)  tively.

with the MFA dispersion given by APPENDIX B: PARTICLE-HOLE REPRESENTATION

Ex=V[(1+2vm)cok]?+[(2\q+ 2v 6m)sink]? Because our notations are somewhat different from Ref.
(A26) 16 and also to make clear what kind of processes are left out
in Eq. (4), we briefly recall the transformation of modél)
into particle-hole representation. First, we consider the re-
alr|0> (A27) sidual electron-electron interaction

and the BOW ground state written as

The phonon part of.#) corresponds to the vacuum b SH 1 u(ky—ka) el el e cu.:
and is included if0), which is also the vacuum for the bare &€ 2Nk, ky ks, o0 (K1=Ka): G 0ChyrChigrCigyer
electrons. To make the analogy with semiconductors as (B1)
transparent as possible, we now define in the reduced BZ

particle and hole operators with u(q) defined in Eq.(A21) and momentum sums over

the extended BZ, i.e..—w<k<w, and restricted by

Pro=akot » (A28)  kitk,=ksz+ks. We regroup Eq(B1) into
hy=a’ (A29) SHee= SHIPA+ SHRPAL SHPP 1+ SHN + SH .
7 TR (B2)
and finally obtain for the electronic single-particle Hamil-

The physical meaning of the various terms is as follows. The
first term denotes scattering of particle-hole pairs and con-
sists of a direct and an exchange term. The second term
Hue= > Ed Pl Prothihio]+Evra.  (A30)  describes the spontaneous creation and annihilation of
ko particle-hole pairs leading to RPA correlations, whereas the
Using Eq.(A14) the total MFA ground-state energy is given Next two terms stand for the mutual interaction of particles in
by the conduction band and holes in the valence band, respec-
tively. Finally, the last term contains all remaining processes
= ) for which we do not give explicit expressions.
Evra=— 2 ExtNIZ +U+2U( +6m?)+ 2\ q? In the reduced BZ, i.e+ m/2<k< m/2, Eq.(B1) leads to
(A31) 81 terms. To keep the Hamiltonian as simple as possible, we
o retain only those terms which are important for optical pro-
The three parameten, ém, andq, which, in fact, are only cesses. In particular we disregard all umklapp procesdes (
two sincedm=gq in the BOW phase, are determined from a processeswith respect to the reduced BZ, i.e., processes for
set of coupled nonlinear self-consistency equations involvingvhich momentum is conserved only up to a multiple mof
complete elliptic integrals of the first() and the second (reciprocal lattice vector of the dimerized latticé-urther-
(E) kind.X® In our notation the set of self-consistency equa-more, we ignore all terms that describe the scattering of a

tonian

tions read’ particle (hole) via creating or annihilating a particle-hole
2ucin+ pair, e.g., terms=p{ ,pi . Px,. Nk .- These type of pro-
s — [K(y) E(y)], (A32) cesses gives rise to a polarization of electronic orbitals and
m(p can be taken into account by a proper dielectric congfafit.

Separating the processes retained in the way indicated in Eq.

2pPv ( 0)2 (B2), we obtain, in the reduced BZ
= |E(y)~|~| K(y)|+1, (A33 * ’ '
M= (W=D (y) M (y) (A33)
with c=2(\+v)q, u=1+2vm, andy=+1—(c/u)2 In 5Hl2A——NE Vigﬁpszhtk“ﬁ\ kyo Pikgr

i(TT

terms ofc and u the mean-field single-particle gap separat-
ing at half filling the full valence from the empty conduction
band and the renormalized bandwidth are given, respec- 2 V93 b psz kg kg Pigor (B3)
tively, by Ego= 2E ;o= 2C andWhan= 2Eo=2u. To obtain kivour

quantitative results fokE ., andW,,,4, We solve the coupled 1

set of nonlinear equation®32) and(A33) numerically. For SHRPA= > [VvEPA P! ol hik _hik —+H.cl,
later reference, we conclude this appendix with explicit ex- 2Ni; e 3T Tha?

pressions for the Bogoliubov amplitudes (B4)
[E+ € 1
ay= ;E k! (A34) EZZ_N 2 VE§34 pllfrplzr pk37'pk40'1 (BS)
k ki o, 7

E,—¢€
Bk: ;Ek X Sgr(k)a (A35) Hhh 20- . V123 k37hik ;h kl?h_kZ_T' (B6)
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where, as before, the momentum summation is constraineghere the momentum sums are restrictedk{e k,=q and
to k;+k,=kz+k,. The interaction vertices are given by  the interaction vertices have the form

Vo= UD1pas— 20 W 1308k —ky),  (BY) N 1
WKy, Ko,0) = =i\ \/ 5L Sink; —sink,]1915,
Vi ub st 20V insgosky—ke),  (BE) 20er(ON ©20

Vo= —u® 93— 20V 5508k —ky),  (BY)

) 1
Wk, k., =—N\/5=——[sink; +sink £+,
Vi = ud 1534~ 20 155008 kg — Ky), (B10) 2 (kike,0) 25w2(Q)N[ ! 2lf12
(B21)
ViDa = U 1534~ 20V 195009 Ky —Ky). (B11)

Here numerical indices stand for momentum variables, e.g., W‘lf“ef(kl,kz,q)zi)\ \ /m[sinkl—sinkz]ffz,
1

VibarV(Ky kp ks kg), (B12) (B22)
and we employed auxiliary functions 1
WKy Ky, Q) = — N \/ 5= Sinky; + Sink,]g 5.
q)1234:f1r2f;4+gizg;4, (813) 2 ( 1,82 q 25w2(q)N[ 1 2]912
(B23)
_f—f— _ Nt Nt
V1236 Tial 24~ 91824, Bl The wo auxiliary functions;, andgy, are defined in Egs.
together with (B15) and (B16), respectively, while the dispersions for
acoustic and optic phonons are given in Appendix A, Egs.
f 1= a18,* Bras, (B15)  (A17) and(A18).
Finally, the coupling to external light fields, EQ), is
91,= a1, B18,, (B16) recast into the form
where «; and B, are Bogoliubov amplitudes defining MFA
guasiparticles as given in Appendix A, Eg&34) and 5H,T|ight=2 ﬁm[plapngrh_k;th_kﬂZ(t)
(A35). Expression$B3)—(B6) are identical to the ones given ko
in Ref. 16, except with slighly different notations. Since ;
spontaneous creation or annihilation of particle-hole pairs is + p [ﬁ(?)plgh_k;nL H.c]#(t), (B24)

suppressed due to the presence of aRPiingle-particle gap
(~2 eVin P.DA).’ we do _not considebH,_ in the main  \ith intra- and interband dipole moments defined, respec-
text. A bosonization technique based on RPA collective pa"?ively by
is possible, although it is algebraically much more ’
involved®

Let us now turn to residual electron-phonon interaction. V= (B25)
For completeness we give the full expressferceptU pro- 2ty
cessepincluding intraband and interband scattering events
as well as optic and acoustic phonons. In the main part of the e
paper, however, we consider only intraband scattering of op- nP=—ji_—. (B26)
tic phonons. In the reduced BZ we split E§20) into intra-

and interband processes Due to scaling, the coupling constaritpole momentsare

_ spyintra inter iven by the electron charge in units af,2 In the main part

OHepn= Hepnt OHe.ph- (B17) gf this v)\llork we consider (?nly interban?j processes, i.pe., cre-

Neglecting umklapp scattering with respect to the reducedtion (annihilation of particle-hole pairs due to interaction

BZ and using acousticfoptic-) phonon operatorgsee Ap-  With light.

pendix A) we explicitly find Finally, the total particle-hole Hamiltonian upon which
we base our treatment of nonlinear optics of conjugated

_ . polymers reads
SHE= 20 2 D W™ (ky Kp, a)[ P o Pkyor

=12k ,kp,q o 0 TDA hh intra
H=Hye+Hp+ 6He o+ SHER+ SHAL+ SH R

+h', —h (5 1(bg+bT ), (B19)
k2 1 q) q) + 5H77 |ight- (827)
6Hien_tper|1': E D [W}mer(kl,kzm If we disregard acc_)ustic phonons I'nhgh and §Hi§‘f,§%, .intra-
=12k k.0 @ band processes iWH g, the zero-point motion of

phonons, and the constaBi,,, this is identical to the

t ot T
Xpklvh*kzﬁbq#b*mwfH'C']' (B19) Hamiltonian given by Eq(4) in Sec. I.
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APPENDIX C: INTERACTION VERTICES
OF THE COUPLED EPG KEV:# % D (D[(Eksz2+q+ Exiz—g) Ir
We give a brief account of the derivation of the interac-
tion ve?tices defining the coupled EP&The Usui operator + Gr(anNIPR(N A, A
that formally maps fermionic operators onto bosonic opera-
tors is unitary. To obtain the bosonic version of the total
Hamiltonian Eq (16), we simply have to replac&,, —>KE Q,(K)AL Ak, - (CH
qu, and D by their respective boson expansions v
(S< )g» (C q)B, and (Dkq)B Therefore, employing Egs.
(23), (25), and (26), we find for the free particle-hole pair
plus particle-hole scattering terms of HG6)

Consequently, the first term on the rhs of E§1) describes

bare TDA excitons, i.e., it is the leading term at vanishing

pair density. The next two terms on the rhs of EG1)

couple TDA excitons and originate from the Pauli exclusion

principle. In;[lhis sense, these terms constitute pukéte-
EJCh+DI 1+ VTPAK) 8w St matic effects:

EK {Cuuct Diad KE,Q % v (K)OkoSk,Sop Again using Egs.(25 and (26), we find, after normal

ordering of the boson operators, for the interaction between

_)KE rE DU (Exsz+q+ Exrz—q) Oar Ffﬁr)tides in the conduction baffburth and fifth terms of Eq.

+ Gy (qn) DL AL Ak, . )
> VR CL Cl = o= VBE8  CL
TDA 2N m 1234-k ks~ kokg 2N = 12349k, Kpks
- ZE Sy iy gy Vi (K) . ,

Ki v

XY(K1v;KavaKarsKom) AL, AL AkauAK o, 2N iz,,l K1+ K Ky tKy
1 TDA pp
_ZE O +K,, K3+K42 Vo (Ka) X 2 VPP(K;—K5+k Ko —Ky+0,0,k)
iV kq
X Y(K4V, K1V1K2V2K3V3) X P|Z1V13K3V3(K1_ K3+ k,k) P|22V2;K4V4
XAKlleszzAK3v3AK4v4' (Cl) X(Kz 4+q Q)AKlvl KZVZAK3 AK4V4 (CS)

By choosing the exciton wave functich to be real, we and, similarly for the interaction among holes in the valence

already anticipated that we takky as the solution of the band[sixth and seventh terms of EL6)],
symmetriceigenvalue problem

1 hh
E VgDl kg~ k2D Kg—ky ZNZ V12345k2k4D kg—kq

Z [(Exs2+q+ Exz—q) 8qr+ Gr(ar) 1PE(r)

1
=0, (K)®k(q), (e%) Hm;vi 5K1+K2,K3+K4qu V(k,q,K3—K;+0,K,
with the symmetric N/2XN/2) matrix G¢(rq) defined in Kot K\PT Ko
Eqg. (19). It can be shown that E4C?2) is equivalent to the KaF k)P, ks (Ka~Ka— 0, —0)
solution of the two-time Green function for singlet particle-
hole pairs in the TDA? With the help of Eq.(C2) we can . (K= Ky—k,—K)
then rewriteV™, Eq. (18), in a very compact form [ CTPH VAL N
XAKlleszzAK3v3AK4v4' (CG)

VL'iA(K):% [Q,(K)—Eg/2+q—Exia—qlPr(@)@E(Q)

(C3 In contrast to the two-body terms of Ef1), these coupling
terms originate from both the Pauli principle and the under-
lying Coulomb interaction. In this sense, E¢E5) and(C6)

and the first term on the rhs of E¢C1) becomes diagonal. containkinematicas well asdynamicprocesses. Collecting
More specifically, we obtain, employing the orthogonality of terms, we finally obtain, for the exciton-exciton interaction
the exciton wave function®y , (numerical indices stand fdfv),
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ox o - (v# u, interbang. With the exciton-phonon vertex defined
= 2 O +Ky K+ K, 7 123 1A2A3A,,  (CT)  in Eq. (C10), we write, for the exciton-phonon coupling,

Ki v
i iton-exci i oex-ph_ : T t
with the exciton-exciton vertex defined by TP _% % (K QAL 0,Aku(Bo+BT o).
Wio3=W(Kyv1KovoK3v3K,vy) (C1)
1 Figure 4 represents the exciton-phonon vertex in terms of
=— ZE VI?VA(Kl)Y(Klv;K4v4K3v3K2v2) mode-mode coupling diagrams.
v Finally, using the expansiori23), we obtain for the
1 matter-light coupling, taking into account only interband
- ZE VIEVA(K4)Y(K4MK1V1K2V2K3V3) transitions resulting in either the creation or annihilation of
v excitons,
+1§‘,VPPK Ks+k,K,—Ky+0,9,k
gy VKTt a.alo — 2 (1,80, THC)Z(1) = = 2 (1,Ag, T H.C)A(Y)
X P kg K=Kt KKOP e B
1 +KZ_ H(KyvKovoK3arvs)
><(K2—|<4+q,q)+m;q V(K g, Ka— K o
. ’ X 5K3,K1+K2[A&1V1A&zvz
Ta,Ky =Ko+t K)Py ik, (Ki—K3—0,—0)
X Ak.,.+ H.c]4(1),
+ —K,—k — 373
><F)KZVZ;K4V4(K2 K4 k1 k) (CS) (C12)

The interaction vertice&()( ) are defined in Appendix B, Wwith the nonlinear exciton-light vertex written as

Egs. (B7)—(B11), whereasV'™PA is given in Eq.(C3). The L

rearrangement coefficiert and the structure coefficients ~ _ = .

P* are denoted in Eq$24), (14), and(15), respectively. To #(K1v1KovoKsvs) 42,, #aY (07K v1KovoKgvs)
clarify the physical content, we visualize E&8) in Fig. 3 (C13
employing mode-mode coupling diagrafs.

Next, with the help of Egs(25) and (26), it is easy to
express the coupling between particigmles and optical
phonons in terms of boson operators. Considering only intr
band processes we write

and the rearrangement coefficientgiven by Eq.(24). The
first term on the rhs ofC12) does not modify the material
system and gives rise to linear absorption in the T@ix.,

%he Elliott formula for absorptiofi). In contrast, the second
(nonlineay coupling term leads to self-energy corrections,
thus modifying the material system. In terms of bosons, it is

2 Wizmra(kl,kz,CI)(bq"‘bT_q)[Cllkz"' Dtkz,—kl] this term that describes the so-called phase-space-filling

ki k2.9 effect®® Thus exciton-light coupling consists of two terms
explicitly given by
. T T i ) i i
_>K’Q 2 '//Zv,u(KlQ)AKJrQyAK,u( BQ+ B,Q), (Cg) /,7/% light_ ][Iﬁ:( I|ght,L+ 743}1); light,NL
with the exciton-phonon vertex given by =—> (A, +H.C)E(D)

7% . — intr - _
An(KiQ)= 2 WK QK QP (K QK 3 TKyvKaraKavs) e kv,

+§k} W3k +Q,k,Q) XAk 1 Ak, Py THCIZ().  (C14
In Fig. 5 we depict linear and nonlinear exciton-light cou-
+
X Py qukul —k—k=Q) (C10 pling in terms of mode-mode coupling diagrams. Attaching
andwizntra(kl’kz,q) defined in Eq.B21). The first term in the free optic phonon and exciton Hamiltonians to EGY),

Eq. (C9 originates form scattering processes bet\Neen(Cll)’ and(C14, we obtain the EPG Hamiltonian
phonons and patrticles in the conduction band, whereas the

second term arises from scattering of phonons on holes in the T = z QV(K)ALVAKVJr E w(Q)BgBQ
valence band. Furthermore, translational invariance restricts K. Q

i . i e ~ex-ph_ 5 ex-ligh
phonon and exciton momenta. The internal quantum number + e gyexphy gyexcight (C15

v of an exciton is, however, unconstrained. Consideriras
a “band index,” this means that we have both scatteringNeglecting contributions from acoustic phonons, we finally
events within a bandiy= u, intraband and between bands find the EPG model as displayed in Sec. I, E2j7).
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