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We present a first-principles study on the pressure-dependent properties of cubic and hexagonal polytypes of
silicon carbide~SiC!. Our calculations have been performed within density-functional perturbation theory,
using the plane-wave pseudopotential approach. The stability of several high-pressure SiC phases is discussed
in terms of the ionicity and metallicity of the Si–C bonds. Furthermore, we investigate pressure dependence of
the zone-center frequencies, of the Born effective charges, and of the static and high-frequency dielectric
constants for 3C, 2H, and 4H polytypes of SiC. Whereas the structural and electronic properties of the cubic
and hexagonal polytypes are very similar, remarkable pressure-induced differences are found for the dynamical
and dielectric properties. The unusual behavior of the transverse effective charge recently observed experi-
mentally for 6H SiC is discussed.@S0163-1829~96!02119-4#

I. INTRODUCTION

The recent growing scientific and technological interest
on silicon carbide~SiC! arises from its salient physical prop-
erties, in particular its mechanical, chemical, and thermal
stability.1 The scientific interest in SiC is driven by the ex-
istence of a variety of different polytypes, and its peculiar
structural, lattice-dynamical, and electronic properties. SiC is
the only IV-IV compound that forms stable long-range or-
dered structures: About 200 crystallographic modifications
have been reported so far.2 The polytypism originates from
differences in the stacking sequence of Si-C bilayers along
the @111# or @0001# direction, giving rise to cubic (C), hex-
agonal (H), or rhombohedral (R) arrangements ofn double
layers within a unit cell. The most common polytypes are 3
C ~zinc blende!, 6H, 4H, and 2H ~wurtzite!.

The technological interest in SiC is driven by its outstand-
ing mechanical and electronic properties, such as the high
melting point, the high thermal conductivity, and the large
bulk modulus, as well as the large band gap and the low
dielectric constant, which make it usfull for electronic and
optical device applications. Microelectronic devices made of
SiC can be used in high-power, high-speed, high-
temperature, high-frequency, and even hard-radiation
applications.3 The most favorable polytype for device appli-
cations is still in debate.

Experimental high-pressure studies have been carried out
almost exclusively on 3C SiC. In particular, the Raman
modes have been studied up to 0.4 Mbar.4,5Meanwhile, there
are also ultrahigh pressure studies for the zinc-blende
3C and for the hexagonal 6H polytypes of SiC.6,7 The 3C
SiC undergoes a phase transition to a rocksalt-type structure
at about 1.0 Mbar. On the other hand, the 6H polytype of
SiC remains stable up to the highest pressures studied experi-
mentally with an indication of a phase transition above 0.9
Mbar. The 6H SiC semiconductor becomes transparent to
visible light at high pressures, and an anticipated metallic

phase has not been observed yet.7 Both polytypes exhibit a
remarkable and practically identical volume reduction under
applied external hydrostatic pressure.6 Contrary to this vol-
ume dependence, the pressure-dependent dynamical and di-
electric properties of the 3C and 6H polytypes seem to be
rather different.4,7 The LO(G)-TO(G) splitting of the strong
Raman-active modes of 6H SiC shows a saturation behavior
at ultrahigh pressures. The Born effective charge of 6H SiC
is found to decrease at high pressures, after increasing at
lower pressures and reaching a maximum value at about 0.4
Mbar.7 For 3C SiC, the data of Ref. 4 exhibit a nearly linear
increase of the effective charge with increasing hydrostatic
pressure in the low-pressure region. Up to now, theoretical
studies of pressure-dependent properties of SiC are restricted
to the band gaps and to the transverse optical frequency at
the zone center for 3C SiC.8,9

In this paper, we present a first-principles study of the
pressure-dependent properties of cubic 3C and hexagonal
2H and 4H phases of SiC. In all SiC polytypes, the chemical
bonds between the silicon and carbon atoms are practically
identical. Therefore, it is an interesting problem to find out
how the stacking order of the Si-C bilayers influences the
different physical properties of SiC polytypes. We investi-
gate the occurrence of semimetallic and metallic high-
pressure phases of SiC. The stability of these phases is dis-
cussed in terms of bonding properties, such as ionicity and
metallicity, and is used for an explanation of the phase tran-
sition found experimentally. Furthermore, we calculate the
pressure dependence of the structural, lattice-dynamical, and
dielectric properties of 2H and 4H SiC. The results for these
hexagonal phases of SiC are compared with the correspond-
ing ones of 3C SiC. In particular, we study the pressure
dependence of the tensor of the Born effective charges, of
the tensor of the high-frequency dielectric constant, and of
the zone-center phonon frequencies. We also discuss the in-
fluence of the symmetrically inequivalent Si and C atoms in
2H and 4H polytypes on the macroscopic properties.

PHYSICAL REVIEW B 15 MAY 1996-IIVOLUME 53, NUMBER 20

530163-1829/96/53~20!/13400~14!/$10.00 13 400 © 1996 The American Physical Society



II. COMPUTATIONAL DETAILS

Our calculations are performed within the framework of
the density-functional theory~DFT! and the local-density ap-
proximation ~LDA !, using the plane-wave pseudopotential
method. The analytical forms of the exchange-correlation en-
ergy and potential are taken from Ref. 10. We have gener-
ated soft norm-conserving pseudopotentials, using the
scheme proposed by Troullier and Martins,11 paying particu-
lar attention to the choice of the reference configuration for
the atomicd states. The sums over electronic eigenstates in
the Brillouin zone~BZ! have been performed, using 12~6!
Chadi-Cohen special points~SP! in the irreducible wedge of
the BZ of the hexagonal 2H ~4H) phase of SiC.12 Further-
more, 10 SP are used for the semiconducting zinc-blende
structure, 24 SP for the semimetallic hexagonal nickel
arsenide and antinickel arsenide, and 44 SP for the semime-
tallic rocksalt structure. For an accurate description of the
Fermi energy of the metallic cesium chloride phase 56 SP
have been used.

In order to determine the volume dependence of the static
total energies, we use the Vinet equation of state.13 The
pressure-dependent lattice-dynamical and dielectric proper-
ties of the different SiC polytypes are determined within the
framework of the self-consistent density-functional perturba-
tion theory~DFPT!.14–16DFPT allows the calculation of the
high-frequency dielectric tensor and of the Born effective
charge tensor for each atom in the unit cell. This approach is
also used to determine the harmonic force constants. The
dimension of the plane-wave basis set at a givenq point in
the first BZ is fixed through the condition12(q1G)2<Ecut,
whereG is a reciprocal-lattice vector andEcut is the kinetic-
energy cutoff. For the calculation of the dynamical and di-
electric~static! properties at the equilibrium volume, a value
of 40 ~48! Ry for Ecut is used to ensure convergence of the
calculated phonon frequencies to within 2 cm21. To guaran-
tee consistent results for the different physical properties at
varying crystal volumes, the number of the plane waves per
atom has been fixed. Further computational details have been
already presented elsewhere.15,17

III. RESULTS

A. Structural properties

The equation of state~EOS! of a solid (p-V relation!
plays an important role in condensed-matter physics and
geophysics. Many analytical and semiempirical relations
have been proposed to describe the EOS. The best-known
EOS for solids was suggested by Murnaghan,18 and it is
based on the empirical fact that the isothermal bulk modulus
depends almost linearly upon pressure. Nowadays the
Birch19 and the universal Vinet13 EOS, which are more ac-
curate than the Murnaghan EOS, are mostly used in solid-
state physics. In addition to the mere volume dependence of
the EOS for cubic 3C SiC, the EOS of the hexagonalnH
modifications of SiC depends also on the form of the unit
cell ~the ratioc/a of the lattice constants! and on then/2
structural parameters, which fix the positions of the atoms
within the unit cell.

The equilibrium structural parameters of the 2H and 4H
phases of SiC are obtained by minimizing the static total
energy, with respect to the lattice constantsa andc, and in
case of 2H structure, with respect to the structural parameter
u. The P63mc space symmetry of these phases was fixed.
We have performed the calculations in two steps. For a given
unit cell volumeV5A3a2c/2, the static total energy was
minimized with respect toc/a and u. This procedure was
repeated for several other volumes. The theoretical equilib-
rium volume,V0 , the isothermal bulk modulus at zero pres-
sure,B0 , and its pressure derivative,B08 , have been then
determined by fitting the total energy as a function of volume
to the Vinet EOS. In Table I, we compare the calculated
equilibrium structural and elastic properties of zinc-blende
3C and hexagonal 2H and 4H SiC with the available experi-
mental results. The theoretical lattice constants and bulk
moduli are in excellent agreement, being within 2% of the
room-temperature experimental data.20,21 To the best of our
knowledge, no experimental data are available forB0 and
B08 of 4H SiC.

In addition, we determined the Poisson ratio
m5] ln a/] ln c for uniaxial stress applied along thec axis
and the linear compressibilities parallel,b i52] ln c/]p, and

TABLE I. Comparison of the theoretical equilibrium lattice constanta and c ~a.u.!, bulk modulusB0

~Mbar!, its pressure derivativeB08 , Poisson ratiom for the uniaxial stress along thec axis, and linear
compressibilitiesb i andb' ~Mbar21) of 3C, 2H, and 4H SiC with the available experimental data.

a c B0 B08 m b i b'

3C Theory 8.207 2.236 3.77 1.0000 0.1518 0.1518
Expt. 8.238a 2.27b 3.57b

2H Theory 5.792 9.522 2.250 3.78 0.9882 0.1457 0.1474
Expt. 5.818c 9.547c 2.23d

4H Theory 5.798 18.994 2.243 3.72 0.9963 0.1481 0.1486
Expt. 5.807e 18.995e

aReference 28.
bReference 5.
cReference 20.
dReference 57.
eReference 21.
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perpendicular,b'52] ln a/]p, to the c axis. The rather
small anisotropy of the 2H ~4H) phase of SiC is described
by m50.988~0.996! andb' /b i51.012~1.003!, both being
very close to 1.0. Because of the predominantly covalent
character of all SiC polytypes, each atom is surrounded by
four atoms of the other kind. The polytypes are built up of
double layers of Si and C atoms, which occur in hexagonal
( . . .ABA. . . ) and/or cubic ( . . .ABC. . . ) environment,
whereA, B, C represent the different position of the atoms
in the ~112̄0! plane. The 4H structure with alternating hex-
agonal and cubic Si-C stacking layers is shown in Fig. 1.
The 2H structure consists of only hexagonal double stack-
ing layers, whereas no bond twisting appears in the cubic
3C structure~see Fig. 1!. Consequently, the smaller aniso-
tropy of the 4H structure can be attributed to the partially
cubic environments of the atoms within the unit cell. The
structural anisotropy given by the Poisson ratiom and
the ratio b' /b i increases slightly~linearly! with increas-
ing external hydrostatic pressure. The corresponding values
of the linear coefficients ofm andb' /b i for 2H ~4H) SiC
are ]m/]p56.0331023 ~3.1831023! Mbar21 and
](b' /b i)/]p56.0831023 ~3.4331023! Mbar21.

The deviations from an ideal form of the hexagonal cell
can be described by the ratioc/a of the hexagonal lattice
constants. The ratioc/a of 2H and 4H SiC is plotted in Fig.
2, as a function of pressure. As can be seen from this figure,

the ratiosc/a of both polytypes decrease linearly with in-
creasing hydrostatic pressure. The equilibriumc/a ratio of
2H ~1.644! and 4H ~3.276! SiC are very close to the ideal
value c/a5nA2/3 and indicate an almost negligible struc-
tural anisotropy at zero pressure. Moreover, the variation of
the ratio c/a of both hexagonal polytypes in the pressure
range up to 1.25 Mbar is less than 0.2%. This tiny variation
of the ratio c/a matches well with the calculated Poisson
ratio m of these SiC phases. Because of the occurrence of
cubically stacked Si-C bilayers in the unit cell of 4H SiC, the
pressure variation of the ratioc/a for this phase is weaker
than for 2H SiC.

The deviations of then/2 independent structural param-
eters of the hexagonalnH polytypes of SiC from the corre-
sponding ideal values are rather small for zero pressure.22 In
order to estimate their pressure variation and their impor-
tance for different pressure-dependent properties of SiC, we
determined the pressure dependence of the internal param-
eteru of 2H SiC. The hydrostatic pressure variation of this
internal parameter is shown in Fig. 3~see also Table II!. The
calculated parameteru decreases for small pressures and
saturates for pressures higher than 0.5 Mbar. However, the
relative change of the internal parameteru of 2H SiC, in the
pressure range up to 1.25 Mbar, is less than 0.1%. Moreover,
the influence of the pressure variation of this internal param-
eter on the lattice-dynamical and dielectric properties of
2H SiC is found to be negligible. Therefore, for the calcula-
tion of the equilibrium geometry of 4H SiC at a given vol-
ume of the unit cell~external hydrostatic pressure!, we dis-

FIG. 2. Pressure dependence of the ratioc/a of 2H ~a! and
4H ~b! silicon carbide. The filled circles indicate the values ob-
tained from the minimization of the static total energyE(V) at a
given pressure. The solid lines are the linear least-square fits to
these calculated data.

FIG. 1. Zigzag chain structure
of silicon and carbon atoms in the
~112̄0! plane of 3C ~a!, 2H ~b!, and
4H SiC ~c!. The different (1̄100!
planes within the hexagonal unit
cell are denoted byA, B, andC.
The hexagonal~h! and cubic ~c!
bonding character of the bilayers is
also indicated.

FIG. 3. Pressure dependence of the internal parameteru of 2H
SiC. Same key as Fig. 2.
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regard the pressure variation of the internal structural
parameters and restrict ourselves to the variation of the ratio
c/a.

The theoreticalp-V relationship of 3C, 2H, and 4H SiC
is plotted in Fig. 4, together with a variation ofc/a on the
same scale. It is obvious that the variation of the ratioc/a of
the hexagonalnH polytypes is only of minor influence. In
the wide range of pressuresp&0.5 Mbar, there are practi-
cally no apparent differences between thep-V results for the
three considered polytypes. The almost identical behavior of
the volume compression of these SiC polytypes is due to the
very similar values of the corresponding bulk moduli and
their pressure derivatives~see Table I!. The similarity of the
structural and elastic properties is caused by the locally iden-
tical structure up to second neighbors in all polytypes. The
rather similar course of thep-V relation for the different
polytypes agrees well with experimentally found identical
equation of state for 3C and 6H SiC in the pressure range up
to 1.0 Mbar.6

B. High-pressure phases

1. Enthalpies and pressure-induced phase transitions

The thermodynamic potential that governs the crystal sta-
bility at a given pressure and temperature is the Gibbs free
energyG5U1pV2TS. However, a complete calculation
of this quantity requires the knowledge of the full phonon
spectrum, too. In our calculations, we restrict ourselves to
the discussion of the low-temperature case, more strictly
speaking to the enthalpyH5E1pV with the internal energy

U(V)>E(V) described by the Vinet EOS. The zero-point
motional energy is neglected. Such an approach is sufficient
for the discussion of the pressure-induced properties of hard
materials like diamond, silicon carbide, and even silicon for
temperatures belowT*5\vmax/kB given by the maximum
frequency of the phonon spectrum.23

As possible high-pressure phases of the zinc-blende
~3C) structure of SiC, we consider the rocksalt~NaCl!, het-
eropolarb-tin (b-Sn!, hexagonal nickel arsenide~NiAs! and
anti-NiAs, and cesium chloride~CsCl! structures. 3C is a
fourfold-coordinated structure, NaCl and theb-Sn are
sixfold-coordinated structures, and CsCl is an eightfold-
coordinated structure. In the NiAs structure the sites of the
two different ions are not equivalent. For the ideal ratio
c/a5A8/3 of the lattice constants the anions~As! establish a
hexagonal close-packed structure~hcp!, whereas the cations
~Ni! form a simple hexagonal structure~sh!. Each cation has
four nearest neighbors~anions! and possesses the same en-
vironment as in the rocksalt structure. In contrast, each anion
has six nearest neighbors, four cations and two anions. The
latter ones form a linear chain parallel to thec axis. The
NiAs and the anti-NiAs structures~arising from interchang-
ing the positions of the anions and cations in the NiAs struc-
ture! are not equivalent, due to the different environments of
their ions.

The self-consistently calculated total energyE(V) per
Si-C pair is shown in Fig. 5~a! as a function of reduced
volume for the the 3C, NaCl, NiAs, anti-NiAs, and CsCl

TABLE II. Calculated static equilibrium lattice constanta
~a.u.!, the ratioc/a, bulk modulusB0 ~Mbar!, pressure derivative of
the bulk modulusB08 , and ionicity factorg for high-pressure phases
of SiC, using the Vinet equation of state.

Phase a c/a B0 B08 g

NaCl 7.635 2.523 4.26 0.487
NiAs 5.392 1.657 2.438 4.96 0.491
anti-NiAs 5.404 1.764 2.185 4.14 0.502
CsCl 4.972 1.819 4.32 0.447

FIG. 4. ~a! Pressure dependence of the reduced volume
V(p)/V(p50) for 3C ~solid line!, 2H ~dotted line!, and 4H
~dashed line!. In addition, the pressure dependence of the reduced
c/a ratio of 2H SiC is also plotted as dot-dashed line.

FIG. 5. ~a! Total energy per Si-C pair of 3C ~solid line!, NaCl
~dotted line!, NiAs ~short-dashed line!, anti-NiAs ~long-dashed
line!, and CsCl~dot-dashed line! phases of SiC, as a function of
reduced volume. The experimental volumeV0 of the zinc-blende
structure of SiC has been taken as the reference one.~b! Enthalpy
per Si-C pair of these SiC phases, as a function of external hydro-
static pressure.
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structure. The corresponding structural parametersa, c/a,
B0 , andB08 are given in Tables I and II. In addition, the
ionicity coefficientg of the Si-C bonds has been calculated
using the approach of Garcia and Cohen.24 With the excep-
tion of the CsCl structure the high-pressure phases of SiC
exhibit higher ionicity than the zinc-blende phase of SiC
(g50.476). The smaller ionicity of the CsCl phase may be
explained by its pronounced metallic character, as can be
seen from the corresponding band structure and valence-
charge density.

The enthalpiesH(p) of the high-pressure phases of SiC
are plotted as a function of pressure in Fig. 5~b!. The cross-
ing of two curves indicates a pressure-induced phase transi-
tion between the two structures. The corresponding transition
pressures, as well as the critical initial volumesVI of the
zinc-blende structure and final volumesVF of the considered
high-pressure phases are listed in Table II. Our results are
also in good agreement with those of formerab initio
calculations,8 where a zinc-blende to rocksalt phase transi-
tion has been found. The transition pressure of 0.6660.05
Mbar, as well as the corresponding volumesVI50.81V0 and
VF50.66V0 , with the equilibrium volume of 3C SiC
V0510.369 Å3 from Ref. 8, are very close to our data shown
in Table III. Furthermore, the theoretical data approach well
the experimental transition volumes,VI50.76V0 and
VF50.60V0 .

6 However, the theoretical transition pressure is
much lower than the experimental one found at about 1.0
Mbar.6 The underestimation of the critical pressure for a
structural phase transition seems to be a general problem of
the DFT-LDA calculations. The stiffness of the materials
against hydrostatic pressure is usually not correctly described
using LDA.25,26 It has been shown that this deficiency of the
LDA calculations can be partially overcome using general-
ized gradient approximation for the exchange-correlation en-
ergy; In the case of silicon and germanium, the gradient cor-
rections shift the transition pressure towards the
experimental value.27

The phase transition from the zinc blende into the rocksalt
structure of SiC under external hydrostatic pressure can be
interpreted in terms of a relative atomic displacement of the
Si and C atom in the unit cell of the fcc structure parallel to
the@111# direction. Such an interpretation for a high-pressure
phase transition from a given hexagonalnH polytype into

the rocksalt structure is not possible. The stretching of the
bonds parallel to thec axis cannot be accompanied by the
same displacements for atoms in bonds oriented by an angle
of about 70.5° to thec axis. Such a unique behavior of the
different Si-C bonds in the unit cell would require an addi-
tional twisting of the bonds in the hexagonal Si-C bilayers.
We found that this process automatically enlarges the energy
barrier for a pressure-induced phase transition. Perhaps this
is the reason why a pressure-induced phase transition of the
hexagonal polytypes has not yet been observed experimen-
tally. Considering thep-V relation and the enthalpy versus
pressure, the transitions from the hexagonal phases into rock-
salt structure should be expected at similar critical volumes
and pressures as for 3C SiC. Our calculations show that the
2H ~4H) phase of SiC may transform into rocksalt structure
at a slightly smaller~higher! pressure than 3C SiC: 0.653
~0.673! Mbar. The corresponding critical volume is 81.9%
~81.3%! of the equilibrium one.

2. Electronic properties. Metallicity

The self-consistent LDA band structure and the corre-
sponding electronic density of states of 3C, NaCl, NiAs, and
CsCl phases of SiC is plotted in Fig. 6. The maximum of the
valence bands~the Fermi energy! has been taken as the en-
ergy zero for the semiconducting~metallic! phases. Because
of the well-known failure of the LDA the calculated band
gaps are underestimated, e.g., the indirect gapG15v→X1c of
3C SiC amounts to 1.37 eV, and the direct gapX3v→X1c of
3C SiC to 2.89 eV, whereas the corresponding experimental
values are 2.39 and 3.10 eV, respectively.28 Reliable values
of the band-gap energies can be calculated by including
many-body quasiparticle effects.29 Nevertheless, the disper-
sion of the LDA energy bands is quite reasonable. Our band
structure and transition energies of the 3C SiC agree well
with those from similar LDA calculations.22,30 In our calcu-
lation, the indirect band gapG15v→X1c disappears already
for the NaCl phase, due to a remarkable displacement of the
lowest conduction band atX towards lower energies. Chang
and Cohen8 found that the rocksalt phase is still semicon-
ducting, even if the pressure is increased up to about 3.0
Mbar. We believe that the discrepancy between their results
and the present calculations may be due to lacking conver-
gence, with respect to the BZ sampling in Ref. 8. In case of
semimetallic or metallic phases, a correct description of the
features of the band structure requires large sets of special
points in the irreducible BZ. In addition, we have used a
smearing technique to describe the Fermi surface in our cal-
culations. The local density of states is convoluted with a
Gaussian function.31,32 The narrowing of the indirect band
gapG15v→X1c under hydrostatic pressure has been also ob-
served for several III-V compounds.33,34

The similarities between the band structures of the rock-
salt and hexagonal NiAs phase of SiC~Fig. 6! and also be-
tween their ground-state energies@Fig. 5~a!# are not fortu-
itous, but are related to the structural resemblance of both
phases. According to the structural analogy between zinc-
blende and wurtzite structure, the rocksalt and hexagonal
NiAs structures can be built up by stacking hexagonal planes
with atoms of the same kind:AbCaBcAbCaBc ~rocksalt!
and AbCbAbCbAbCb~NiAs structure!.21 The general shape

TABLE III. Calculated critical transition pressurep ~Mbar!, ini-
tial volumeVI , and final volumeVF for the transition from zinc
blende~3C) to NaCl, NiAs, anti-NiAs, and CsCl structure of SiC
using Vinet (V) and Murnaghan (M ) equation of state. The vol-
umes are given in units of the experimental equilibrium volume of
the 3C phase.

p VI VF

→ NaCl V 0.666 0.815 0.671
M 0.665 0.819 0.672

→ NiAs V 0.798 0.792 0.665
M 0.791 0.799 0.667

→ anti-NiAs V 2.063 0.652 0.575
M 1.906 0.685 0.592

→ CsCl V 3.607 0.560 0.489
M 3.536 0.600 0.527
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of the electronic density of states is approximately the same
for both structures. Moreover, the weakly pronounced semi-
metallic character, due to the lowering of the conduction
band at theK point in the NiAs structure, is in accordance to
the lowering of the corresponding conduction band of the
rocksalt structure. The different positions of the conduction
band minima may be traced back to the different configura-
tion of the second- and higher-neighbor shells. The band
structure of the anti-NiAs high-pressure phase exhibits a
more pronounced semimetallic character than that of the
NiAs phase. The minimum of the lowest conduction band is
found at theK point at22.32 eV below the Fermi energy
compared to21.60 eV in the case of the NiAs phase.

In contrast to the NaCl, NiAs, or anti-NiAs high-pressure
phases, the CsCl structure exhibits a pronounced metallic
character. Here, the ionic gap in the valence bands com-
pletely disappears, whereas there is a gap feature just above
the Fermi energy in the density of states for the NaCl and
NiAs structures in the energy region of the ionic gap of SiC.

The metallic character of the CsCl phase of SiC can also be
seen in the degree of uniformity of the charge density distri-
bution in the unit cell. The increasing metallicity upon com-
pression causes a charge transfer from the bond to the inter-
stitial region. The maximum of the charge density along the
bonding direction decreases from 1.96~3C phase! to 1.64
e/Å3 ~CsCl phase!, whereas the charge density minimum in
the interstitial space increases from 5.93 1022 ~3C phase!
to 2.23 1021 e/Å3 ~CsCl phase!.

3. Stability

The b-tin structure~space groupI4m2) is made up of
two interpenetrating body-centered-tetragonal~bct! sublat-
tices displaced against each other by the vector (0,a/2,c/4).
In the idealb-tin structure with the ratioc/a52/A15, the
atoms are sixfold coordinated with the nearest-neighbor dis-
tance of 2a/A15. The fourfold-coordinated zinc-blende
structure~space groupF4̄3m) is built up of two interpen-
etrating fcc sublattices displaced against each other by one-
quarter of the body diagonal. A continuous transition be-
tween the two structures can be described by a change of the
c/a ratio of the lattice constantsc and a of the tetragonal
unit cell. The increase of the ratio toc/a5A2 yields the zinc
blende, a further increase toc/a'4 gives rise to an
eightfold-coordinated structure, where each atom has eight
nearest neighbors, four cations and four anions. Increasing
coordination number with pressure is a common feature of
structural phase transitions and can be traced back to the
relevance of the interionic Coulomb interaction at high pres-
sures and small unit-cell volumes.

The change of the total energy, which arises from a 3C
→b-Sn transition at fixed volume, is plotted in Fig. 7 versus
the ratio c/a of the tetragonal lattice constants. While for
both unit-cell volumes, the total energy as a function of
c/a exhibits a minimum at the ratioc/a5A2, which corre-
sponds to the zinc-blende structure, no local minimum exists
aroundc/a52/A15, which could be identified as the het-
eropolarb-Sn structure. There is only a bend in the curves
aroundc/a'0.6, due to the behavior of the Ewald energy of
the ions, which approaches a minimum at aboutc/a'0.57.

FIG. 6. DFT-LDA band structure and the corresponding density
of states calculated at the equilibrium volume for the 3C, NaCl,
NiAs, and CsCl phases of SiC. The top of the valence bands~Fermi
energy! is taken as the energy zero for the semiconducting~semi-
metallic or metallic! phases.

FIG. 7. The total energy per atom versus thec/a ratio of the
lattice constants of the tetragonal structure of SiC. The equilibrium
energy of the zinc-blende structure of SiC has been taken as the
reference one. Thec/a ratio of the idealb-tin (2/A15) and zinc-
blende structure (A2) are indicated by arrows. The solid~dotted!
line corresponds to the energy curve calculated at the equilibrium
volume (0.8 times equilibrium one! of the 3C phase of SiC.
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The absence of a local minimum in the total energy for
c/a,A2, in particular, aroundc/a52/A15, indicates that
the heteropolarb-tin structure is neither a stable nor a meta-
stable high-pressure phase of 3C SiC for external hydrostatic
pressures less than 2.8 Mbar.

Despite their common pronounced covalent bonding char-
acter, the tetrahedrally coordinated III-V and II-VI semicon-
ductors transform into different crystal structures under ap-
plied external hydrostatic pressure.33–39 The nonuniform
behavior of these semiconductors have been traced back to
the different relevance of the ionic contribution to their
bonding. Theoretical arguments provide a relationship be-
tween the ionicity and the crystal structure to which a given
tetrahedrally coordinated semiconductor prefers to transform
under pressure: Semiconductors with strong ionic character
tend to transform into the rocksalt structure, whereas those
with predominantly covalent character transform into the
heteropolarb-tin structure.24,40,41Indeed, theory and experi-
ment show that AlAs~Ref. 34!, ZnS~Ref. 37!, BN ~Ref. 36!,
and AlN,42,43 transform into the NaCl structure, whereas the
high-pressure phase of InSb~Ref. 38!, Si ~Ref. 39!, Ge~Ref.
39!, and GaP~Ref. 44! has theb-tin structure. Considering
the low ionicity f i50.177 of 3C SiC within the Phillips
scale,40 this result is somehow surprising. The behavior of
SiC can be immediately understood if the ionicity scaleg of
Garcia and Cohen24 is used. The intermediate ionicity
g50.476 places SiC between materials with high ionicity
like AlN ( g50.796) and ZnS (g50.673) and rather co-
valently bonded semiconductors. The remarkable variation
of the ionicities arising from the different scales of Ref. 24
and Ref. 40 is typical for compounds containing first-row
elements, such as B, C, or N. This can be traced back to the
lack of p electrons in their cores and therefore to the small
core size and large electronegativity of these elements.

The instability of the sixfold-coordinatedb-tin structure
suggests that metastable SiC phases with a coordination
number greater than six are unlikely to occur. Indeed, the
CsCl high-pressure phase of SiC is neither a stable nor a
metastable structure at the corresponding equilibrium vol-
ume given by the minimum of the static total energy. To
demonstrate this fact, the total energy of a simple cubic SiC
structure with two atoms per unit cell is shown in Fig. 8, as
a function of the displacement of the carbon atom along the

body diagonal with a fixed position of the silicon atom at the
origin. The energy curve has been determined using the cal-
culated equilibrium volume of the CsCl phase of SiC~cf.
Table II!. At the position of the carbon ion corresponding to
that of the CsCl structure no minimum is observed, rather a
local maximum as indicated by the double-well behavior of
the energy. This means that the total energy of SiC possesses
a saddle point at the CsCl structure, and the CsCl structure of
SiC cannot be a stable phase at zero pressure of this phase,
which corresponds to 0.75 Mbar external hydrostatic pres-
sure applied to the zinc-blende phase of SiC. The instability
of SiC in the CsCl structure is due to the high-energy barrier
for the breaking of the tetrahedralsp3 bonds and subsequent
formation of unfavorable weak octahedral bonds. A similar
behavior has been found for diamond.45 Therefore, we con-
clude that the instability of SiC phases with an atomic coor-
dination number greater than six follows from the intrinsic
strong bonding properties of the carbon atom.

A possible transformation path for the transition from zinc
blende to rocksalt structure can be described by a displace-
ment of the carbon atom along the@111# direction with a
fixed position of the silicon atom at the origin. The anions
have to be displaced from tetrahedral positions at one-quarter
of the body diagonal to the body-centered position within the
fcc unit cell. The corresponding total energy variation is
plotted in Fig. 9 for the equilibrium (V3C), as well as the
transition (VI) volume of 3C SiC to rocksalt structure~cf.
Table II!. At the anion position in the NaCl structure, the
total energy curves calculated at the equilibrium volume ex-
hibits a maximum. Only when the volume is reduced, i.e.,
after the application of an external hydrostatic pressure, a
local minimum appears in the total energy. Therefore, the
NaCl structure represents a metastable phase, which trans-
form spontaneously into the 3C phase upon depressurization.
This behavior associated with the zinc blende to rocksalt
transition is indeed observed experimentally.6 The energy
barrier between the 3C and the NaCl phase being visible
from Fig. 9 is about 1.2 eV per unit cell.

The calculated ratioc/a51.657 of the lattice constants of
the hexagonal NiAs structure is about 2% larger than the
ideal value indicating an instability towards structures with
coordination number lower than six. Furthermore, the anti-
NiAs structure is energetically clearly unfavorable. We

FIG. 8. Calculated total energy per atom of a simple cubic struc-
ture of SiC, as a function of the position of carbon atom along the
@111# direction ~in units of 2p/a). The hypothetical equilibrium
volume of the CsCl high-pressure phase~see Table I! has been used
as the reference one.

FIG. 9. Total energy per atom of an fcc structure of SiC, as a
function of the displacement of carbon atom along@111# direction
~in units of 2p/a). The solid~dotted! line corresponds to the energy
curve calculated at the equilibrium volume~critical transition vol-
umeVI) of the zinc-blende phase of SiC.
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found an increase of the total energy of about 1.97 eV per
unit cell in comparison to the NiAs structure. This behavior
agrees well with the experimental finding that, in structures
related to NiAs, the more metallic atom—in the case of SiC
silicon—forms usually a hcp structure, whereas the more
metalloid element—here carbon—forms the sh structure.

C. Lattice dynamical and dielectric properties

1. Static and high-frequency dielectric tensor

The total macroscopic polarizationP of a crystal can for-
mally be written in the limit of long wavelengths (q→0) as46

P5
1

V(
k

ZB~k!•u~k!1
1

4p
@e~`!21#•E, ~1!

whereV is the unit cell volume,u(k) is the displacement of
thekth ion,e(`) is the high-frequency dielectric tensor~at a
frequency much larger than the eigenfrequencies of the lat-
tice vibrations, but much smaller than the electronic excita-
tion frequencies!, E is the macroscopic~screened! electric
field, andZB(k) the tensor of the Born effective charge,
satisfying the acoustic sum rule,

(
k
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as is evident from the invariance ofP against uniform dis-
placement of all the ions. The macroscopic polarizationP
can be decomposed into a pure ionic

Pion5
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and an electronic part
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where N is the number of the unit cells of the crystal,
Z(k) is the bare ionic charge of thekth ion, andDn(r ) is the
density response to a given external perturbation.15 The high-
frequency dielectric tensore(`) relates the total macro-
scopic fieldE to the external homogeneous fieldE0,
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The high-frequency dielectric tensore(`) accounts for elec-
tronic polarization effects. The static dielectric constant
e(0), which describes also the lattice-vibrational polariza-
tion contributions, can be derived from a generalized
Lyddane-Sachs-Teller relation47
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whereq̂ denotes the direction of the wave vectorq, r is the
number of infrared~IR! active modes, andvl(q̂) „vl(0)…
are the corresponding phonon frequencies calculated with
~without! consideration of the macroscopic electric fieldE.
In case of hexagonal symmetry the static and high-frequency
dielectric tensors have two independent components, one

corresponding to the direction parallel to thec axis,
e i5ezz, and the other being characteristic for the plane per-
pendicular toc axis, e'5exx5eyy .

The pressure dependence of the two independent compo-
nents ofe(`) for 2H and 4H phases of SiC is shown in Fig.
10 and compared with the behavior of the dielectric constant
of 3C. The calculated components, in particular, the parallel
component, of the high-frequency dielectric tensor of 2H and
4H SiC display a tendency to saturate in the limit of high
pressures. For the two hexagonal polytypes experimental
data are available neither fore(`) nor for its pressure de-
rivative. Nevertheless, the magnitude of the splitting between
the parallel and perpendicular component ofe(`) for 4H
SiC at zero pressure@De(`)50.22# agrees well with the
experimental results for 6H SiC @e i(`)56.70,
e'(`)56.52,De(`)50.18# taken from Ref. 48. Because of
the anisotropy of the 4H structure~with the hexagonality
parameterh550%!, the differenceDe(`) is expected to be
somehow larger than for the 6H structure with the
h533.3% hexagonality.

Several semiempirical4,49,50 approaches have been pro-
posed to describe the volume~pressure! dependence of the
dielectric constant for ionic and covalent compounds, which
are based either on the dielectric theory of the chemical
bond40 or on the tight-binding method. However, these ap-
proaches yield partially contradictory results for the pressure
dependence of the dielectric constants. In addition, a critical
judgement on the reliability of these different procedures

FIG. 10. Pressure dependence of the high-frequencye(`) and
the statice(0) dielectric tensor of 2H ~a and c! and 4H SiC ~b and
d!. The calculated parallel components ofe(`) and e(0) are de-
noted by open diamonds, the perpendicular component by open
triangles. The solid lines correspond to the static and high-
frequency dielectric constants of 3C SiC.
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cannot be made, because a comparison between theoretical
and experimental results is not possible due to the missing
experimental data.

We find that the widely used assumption
] ln e(`)/] ln V5k for the volume dependence of the high-
frequency dielectric constant is not valid for homopolar, as
well as for heteropolar semiconductors4,7,51 far away from
the equilibrium volume. Moreover, the value of the logarith-
mic derivative of the high-frequency dielectric constant is
not universal and differs considerably withk50.413 for
3C, k50.407~0.410!, andk50.374~0.390!, for the parallel
~perpendicular! component ofe(`) for 2H and 4H SiC from
the valuek50.6 suggested in Ref. 4. As indicated by the
increase of the splitting betweene i(`) and e'(`), the an-
isotropy of dielectric properties of the hexagonal polytypes
of SiC increases with increasing hydrostatic pressure. The
anisotropy of the high-frequency dielectric tensor of 2H and
4H SiC increases much faster with increasing hydrostatic
pressure than the anisotropy of the structural parameters of
both polytypes~see Sec. III A!. We have described this non-
linear behavior of the hydrostatic pressure variation of the
high-frequency dielectric tensor of the zinc-blende 3C and of
both hexagonal polytypes, using a fourth-order Taylor ex-
pansion around zero pressure~see Tables IV, V, and VI!.

The calculated parallel and perpendicular components of
the static dielectric tensore(0) of 2H and 4H SiC are plotted
in Fig. 10, as functions of hydrostatic pressure. For compari-
son, also the pressure dependence of the static dielectric con-
stant of 3C SiC is shown in this figure. As can be seen from
Fig. 10, the static dielectric tensor decreases faster with in-
creasing hydrostatic pressure than the high-frequency dielec-
tric tensor~see Tables II and III!. The logarithmic derivative
of the average valueē @1/3 of the trace of e(0)#,
] ln ē(0)/]p, for 2H and 4H SiC amounts to20.212 and
20.211, whereas the logarithmic derivative of the average
value of thee(`) is 20.176 and20.170, respectively. This
behavior can be explained in terms of the lattice polarization.
As the lattice expands, the restoring forces between the ions
decrease. The lattice polarization is approximately inversely
proportional to the forces acting between the ions and in-
creases with decreasing pressure. It is important to recognize
that the displacement of the ions are accompanied by a de-

formation of the electronic charge distribution. This effect
adds a considerable contribution to the resulting polarization.

2. Tensor of the Born effective charge

By definition, the Born~transverse! effective charge ten-
sor ZB(k) gives the total macroscopic polarization induced
by a unit sublattice displacement of thekth ions in zero
macroscopic electric field.47 ZB(k) also describes the cou-
pling between transverse lattice vibrations and light; hence
the term transverse. Using the macroscopic polarizationP
given by Eqs.~3! and~4!, we can see that the Born effective
charge tensorZB(k) is composed of an ionic and an elec-
tronic contribution,

TABLE IV. Calculated and experimental polynomial expansion
coefficients of various pressure-dependent vibrational quantities of
3C SiC. Frequencies are given in cm21; the Born effective charge
is given in units of the elementary charge.

a0 a1 a2 a3 a4

LO-TO Theory 173.6 68.7 -75.8 64.1 -23.1
Expt.a 176.56 0.3 876 9 -306 40

e(`) Theory 7.019 -1.342 2.013 -1.715 0.571
Expt.b 6.52

e(0) Theory 10.495 -2.404 2.791 -2.177 0.698
Expt.b 9.73

ZB Theory 2.719 0.331 -0.349 0.277 -0.092
Expt.a 2.697

aReference 4.
bReference 28.

TABLE V. The calculated Taylor expansion coefficients up to
the fourth order in pressurep ~Mbar! for various pressure-
dependent properties of 2H SiC.

a0 a1 a2 a3 a4

c/a Theory 1.6444 -0.0026
Expt.a 1.6409

u Theory 0.3755 -0.0012 0.0019 -0.0014 0.0004
Expt.a 0.3760

LO-TOi Theory 166.73 61.67 -54.65 37.31 -10.86
Expt.b 169.3

LO-TO' Theory 193.77 81.77 -68.72 43.35 -12.03
Expt.b 204.7

ei(`) Theory 7.277 -1.276 1.657 -1.224 0.368
e'(`) Theory 6.878 -1.218 1.469 -1.079 0.324
ei(0) Theory 11.369 -2.355 2.436 -1.673 0.488
e'(0) Theory 10.230 -2.200 2.158 -1.466 0.424
Zi
B~Si! Theory 2.870 0.382 -0.323 0.221 -0.066

Z'
B~Si! Theory 2.674 0.328 -0.298 0.197 -0.056

aReference 20.
bReference 55.
cReference 54.

TABLE VI. The calculated Taylor expansion coefficients up to
the fourth order in pressurep ~Mbar! for various pressure-
dependent properties of 4H SiC.

a0 a1 a2 a3 a4

c/a Theory 3.2761 -0.0020
Expt.a 3.2711

LO-TOi Theory 168.73 58.94 -50.07 30.00 -9.58
Expt.b 170

LO-TO' Theory 182.23 73.93 -71.66 53.77 -17.53
Expt.b 189

ei(`) Theory 7.169 -1.189 1.722 -1.420 0.475
e'(`) Theory 6.946 -1.202 1.650 -1.358 0.455
ei(0) Theory 10.900 -2.232 2.475 -1.877 0.609
e'(0) Theory 10.352 -2.218 2.386 -1.807 0.585

Z̄i
B~Si! Theory 2.782 0.350 -0.316 0.229 -0.073

Z̄'
B~Si! Theory 2.692 0.327 -0.317 0.234 -0.075

aReference 21.
bReference 54.
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where ]Pa
el/]ub(k)uE50 is the linear variation of the elec-

tronic polarization upon lattice distortion at zero electric
field. In the unit cell of hexagonalnH polytypes there are
n/2 independent tensors of the Born effective charges for the
silicon and for the carbon ions. Moreover, due to the uniaxial
symmetry of the crystal eachZB(k) possesses two indepen-
dent components, a parallel and a perpendicular one to the
c axis. The only restriction, which is imposed onZB(k), is
the neutrality condition given by Eq.~2!.

The pressure dependence of the independent components
of the Born effective chargesZB(k) of 2H and 4H SiC is
plotted in Figs. 11 and 12, respectively. For comparison, the
Born effective charge of 3C SiC is also displayed. The par-
allel and perpendicular components ofZB(k) for 2H and
4H SiC bracket the value of 3C SiC. In addition, one ob-

serves an increasing splitting between the parallel and per-
pendicular components of the Born effective charges with
increasing pressure. Contrary to the cubic and the special
case of the wurtzite structure, there is generally no local
dynamical charge neutrality for a given bond of annH poly-
type. A stronger anisotropy appears for the silicon and car-
bon atoms in the hexagonal bilayers, where bond twisting
occurs with respect to the cubic stacking layers~see Fig. 1!.
The splitting between the parallel and perpendicular compo-
nents ofZB(k) for 2H and 4H SiC increases with increasing
hydrostatic pressure and indicates therefore an increasing an-
isotropy under hydrostatic pressure. We observe a tendency
of the effective charges to saturate for ultrahigh pressures.
However, a pronounced maximum ofZB, as extracted from
Raman measurements7 for 6H SiC, is absent in our theoreti-
cal curves for 2H and 4H polytypes.

Three reasons may be mentioned to give an idea for the
explanation of this discrepancy. In order to relate the LO-TO
splitting to an average transverse effective charge of 6H SiC,
a simplified formula is used in Ref. 7 that is only valid for
crystals with cubic symmetry. The possible errors caused by
this assumption and their order of magnitude will be dis-
cussed in the next section. Moreover, the tensor character of
e(`) and ZB is neglected and an incorrect volume depen-
dence ofe(`) is assumed. To estimate the influence of this
incorrect volume ~pressure! dependence of e(`),
] ln eab(`)/] ln V50.6, we rescaled the values of the aver-
age components of the tensor of the Born effective charge of

silicon ions Z̄ ab
B (Si)51/2(kZab

B (kuSi) in 4H SiC. The re-
scaled values ofZ̄ab

B ~Si! are shown in Fig. 13~a! and com-
pared with the correct theoretical components ofZ̄B~Si!. Be-
cause of the ASR, see Eq.~2!, Z̄B~C! is equal to2Z̄B~Si!. As
can be seen from Fig. 13~a!, there are not only considerable
deviations between the rescaled and correct values of

FIG. 11. Pressure dependence of the tensor of the Born effective
charges of 2H SiC. The open diamonds~triangles! denote the par-
allel ~perpendicular! components, whereas the full line corresponds
to the Born effective charge of 3C SiC.

FIG. 12. Pressure dependence of the tensor of the Born effective
charges of 4H SiC for the two independent silicon~a! and carbon
atoms ~b!. The open~filled! diamonds denote the perpendicular
components, the open~filled! triangles correspond to the parallel
component of the tensor of the Born effective charges of the in-
equivalent atom 1 and 2, respectively. The sites of the equivalent
and inequivalent atoms are indicated in Fig. 1.

FIG. 13. ~a! Pressure dependence of the estimated average par-
allel ~solid triangles! and perpendicular~open triangles! component
of the tensor of the Born effective chargesZ̄B~Si! of 4H SiC, using
] ln eab(`)/] ln V50.6 as in Ref. 7 for the volume dependence of
the high-frequency dielectric tensor. The correct values of the av-
erage parallel and perpendicular component ofZ̄B~Si! are plotted as
full and dotted lines, respectively.~b! Parallel ~solid circles! and
perpendicular~open circles! component ofZ̄B~Si! for 4H SiC de-
rived from LO-TO splitting. The solid and open triangles denote the
parallel and perpendicular components ofZ̄B~Si! derived from
LO-TO splitting, using] ln eab(`)/] ln V50.6 as in Ref. 7 for the
volume dependence ofe(`).
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Z̄ ab
B ~Si!, in particular for high pressures, but we are able also

to mimic the behavior for the pressure dependence of the
Born effective charge of 4H SiC, as has been derived experi-
mentally for 6H SiC ~Ref. 7!, using an incorrect volume
dependence of the high-frequency dielectric tensor. The re-
scaled average value of the parallel and perpendicular com-
ponent ofZ̄B~Si! for 4H SiC exhibits a weak, flat maximum
at about 0.6 Mbar. The difference between the maximum and
zero pressure value amounts to 0.042. The same difference
for the experimental estimated average Born effective charge
of 6H SiC is about 0.055.7 Deviations caused by the use of
different equations of state~Birch and Vinet EOS! are found
to be only of minor influence.

The dynamic ionicity of a crystal is exhibited in the split-
ting of the longitudinal and transverse optical modes at the
zone center and can be related to the Born effective charges.
Recently, anab initio approach to the static ionicity of a
solid based on the asymmetry of the ground-state valence-
charge density was proposed by Garcia and Cohen.24 Both
the static ionicity described by the charge asymmetry coeffi-
cientg ~Ref. 24! of 3C, 2H, 4H, and 6H ~Ref. 52! SiC, and
the trace of(kZ

B(kuSi) show a similar behavior as functions
of applied hydrostatic pressure. Therefore, we assume that
the static and dynamic ionicity approaches can be used as
almost equivalent ionic scales.

3. Zone-center frequencies

In polar materials, the longitudinal optic modes in the
limit q→0 couple to the macroscopic electric field caused by
the long-range part of Coulomb forces. This leads to a
nonanalytic behavior of the force constants and thus of the
dynamical matrix at theG point. The complete information
for describing this nonanalytic behavior is contained in the
knowledge of the tensorZ B of the Born effective charges
and the tensore(`) of the macroscopic high-frequency di-
electric constant; thenonanalyticpart of the dynamical ma-
trix can be written as47
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wheremk is the atomic mass of thekth ion. Theanalytic
part Dan of the dynamical matrix for polar compounds is
calculated self-consistently in the framework of the first-
order DFPT, neglecting any macroscopic polarization
effects.15

The pressure dependence of the zone-center phonon fre-
quencies of 2H and 4H SiC is displayed in Fig. 14 for two
different propagation directions. The optical modes exhibit a
strong increase with applied hydrostatic pressure. This effect
is much weaker in the case of the folded longitudinal acous-
tic ~LA ! modes; the folded transverse acoustic~TA! modes
even decrease slightly with increasing pressure. The general
trend is the same for the two propagation directions under
consideration. The modes polarized parallel to thec axis
may be interpreted to arise from a folding procedure of the
G-L phonon modes of the 3C structure with an effective
wave vectorq in units of np/c (n52,4). Raman scattering
studies performed on 6H and 15R polytypes of SiC report

also a decrease of the TA modes near the BZ boundary upon
pressure; in particular, at 0.3 Mbar, a shift of 2.0,21.7, and
23.0 cm21 was observed for theq50.4, q50.67, and
q50.8 mode, respectively.53 Our theoretical results of a shift
of 20.5 (22.4 for the high-frequency part of the doublet!
and25.8 cm21 for the reduced wave vectorq50.5 ~4H)
and q51.0 ~2H) comply well with the experimental find-
ings.

The calculated pressure dependence of the LO-TO split-
ting of the strong Raman modes for phonon propagation par-
allel and perpendicular to thec axis of 2H and 4H SiC is
shown in Fig. 15 and compared with the LO-TO splitting of
3C SiC. In case of thenH structures, we plot the splitting
betweenA1l andA1t (E1l andE1t) modes for the parallel
~perpendicular! propagation. The difference in the

FIG. 14. Pressure dependence of theG point frequencies of
2H and 4H SiC for phonon propagation parallel to thec axis@0001#
~a! and ~c! and perpendicular to thec axis along the@112̄0# direc-
tion ~b! and ~d!.

FIG. 15. Pressure dependence of the LO-TO splitting for two
different phonon propagation directions, parallel along the@0001#
direction ~open circles! and perpendicular to thec axis along
@112̄0# direction~filled circles! of 2H ~a! and 4H SiC ~b!. The solid
line indicates the LO-TO splitting of 3C SiC.
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pressure dependence for optical modes propagating parallel
and perpendicular to thec-axis gives some indication for
increasing anisotropy of thenH polytypes of SiC upon ap-
plied hydrostatic pressure. Our theoretical results for the
LO-TO splittings at zero pressure for 3C ~174 cm21), 2H
~167 and 194 cm21), and 4H ~183 and 168 cm21 for the

@11 2̄0# and @0001# direction! reproduce well the first-order
Raman scattering data for 3C ~176 cm21),54 2H ~169 and
204 cm21),55 and 4H ~189 and 170 cm21).54 The curves in
Fig. 15 nearly reproduce the pressure dependences found ex-
perimentally for 3C and 6H SiC.4,7 For 3C, the linear in-
crease for small pressure is well reproduced.4 In the 2H and
4H case, we notice a tendency towards a saturation in the
LO-TO splitting for the parallel phonon propagation direc-
tion. However, this tendency is much weaker, as found ex-
perimentally for 6H SiC.7 The existing discrepancy between
our theoretical calculation of the LO-TO splitting of 2H and
4H SiC and experimental data for 6H SiC might be due to
the use of thepresumably nonhydrostaticand quasihydro-
static pressure for the measurements in the ultrahigh-
pressure region.7 Moreover, the variance of the experimental
data in this high-pressure region is quite large.7 The authors
of Ref. 7 assumed that the experiments performed under hy-
drostatic, quasihydrostatic, and presumably nonhydrostatic
pressure gave the same general trend for the saturation of the
LO-TO splitting, and that the extreme flattening of the
LO-TO splitting in the ultrahigh-pressure region was inde-
pendent of the nonhydrostatic pressure effects. To estimate a
possible influence of a nonhydrostatic uniaxial compression
of the unit cell ofnH polytypes of SiC on the LO-TO split-
ting for the parallel and perpendicular phonon propagation
direction, we calculated the zone-center phonon frequencies
of 2H SiC at different volumes. In doing so, we usedc/a
ratios, which were 2% smaller than the the corresponding
equilibrium c/a ones ~see Sec. III A!. Furthermore, for a
given unit cell volume andc/a ratio, we minimized the static
total energy with respect to the internal parameteru. As
illustrated in Fig. 16, there are considerable deviations, in
particular, in the high-pressure region, between the LO-TO
splitting data obtained under hydrostatic and nonhydrostatic

pressure. Therefore, we presume that the extreme saturation
behavior of the experimentally found LO-TO splitting for
6H SiC ~Ref. 7! might be partially caused by nonhydrostatic
pressure conditions.

In order to relate the experimental LO-TO splitting to the
Born effective charges, a simplified formula is used in Ref. 7
that is only valid for binary compounds with cubic symme-
try,

vLO
2 2vTO

2 5
4p~ZB!2

mVe~`!
, ~9!

wherem is the reduced mass. This might be another reason
for a discrepancy between the experimentally derived Born
effective charge of 6H SiC ~Ref. 7! and our results for 2H
and 4H polytypes of SiC. In general, for crystals of arbitrary
symmetry, Eq.~9! has to be replaced by a generalized one,
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wherer is the number of the IR-active modes, and the right-
hand side of this equation is the trace of the nonanalytical
part of the dynamical matrix at theG point, see Eq.~8!.56 As
pointed out in Refs. 47 and 56 in the case of low-symmetry
crystals, the splitting between the IR-active phonon frequen-
ciesvl(q̂) and their regular~analytical! part vl(0) is not
necessarily the LO-TO splitting for the particular direction
q̂. To determine the magnitude of the possible error made by
this approximation, we estimated the pressure dependence of
the average parallel and perpendicular components of
Z̄B~Si! using, Eq.~9! and the correct volume dependence of
eab(`). As can be seen from Fig. 13~b!, there is a slight
deviation between the so determined components ofZ̄B~Si!
and the correct ones. The most significant result from Fig.
13~b! is, however, the inverted order of the parallel and the
perpendicular component ofZ̄B~Si! and the more pro-
nounced saturation behavior of the perpendicular component
in the high-pressure region. This behavior joined together
with the incorrect volume dependence of the high-frequency
dielectric constant,] ln eab(`)/] ln V50.6, results in a pro-
nounced maximum of the perpendicular component of the
average Born effective chargeZ̄i

B~Si!'2.736 around 0.46
Mbar and a decrease beyond this pressure toZ̄i

B~Si!'2.7 at
1.13 Mbar. Therefore, we believe that the unusual behavior
of the Born effective charge of 6H SiC derived from the
LO-TO splitting in Ref. 7 can be related to the use of the
incorrect pressure dependence of the high-frequency dielec-
tric constant, to the simplified relation for the splitting be-
tween the IR-active phonon frequenciesvl(q̂) and their
regular~analytical! partvl(0), to theneglect of the anisot-
ropy of the uniaxial 6H structure, and to uncertainties of the
experimental procedure.

IV. CONCLUSIONS

In conclusion, we have presented the firstab initio study
on the pressure dependence of the structural, lattice-
dynamical, and dielectric properties of cubic 3C and uniaxial
2H and 4H polytypes of SiC. In our calculation, NaCl, NiAs,
CsCl, andb-Sn structures of SiC have been considered as
candidates for high-pressure phases. The transition as well as

FIG. 16. Volume dependence of the LO-TO splitting for two
different phonon propagation directions, parallel along the@0001#
direction ~dotted line! and perpendicular to thec axis along

@11 2̄0# direction ~solid line! of 2H SiC. The open~solid! circles
denote the LO-TO splitting calculated using a unit cell compressed
along thec axis.
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the stability of the high-pressure phases are discussed in
terms of relative displacements between Si and C atoms and
the metallicity of these phases. In agreement with the partial
ionic binding of 3C SiC, we find a pressure-induced phase
transition from the zinc blende to the rocksalt structure at a
critical pressure of 0.67 Mbar. However, the calculated tran-
sition pressure is lower than the experimental one. We favor
a high-pressure transition to the NaCl structure, not only for
3C, but also for 2H and 4H SiC. The corresponding critical
pressure is found to be smaller~larger! for hexagonal poly-
types with a hexagonality larger than~less than or equal!
50%.

Moreover, we determined the pressure dependence of the
optical zone-center phonon frequencies, the high-frequency
dielectric constant, and the Born effective charge of 3C,
2H, and 4H SiC. Our results are in good agreement with the
available experimental data, in particular, in the low-pressure
region. Discrepancies between theory and experiment with
respect to the pressure dependences of the Born effective
charges of the hexagonal polytypes at ultrahigh pressures can
be mainly traced back to the neglect of their tensor character,
to the use of a simplified relation for the splitting between
IR-active phonon frequencies and their regular~analytical!
part, and, finally, to an incorrect volume dependence of the
high-frequency dielectric constant. On the other hand, the
pressure dependences of the LO-TO splittings also at ultra-

high pressures are essentially reproduced by the calculations.
We predict a different pressure behavior of the optical
phonons innH polytypes of SiC in dependence on the propa-
gation direction, although the anisotropy of the hexagonal
polytypes of SiC at ambient pressure is rather small.

Our study shows thatab initio density-functional
perturbational-theory calculations of ultrahigh-pressure de-
pendence are feasible and that such properties can also be
tackled for uniaxial crystals with more than two atoms in the
unit cell. Nevertheless, in order to solve the remaining prob-
lems, more experimental and theoretical studies must be per-
formed on SiC. Remarkable differences caused by applied
hydrostatic pressure are found for the dynamical and dielec-
tric properties of the 3C, 2H, and 4H SiC. This is in contrast
to the ground-state properties, which are rather independent
of the polytype.
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