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The ionization spectra of hydrogen clusters converging onto a polymer limit have been investigated by
means of one-particle Green’s-function calculations. This study focuses on the construction of well-organized
correlation bands of shake-up satellites at the expense of the lines in the main~primary! band. Two series of
chains have been studied, belonging, in regards to their fundamental Hartree-Fock band gap, to the categories
of insulating and semiconducting polymers. Evidence is given for a limitation of the contamination by
shake-up lines with the delocalization properties of one-particle canonical states in an insulating situation,
whereas a nearly complete fragmentation of main bands into satellites can be expected with polymers of the
semiconducting type, as a result of multistates interactions. The onset of this contamination, marking in the
ionization spectrum a bifurcation between the one-particle and correlation regimes, can be evaluated from a
zeroth-order estimate for the energy threshold of a shake-up transition. Electronic correlation in the neutral
ground-state wave function is also shown to increase the breakdown of the one-particle picture of ionization.
@S0163-1829~96!06919-6#

I. INTRODUCTION

Extensive theoretical work on the photoionization spectra
of polymers has been conducted since the 1970’s based on
the assumption of a one-particle picture for the ionization
process, implying a one-to-one correspondence between the
recorded lines and canonical states computed at various
methodological levels. Among others these methods com-
prise the extended Hu¨ckel1 or Hartree-Fock Roothaan2 ap-
proaches, and the numerous intermediate methods based3 on
a semiempirical one-particle Hamiltonian-like zero differen-
tial overlap~ZDO!, complete neglect of differential overlap
~CNDO!, intermediate neglect of differential overlap~INDO!,
modified neglect of differential overlap~MNDO!, . . . or
more recently VeH~valence effective Hamiltonian!.4 A ma-
jor aspect of photoelectron spectroscopy, to be largely cred-
ited to the benefit of these investigations, is that it tends
today to be commonly exploited as a direct and very specific
probe2,5–8 of the molecular architecture~bonding character-
istics, configuration, conformation! of complex compounds
or clusters in the gas, liquid, and solid phases. Owing to the
development of powerful experimental techniques using e.g.,
synchrotron radiation of electron beams as excitation
sources, on the one hand, and on the other hand to a growing
interest in investigations on the superficial structure of ad-
vanced materials such as polymer microcrystals2,7,8 or self-
assembled organic layers,9 quantum chemists and physicists
encounter more frequently than ever demands for accurate
simulations of valence photoionization spectra. These simu-
lations have to include electronic correlation and relaxation
effects, as well as the subsequent dispersion of intensity from
the main bands into satellite structures of shake-up lines.

Several experimental10 and theoretical5,7,11,12 investiga-
tions have pointed out strong correlation and reorganization
effects on the position and intensity of the primary peaks,
and disclosed in the more acute situations strong evidences
for a severe breakdown of the one-particle picture of
ionization.11 The photoionization intensity originating from
inner electron levels has been found in many situations, in-
cluding the rather gentle case of the weakly correlated satu-

rated hydrocarbons,13 to be spread out over many shake-up
lines of comparable strength, as a result of strong configura-
tion interactions~CI’s! within the cation.

Experimental x-ray photoionization spectra have recently
displayed spectacular evidence14 for the dominant role
played by correlation bands in the ionization spectra of con-
jugated polyenes related to polyacetylene. Relatedly, a split-
ting of the 3s band of polyacetylene into several satellite
~shake-up! bands has been qualitatively inferred15 from crys-
tal orbital calculations including hole-mixing effects at the
lowest~second! order of a perturbation expansion in terms of
the correlation potential. As a general shortcoming of any
second-order method, however, the breakdown of the one-
particle picture remains, in this case, confined to the edges of
the first Brillouin zone and in the lower half part of the inner
valence region.

Going beyond a strict second-order expansion with re-
spect to correlation, further investigations16 have been con-
ducted on the very first terms of the polyacene series,
C2nH2n12, with n52, 3, 4 and 5, using CI schemes restricted
to the 1h ~one hole! and 2h-1p ~two holes, one particle!
configurations of the cation. For the longest chains~n54 or
5!, additional restrictions on excitations have been imposed
in the form of a projection of the virtual states onto the
canonical valence space generated by a minimal basis set, in
so-called 2h-1v CI calculations. These calculations have
proved convincingly a complete contamination of the spec-
trum of polyacetylene by satellite lines up to the low-energy
border of the outer valence region, in roughly good agree-
ment with experiment. As pointed out by the authors of this
investigation, however, the applied CI schemes suffer from
too serious theoretical drawbacks to confidently allow for a
quantitative assignment of the shake-up peaks. The neglect
of electronic correlation in the reference wave function, first,
might yield an erroneous sequence of ionic states in com-
pounds with low symmetry and virtual states at low energy.
Furthermore, the loss of size consistency with the truncation
of the excitation space spanned by the Hamiltonian leads
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certainly to a severe underestimation of many-body effects
for the largest systems with respect to the smallest ones.

A basic postulate of band-structure theory in solid-state
physics is the organization of one-electron levels in regular
energy distributions~i.e., one-particlebands! for extended
systems exhibiting translational symmetry. Owing to this
postulate, the one-particle band structure of stereoregular
polymers is often determined by extrapolating the results of
one-particle calculations on oligomers of increasing size. It is
clear that shake-up lines in the ionization spectrum of large
but finite periodic systems should similarly fall in densely
packed but well-organized energy distributions, to be di-
rectly related to satellite bands in crystal orbital
calculations15 on the corresponding polymer. However, be-
cause of the complexity of the compounds addressed and
owing to the rapidly growing number of shake-up solutions
with respect to oligomer size, no regular energy distributions
clearly emerged from the spectral densities displayed in Ref.
16. Besides the construction of correlation bands, a clear
relationship between the shake-up spreading and the energy
separation between the valence and conduction bands was
also left, even at a qualitative level, as a very challenging
question.

In this contribution, we take advantage of the simplicity
and flexibility of the model of a polymer form of hydrogen
and follow in an oligomer series the construction of correla-
tion bands and their dependence to geometrical features, us-
ing one of the most powerful and reliable instruments for the
analysis of ionization process: the one-particle Greens’-
function method.17–21 This scheme has been the object of
various approximations, derived by a linearization of the
equations of motion, using the algebraic superoperator
formalism,22 or by an infinite order analysis23,24of Feynman
diagrams. In the realm of extended systems, these ap-
proaches offer, in comparison with a standard CI treatment,
the combined advantages of error cancellations in energy dif-
ferences, systematiccompactness24,25 of the configuration
space in high-order approximations, andenergy separability
with respect to26 dissociation of a large system into nonin-
teracting fragments~size consistency!. The latter feature
relates26 to the topological linked-cluster properties28–30 of
any many-body perturbation expansion based on the Dyson
evolution operator, and is a necessary prerequisite26,27,31for a
correct~size-intensive! scaling of the computed transition en-
ergies and moments with respect to system size. When deal-
ing with long-range electron-electron interactions in large
systems, however, a true size-intensivity of the one-particle
Green’s function is also31 determined by theN representabil-
ity of the computed electron density.

This paper is organized as follows. Section II consists of a
review of the major properties of the one-particle Green’s
function and of the successive steps for its evaluation in the
framework of an algebraic diagrammatic construction~ADC!
scheme, in the outlook of numerical applications on extended
systems. In Secs. III and IV use is made of two series of
hydrogen chains to follow in insulating and semiconducting
situations the competition between main and satellite lines in
the ionization spectra of clusters converging onto a polymer
limit. Geometrical variations are also considered to evaluate
on a semiquantitative level the conditions which lead to a

significant contamination of the main band by correlation
lines.

II. THE ONE-PARTICLE GREEN’S FUNCTION
AND ITS EVALUATION

Defined as a time-ordered expectation value of a creation
(a j

1) and an annihilation (ai) operators in Heisenberg rep-
resentation on the exactN-particle ground stateuC 0

N&, the
one-particle Green’s function is the simplest member in the
hierarchy of Green’s functions. As an autocorrelation
function,32 it gives the probability amplitude of propagation
in a correlated background of an extra electron or hole in
between one-particle states, during a given time interval
(t1 ,t2):

Gi j ~ t2 ,t1!5 i21^C0
NuT$ai~ t2!,aj

1~ t1!%uC0
N&. ~1!

In most applications, the operator basis is spanned by a
discrete set of one-particle statesfi obtained as the ground-
state one-particle@Hartree-Fock~HF!# orbitals. The impor-
tance of the one-particle Green’s function for the evaluation
of electronic structure effects in condensed matter physics
can be readily appreciated from its spectral representation in
the energy space, which for anN-particle system with a non-
degenerate~closed-shell! ground state takes the form

Gi j ~v!5 (
nP$N11%

^C0
Nuai uCn

N11&^Cn
N11uaj

1uC0
N&

v1E0
N2En

N111 ih

1 (
nP$N21%

^C0
Nuaj

1uCn
N21&^Cn

N21uai uC0
N&

v1En
N212E0

N2 ih
,

~2!

whereh is a positive infinitesimal introduced to ensure the
convergence of the Fourier transform coupling the time and
energy representations ofG. In this equation,uC n

N61& and
En

N61 are the exact~N61!-particle states and energies, re-
spectively.E 0

N represents the energy of the exact neutral
ground stateuC 0

N&. The first ~retarded! and second~ad-
vanced! parts ofG~v! bear essential information on the elec-
tron attachment~or scattering! and ionization processes, re-
spectively. The ~vertical-electronic! ionization energies,
I n5En

N212E 0
N, and electron affinities,An5E 0

N2En
N11, can

be derived from the location of the poles ofG~v! in the
upper and lower half planes, respectively, of the complex
energy plane. The associated residues correspond to products
of transition amplitudes:

xi
~n!5H ^C0

Nuai uCn
N11& ; nP$N11%

^Cn
N21uai uC0

N& ; nP$N21%,
~3!

which are closely related to spectroscopic intensities. When
molecular-orbital cross-section effects are neglected, as will
be the case here, the partial pole strengthsgin5ux i

(n)u2 are
most conveniently merged into a global spectroscopic factor
Gn5S igin , giving an estimate of the fraction of photoemis-
sion intensity related to a one-particle process. The remain-
ing fraction 12Gn is the intensity dispersed in correlation
and relaxation effects. Pole strengths close to unity refer to a
one-particle process, while small pole strengths are indica-
tive of a breakdown of the one-particle picture.11
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The exact one-particle Green’s function for a many-body
system is traditionally expanded through a
renormalization17,29,30of a suitable zeroth-order form over an
effective energy-dependent potential, the so-called irreduc-
ible self-energyS~v!, by means of the Dyson equation:

G~v!5G~0!~v!1G~0!~v!S~v!G~v!. ~4!

In practice, the zeroth-order~free! Green’s function is
most frequently defined with respect to the uncorrelated HF
particles:

Gi j
~0!5d i j S ni

v2e j2 ih
1

n̄i
v2e i1 ih D . ~5!

In this equation,ei represents the HF orbital energies, and
ni512n̄i denote the HF ground-state occupation numbers.

The dynamic self-energy is usually written as the sum19,33

S~v!5S~`!1M ~v!, ~6!

where the dynamic~energy-dependent! partM ~v! accounts
for the long-time scale many-body effects arising within the
N61-particle systems, whereas, owing to a Fourier trans-
form, the static~energy-independent! partS~`! corresponds
to many-body processes, which occur instantaneously. In the
energy representation, the latter component relates to the
electrostatic potential felt by an ingoing or outgoing particle
due to correlation corrections to the HF ground-state density

Spq~`!5(
kl

^fpfkuufqf l&@r lk
exact2r lk

HF#, ~7!

where^fpfkuufqf l& denote antisymmetrized bielectron in-
tegrals over spin orbitals.

AsG~v!, the dynamic self-energy separates naturally into
two independent parts, that are physically associated with
excitations of the~N11!- and ~N21!-particle systems, ac-
cording to

M ~v!5M1~v!1M2~v!. ~8!

Each of these components possesses an analytical struc-
ture similar to the energy representation of the one-particle
Green’s function. Using matrix representation techniques,
both can be developed using the exact algebraic form24

Mpq
6 ~v!5~Up

6!†~v2K62C6!21Uq
6 . ~9!

In this equation, the effective energy interactions
K61C6 and coupling amplitudesU q

6 are defined with re-
spect to shake-on and shake-up configuration spaces of the
~N11!- and ~N21!-particle systems, respectively. In the al-
gebraic approximation, these spaces are spanned by the
physical~N61!-particle excitations derived within the basis
of theN-particle ground-state Hartree-Fock orbitals. The ma-
tricesK6 are diagonal and correspond to a zeroth-order~i.e.,
HF! estimate of the shake-on and shake-up energies, respec-
tively. In the so-called algebraic diagrammatic construction
~ADC! scheme,23,24 finite-order expressions@ADC ~2!, ADC
~3!, ADC ~4!# for the requested energy shiftsC6 and cou-
pling amplitudesU q

6 have been derived by comparison with
diagrammatic perturbation expansions ofM6~v! through the
required order. At the second-order and third-

order levels, strictly equivalent expressions have also been
obtained by means of a direct expansion22 of the one-particle
propagator, using the equation-of-motion~EOM!/algebraic
superoperator approach.

As contrasted with a finite-order expansion of the self-
energy, infinite partial geometrical series in powers of the
energy shiftC6 are automatically included by virtue of the
matrix inverse in Eq.~9!, which thereby accounts for collec-
tive excitations, an essential feature for the investigation of
electronic structure effects in extended systems. In the ADC
formulation, the influence of electron correlation in the
ground state on the dynamic polarization effects induced by
ionization is also accounted for, from third order and beyond,
by the vectors of coupling amplitudesU q

6.
Once the energy shiftsC6 and coupling amplitudesU q

6

have been computed, the dynamic self-energy can be readily
transformed into a suitable diagonal form,

Mpq
6 ~v!5 (

mP$N61%

mp
6~m!mq

6~m!*

v2vm
66 ih

, ~10!

by solving, independently from each others, the eigenvalue
problems:

~K11C1!Y15Y1V1, ~Y1!†Y1511

~K21C2!Y25Y2V2, ~Y2!†Y2512, ~11!

in which the pole positionsvm
6 of M6~v! are found as the

eigenvalues contained inV6, whereas the corresponding
Feynman-Dyson amplitudes are obtained according to

mp
6~m!5~Up

6!†Y6~m!. ~12!

A basic property of the ADC scheme, which is important
for numerical applications on extended systems, concerns the
size of the configuration spaces. In contrast to a conventional
CI treatment, where the Coulomb matrix elements enter the
CI expansions exclusively in linear form, the explicit ADC
(n) space extends only24,25with each even ordern, ensuring
a greatercompactnessof the required matrices. At third-
order, for example, only the 2p-1h ~two particle, one hole!
and 2h-1p ~two holes, one particle! excitations are needed to
span the configuration spaces of theN61-particle systems,
respectively, whereas a comparable CI expansion would in
addition also require the 3p-2h ~three particles, two holes!
and 3h-2p ~three holes, two particles! configurations. Fur-
thermore, unlike a CI expansion, the ADC equations are
manifestly size consistent, since they relate to a linked-
cluster expansion. In a localized picture, this means that
these equations decouple into independent~local! sets for a
system consisting of noninteracting fragments, ensuring the
required separability properties for size-intensive properties.
Turning alternatively to a delocalized picture, size consis-
tency can also be inferred26 from a correct balance between
the delocalization and multiplicity of one-particle canonical
states.

Since only the eigenvalues and eigenvectors in the ioniza-
tion sector ofG~v! have to be extracted, one can take ad-
vantage of the independence of the~N11!- and ~N21!-
particle blocks of the dynamic self-energy and of the fact that
these blocks are energetically located far apart from each
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other. This allows one to replace the~N11! block, of usually
very large dimension, by a much smaller matrix, which mim-
ics perfectly the behavior of the~N11! block in the ioniza-
tion region.34 Instead of truncating this block by a selection
of the more important configurations, a crude approximation
which may seriously affect the accuracy of the final results,
use has been made34 of projection methods based on a block
~or band! extension35,36 of the Lanczos algorithm.37 After L
iteration steps of this algorithm, theK11C1 block is re-
duced to aL-dimensional tridiagonal matrix,

t5V†~K11C1!V, ~13!

whereV is the matrix of Lanczos vectors. Diagonalizing fur-
ther this matrix according to

tZ5ZṼ1, Z†Z51 ~14!

provides a pseudospectrum ofL approximate eigenvalues
ṽm5Ṽmm for the K11C1 matrix. The accompanying ap-
proximate coupling Dyson amplitudes are obtained via back
transformation, as

m̃p
1~m!5~Up

1!†VZ~m!. ~15!

This method has made the ADC~3! calculations much faster
and feasible on large systems, without loss of accuracy.34

In practical applications, the efficiency of the one-particle
propagator method is ultimately determined byS~`!, which
is known to influence rather seriously the accuracy of the
results obtained for the single-hole ionic states, as it enters
sensitively the Dyson equation~4!. In the ADC formulation,
the correlated part of the electron density from which the
static self-energy is derived is itself evaluated38,39 through
partial contour integrations over a suitable truncated form of
the Dyson expansion forG~v!. The problem of determining
S~`! reduces, therefore, to a single matrix inversion,

Spq~`!2(
kl

^fpfkuufqf l&
nln̄k2n̄lnk

e l2ek
Spq~`!5bpq ,

~16!

entirely defined in the space of the one-particle and one-hole
configurations. Here, the major numerical obstacles arise
from the inhomogeneities,

bpq5(
kl

^fpfkuufqf l&Qlk , ~17!

requiring the evaluation of the correlated part of the one-
electron density, according to

Qlk5Qlk
11Qlk

2

~18!

Qlk
15 (

mP$N11%
ml

1~m!mk
1~m!* H 2nlnk

~ek2vm
1!~el2vm

1!

1
nkn̄l

~ek2e l !~ek2vm
1!

1
nln̄k

~e l2ek!~e l2vm
1! J ,

Qlk
25 (

mP$N21%
ml

2~m!mk
2~m!* H n̄l n̄k

~ek2vm
2!~e l2vm

2!

1
nln̄k

~e l2ek!~ek2vm
2!

1
nkn̄l

~ek2e l !~e l2vm
2! J .

As with the dynamic part of the self-energy, one can ex-
ploit the Lanczos pseudoeigenspectrum and the related ap-
proximate coupling Dyson amplitudes for theN11-particle,
block by inserting the results of Eqs.~14! and~15! into ~18!
to simplify the evaluation ofQ1. Q2, on the other hand, has
been determined using the inversion method described in
Ref. 39.

A last difficulty resides in the size dependence ofS~`!,
the diagonal elements of which may diverge
logarithmically31 with the size of a stereoregular chain, as a
result of a violation of the particle number40 with the corre-
lation corrections to the one-electron density:

DN5tr~Q!. ~19!

When dealing with molecular systems of relatively small
size, this error has very little influence on the computed re-
sults. To avoid this problem, which could on the other hand
impede seriously the reliability of conclusions drawn for ex-
tended~not necessarily infinite! systems, use has been made
in Eq. ~17! of a properly rescaled form of the correlated
one-electron density, reevaluated31 as

Q̃lk5
N

N1DN FQlk2nld lk
DN

N G , ~20!

which preserves the total particle number as tr(Q̃)50.
Once the static self-energy has been computed, the Dyson

equation is ultimately recast into the following CI-like eigen-
value problem:34

AX5XE, X†X51, ~21!

together with

A5S e1S~`!

~m̃1!†

~m2!†

m̃1

Ṽ1

0

m2

0
V2

D , ~22!

in which the results of the Lanczos diagonalization
~14! and ~15! for the electron affinity block have been ex-
plicitly inserted. After solving~21! via diagonalization, the
poles vn5E 0

N2En
N21 and residue amplitudesx i

(n)

5^C n
N21u ai uC 0

N& of G~v! are readily derived from the ei-
genvaluesen5Enn and the corresponding eigenvector com-
ponentsXin , respectively, of the matrixA.

III. MODELS AND COMPUTATIONAL DETAILS

Modeling stereoregular polymers by linear or cyclic hy-
drogen chains has proved on many occasions41 to be very
useful for investigating electronic structure effects in
condensed-matter physics, such as electron-electron and
electron-lattice interactions, Peierls distortion, or metal-
insulator transition. In the field of conducting polymers, ow-
ing to an intrinsic trend to a symmetry-breaking alternation
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of the electron density, equidistant hydrogen chains have fre-
quently served as simple prototypes of conjugated polyenes
based on polyacetylene. Interestingly, such chains provide
also a one-dimensional model for certain solid metallic
phases of hydrogen42 existing in high-pressure and low-
temperature conditions.

In this work, extrapolations to the polymer limit are
drawn from ADC~3! calculations carried out using a 3-21-G
basis, on two series of finite hydrogen chains of increasing
size, with alternating bond lengths of 1.4 and 1.8 a.u., or 1.4
and 1.5 a.u.~1 a.u.50.529 18 Å!. These geometrical param-
eters have been selected in order to obtain~Table I! funda-
mental band gaps comparable to those found at the HF level
for, respectively, all-trans polyethylene~16.17 eV using a
6–31 G* basis43!, a typical insulator, and for all-trans poly-
acetylene~5.14 eV, using a 6–31 G** basis44!, a polymer
conventionally classified as a semiconductor in its undoped
form. Geometrical structure effects on the ionization spectra
have been also evaluated by considering a third series of
calculations, using a few other interdistances between hydro-
gen atoms~see Table I!.

The self-consistent-field computations have been carried
out using theGAMESS series of programs.45 The requested
convergence on each of the elements of the density matrix
and the integral cutoff were fixed to 1025 and 1029 hartree,
respectively. The Green’s-function results have been ob-
tained by means of the ADC code24,34 described in the pre-

ceding section. Only the poles with a spectroscopic strength
larger than 0.005 have been extracted from the eigenvalue
equation~21!. The spatial symmetry has been exploited to
the extent of the largest one-dimensional~Abelian! subgroup
D2h of the full symmetry groupD`h , to construct symmetry-
adapted configurations and decouple the eigenvalue problem
~21! into lower-dimensional problems for each irreducible
representation.

IV. RESULTS

A. Size dependence of correlation bands

The size dependence of the location and intensity of main
and satellite lines can be followed in Figs. 1~a! and 2~a!, in
which the ADC~3! values obtained for binding energies and
the corresponding spectroscopic strengths have been dis-
played as three-dimensional spike spectra. Hypothetical ion-
ization spectra have been correspondingly simulated in Figs.
1~b! and 2~b!, using as a convolution function a combination
of one Lorentzian and one Gaussian function, both having
the same height and width~1.2 eV at half the maximum!. In
these convolutions, to illustrate more clearly the size depen-
dence of shake-up bands, we display separately the spectral
contribution arising from the lines with a pole strength
smaller than an arbitrary threshold of 0.40.

When running through the series of insulating hydrogen
chains with bond lengths of 1.4 and 1.8 a.u., the pole
strength distributions@Fig. 1~a!# and the corresponding con-
voluted spectra@Fig. 1~b!# converge rather quickly to their
respective asymptotic profiles. In this case, one can readily
discriminate the main band from its correlation tail. Except
for one or two lines at the bottom of the ionization spectrum,
pole strengths in the main band remain larger than 0.78,
showing that, in an insulating case, the one-particle picture
for the ionization process is essentially well-preserved over
the whole valence region. As observed with less sophisti-
cated propagator calculations on the same systems,27 pole
strengths tend to decrease continuously with increasing bind-
ing energy, as a result of an exaltation of electronic pair
relaxation effects22a induced by ionization of the deepest lev-
els. These effects relate to the advanced~hole! sector of the
self-energy, and are related in the Heidelberg’s school as
correlation effects in the final state.11 Some contamination by
shake-up lines is observed in the high-binding-energy part of
the main band, in a region characterized by the highest den-
sity of one-electron states. This overall behavior is typically
that found for saturated chains.7,11j,13,46

Only one satellite of rather low intensity~Gn50.10! con-
tributes to the spectrum of the smallest chain considered here
~H4!. When one extends the length of the chain, this
shake-up splits into a rapidly growing number of states,
which dissolves into a quasicontinuum of solution of very
small spectroscopic strength~typically less than 0.05!. The
correlation tail covers interestingly the largest energy inter-
val for the medium-sized chains~H12, H16, H20!, extending
from 15.0 eV up to about 36 eV, and then retreats for the
longest systems~H36, H40! in a domain below 30 eV. Relat-
edly, the more intense shake-up lines are also found for the
~H12, H16, and H20! chains. This behavior is reminiscent of
the size-dependence properties of the orbital relaxation con-
tributions evaluated at second order on the same hydrogen

TABLE I. Fundamental gap (DEg) of the selected chains, ver-
sus their length~NH: number of hydrogen atoms! and bond-length
alternation.

NH Alternation DEg ~eV!

~a!
4 1.4/1.5 17.649
8 1.4/1.5 12.710
12 1.4/1.5 10.094
16 1.4/1.5 8.411
20 1.4/1.5 7.210
24 1.4/1.5 6.290
28 1.4/1.5 5.548
~b!

4 1.4/1.8 19.722
8 1.4/1.8 16.274
12 1.4/1.8 14.708
16 1.4/1.8 13.839
20 1.4/1.8 13.304
24 1.4/1.8 12.951
28 1.4/1.8 12.705
32 1.4/1.8 12.527
36 1.4/1.8 12.394
40 1.4/1.8 12.293
~c!
28 1.4/1.5 5.548
28 1.4/1.6 10.562
28 1.4/1.7 11.716
28 1.4/1.8 12.705
28 1.4/1.9 13.573
28 1.4/2.0 14.332
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chains,27 and therefore certainly relates to an identical cause,
namely, the~N0!

21 size-dependence properties of bielectron
integrals over canonical orbitals delocalized over the whole
system, withN0 the number of unit cells in the chain. Like
bielectron integrals, the first- and second-order amplitudes
coupling primary states to the shake-up~shake-on! configu-
ration subspace of theN21 ~N11! particle system become
vanishingly small in the longest chains, a trend which, in
systems with a wide gap, tends to thwart the multiplication
of satellite solutions.

As contrasted with insulating hydrogen chains, for which
the correlation tail remains small and confined at the high-

energy border of the main band, the much more pronounced
metallic character of the chains with 1.4 and 1.5 a.u. leads to
a nearly complete fragmentation@Fig. 2~a!# of the main band
into a very complex set of shake-up lines, except for a few
lines at the high- and low-energy borders of the main band.
This fragmentation can be traced up to the smallest chain H4,
for which a splitting of the first occupied electron level into
two lines of comparable strength~Gn50.379 andGn850.573!
is already observed. Accordingly, much of the spectrum of
the longest semiconducting chains consists of a huge and
poorly structured correlation bump, extending nearly over
the whole valence region, from 6.0 up to 35.0 eV. Beyond 20

FIG. 1. Size dependence of~a! the pole strength profile and~b!
convoluted photoionization spectrum~FWHM51.2 eV! of insulat-
ing hydrogen chains~alternating bond lengths of 1.4 and 1.8 a.u.!,
together with the contribution due to the lines characterized by a
pole strength factor smaller than 0.40, superimposed as shaded
spectra. NH represents the number of hydrogen atoms.

FIG. 2. Size dependence of~a! the pole strength profile and~b!
convoluted photoionization spectrum~FWHM51.2 eV! of semi-
conducting hydrogen chains~alternating bond lengths of 1.4 and 1.5
a.u.!, together with the contribution due to the lines characterized
by a pole strength factor smaller than 0.40, superimposed as shaded
spectra.
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eV, the pole strength profile and the shape of the correlation
tail saturate rather quickly to their asymptotic form, whereas
around 10 eV the band attributed to correlation is far from
having converged to the polymer limit.

B. Organization of shake-up lines into regular bands

Both in the insulating and semiconducting cases, the lead-
ing shake-up lines tend clearly to fall into rather well-
organized bands, as illustrated in Figs. 3~a! and 3~b! for a
small hydrogen chain~H16!, and as one should expect from
translational symmetry requirements. In these figures, one
can easily identify the eight lines contributing to the main
band (M ) of the H16 chain, which are labeled according to
their molecular-orbital index. One regular distribution (S1)
of shake-up lines also clearly emerges from the spectrum of
the ~H16! chain with bond lengths of 1.4 and 1.8 a.u.@Fig.
3~a!#. These lines are labeled according to the one-electron

levels from which they borrow their intensity, as indicated
from the composition of the corresponding eigenvector ob-
tained solving equation~21!. Taking the terminology used in
crystalline orbital calculations15 on extended periodic sys-
tems, the splitting displayed in Fig. 3~a! can be regarded as a
prelude to the construction of a regular satellite~or correla-
tion! band of rather weak intensity for the corresponding
polymer. Similarly, two regular bands of shake-up lines,S1
andS2, can be readily identified in the ionization spectrum
of the H16 chain with bond lengths of 1.4 and 1.5 a.u.@Fig.
3~b!#. Owing to the much more pronounced metallic charac-
ter of this chain, these bands account this time for a major
part of the intensity.

Both in Fig. 3~a! and 3~b!, considering the one-electron
labels and the values obtained for pole strengths, the leading
(S1) correlation band seems to form a reversed image of the
main band (M ), an observation which nicely reflects their

FIG. 3. Detailed analysis of the ionization spectrum of~a! an insulating or~b! a semiconducting H16 hydrogen chain, with alternating
bond lengths of 1.4 and 1.8 a.u., or 1.4 and 1.5 a.u., respectively, in terms of regular bands. Dotted lines are included as a guide to the eye,
to distinguish regular bands. In this figure, the main band (M ) relates to single-hole lines, whereas satellite bands of shake-up lines,S1 and
S2, are the result of 1h/2h-1p and 2h-1p/2h-1p configuration interactions, respectively. The lines in these bands are labeled according to
the leading contribution arising in the 1h part of the corresponding eigenvector, indicating therefore the molecular orbital from which they
originate~a primed label relates to an antisymmetric orbital, whereas symmetric orbitals are denoted using unprimed labels!. The overall
structure of~b! is retained for the spectrum~c! of a larger H24 chain with alternating bond lengths of 1.4 and 1.5 a.u.~HOMO: highest
occupied molecular orbital; LUMO: lowest unoccupied molecular orbital; HOMO-1: the occupied molecular orbital below the HOMO.!
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competition for intensity. From the composition of the asso-
ciated eigenvector, the shake-up lines in theS1 band can be
shown to essentially borrow their intensity from their mirror
line in the main band, as a result of strong 1h/2h-1p inter-
actions. Interestingly in Fig. 3~b!, theS2 shake-up band dis-
plays a pole strength profile very similar to that found for the
main band, and tends to form a mirror image of theS1 band.
The S2 band can itself be regarded as a satellite of theS1
band, finding its origin in 2h-1p/2h-1p configuration inter-
actions.

The features displayed in Fig. 3~b! are essentially retained
for larger semiconducting hydrogen chains@e.g., H24 in Fig.
3~c!#, although the pole strength distribution complicates
quickly with system size. This behavior relates to the rapidly
increasing number of possibilities for multistate configura-
tions. In spite of this, however, one can readily distinguish
several overlapping shake-up bands in Fig. 3~c!, extending
far beyond the high-energy border~at about 20.5 eV! of the
remains of the primary band. Configuration interactions tend
quite naturally to disfavor the shake-up states of highest en-
ergy, which explains the overall decrease observed with the
intensity of shake-up lines with increasing binding energies,
and relatedly the recovering of single-hole lines at the bot-
tom of the valence band.

From the composition of the corresponding eigenvector in
Eq. ~22!, the shake-up transition at the top of the correlation
region is unsurprisingly always found to relate essentially to
the HOMO22LUMO11 configuration. An analysis of the ei-

genvector also shows that, in the case of the hydrogen chains
with bond lengths of 1.4 and 1.5 a.u., this shake-up line
always borrows its intensity from the~HOMO21!21 single-
hole configuration. When dealing with hydrogen chains of
the semiconducting type@Figs. 3~b! and 3~c!#, the
HOMO22LUMO11 configuration state falls nearly at the up-
per edge of the main band, among the one-hole configura-
tions corresponding to the outermost orbitals. These configu-
rations interact strongly, yielding at that energy a severe
depletion of intensity in the main band, and a very intense
shake-up line.

Extrapolated to a band-structure description and as illus-
trated in Fig. 4~a! for a two-bands model, the
~HOMO21!21/HOMO22LUMO11 splitting would relate to
the interaction of a hole frozen in a one-electron state just
nearby the top of the valence band with the 2h-1p state
resulting from the ionization of the highest occupied elec-
tronic level, together with a vertical excitation over the fun-
damental gap, at the upper edge of the first Brillouin zone. In
Fig. 4~a!, the ADC ~3! coupling amplitude corresponding to
this 1h/2h-1p interaction is also displayed using Feynman
diagrams, together with the permitted flows of momenta.
Owing to translational symmetry constraints, an infinitely
small transfer of momentum~h! has to obviously accompany
the particle-hole excitation.

For ionization of electrons at higher binding energies,
most of the induced particle-hole excitations imply a transfer
of momentum (q), as shown in Fig. 4~b!. The corresponding

FIG. 4. Band-structure extrapolation, in a two
bands model, of the observed~a! and ~b! 1h/2h-
1p and ~c! 2h-1p/2h-1p configuration interac-
tions ~top! together with the permitted flows of
momenta in the related coupling amplitudes,
sketched~bottom! using diagrams introduced in
Refs. 19, 23, or 47. The screened dot vertex~a!
and ~b! corresponds to the ADC~3! 1h/2h-1p
coupling amplitudes U p,i ja

2 Refs. 26a, 47,
whereas~c! the 2h-1p kernel accounts for the
renormalization of the self-energy in terms of the
2h-1p/2h-1p coupling amplitudesCi ja ,i 8 j 8a8

2

Refs. 19, 23. In Fig. 3~a!, h accounts for an infi-
nitely small transfer of momentum accompanying
the particle-hole excitation, which can be re-
garded as virtually vertical. In this figure,h(kF)
andl (kF) correspond to the highest occupied and
lowest unoccupied levels, at the edge (kF) of the
first Brillouin zone.~i , j : occupied band indices;
a,b: virtual band indices.!
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coupling amplitude therefore relates to a scattering of the
created hole within the valence band as a result of correlation
effects in the cation, together with an oblique electron tran-
sition across the fundamental gap. Owing to translational
symmetry constraints, a vertical excitation~q50! in our two
bands model is possible only if the scattered hole@in state
f i(kp1q)# remains frozen in its original statef r(kp). As in
this case, there is no charge oscillations, and this particular
situation typically accounts for pure~orbital! relaxation ef-
fects. From Fig. 4~b!, it is clear that for an infinitely large
and periodic system, these relaxation states occur as singular
cases in a continuum of correlation states, described by scan-
ning all possible values for momenta.

As observed in Figs. 3~b! and 3~c!, and as inferred from
Fig. 4~b!, shake-up solutions multiply quickly at higher bind-
ing energies, yielding multistate configuration interactions
and further splitting into several series of satellites. In a
band-structure picture, these interactions relate to a scattering
@Fig. 4~c!# of the two-hole and one-particle states within the
valence and conduction bands, respectively, which this time
involves two independent variables for momentum transfer
~q1 andq2!.

C. Role of satellites in convoluted spectra

In Fig. 5, we compare the convoluted HF and ADC~3!
spectra of a semiconducting H28 chain, with bond lengths of
1.4 and 1.5 a.u. From their overall aspect, and, in particular,
from the appearance of a huge and intense peak at the bottom
of the valence band, the HF and ADC~3! spectra of this
chain present some similarity. In spite of this similarity,
however, the underlying physics is very different.

In the HF case, the peak at about 24 eV results from a
strong accumulation of one-electron levels in that energy re-
gion, yielding a characteristic and abrupt rise of intensity at

the high-binding-energy border of the valence band. Addi-
tional and regularly distributed peaks can be distinguished at
lower binding energies, each relating to a canonical one-
particle state. As contrasted with the HF results and in anal-
ogy with simpler Green’s-function calculations on extended
chains,7,27 the ADC ~3! spectrum is shifted to lower binding
energies and contracted on a smaller energy scale. As already
mentioned, this overall behavior is due to the exaltation of
the correlation effects in the final state~i.e., electron pair
relaxation! with the inner character of the ionized levels.

As compared with the HF spectrum, the ADC~3! spec-
trum presents also a striking dissimilarity with its fuzzy and
smoothened aspect. Except for the two peaks at the top of the
convoluted band, the peaks emerging from the middle part of
the ADC ~3! simulation barely reminds us of those found in
the HF spectrum. Very striking also is a net broadening of
the peak at the high-binding-energy border of the main band
~at 20 eV!. This broadening is the outcome of an overlap
between a few surviving one-electron lines with a large and
poorly structured correlation tail, extending far beyond 30
eV.

In Fig. 5, we also compare the convoluted HF and ADC
~3! spectra of the semiconducting H28 chain to the x-ray pho-
toelectron spectrum~XPS! of polyacetylene,14 in order to
illustrate the role played by satellite structures in the photo-
ionization spectra of conjugated polymers. This comparison
relies on a firmly established tradition in condensed-matter
physics,41 and is justified in regards with the HF values ob-
tained for the fundamental band gap~Table I!, and with the
alternation of the one-electron density. In close analogy with
the ADC ~3! convoluted spectrum of the hydrogen chain, a
large and symmetric peak, extending in between 15 and 22
eV, is found in the inner valence part of the x-ray photoion-
ization spectrum of polyacetylene.14 By comparison, calcu-

FIG. 5. Convoluted spectra
~FWHM51.2 eV! obtained from
the results of~dashed-dotted line!
HF and~full line! ADC ~3! calcu-
lations, the latter being also dis-
played as a spike spectrum, for the
H28 chain with bond lengths of 1.4
and 1.5 a.u. The insert shows the
experimental XPS spectrum re-
corded on polyacetylene Ref. 14.
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lations based on a quasiparticle picture yield,47,48as with the
HF calculations on the semiconducting hydrogen chains, a
sharper and more assymmetric peak in that energy region.

D. Conditions precluding a contamination of main bands
by shake-up lines

In Figs. 6~a! and 6~b!, we present the spike and convo-
luted spectra for a H28 chain computed at different bond
distances between the H2 monomer units. In these figures,
one can easily follow the growing contamination of the spec-
trum by shake-up bands, as one reduces the bond-length al-
ternation. This contamination spreads from the high-binding-

energy border of the main band up to nearly its low-binding-
energy edge, in direct relationships with the decreasing band
gap.

We noticed that the zeroth-order estimate for the energy
threshold of a shake-up transition, i.e.,DS

05eLUMO22eHOMO
marks the bifurcation range between the one-particle and
many-body parts of the ionization spectrum. Below that
threshold, the dispersion of intensity into secondary lines di-
rectly relates to the strength of relaxation effects, and there-
fore increases7,8bwith increasing binding energy. AboveDS

0,
one has to consider the probability of shake-up transitions,
decreasing with increasing binding energy, together with the
strength of the interaction between the main~one-hole! and
secondary~two-holes, one-particle! configurations of the ion-
ized system. The strongest configuration interactions with
shake up are likely to operate in an energy region centered
on DS

0. Hence, the intensity in the main band does increase
again with increasing binding energy above that threshold, as
observed previously.

Therefore,DS
0 has naturally to correspond to the strongest

depletion of intensity in the main band, and relatedly to the
highest extremum in the shake-up structures. As shown in
Table II, the zeroth-order energy threshold for a shake-up
transition is indeed very generally found in the vicinity of the
most severe depletion of intensity in the main band and of
the most intense shake-up structure in the correlation tail.
The energy locations of these features are denotedDD and
DC , respectively.

This observation relates to the delocalization properties of
canonical states in extended chains, yielding bielectron inte-
grals and thereby 1h/2h-1p and 2h-1p/2h-1p coupling am-
plitudes scaling likeN0

21, with N0 the number of monomer
units. When the size of the system tends to infinity, the num-
ber of shake-up possibilities tends to become infinitely large,
whereas the coupling amplitudes tend to become infinitely
small ~i.e., the coupling amplitudes tend to build infinitely
large matricesU6 andC6, with infinitely small elements!.
For an infinite system, the poles of the self-energy~8! there-
fore strictly reduce to the zeroth-order estimates for shake-
on @Kiab,i 8a8b8

1
5d i i 8daa8dbb8(e i2ea2eb)# or shake-up

@Kati,a8 i 8 j 8
2

5daa8d i i 8d j j 8(ea2e i2e j )# energies~a,b: unoc-
cupied indices;i , j : occupied indices!.

Along the same lines, a zeroth-order value of 10.86 eV for
the shake-up energy threshold of polyacetylene can be
readily calculated from the values obtained by Suhai44 for
the first ionization potential and fundamental gap. Similarly,
a value of 27.69 eV forDS

0 is found in the case of polyeth-
ylene. By extrapolation of our argumentation, the greater
part of the photoionization intensity can therefore be attrib-
uted to main lines in the latter case, whereas a significant
contamination by shake-up lines can be expected in the
lower half part of the outer~C 2p1H 1s! valence band of
polyacetylene, together with a complete breakdown of the
one-particle picture in the inner~C 2s! valence region.

This observation and explanations are consistent with the
2h-1v CI calculations carried out on finite polyenes
~C8H10,C10H12!, by Fronzoni et al.,16 indicating a severe
breakdown of the one-particle picture for the inner valence
band of polyacetylene, together with a possible irruption of
shake-up lines into the outer valence region. In this case,
however, the fragmentation of the main band into satellites

FIG. 6. Dependence of~a! the pole strength profile or~b! the
convoluted spectra together with the contributions arising from
shake up, superimposed as shaded spectra on the full result, dis-
played for different bond-length alternations of a H28 chain. 1: 1.4/
2.0 a.u.; 2: 1.4/1.9 a.u.; 3: 1.4/1.8 a.u.; 4: 1.4/1.7 a.u.; 5: 1.4/1.6 a.u.;
6: 1.4/1.5 a.u.
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seems less pronounced than with our present ADC~3! cal-
culations on hydrogen chains with a similar band gap. This
could probably be the result of the loss of size-consistency
inherent to truncated CI expansions and of the restriction of
the virtual state to the valence space generated in a minimal
basis.

E. The role of correlation effects
in the ground-state wave function

As a last point, we compare in Fig. 7 the above discussed
ADC ~3! results for hydrogen chains of the semiconducting
type with ADC ~2! calculations. In the ADC~2! scheme, the
vectors of coupling amplitudesU6 are obtained to first order
in correlation, whereas the ADC~3! scheme also incorpo-
rates second-order correlation corrections to the reference
ground-state wave function. The ADC~2! and ADC ~3! re-
sults are qualitatively consistent, even for the chains with the
more strongly pronounced metallic character. As compared
with ADC ~2!, however, the many-body corrections in the
ADC ~3! scheme tend overall to strengthen the breakdown of
the one-particle picture for the ionization process. This dif-
ference relates to a narrowing of the fundamental quasipar-
ticle band gap of semiconducting polymers44 under the inclu-
sion of electronic correlation effects in the ground state,
yielding larger 1h/2h-1p coupling amplitudes. This last
comparison strengthens the reliability of the conclusions ob-
tained, which could be readily transposed to a wide range of
insulating or semiconducting polymers with a HF band gap
larger than 5.0 eV.

V. SUMMARY AND OUTLOOK FOR THE FUTURE

The calculations and analysis presented in this paper es-
tablish a link between many-body molecular quantum me-
chanics and condensed-matter physics. They illustrate the
importance of satellite bands in the photoionization spectra
of extended systems with low band gap, an aspect of band-
structure theory which has been largely overlooked until
now.

In this paper, we have computed the ionization spectra of
model hydrogen chains, with different bond-length alterna-

TABLE II. Comparison of the zeroth-order estimate for the en-
ergy threshold of a shake-up transition~DS

0! with the energy loca-
tions ~together with the corresponding pole strength! of the deple-
tion center of intensity in the main band~DD! and of the most
intense structure~DC! in the correlation tail~energies in eV!. The*
denotes that shake-up lines of comparable intensity are also found
in the correlation tail, beyond the high-binding-energy edge of the
main band.

NH Alternation DS
0 DD ~eV! DC ~eV!

~a! 1.4/1.5 23.445 19.28~0.573! 23.13 ~0.379!
8 1.4/1.5 17.083 12.65~0.426! 16.19 ~0.509!
12 1.4/1.5 13.621 9.49~0.358! 12.44 ~0.562!
16 1.4/1.5 11.359 7.75~0.306! 10.21 ~0.599!
20 1.4/1.5 9.728 6.28~0.276! 8.64 ~0.619!
24 1.4/1.5 8.468 5.34~0.245! 7.49 ~0.632!
28 1.4/1.5 7.443 4.34~0.237! 6.62 ~0.639!
~b!

4 1.4/1.8 26.240 18.87~0.856! 25.28 ~0.097!
8 1.4/1.8 21.823 17.69~0.804! 19.14 ~0.091!
12 1.4/1.8 19.780 18.95~0.736! 19.16 ~0.149!
16 1.4/1.8 18.670 18.36~0.783! 19.81 ~0.096!
20 1.4/1.8 17.976 17.96~0.783! 19.93 ~0.089!
24 1.4/1.8 17.519 17.67~0.780! 18.44 ~0.097!
28 1.4/1.8 17.201 17.46~0.632! 17.48 ~0.184!

16.55 ~0.778! 18.31 ~0.140!
32 1.4/1.8 16.972 17.250~0.752! 19.76 ~0.181!
36 1.4/1.8 16.801 18.35~0.495! 18.36 ~0.306!

16.34 ~0.776! 17.85 ~0.056!
40 1.4/1.8 16.671 17.0~0.500! 18.29 ~0.057!
~c!
28 1.4/1.5 7.443 4.343~0.237! 6.62 ~0.639!
28 1.4/1.6 14.837 13.99~0.306! 13.986 ~0.487!
28 1.4/1.7 16.127 15.56~0.624! 16.605 ~0.146!
28 1.4/1.8 17.201 17.46~0.631! 17.48 ~0.184!

16.55 ~0.778! 18.31 ~0.140!
28 1.4/1.9 18.121 18.143~0.809! 17.954 ~0.041!*
28 1.4/2.0 18.909 18.556~0.828! 18.723 ~0.029!*

FIG. 7. Comparison of the~a! ADC ~2! results with~b! the ADC ~3! results obtained for a semiconducting H28 hydrogen chain, with
alternating bond lengths of 1.4 and 1.5 a.u.
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tions and as a function of chains length. Our main goal was
to investigate the construction of satellite bands in two ex-
treme situations i.e., for an insulating and for a semiconduct-
ing polymer chain. Since the formation of satellite states es-
sentially depends on many-body effects, use has been made
of calculations which account for electronic correlation and
relaxation effects, as well as for multistate configuration in-
teractions. The method which has been considered is an al-
gebraic diagrammatic construction scheme~ADC! of the
one-particle Green’s function, which is correct through third
order in correlation. It has been recently augmented by a
block Lanczos algorithm, which makes this method appli-
cable to larger clusters. In comparison with standard CI treat-
ments, this approach has major advantages for numerical ap-
plications of extended systems, in the form of a systematic
compactnessof the configuration spaces, and in regards with
the size consistencyand therebysize intensivityof the com-
puted transition energies and moments.

Satellite structures in the ionization spectra of large sys-
tems are, by far, much more difficult to investigate than one-
particle lines, since the number of 2h-1p shake-up solutions
increase as~N0!

3, with N0 the number of monomer units,
whereas the corresponding 1h/2h-1p and 2h-1p/2h-1p
coupling amplitudes tend to scale as~N0!

21 in the limit of an
infinite system. In spite of this, evidence has been found in
this study for an organization of shake-up lines into a regular
band structure, in direct relationships with the developing
translational symmetry constraints in clusters converging
onto a stereoregular polymer limit. From the distribution of
lines and intensities, it is even possible to distinguish the
satellites due to a single 1h/2h-1p configuration interaction
from those arising from multistate 2h-1p/2h-1p interac-
tions.

When dealing with insulating hydrogen chains, the
shake-up contamination remains limited to a small part of the
ionization spectrum, at the high-binding-energy edge of the
valence region. In this case, the correlation tail saturates
rather quickly to its asymptotic form, with respect to the size
of the chains, as a result of a suitable~i.e., size-consistent!
balance26 between the multiplicity of shake-up solutions and
the scaling properties of coupling amplitudes. On the con-
trary, for systems of the semiconducting type~with a HF
band gap of the order of 5 eV!, a virtually complete frag-
mentation of main bands into satellites is observed below the
zeroth-order estimate for the energy threshold of a shake-up
transition ~DS

0!, namely, the HOMO22LUMO11 transition.
The amplitude of this fragmentation increases under the in-
clusion of electronic correlation in the ground-state reference
function, owing to a narrowing of the quasiparticle band gap.

As shown in this paper, the energy thresholdDS
0 provides

a simple criterium to evaluate the range of reliability of the
one-particle picture for the ionization process, an essential
question in the assessment of configurational or conforma-
tional signatures in the photoionization spectra of extended
systems. Considering energetics only, it is quite obvious that
DS
0 should always fall in the vicinity of the most severe

depletion of intensity in the primary bands and of the most
intense satellite structure. Nonetheless, in more realistic sys-
tems with one-particle levels belonging to different shells,
one should also consider the modulation of the competition
for intensity between primary and secondary lines by their
coupling amplitudes, which depend sensitively on the local-
ization properties of the involved orbitals.

A main conclusion is that although not necessarily appar-
ent from experiment alone, the structures observed in the
ionization spectra of semiconducting polymers can be essen-
tially due to correlation and not related to a one-particle pic-
ture at all. More care should be exercised when interpreting
these spectra. By extrapolation of studies conducted during
the past two decades on a large range of molecules,11 strong
many-body effects can also be expected in the inner valence
spectrum of polymers containing easily polarizable bonds or
lone pairs such as polysilanes, polyoxymethylene, polyoxy-
ethylene, polyacrylonitrile . . . .Many more calculations, of
the type which has been presented here, are, therefore,
needed for other large oligomers. A crystal orbital version of
the ADC scheme, fully exploiting translational symmetry for
infinite periodic systems, is also clearly desirable.

Along the same lines, it is usually agreed that the one-
particle picture for ionization is applicable on metallic sys-
tems. An open and highly challenging problem, yet to be
studied, is following the evolution of satellite bands when
the semiconducting phase presented here evolves to a
strongly correlated metallic phase.
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