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Based on the theory of carrier statistics under thermal equilibrium, a method for calculating band bending
and concentration profiles of a multilevel impurity center in its individual charge states within a semiconductor
inhomogeneously doped with the impurity by solving the Poisson equation has been proposed. The boundary
conditions used are as follows: the sample as a whole and everywhere outside the doped layer are kept
electrically neutral. Discussions as to whether the multisteplike barrier might exist in this type of doping layer
and the significance of the calculation are made.@S0163-1829~96!03220-1#

I. INTRODUCTION

In principle, statistics allows us to determine the popula-
tion of impurity levels in semiconductors. For cases in which
an impurity may exist in different charge states and is doped
inhomogeneously, the problem becomes more complex and
to our knowledge has not yet been solved, even though it has
been of concern for a long time. We shall develop a numeri-
cal calculation scheme for dealing with the subject, and some
general features of the band bending in these cases will be
drawn. This is important for assigning charge states of im-
purities in the samples used in the experiment and even for
designing devices that contain this kind of impurity.

In the case where an impurity forms only one local energy
level within the forbidden gap of the substrate, the band
bending~barrier! within the doping layer can, in principle, be
calculated by integrating the Poisson equation1

d2V~x!

dx2
52

r~x!

e
, ~1!

whereV(x) denotes potential variation along thex direction,
r is charge density, ande is the dielectric constant of the
material. When the profile of the ionized impurity density
can be written in an analytic form, this kind of problem can
be solved without difficulty, providing proper boundary con-
ditions corresponding to the profile are used. For example,
the solutions for abrupt or linearly gradedp-n junctions are
well known.

Some impurities, such as 3d group transition metal ele-
ments Fe, Ni, and Cr, etc., may exist in multicharge states
after being doped into semiconductors. For an example, it is
generally believed that Ni substitutes Ga in GaP and it may
exist in three different charge states: Ni~d9!, Ni~d8!, and
Ni~d7!.2 Correspondingly, two levels, Ni(d8/d7) and
Ni(d9/d9) are formed within the forbidden gapEg . Refer-
ring to the Ga ions that have been substituted, nickel ions in
the three charge states are overfilled by 2, 1, and 0 electrons,
respectively. For convenience, when the number of the over-
filled electrons isj , we denote the charge states asj2, and
the levels asj2/( j21)2. Generally speaking, for an impu-
rity T that may exist in charge statesTj2 with j5m,m

21,...,1,0,21,...,2n, the charge states can be denoted as
Tm2,T(m21)2,...,T2,T0,T1,...,Tn1, totally m1n11
states, thenm1n levelsT[m2/(m21)2],...,T[(n21)1/
n1] will be formed. Some of these levels may be located
within Eg of the substrate.

For this kind of impurity, solving Eq.~1! will present
some problems. In some cases, the doping profile is inhomo-
geneous, for example, in the cases of doping by thermal dif-
fusion or ion implantation currently used in technology. Be-
cause electron occupancy of the charge statesj2 of the
impurity, f j2, depends on the distance between the corre-
sponding impurity level and Fermi level and the former
keeps a constant distance from the band edge, the integrated
function r(x) on the right side of Eq.~1! is a function of
V(x) on the left side of the same equation. Therefore, solv-
ing Eq.~1! becomes a self-consistent problem. It has no ana-
lytic solution in principle.

The behavior of 3d metal impurities in semiconductors is
of concern for both theoretical and applied aspects.2,3 Since
the 1980’s, the theory of 3d electronic states in semiconduc-
tors has progressed extensively.3–6 It has been suggested that
the energy levels of 3d impurities can be used as a reference
to determine the band offsets in quantum wells and
superlattices.7

Generally speaking, 3d impurities may have important
influences on optical, electrical, and magnetic properties of
materials. These effects are restricted by charge states of the
impurities in the materials. Then, determination of charge
states of the impurities and their profiles within the doping
layer in a specific sample is very important. With regard to
some physical measurements, such as deep level transient
spectroscopy, optical absorption, electron magnetic reso-
nance, and Mo¨ssbauer spectroscopy, etc., explanation of ex-
perimental results depends strongly on the assignments for
charge states of the impurity in the sample. Thus, the calcu-
lations of the band bending and concentration profiles of a
multilevel impurity within a specific doped layer is a signifi-
cant task.

The relevant theoretical basis will be described briefly in
Sec. II. The theoretical model used in this work will be
drawn in Sec. III. Then in Sec. IV, the problem with a
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multisteplike band bending that may occur within the doping
layer will be discussed. The final section will provide the
concluding remarks.

II. THEORETICAL BASIS

A. Charge density

Assume that both a donorD and an acceptorA are doped
into a semiconductor, and bothD andA may exist in multi-
charge states. The corresponding multilevelEDi
( i51,2,...,n) andEAj ( j51,2,...,m) are formed in the for-
bidden gap. The doping profiles are assumed to be homoge-
neous in both directionsy andz but inhomogeneous in thex
direction. Then the charge density atx can be written as

r~x!5p~x!2n~x!2(
j51

m

rA j~x!1(
i51

n

rDi~x!, ~2!

wherep andn are the concentrations of electron in the con-
duction band~CB! and that of hole in the valence band~VB!,
respectively. From general semiconductor statistics, it is
known that

n~x!5NCexp$@EF~x!2EC~x!#/kT% ~3!

and

p~x!5NVexp$@EV~x!2EF~x!#/kT%. ~4!

In these expressions, the following notations are used:NC
andNV are effective densities of states in the CB and VB;
EC and EV are the bottom of the CB and top of the VB,
respectively;EF is the Fermi level, which is a constant in a
thermal equilibrium system;rA j is the contribution to the
total charge density~absolute value! from the j -fold ionized
acceptor andrDi is that from thei -fold ionized donor. They
may be expressed as

rA j~x!5 jnA j~x!, ~5!

rDi~x!5 inDi~x!, ~6!

wherenAj is the concentration of thej -fold ionized acceptor
andnDi is that of thei -fold ionized donor. In the case that
more than one acceptor and/or donor are doped, the corre-
sponding terms should be added into Eq.~2!. When only one
impurity is doped into a semiconductor, and the impurity
forms several acceptor and donor levels withinEg , the last
two terms on the right side of Eq.~2! represent the contribu-
tions from the acceptor and donor levels of the impurity
center, respectively. For this situation, Milnes8 has proved
that if N is the total density of the impurity center, then
electron occupancy of thej th acceptor level is equal to

f ~EAj![S nAjN D5

~1/2! j H )
p51

j

exp@~EAp2EF!/kT#J
D

,

~7!

and that of thei th donor level is equal to

f ~EDi ![S nDiN D5

~1/2! i H )
q51

i

exp@~EDq2EF!/kT#J
D

~8!

with

D511 (
k51

m

~1/2!kF )
p51

k

expS EF2EAp

kT D G
1(

l51

n

~1/2! lF )
q51

l

expS EDq2EF

kT D G . ~9!

ProfileN(x) is determined by the doping technology. From
Eqs.~7! and ~8!, we obtain

nAj5Nf~EAj!, ~10!

nDi5Nf~EDi !. ~11!

It is worthwhile to note that both expressions off (EAj)
and f (EDi), Eq. ~7! and ~8!, containEF ; on the other hand
EAj andEDi are defined with respect to the band edgesEC
andEV . Thus,nAj(x) andnDi(x) depend on bothN(x) and
EC(x)2EF . EF will be taken as the zero point of energy in
the calculations described below.

Substituting Eqs.~3!–~8! into Eq. ~2!, a general expres-
sion of r(x) can be obtained.

B. Poisson equation

Substituting Eq.~2! into the Poisson equation~1!, the spe-
cific equation that we need to solve is obtained.

Due to inhomogeneous doping, a space charge region
~SCR! is built up in the sample, then a band bending occurs
and a barrier is formed. A simple example for the situation is
the junction region of ap-n junction. Within a homoge-
neously doped region, no space charge occurs and the energy
band is still flat. Electrical neutrality should be satisfied ev-
erywhere within the region. This region will be called the
electrical neutral region~ENR! hereafter. TakingEC within
ENR as the zero point of potentialV, then

EC~x!52qV~x!. ~12!

Thus, the Poisson equation~1! can be rewritten as

d2EC~x!

dx2
5

r~x!q

e
. ~13!

As described above, ifr(x) on the right side of the equa-
tion andEC(x) on the left side are dependent upon each
other, solving Eq.~13! will become a self-consistent prob-
lem. In general, it cannot be done analytically and a numeri-
cal solution will be called for.

When a reverse biasVR is applied on the sample, the
system will be turned into nonequilibrium. In this case, the
quasi-Fermi levelsEF

n and EF
p for electron and hole sub-

systems, respectively, can be used instead ofEF . It is as-
sumed that bothEF

n andEF
p are kept at their own constant

values within the barrier region, andEF
p2EF

n5uVr u. Thus,
the discussions about the Poisson equation andr(x) made
above can be maintained to be correct. With regard to calcu-
lations of occupancies of the impurity levels,EF

n or EF
p will

be used depending on with which band, CB or VB, the level
exchanges carriers.
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III. CALCULATION SCHEME

A. SCR and boundary conditions

In the case that the doping profile is inhomogeneous, es-
pecially when the impurity induces more than one level, the
shape of SCR and the band bending may be very compli-
cated. But in any case, the positive space charges always
exist within some regions, forming positive SCR’s
~PSCR’s!; and the negative space charges exist within other
regions, forming negative SCR’s~NSCR’s!. For the sake of
brievity, only the cases in which one PSCR and one NSCR
are formed in a sample will be treated below~see Fig. 1!. It
is not difficult to deal with the cases in which more than one
PSCR and NSCR occur along a similar line.

To satisfy the requirement for keeping electrical neutrality
within the sample as a whole, the absolute value of the total
charge in PSCR and that in NSCR should be equal to each
other. The condition of electrical neutrality should also be
valid everywhere within the ENR’s. We shall restrict our-
selves to the case in which only one maximum occurs on the
doping profile. Actually, total impurity concentration profiles
formed by the current doping technologies such as ion im-
plantation and thermal diffusion belong to this case. For ion
implantation, the profile of total concentration of the im-
planted ionN(x) is a Gaussian distribution. For thermal dif-
fusion with a constant source theN(x) is an error function
complement distribution. Both of them have only one maxi-
mum. In this sort of case, any form of distribution may have
a tail region within whichN(x) slowly tends to its value in
the neighboring homogeneously doped region. At the same
time, the space-charge densityr(x) gradually approaches
zero. In practical problems, when the absolute value ofr(x)
becomes smaller than a certain valued5ur~x0!u ~see Fig. 1!,
very light doping has only a negligible effect on the material.
Of course, there is a pointxn on the opposite side of the
SCR, wherer(xn)52r(x0). Therefore, it is reasonable to
take the region (xn ,x0) as the SCR in the case shown in Fig.
1, and the areas outside the region will be regarded as
ENR’s. This approximation may be called the ‘‘tail cutoff
approximation.’’

Considering the fact that electrical neutrality will be kept
within the sample as a whole and everywhere in ENR’s,

under the tail cutoff approximation, the boundary conditions
needed for solving Eq.~13! can be obtained as

«~x!ux.x0
50, ~14!

«~x!ux,xn
50, ~15!

EC~x!ux.x0
5EC~x0![EC0 , ~16!

EC~x!ux,xn
5EC~xn![EC08 , ~17!

E
x0

xn
r~x!dx50, ~18!

where« is electric field,EC0 in Eq. ~16! andEC08 in Eq. ~17!
are the values ofEC within the regionsx>x0 and x<xn ,
respectively.

B. Iterative equation

For convenience in computer calculation, SCR (x0 ,xn) is
divided into small enoughn equal segments (xn ,xn21),
(xn21,xn22),..., (xi ,xi21),..., (x2 ,x1), (x1 ,x0); the length
of such a segment isDx. Integrating Eq.~13! from x0 to xi ,
we get

dEC~x!

dx U
xi

.
dEC~x!

dx U
xi21

1
qr~xi !

e
Dx. ~19!

Integrating twice gives

EC~xi !.2EC~xi21!2EC~xi22!1
qr~xi !

e
~Dx!2. ~20!

The expression ofr(xi) is given by Eq.~2!. Noting that
r(xi)5r„EC(xi)…, when the values ofEC at two pointsxi21
and xi22 within (xn ,x0), EC(xi21) and EC(xi22) can be
determined,EC(xi) can be calculated using Eq.~20! numeri-
cally. Following an iteration using the same equation, a set
of values EC(x0),EC(x1),EC(x2),...,EC(xn), denoted as
$EC(xi)%, may be obtained. That is just the band bending
within the whole SCR.

From the boundary conditions Eqs.~16! and ~17!, it can
be seen thatEC(x0)5EC0, which may be determined from
equlibrium statistics in the ENRx>x0, andEC(xn)5EC08
may be calculated in the ENRx<xn in the same way. Due to
the continuity ofEC(x) the latter valueEC08 should be equal
to the asymptotic value ofEC(xi) when xi→xn , i.e.,
EC(xn)5EC08 . This requirement can be used as a criterion
for judging the feasibility of the calculated$EC(xi)%.

During the first step of the calculation,i was taken to be
2, thenEC(xi22)5EC(x0) was known and a tentative value
of EC(xi21)5EC(xi), denoted asEC

(1)(x1), was chosen to be
substituted into Eq.~20!. Thus a value ofEC

(1)(x2) could be
obtained using the relation betweenEC(xi) and r(xi) ex-
pressed through Eqs.~2!–~11!. During the second step, tak-
ing i53 and substituting the valuesEC

(1)(x2) andEC
(1)(x1)

into Eq. ~20! as EC(xi21) and EC(xi22), respec-
tively, a valueEC

(1)(x3) could be obtained. Following an
iterative calculation, a set of valuesEC

(1)(x0)
[5EC(x0),EC

(1)(x1),EC
(1)(x2),...,EC

(1)(xn)], denoted as

FIG. 1. A schematic profile of space charges within a space-
charge region.
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$EC
(1)(xi)% could be obtained. By checking the asymptotic

behavior of$EC
(1)(xi)% when xi→xn and the difference be-

tween its asymptotic value~whenxi→xn! andEC08 , the fea-
sibility of the solution$EC

(1)(xi)% can be judged. If it does
not satisfy the conditions given in the preceding paragraph, a
new tentative value ofEC(x1), EC

(2)(x1), should be chosen.
Then a new set of$EC

(2)(xi)% would be obtained in the same
way as described above. If the calculation was carried outp
times, following the same method, until the asymptotic be-
havior of $EC

(p)(xi)%xi→xn
was good enough and the differ-

ence between its asymptotic value andEC08 was smaller than
a predesigned critical valued, then$EC

(p)(xi)% is a reasonable
approximate solution of the band bending$EC(xi)%.

C. Profiles of impurity charge state concentrations
and space-charge density

As mentioned above, the band bending$EC(xi)% in a SCR
can be calculated by using the iterative equation~20!. Insert-
ing the values of$EC(xi)% into Eqs.~3!, ~4!, ~7!, and~8!, the
profiles $n(xi)%, $p(xi)%, $nAj(xi)%, and $nDi(xi)% can be
calculated. Substituting them into Eq.~2!, the profile of
space-charge density$r(xi)% can be obtained. Integrating
$r(xi)% within the region betweenx0 and xn , the result
should be equal to zero as expected from Eq.~18!. In prac-
tice, an integration smaller than a certain value depending on
the error level of the calculation can be accepted. Otherwise,
it implies that thex0 used is not far enough from the surface
and a newx0 point should be chosen. In principle, thex0
point should be chosen as far as possible from the surface,
but if it is too far away from the surface error accumulation
during the integration may blur the result.

IV. CLASSIFICATION OF BAND BENDING

The calculation scheme described in the preceding section
has been used in the cases of Ni-implantedn-GaP under the
different conditions. The details will be reported in Ref. 9. In
GaP, Ni substituted Ga, NiGa, may exist in three different
charge states, withj50, 1, and 2. Consequently, two impu-
rity levels E1 andE2 are formed within theEg , E1 is a
single acceptor levelA1, E2 is a twofold acceptor levelA2.
So the calculation scheme is suitable for the system. In the
calculation, the following parameters were used:
E15EV10.62 eV,10 E25EC20.82 eV,11 and EGa52.26
eV. The typical calculated band bendings are shown in Fig.
2. From the results, the following types of band bending can
be classified.

A. Multisteplike band bending

When dopant concentration in a sample is high enough
and annealed sufficiently, the typical calculated band bend-
ing is like that shown in Fig. 2~a!. A layer near the surface
@the region~0,x1!# becomesp type, becauseEF is located
nearer to VB than to CB within the layer. Additionally, there
is a rather wide transition region@the region (x1 ,x4)# from
the p-type layer to then-type substrate, since impurity con-
centration varies slowly as the depth increases. Then two
steps appear on theEC(x). Within the plateau region be-
tween the two steps (x2 ,x3), EF is located far away from
both band edges~EC andEV!, so this region becomes a high

resistivity layer ~i layer!. The whole sample is actually a
p- i -n structure. Thep- i step is caused by transition from
Ni~d7! to Ni~d8!, and thei -n step is result of the transition
from Ni~d8! to Ni~d9!. Within the i layer,EF is located near
level Ni(d8/d9), and the distance between them varies quite
slowly. The height of the first step,DE1, is approximately
equal to the difference between levels Ni(d9/d8) and
Ni(d8/d7), E22E1,

DE1.E22E15E~d9/d8!2E~d8/d7!

5Eg20.82 eV20.62 eV50.81 eV.

The height of the second step,DE2, is approximately equal
to the difference betweenEF in the neutraln layer and level
E(d9/d8). That is,

DE2.ED2E25~EC20.104 eV!2~EC20.82 eV!

50.716 eV.

Within the region where the total concentration of the 3d
impurity N is high enoughEF is pinned approximately at
E1. This region forms the first plateau onEC(x),(0,x1) in
Fig. 2~a!. As N(x) decreases,EC(x) reduces related toEF .
On the second plateau, (x2 ,x3) in Fig. 2~a!, EF is pinned
approximately atE2. After thatEC(x) reduces again, and
goes to its value in the next ENR,EC0. Within the ENREF

FIG. 2. Schematic band bendings:~a! Multisteplike band bend-
ing, ~b! Single-step-like band bending.
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is located approximately atEC02ED . Therefore, the heights
of the two steps onEC(x) are approximately equal to
E22E1,ED2E2 in order as described above. Generally
speaking, an impurity may createk levels in theEg :m ac-
ceptor levels (Am ,Am21,...,A1) and n donor levels
(D1 ,D2 ,...,Dn), withm1n5k. For the samples that weren
type before doping with the impurity, as long as the doping
concentration is high enough and annealed sufficiently,m
steps will appear onEC(x). Every step corresponds to a tran-
sition between two adjacent charge states of the impurity,EF
is pinned atEL j within the plateau ahead of thej th step and
pinned atEA( j11) within the next plateau. For the last step,
its ‘‘next plateau’’ is just the ENR in the substrate, in which
EF is pinned approximately atED . Thus the heights
of the first to mth steps should be approximately equal
to DE1.EA22EA1, DE2.EA32EA2,...,DE j.EA( j11)
2EAj ,...,DE(m21).EAm2EA(m21), DEm.ED2Em in
order. For the samples that werep type before the doping,
and with a high enough doping level,EC(x) will behave in a
similar way. The heights of the steps should be
approximately equal to DE1.ED12ED2, DE2.ED2
2ED3,..., DEi.EDi2ED( i11),..., E(n21) .ED(n21)
2EDn , DEn.EDn2EA , in order, whereEA is the back-
ground shallow acceptor level.

B. Single-step-like band bending

When the dopant’s concentration in a sample is high
enough and its profile is steep enough~for example, the
sample is implanted heavily and annealed insufficiently!
N(x) concentrates in a thin layer near the surface. In this
case,N(x) reduces very quickly as depthx increases. In this
case, the calculated band bending is like that shown in Fig.
2~b!. EF in the layer near the surface is located nearer to VB
than to CB, resulting in the layer beingp type. The little
protrusion within the layer is caused by the Gaussian profile
of the implanted ions. Forx larger than a certain value~x18 in
the figure!, EC(x) reduces quickly. BecauseN(x) is already
not high enough to controlEF there, thei layer in the case
described in the preceding paragraph cannot appear now.
Thus only onep-n junction is formed. In the usual situation,
this sort of structure may be dealt with as a simplep-n
junction.

In the case that the sample wasp type before the doping,
a similar discussion can be made, the only difference is that
VB should be used instead of CB and vice versa in the de-
scription above.

Generally speaking, when the doping concentration is so
high that the near-surface layer reverses its type andN(x)
reduces very quickly as depthx increases, the multisteplike
band bending described in the preceding paragraph will dis-
appear, resulting in the formation of a singlep-n junction,
which has a single-step-like band bending.

C. Other cases

When the doping level is very low so thatEF does not
vary a great deal within the whole sample, the problem will
be simplified. In ann-type sample, the impurity will exist in
the charge state in which the number of electrons occupied
on the center is the largest. In ap-type sample, a similar
situation will happen, but a hole should be used instead of an
electron in the description above. In this sort of case, the
impurity mainly acts as a compensator, but does not cause
any obvious band bending.

V. CONCLUSIONS

A scheme used for calculating band bending and profiles
of different charge states of a multilevel impurity,nAj(x) @or
nDi(x)#, within a layer inhomogeneously doped with the im-
purity has been proposed. The scheme is based on the theory
of carrier statistics under thermal equilibrium and carried out
by solving the Poisson equation iteratively. Its solution has
improved the understanding of semiconductor statistics. As
to the applied aspect, it allows us to analyze some relevant
problems quantitatively, then some new insights can be
given ~see Ref. 9!.

Several typical cases of band bending within a layer
doped inhomogeneously with a multilevel impurity have
been classified. Particularly, multisteplike band bending ap-
pearing in the samples doped heavily and annealed suffi-
ciently has been discussed in detail. The question as to
whether it can be used for some special purposes, for ex-
ample, in some device design, will be left for consideration.
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