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The state of the almost free positron injected into a noble liquid is considered. The pseudopotential theory
of the scattering of light quantum particles in a cellular dense medium is used. The density dependences of the
positron scattering length and phase shifts of partial waves are calculated for neon and argon liquids. The
density dependences of the ground-state energy, effective mass, and mobility are obtained.@S0163-
1829~96!07519-4#

I. INTRODUCTION

The recent development in the use of positrons as a probe
of matter has stimulated interest in investigations of positron
states in condensed matter.1,2 Being injected into a liquid or
solid sample, a positron during its lifetime loses an initially
high energy, thermalizes itself, and comes to partial equilib-
rium with the medium. As a result, the positron can be ob-
served in free or self-trapped states or in positronium. The
self-trapping is more likely into clusters in dense gases.3 In
liquids it is difficult to form a cluster, and free states are
more favorable thermodynamically. The affinity of the posi-
tron to a medium,V0 ~the energy of the ground state relative
to vacuum!, effective massmeff , and mobility in an electric
field, m, are the main parameters of the free state. A noble
liquid is a medium that can be considered as a test medium
for experimental and theoretical methods involving positron
scattering processes. Theoretical methods developed for the
study of states of excess electrons in a dense medium are
applied in the present paper to positrons.

The problem of excess-electron states in liquids has at-
tracted the attention of many researchers~see reviews4,5!. In
the last decade the behavior of excess electrons was investi-
gated in the whole range of liquid densities. It was discov-
ered that the ground-state energy of the electron passes
through a minimum with decreasing density, while the den-
sity dependence of the electron mobility has a sharp maxi-
mum. The positions of the minimum ofV0 and the maximum
of m correspond to the same value of medium density.6 The
phenomenon has attracted great interest. The quantitative de-
scription requires the modeling of a muffin-tin potential field
which the electron perceives in a medium. However, one
faces a difficulty originating from the lack of knowledge of
the short-range component of the electron-atom potential. It
seems necessary to introduce adjustable parameters. How-
ever, the difficulty can be avoided by using a pseudopotential
theory developed on the basis of the ideas of Springett, Co-
hen, and Hortner.7 In Refs. 8–11 a theory was given which
uses experimentally known parameters as input data: the
scattering length of an electron from an isolated atom, the
atomic polarizability, and the binary correlation function of a
liquid. The density dependences of the energy of the electron
ground state, effective mass, and mobility were calculated, in
satisfactory agreement with experimental data.

The short-range positron-atom interaction differs strongly
from that for electrons. The absence of exchange forces
weakens the short-range repulsion. As a result, scattering
lengths of positrons on isolated atoms are negative and large
in magnitude. The value of the scattering length is an overall
measure of the low-energy interaction, which is the result of
the counterbalance of the short-range repulsion and the long-
range attraction. In the framework of the pseudopotential
theory8–11 it is possible to extract information about the in-
tensity of the short-range repulsion. This information can be
used to describe positron states in a dense medium.

The present paper is organized as follows. In Sec. II, the
scattering of positrons in nonpolar liquids is considered. The
density dependences of the scattering lengths in liquid neon
and argon are calculated. The dependences of the phase
shifts of s and p partial positron waves on positron energy
and liquid density are obtained. In Secs. III and IV, the den-
sity dependences of the ground-state energy and effective
mass are calculated. The calculated ground-state energies are
in satisfactory agreement with experimental data at the den-
sities of rare-gas solids.12 A number of methods exist to mea-
sure positron mobility in dense media~e.g., Refs. 1 and 2!. In
Sec. V, the density dependence of the positron mobility in
liquid argon is calculated. We note that the ground-state en-
ergies were also calculated in Ref. 13 by using a model
positron-atom potential. In the last section, all the results are
discussed, validity criteria are considered, and some applica-
tions are indicated.

II. SCATTERING OF POSITRONS
IN A NONPOLAR LIQUID

The necessary input data are listed in Table I. The scat-
tering lengths from isolated atomsL0 are taken from Ref. 14.
States of liquids are described by the radial distribution func-
tionsg(r ) of the Lennard-Jones liquid.

When a liquid positron finds itself in a muffin-tin poten-

TABLE I. Interaction parameters.

a (a 0
3) L0 (a0) s (a0) r 0 (a0) r 1 (a0)

Ne 2.67 20.73 5.3 0.82 0.94
Ar 11 24.0 6.5 1.35 1.5
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tial field, r̄5(4pN/3)21/3 is the radius of a unit cell. Within
the cell the potential is represented by the positron interac-
tion potential with an atom situated at the center of the cell,
and by the mean potential of the cell environment.8–10 The
scattering length from the cell is given by the expression8–10

L~N!5
Lc2 r̄ A~12Lc / r̄ !

12A~12Lc / r̄ !
, ~1!

Lc5H 1r̄ 1S a0a D 1/2tanF S a

a0
D 1/2S 1r 02 1

r̄ D G J 21

, ~2!

A5
2

5
2

a r̄

a0s
3 f F I 21 9

14
I 4
r̄ 2

s2G , ~3!

whereLc is the scattering length on the cutoff potential of
the central atom of the cell,a is the atomic polarizability,
and r 0 is the pseudopotential core radius. The parameterA
represents the influence of the environment potential. The
factor f5(112a r̄ 23)21 accounts for the Lorentz-Lorenz
local field.15 The factorsI 2 andI 4 account for the specifics of
the interatomic correlations. Ifr̄&s, I 2.1.6 and I 4.1.8,
wheres is the closest distance of interatomic approach.8 If
I 25I 451, a stepwiseg(r ) is used: ifr̄<s, g(r )50, and if
r̄ .s, g(r )51. If s in ~3! is replaced byr̄ andI 2 andI 4 by
unity, Eq.~1! can be used in a dense gaseous medium where
r̄ .s. Of course, it is a rather crude interpolation,L⇒L0 .
The calculatedL(N) in neon and argon are presented in

Fig. 1. The scattering lengths decrease in magnitude with
increase in density. The scattering lengths are negative in
gases due to the prevalence of the polarization attraction.
With increase in density the polarization attraction is weak-
ened as a result of the overlap of the electron-atom poten-
tials, and the magnitude ofL decreases. However, the scat-
tering lengths remain negative. Recall that the scattering
length of electrons becomes positive in liquid argon. For the
Ar-positron interaction L052a0 and the core radius
r 051.35a0 ; for the Ar-electron interactionL0521.4a0 and
the core is larger,r 051.68a0 . The pseudopotential core ra-
dius is given by

r 05Aa/a0@p1arctan~L0
21Aa/a0!#

21. ~4!

In Fig. 2 the phase shifts of the positrons wave scattered
in neon are shown. The calculatedd0(k) for the isolated Ne
atom reproduces the dependence obtained in Ref. 14 as a
result of sophisticated calculations. It should be noted that
our calculations, which use no adjusted parameters, are more
accurate at small positron energiese5\2k2/2m, wherek is
the positron wave number. For small wave numbers in a
dilute gas the role of the polarization is very important:10

d052kL02pak2~3a0!
211~2ar 0k

3/3a0!ln~1.36/kr0!.
~5!

In dense media the polarization potential loses its tail, and
the k2 term vanishes. For small wave numbers the values of
d0 can be calculated using the formula16

d052kL2~a r̄ k3/3a0!@~112x ln x1x/423x2/2!

1~2/7!y3f ~ I 210.7I4y
2!#, ~6!

where x5r 0/ r̄ and y5 r̄ /s. The relationship between the
first and second terms in Eq.~6! varies strongly with the
density becauseL depends strongly on the density.

If kr̄ is comparable to unity the phase shifts should be
calculated numerically.

Figure 2 shows that the phase shifts are positive even at
the density of the solid state,N54.531022 cm23. As to the
phase shift of the scattered electron wave, it becomes nega-
tive with increasing density.10,11Hence the attraction of pos-
itron to atom predominates over the repulsion at the whole
range of energies.

The phase shifts in argon~Fig. 3! are larger due to the
larger values of theL magnitudes. The validity of the present
formulas requires the fulfillment of the inequalityuLuk!1.
So if the values ofd0 are comparable to unity their reliability
is doubtful. For this reason, the calculatedd0(k) values dis-
agree atk>0.1a0

21 with the Nakanishi and Schrader data14

for the isolated argon atom.
The pseudopotential approach gives the following expres-

sion for thep-wave phase shift on an isolated atom at small
k:16

FIG. 1. Scattering lengths of positron~solid lines! and electron
~dashed! in neon and argon versus ratios of the liquid densities to
the densities at the triple points. The dependences are continued to
the solid state. FIG. 2. Phase shiftd0 in Ne versus wave number of positron.

Liquid densitiesN are given in units of 1022 cm23. Isolated atom
~Ref. 14!: points; our calculation: dotted line.
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d15ak2a0
21@p/152kr1/6#2~kr1!

3/3, ~7!

wherer 1 is the radius of the hard core of the pseudopotential
for thep wave, which is different fromr 0 . Comparison with
the d1(k) from Ref. 14 allows one to determiner 1 . For Ne
r 150.94a0 ; for Ar r 151.5a0 . Of course,r 1 is larger than
r 0 .

Thep scattering on isolated atoms does not differ signifi-
cantly from the scattering on the pure polarization potential.
However, the role of the polarization is weakened in a dense
medium. At smallk we have16

d15~ak3r̄ /9a0!@~123x/21x3/2!1~2/7!y3f ~ I 210.7I 4y
2!

2~kr1!
3/3#, ~8!

wherex5r 1/ r̄ andy5 r̄ /s. The density variations ofd1 are
shown in Figs. 4 and 5. The decrease ofd1 with the density
increase does not lead to a change in sign as occurs for
electron scattering.11,16 The attraction dominates the interac-
tion at the whole density range.

The role of higherl waves is not significant. At smallkr̄
for d waves we haved25ak5r̄ 3/675a0 . If the set of phase
shifts is determined one can calculate the energy spectrum,
the scattering cross section, and the mobility.

III. ENERGY OF THE GROUND STATE

The energy of the ground state is given by7

V05u01T0 , u0523ae2I 0~2s r̄ 3!21f , ~9!

whereu0 is the mean polarization energy andT0 is the en-
ergy of the ground state in the Wigner-Seitz cell. For the
Lennard-Jones fluidI 0>1.2.8 In gases one should replaces
by r̄ , and the factorI 0 by unity.

For calculations ofT0 we use the solution of the Schro¨-
dinger equation in the Wigner-Seitz cell which was obtained
in Ref. 11 for the caseL,0. If ( uLu/ r̄ )3!1 we have

T052\2k0
2/2m, tanh@k0r̄1Im d0~ ik0!#5k0r̄ .

~10!

Hered0( ik0) is the analytic continuation of the functiond0,
defined on the plane of complex wave numbers, from the
axis of real wave numbersk to the axis of imaginary wave
numbersik. If d0(k)52Lk1Ak3, then

d0~ ik!52 iLk2 iAk3. ~11!

In the limit of small densities, Eq.~10! can be reduced to the
optical approximation,T05(3/2)\2Lr̄ 23/m.

Calculated results are shown in Fig. 6. They agree satis-

FIG. 3. Phase shiftd0 in Ar. Designations as in Fig. 2.

FIG. 4. Phase shiftd1 in Ne. Designations as in Fig. 2.

FIG. 5. Phase shiftd1 in Ar. Designations as in Fig. 2.

FIG. 6. Dependences of the energyV0 in argon and neon on the
ratios of densities to the densities at the triple points. Experimental
data~Ref. 12!: points. Calculated data~present paper!: solid lines;
~Ref. 13!: dotted lines.
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factorily with the experimental data in solids.12

In the whole density range there is good agreement with
the calculation.13 In Ref. 13 the short-range positron-atom
potential was written explicitly using some adjusted param-
eters, the environment potentialu(r ) was calculated as usual,
and the Schro¨dinger equation in the Wigner-Seitz cell was
solved numerically. Unfortunately, in Ref. 13 the phase
shifts of the scattered positron waves are not displayed. It
would be interesting to compare them with our data.

IV. EFFECTIVE MASS

The effective mass of the almost free positron is given by
the Bardeen formula17,18

~meff /m!215c2~ r̄ !@d ln x1~ r̄ !/d ln r̄21#, ~12!

wherec( r̄ ) is the wave function of the positron ground state
in the unit cell andx1( r̄ ) is the single-site radialp-wave
function. Both the functions are taken at the cell boundary.
In the case of negativeL, we have11

c~ r̄ !5A~k0r̄ !21sinh@k0~ r̄2L !#,

A25~4/3!~k0r̄ !23$sinh@2k0~ r̄2L !#1sinh~2k0L !

22k0r̄ %, ~13!

d ln x1 /d ln r̄52~k0r̄ !2 tanh@k0r̄1Im d1~ ik0!#

3$tanh@k0r̄1Im d1~ ik0!#2k0r̄ %2121.

In Fig. 7 calculated results are given and compared with the
effective masses of electrons.

The value of the reduced effective mass can either exceed
unity or be lower. If the attraction predominates over the
repulsion, meff/m exceeds unity.11 In the opposite case,
meff/m,1. Really, the measured effective mass of the posi-
tron in liquid sodium is equal to~1.960.4!m.19 The effective
mass in solid aluminum is equal to 1.1m.20 The last value
was calculated by another method, which uses the expansion
of the wave function over plane waves, but not over the
cellular functions.

Accordingly, the reduced effective masses in neon and
argon exceed unity. In the limit of small densities, Eq.~12!
leads tomeff/m51. However, it is clear that our results are

accurate only at high densities when the density fluctuations
do not disturb the cellular structure. At small densities the
calculated dependences should be considered as an interpo-
lation.

In argon the effective mass of an injected electron passes
through unity with density variation. This occurs near the
density where the scattering length changes sign. In solid
argon the calculated effective mass of the electron is close to
the measured value of Ref. 21. For positrons, measured data
are absent. It is worth noting that the calculated values do not
contradict the indirect information given in Refs. 12 and 22.

V. MOBILITY OF FREE THERMAL POSITRONS

In the framework of the Cohen and Lekner kinetic
theory23 the mobility is given by the Lorentz-like formula

m5 2
3 ~2e2/pTm!1/2@4pL2~N!S~0!N#21 ~14!

whereS(0) is the long-wavelength structure factor of a liq-
uid, which accounts for interatomic correlations. The theory
is based on the requirement that the subsequent scattering
events are independent. It means that the mean free path of
the positron,l5[4pL2NS(0)]21, must be larger than other
characteristic lengths. The most important parameter is the
ratio of the wavelength of the thermal positron,
lT5\(2mT)21/2, to the free path length,

j5lT@4pL2~N!S~0!N#. ~15!

It has to be small. In this case, accurate values ofm are given
by24

m5m0~12p1/2j!. ~16!

However, if the parameterj becomes comparable to unity,
the kinetic theory cannot be applied. A light quantum par-
ticle interacts with a number of atoms at every moment.

In such a regime, the mobility can be estimated by the
Ioffe-Regel formula.25 The mean free path of a quantum par-
ticle cannot be shorter than the wavelengthlT . HencelT
should be inserted in Eq.~14! instead of the kinetic mean
free pathl . This results in

m' 2
3 ~2e2/pmT!1/2~\/A2mT!. ~17!

The calculated mobility of positron in liquid argon is pre-
sented in Fig. 8. The mobility is compared with the electron
mobility.26 Near the triple point the electron mobility de-
creases with decreasing density because of the growth of the
liquid compressibility, which is proportional toS(0). How-
ever, at smaller densities the density dependence of the scat-
tering length becomes the strongest in Eq.~14!. The scatter-
ing length decreases and even passes through zero at
N*51.231022 cm23 ~Fig. 1!. Therefore the mobility in-
creases with decreasing density until the densityN* , where it
passes through a maximum.

The magnitude of the positron scattering length grows
monotonically with decreasing density. This leads to the de-
crease of the mobility. Moreover, due to the large magnitude
of L(N) the scattering becomes nonbinary, and the correc-
tion factor ~12p1/2j! decreases. Finally, near the density
N'1.731022 cm23 the mobility mechanism changes. At

FIG. 7. Density dependences of the reduced effective mass of
free positrons in Ar and Ne~solid lines! and the reduced effective
mass of electrons in Ar~dotted line!. Experiment~Ref. 21!: electron
in Ar.
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lower densities the mobility magnitude corresponds to that
low level which is estimated by the Ioffe-Regel formula~17!.

VI. DISCUSSION

The range of validity of the pseudopotential theory is de-
termined by some requirements. The theory does not use an
explicit form of the short-range component of the positron-
atom potential. Only the phase shifts of the partial waves
scattered from the pseudopotential core are necessary. In
dense media these phase shifts are the same as the ones in
dilute gases. But then the theory does not describe the be-
havior of positrons inside the volume occupied by the
pseudopotential core,~4p/3!r 0

3. The space of the pseudopo-
tential core must be smaller than the unit cell volume,
r 0
3!r̄ 3. Additionally, one must require the validity of an-
other inequality,uL(N)u3! r̄ 3. On the contrary, it would not
be possible to use the approach of the potential of zero radius
in the Wigner-Seitz cell.

These inequalities are violated as the density decreases
toward a dense gas. Moreover, at these densities the cellular
model of liquids fails. Fortunately, the pseudopotential
theory reproduces the results of the gaseous approach in the
limit of very small densities. Hence, in the intermediate
range of densities, the theory provides a reasonable interpo-
lation, but does not pretend to an accurate description.

The theory is suitably applied to neon and argon liquids.
At the triple point of argon r 0

3/ r̄ 350.068 and uLu3/ r̄ 3

50.068.
The theory used in the present paper assumes smallness of

the calculated phase shifts. This hinders the application of
the theory to the heavier noble liquids, especially to xenon.
Due to the high atomic polarizability the scattering length
from an isolated xenon atom is the maximal one,
L0'27.5a0 ~Ref. 3!. As a result, the scattering lengths in
liquid xenon are comparable tor̄ . However, with further in-
crease of density the polarization attraction is weakened so
much that near the triple point the magnitude ofL(N) be-
comes small. Finally, at the triple point the scattering length
is positive,L(Ntr!>0.16a0 . Let us use it to calculate an an-
nihilation ratel1 of thermal positrons at the triple point of
xenon.

The annihilation rate is given by

l15p~e2/mc!2cNZeff , Zeff54pE
0

r̄
ra~r !c~r !2r 2dr,

~18!

wherec is the light velocity,Zeff is the effective charge of
the atom in a liquid,3 ra(r ) is the density distribution of
atomic electrons, andc(r ) is the wave function of the posi-
tron in the Wigner-Seitz cell.

c~r !5A~k0r !21 sin@k0~r2L !#, tan@k0~ r̄2L !#5k0r̄ .

The measured magnitudes ofZeff in Xe are given in Ref. 27.
Being as high as 300 at low densities, the value ofZeff be-
comes equal to 13 at the triple point. This reinforces the
statement that the effects of the polarization attraction are
almost nullified near the triple point. To calculate the effec-
tive charge, suppose for simplicity that

ra~r !5Z~4pr a
3/3!21u~r2r a!, r a51.33Z21/3, ~19!

whereZ is the nuclear charge andr a is the Thomas-Fermi
radius of atom. A straightforward integration28 yields

Zeff5Zj~r a!/j~ r̄ !, ~20!

j~y!5y22~12L/y!$12@2k0~y2L !#21 sin@2k0~y2L !#%.

Equation~20! is valid in the density range where the self-
trapping of positrons in clusters is strongly hindered. It is
related undoubtedly to the vicinity of the triple point. The
calculatedZeff516 compares well to the measured value
Zeff513.

The scattering length determines the state of a light quan-
tum particle at thermal energies. At elevated energies a set of
phase shifts ofl waves becomes necessary to calculate the
positron scattering cross section. However, for a short-range
potentiald l;(k2) l , and the higher partial waves become im-
portant one after another with increase in energy. In liquid
neon and argon up to the energye>0.7 eV it is sufficient to
take into account the phase shifts ofs and p waves. The
phase shift of thed wave can be reasonably estimated using
the cutoff polarization potential,d25ak5r̄ 3/675a0 . Ac-
counting for it results in a small correction only.

The contrast between the electron and positron states in
liquid argon is remarkable. The scattering length of positrons
is negative for the whole density range. The electron scatter-
ing length at the triple point is positive. Hence at the triple
point the Ramsauer minimum in the scattering cross section
exists for positrons, but not for electrons.

The positron mobility can be calculated using the effec-
tive cross sections. The mobility of a slow free positron in
argon is shown in Fig. 8. Being enhanced at the triple point,
the mobility decreases with decreasing density. This may be
considered as a precursor of the self-trapping of slow posi-
trons in dense gases.3

Positron motion in an electric field is studied by investi-
gating the drift of injected positrons to a surface; see Refs. 1
and 2. During the positron lifetimet>1029 s the drift length
is of the order of 1mm. There are several methods to obtain
the positron mobility from measured data, and we hope that
our prediction induces experimentalists to make measure-
ments in noble liquids.

FIG. 8. Mobilities of thermal positron and electron on the Ar
isobar 5.5 MPa. Positron@Eqs. ~14! and ~17!#: solid line; electron
~Ref. 26!: squares and dotted line.
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As we can see in Fig. 6, the ground-state energyV0 ~rela-
tive to the vacuum! is negative. But, in contrast to the case of
an excess electron, the ground-state energy of the positron
decreases monotonically with increasingN. The calculated
V0 agrees satisfactorily with the calculated results of Ref. 13.
At the densities of solids the calculatedV0 compare well to
the measured data.

In media with a strong interparticle interaction the struc-
ture of the energy spectrum is influenced very weakly by
thermal effects. Temperature dependences would be dis-
played due to the temperature dependence of the liquid struc-
ture. In our theory the peculiarities of structure should be
represented by the integral factorsI 0 , I 2 , andI 4 .

8 However,
the factors are almost insensitive to temperature variation in
the whole range of liquid states. As to the temperature de-
pendence of the mobility, it is considerable due to the pres-
ence of the liquid structure factor in Eq.~14!.

In Ref. 11 we discussed the problem of fluctuations of the
potential field due to density fluctuations, which our mean-
field theory does not take into account. They should be im-
portant if the mean values of the scattering length are small
and the corresponding densities are not too high. As in the
case of electrons, the positron behavior in xenon is sensitive
to fluctuations. In liquid xenon the scattering length passes
through zero. Also, the scattering length magnitude becomes
small in neon near the triple point. A theoretical approach
that properly accounts for the fluctuations is based on the
Feynman path-integral approach, which is employed in Refs.
29–31 for studying excess electrons and adopted to positrons
in Ref. 32. In principle, the path-integral approach with
Monte Carlo or molecular dynamic calculations can yield

results with high precision which take account of the inher-
ent disorder of liquids. We hope that our results will induce
further calculations in this manner.

The reduced effective masses, presented in Fig. 7, exceed
unity, as must be in the case of prevalence of the attraction in
the particle-medium interaction.11 Such behavior follows
from the Bardeen formula, which is definitely valid for the
description of an almost free quantum particle in a cellular
medium. We can use the calculatedmeff to estimate the bind-
ing energy of positronium in solid argon. The binding energy
is described by the hydrogenlike formula for the Wannier
exciton33

EB5
Ry

e2
m*

m
, m*5

meffmeff
2

meff1meff
2 , ~21!

wherem* is the reduced mass equal to the positronium ef-
fective mass,meff andmeff

2 are the effective masses of the
positron and electron, ande is the dielectric constant of the
medium. In solid argone2250.36. Using the measured value
m̄eff50.53 ~Ref. 21! and the calculatedmeff51.3, we obtain
EB51.85 eV. The comparison with the experimental22

EB52.5 eV should be considered as satisfactory. It should be
noted that the approach of the continuous medium can be
applied here under some stipulations. The positronium wave
function is not spread so much as to cover a large number of
atoms of the medium.
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