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We present the results of numerical simulations of a drift-diffusion model—including electric-field-
dependent generation-recombination processes—for closely compensatedp-type Ge at low temperature and
under dc1ac and dc1noise voltage biases, with an Ohmic boundary condition. We observe frequency locking
and quasiperiodicity under dc1ac bias, but do not find chaotic behavior for a uniform impurity profile.
Noise-induced intermittent switching near the onset of solitary-wave conduction is compared to experimentally
observed intermittency, type-III intermittency, and on-off intermittency. For a linearly increasing acceptor
concentration, we find that the size of the solitary waves diminishes as they advance across the sample.

I. INTRODUCTION

Many semiconductor systems driven far from thermody-
namic equilibrium display nonlinear electrical conduction.
For sufficiently large current densities or electric fields, non-
linear conduction arises from various microscopic processes,
such as impact ionization@Ge~Refs. 1 and 2! and GaAs~Ref.
3!#, enhanced impurity trapping@n-type Ge ~Ref. 4!#,
momentum-space transfer@GaAs~Refs. 5 and 6!#, real-space
transfer in semiconductor heterostructures,7,8 and sequential
resonant tunneling in superlattices.9,10The onset of nonlinear
conduction is associated frequently with qualitative changes
in the macroscopic behavior of the system, which may be
described as a nonequilibrium phase transition.11 Recently,
there has been much interest in the spatiotemporal dynamics
of such nonequilibrium systems.12–14 Ultrapure extrinsic
cooled bulkp-type Ge is ideally suited to the study of spa-
tiotemporal behavior in driven dissipative systems. The sig-
nal to noise ratio is large (' 80 dB!, and the dynamical
length scale~mm! and time scale~ms! of the spatiotemporal
structures make accurate data collection convenient and
rapid.15

The onset of nonlinear conduction processes can be seen
typically in the stationary, spatially homogeneous current
density j sh(E), whereE is the electric field. For positive
differential resistance, fluctuations in the system decay and
the stationary, spatially homogeneous state is stable; how-
ever, for negative differential resistance~NDR! the station-
ary, spatially homogeneous state may become unstable to
spatiotemporal structures.16 The NDR in our model of the
p-type Ge system arises from negative differential carrier
concentration due to the generation and recombination dy-
namics of holes from shallow acceptor impurities. Instabili-
ties arising from negative differential carrier concentration
have also been reported for GaAs,4 InSb,17 and Si.18We find
that the NDR in our model arises from a negative differential

impact-ionization rate and is only present in closely compen-
sated samples. The NDR produces a ‘‘N’’ shaped j sh(E)
curve ~NNDR!,19 as shown in Fig. 1.

We focus on biases that cause the spatially averaged elec-
tric field ~voltage divided by sample length! to be above the
value for impurity breakdown. For such biases, NDR,20 large
current oscillations,20,21 and spatiotemporal structures15,22–25

have been observed in experiments. We use a set of rate
equations within the drift-diffusion approximation—
including electric-field-dependent impact-ionization and re-
combination rates and an electric-field-dependent drift
velocity26,27—to model the spatiotemporal dynamics of the
system. Bonilla has previously employed asymptotic analysis
to make predictions for the spatial dependency of the steady-
state electric field,28 the onset voltage to small-amplitude pe-
riodic current oscillations,28–30 and the stability of moving
high-field domains31 @which is closely related to the stability
analysis for Gunn domains in GaAs~Ref. 32!#. In earlier
numerical simulations under dc voltage bias, we observed

FIG. 1. The homogeneous stationary current densityj sh(E) for
a51.21, illustrating the NDR in our model.
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electric-field solitary waves that travel periodically across the
sample,19,29,33which have wave speed and wave size in close
agreement with the experiments of Kahn, Mar, and
Westervelt.15 In this paper, we examine the effect of adding
an ac signal to the dc bias, the relationship between external
noise in the dc bias and intermittency, and the spatiotemporal
dynamics that result from having a linearly increasing accep-
tor concentration. The addition of noise to the bias and the
spatial variation of the acceptor concentration result in be-
havior that was absent in our previous simulations,19,29,33but
is found in the experimental system,15,24 in particular, inter-
mittency and shrinking space-charge waves.

The paper is organized as follows. Section II contains a
brief review of the model equations. In Sec. III, the sample is
biased with a dc1ac voltage, and we observe quasiperiodic-
ity and frequency locking, but find no evidence of chaos
above the critical line. In Sec. IV, we add a small white-noise
term to the dc voltage bias, as an approximation to external
noise, and find intermittent switching between two periodic
states. We find in Sec. V that a small linear variation in the
impurity profile across the sample produces solitary waves
that shrink as they propagate. In the conclusion we discuss
the discrepancies that remain between our model and experi-
ment, principally the differing statistics of the intermittent
switching and the absence of chaos. Appendix A contains the
functional forms of electric-field-dependent impact-
ionization and recombination coefficients and the electric-
field-dependent drift velocity. Appendix B is a description of
the numerical algorithm used in our simulations.

II. MODEL SYSTEM

We use a standard drift-diffusion description of the hole
current, electric-field-dependent generation and recombina-
tion of free holes, and Poisson’s law to model carrier
transport.26,34,35We simplify the description by neglecting
the displacement current and the diffusive component of the
hole current.34 The problem may be reformulated then as a
‘‘reduced equation’’ in terms of a single spatially dependent
field variable, the electric field, and the spatially homoge-
neous current density.28,34The reduced equation is

V~E!21
dJ

dt
5

]2E

]x]t
1c1~E,J!

]E

]t
1c2~E,J!

]E

]x
1c3~E,J!,

~1a!

c1~E,J!5
J

V~E!2
V8~E!, ~1b!

c2~E,J!5
J@K~E!1R~E!#

V~E!
, ~1c!

c3~E,J!5@J sh~E!2J#
c2~E,J!

V~E!
, ~1d!

Jsh~E!5F aK~E!

K~E!1R~E!
21GV~E!, ~1e!

where V8(E)5dV/dE. Here E(x,t) is the dimensionless
electric field andJ(t) is the dimensionless current density.
The functionsK(E), R(E), andV(E) are the dimensionless

forms of the impact-ionization coefficient, recombination co-
efficient, and drift velocity; their functional forms~see Ap-
pendix A! are based on experimental data36,37 and physical
considerations, which are given in Refs. 19, 27, 35, and 38.
The compensation ratioa is defined as the ratio of the ac-
ceptor concentration to the donor concentration. The dimen-
sionless quantities are defined in terms of dimensional quan-
tities in Table I.34 The dimensional variables are as follows:
F(t) is the voltage bias,X is the distance measured from the
injecting contact,t is the time,rcon is the injecting-contact
resistivity, andl is the sample length. In Table II, we state the
values of the physical parameters appearing in Table I; they
are typical of the high-purity p-type Ge used in
experiment.15,27

The qualitative nature of much of the predicted
behavior—e.g., the instability of the stationary electric-field
profile and the stability of propagating high-field domains—
depends only on the presence of NNDR,28,29 and not on the
exact form of the underlying coefficients. Other authors have
stated different forms of the coefficient curves for various

TABLE I. Definition of dimensionless quantities.

Dimensionless quantity Definition

Spatial variable x5Xm0ed/(evs)
Temporal variable t5t/t2
Electric field E(x,t)5E(X,t)m0 /vs
Voltage bias f(t)5F(t)m0

2ed/(evs
2)

Current density J(t)5 j (t)/(edvs)
Drift velocity V(E)5vd(E)/vs
Impact-ionization coefficient K(E)5k(E)/k0
Recombination coefficient R(E)5r (E)/k0
Injecting-contact resistivity r05r conem0d
Sample length L5 lm0ed/(evs)

TABLE II. Physical parameters and time scales used in the analy-
sis and numerical simulation of the Ge system.

Quantity Value

Donor concentration d5831010 cm23

Shallow acceptor concentration a59.6831010 cm23

Compensation ratio a[a/d51.21
Low-field hole mobility m051.03106 cm2/(V s)
Saturation velocity vs51.03107 cm/s
Permittivity e516e0
Permittivity of free space e058.85310212 C2/(N m2)
Injecting-contact resistivity r con5585V cm
Lattice temperature T 54.2 K
Impact-ionization constant k056.031026 cm3/s
Recombination-ionization constant r 053.031026 cm3/s
Infrared generation constant g51.031024 s21

Diffusivity D[m0kbT /e53.6 cm2/s
Impact-ionization time t2[1/(k0d)52.131026 s
Dielectric relaxation time t1[e/(edm0)51.1310210 s
Sample length l51.45 cm
Sample cross-sectional area A50.16 cm2

Elementary charge e51.602310219 C
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reasons.39–41 Recently, Monte Carlo simulation has been
used to provide a more rigorous determination of the coeffi-
cients for a relatedp-type system;42 however, such simula-
tions do not yet exist for the Ge samples under consideration
in this paper.

Equation~1a! is first order in the spatial variablex, so we
may only specify one boundary condition. We choose to sat-
isfy an Ohmic boundary condition at the injecting contact.
Althoughp-type Ge experiments have two Ohmic contacts,15

only the injecting contact should be important in determining
the behavior in the bulk;28,34,43 therefore, we neglect the
receiving-contact boundary condition. This produces un-
physical results in a narrow diffusive layer near the receiving
contact ~thickness;0.5 mm!; we have treated this effect
elsewhere.28 In addition to the injecting boundary condition,
we also have a global voltage-bias constraint. The dimen-
sionless boundary condition and voltage constraint for Eq.
~1a! are

E~x50,t!5r0J~t!, E
0

L

E~x,t!dx5f~t!. ~2!

III. DYNAMICS UNDER dc 1ac VOLTAGE BIAS

The case of pure dc bias has been treated in detail
elsewhere;19,28,29,31,33we will summarize briefly the main re-
sults. As the voltage is increased beyond the value for impu-
rity breakdown, the stationary state loses stability to small-
amplitude~SA! periodic oscillations via a Hopf bifurcation.
This bifurcation occurs at a voltage we define asFa ,
Fa / l'6.046 V/cm. The SA current oscillations are com-
posed of a very sinusoidal component (;0.01 mA! offset by
a larger dc component (;1.0 mA!. The current oscillations
result from dipole charge waves that nucleate at the injecting
contact and quickly decay as they detach from the contact. At
a larger voltage,Fb (Fb / l'6.055 V/cm!, the system under-
goes an abrupt hysteretic transition from the SA oscillations
to large-amplitude~LA ! periodic oscillations. The LA current
oscillations are composed of a wave train of pulses (;0.1
mA! offset again by a larger dc component (;1.0 mA!. The
LA current oscillations result from the periodic nucleation of
electric-field solitary waves that propagate across the entire
sample. The frequencies of the oscillations are;3.0 kHz for
the SA oscillations and;0.5 kHz for the LA oscillations.
The periodic oscillations persist until the voltage becomes
larger than a value,Fv (Fv / l'12.975 V/cm!, beyond
which the stationary state is again stable.

Here we add a small sinusoidal component to the dc bias,
so that the total bias is

F~ t !/ l5Edc1Eacsin~2p f drt !, ~3!

whereEac (Edc) is the ac~dc! amplitude andf dr is the drive
frequency of the ac signal. There are two natural frequencies
of the system, the drive frequency and the frequency of the
spontaneous periodic oscillationf 0 associated with the pure
dc-bias case. For the ac results reported here, we have set
Edc57.5V/cm in order to closely mimic the experimental
conditions of Kahn, Mar, and Westervelt.22,23The frequency
of the spontaneous oscillation in our model for
Edc57.5V/cm is f 050.77 kHz. The ac drive and the spon-

taneous oscillation of the sample can be thought of as two
oscillators interacting in a nonlinear medium. For such a sys-
tem, we would expect different dynamical behavior depend-
ing on the drive parameters. Kahn, Mar, and Westervelt ob-
serve frequency locking, quasiperiodicity, temporal chaos,
and spatiotemporal chaos in their system.22,23 Gwinn and
Westervelt find that the dynamics is consistent with the
circle-map model of the quasiperiodic transition to
chaos.44,45 Recently, Jiang46 employed a two-Fourier-mode
space-charge dipole decomposition of Teitsworth and West-
ervelt’s rate equations26,27 ~neglecting carrier population dy-
namics!. He finds frequency locking, quasiperiodicity, and
chaos under dc1ac bias. In our simulations we find fre-
quency locking and quasiperiodicity, but not chaotic behav-
ior.

The tongue diagram~Fig. 2! shows the regions of drive
bias and frequency where the current oscillations are syn-
chronized to a rational multiple of the drive frequency. Out-
side of the tongue regions the system is quasiperiodic. The
tongues are constructed by observing the Poincare´ section
map formed by sampling the current time series at multiples
of the drive period. The tongues widths increase with drive
amplitude and eventually overlap at the critical line. In de-
termining the critical line, we use the fact that overlapping
tongues produce hysteretic boundaries.44 We place the upper
limit of the tongues at the critical line, i.e., where we first
observe hysteretic behavior. We find that the critical line in
our model occurs at roughly 1/3 the drive amplitude of the
critical line in the experimental system.22 This is an indica-
tion that our model system locks more readily to the drive
signal than does the experimental system.

Above the critical line in the circle-map model, chaotic
behavior is possible.47 Kahn, Mar, and Westervelt observe
both temporal and spatiotemporal chaos in the system above
the critical line.23 We do not observe chaos in our numerical
simulations, but we do see spectrally rich quasiperiodicity
above the critical line, as shown in Fig. 3~a!. Kahn, Mar, and
Westervelt observe spatiotemporal chaos when they drive the
system with an ac drive voltage large enough to cause the
voltage bias to go below the onset value for spontaneous
oscillationsFa .

23 In such cases, they observe the nucleation
and destruction of domains in the bulk of the sample, rather

FIG. 2. Tongue diagram. Inside the tongues the response fre-
quency is locked to the drive frequency with the indicated ratio.
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than domains being solely nucleated at the injecting contact
and being destroyed only at the receiving contact. In con-
trast, we observe nucleation only at the injecting contact for
a spatially constant compensation profile. When we apply an
ac signal that drivesF(t) below Fa the domains are de-
stroyed in the bulk, but the new domains are always nucle-
ated at the injecting contact asF rises throughFa . This
forces the sample oscillation into a 1:1 locking with the drive
frequency.

There are several possible reasons that our simulations do
not capture the chaotic dynamics reported in experiment.
One cause, a spatially varying compensation profile, will be
discussed in Sec. V. Also, there is the possibility that the
terms ignored in the reduced equation—namely, the diffusion
and displacement currents—are important in the chaotic re-
gime.

IV. NOISE-INDUCED INTERMITTENT SWITCHING

In this section we explore how the addition of a small
noise term to the voltage bias results in the intermittent
switching of the system between the LA and SA states for
voltages nearFb . Under pure dc bias, there is a hysteretic
bifurcation from the SA oscillation state to the LA solitary-
wave state atFb , with no intermittent switching.19,29,33By
adding a small Gaussiand-correlated noise term to the dc

bias we find that the current exhibits intermittent switching
between the SA state and the LA state for biases nearFb ;
see Fig. 4~a!.

The intermittent switching in our model does share com-
mon traits with other types of intermittent behavior, but does
not fit into any particular classification. For instance, in a
pulse-modulated~PM! transition the system randomly alter-
nates between a periodic~laminar! state and a chaotic
state.48,49 An important point is that PM-type intermittency
occurs for fixed system parameters near the bifurcation from
periodic to chaotic behavior, whereas our intermittent
switching is noise induced. Also, both states~SA and LA!
between which our system switches are regular; the intermit-
tent switching is a continuous route from the periodic SA
state to the periodic LA solitary-wave state, rather than from
a periodic state to a chaotic state. Like PM-type intermit-
tency, the average time the system spends in one state scales
as a power law with the ‘‘distance’’ from the bifurcation
point.

Recently, there has been a great deal of interest in systems
where a control parameter is driven by noise through a bi-
furcation point, resulting in the system switching between

FIG. 3. ~a! The Fourier power spectrum vs frequency,~b! the
Poincare´ section map~system strobed at 1/f d), and ~c! E(X,t) at
intervals of 0.16 ms forEdc57.5 V/cm, Eac50.25 V/cm, and
f d51.18 kHz (f 0 / f d50.65).

FIG. 4. ~a! Current showing intermittent switching between
small-amplitude and large-amplitude oscillations for
h50.002 V/cm andEdc5 6.055 38V/cm.~b! The laminar-length
probability-density distribution for the same bias and noise strength
as in ~a! ~the solid line is the predicted distribution function!. ~c!
The average laminar length vs the distanceEdc is from Ecrit ; the
solid line is the fitted power law, and the vertical bars correspond to
1 standard deviation of the mean~each data point is the average
result from many time series!.
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two states. This phenomenon has been labeled by Platt, Spie-
gel, and Tresser as ‘‘on-off intermittency’’50 and has been
observed in systems of ordinary differential equations,50

maps,51 coupled-map lattice systems,52 and nonlinear elec-
tronic circuits.53,54 Although on-off intermittency is also
noise driven, its statistical properties differ from those of our
model.

With the addition of a noise term the time-discretized bias
is given by

F j / l5Edc1hj j , ~4!

wherej j satisfies

^j j&50,̂ j jjm&5d jm . ~5!

The superscriptsj andm are indices for the discretized time
and^& denotes (1/n)( j51

n , n being the total number of time
steps. For all the results stated here,j is an uncorrelated
Gaussian-distributed random variable with a variance of 1.0.
The noise strengthh is scaled as the inverse square root of
our discrete time stepDt so that in the limit of continuous
time (Dt→0) the noise becomes d-correlated
^j(t)j(t1T)&5d(T). In our simulations,Dt50.5, and
correspondinglyh[(0.001 414V/cm )/AD t 5 0.002V/cm,
which we estimate to be of the same order of magnitude as
the noise in the experimental bias.24,55

The two spatially averaged electric-field values (F/ l ) that
delimit the hysteretic region,Ea1

andEa2
, are important in

the analysis of the switching statistics. The hysteretic region
extends fromEa1

'6.0551 V/cm toEa2
'6.0554 V/cm. For

Fa / l,E dc,(Ea1
2h), the current is essentially in the SA

state; asEdc increases toEa1
, the SA oscillations become

interrupted by regions of LA oscillations. As the bias is fur-
ther increased, the temporal length of the LA oscillations
grows, until for biases (Ea2

1h),Edc,Fv / l , the system
has asymptotically zero probability of leaving the LA state.
We call the regions of LA oscillations laminar regions in
order to be consistent with the analysis of Kahn, Mar, and
Westervelt24 and to facilitate comparison of our results with
other types of intermittency~e.g., type-III intermittency and
on-off intermittency!.

For the noise to change the state of the system
(SA↔ LA), we find that it must cause the bias to leave the
hysteretic region for a time longer than the nucleation time
for a pulse of the other state.56 For example, assume that the
system is in the LA state. For the system to switch to the SA
state the noise must shift the bias so thatF/l , Ea1

for a
time long enough to nucleate a SA pulse. Let the number of
consecutive discrete time steps corresponding to the nucle-
ation time for a SA pulse be given byn1 . For a small noise
amplitude~as used here!, we find that the LA state is un-
stable only to the SA state for a period of time during the
nucleation of a solitary wave; when a solitary wave is propa-
gating in the bulk the LA state is robust against the noise and
SA pulses are never nucleated.56 Let n2 be the number of
discrete time steps per LA oscillation period during which
the LA oscillation is susceptible to the nucleation of a SA
pulse for a given noise strength. Assuming that the system is
in the LA state, the probability for completing one LA cycle
without nucleating a SA pulse is

PLA512PSA, ~6!

where

PSA5H 12~n22n111!F E
DE

` 1

hA2p
expS 2x2

2h2 D dxG n1J
~7!

is the probability of nucleating a SA pulse during one LA
period andDE5( Edc2Ea1

). The factor@ #n1 is the prob-

ability of the Gaussian noise resulting inF/ l,Ea1
for n1

consecutive steps. The term (n22n111) is the number of
ways a consecutive interval of discrete steps of lengthn1 can
appear in an interval of lengthn2 . The laminar length~LL !
of a wave train of oscillations is defined as the number of
consecutive periodic cycles completed in a given state~either
SA or LA!. The probability of observing a laminar lengthy
for the LA state is proportional toP LA

y PSA, and after nor-
malization leads to a probability density function,

f ~y!52~12PSA!yln~12P SA!. ~8!

The average laminar length of the LA oscillations^ LL & LA
is given by

^LL &LA5E
0

`

f ~y!ydy ~9!

5
21

ln~12PSA!
~10!

'
1

P SA
~11!

}
1

F erfS DE

hA2D G
n1
. ~12!

We selected our range of biases,Ea1
&E dc&Ea2

, so that the

range of̂ LL &LA encompasses those observed by Kahn, Mar,
and Westervelt24 and such that we can obtain reasonable sta-
tistics for the laminar-length distribution with our available
computer resources. For the above range of biases, we have
DE /h'1/10; so we may use the small number expansion of
the complimentary error function, and arrive at the following
proportionality:

^LL &LA}S hAp

2
1Ea1

2EdcD 2n1

. ~13!

We defineEc[(hAp/21Ea1
)'6.0575 V/cm and arrive at

a power-law scaling for the average laminar length for biases
uDE /hu,1. For biases larger than those in our selected
range, we expect̂ LL &LA to continue to increase, but that
our power-law result, Eq.~12!, may become invalid. As
uDE /hu increases to 1, the small number expansion of erf
fails. In the limit of uDE /hu@1, ^ LL & LA will diverge as a
modified Gaussian; therefore, only for biases in the range
approximated by (Ea1

2h),E dc,(Ea1
1h) would we ex-

pect to see a power-law scaling.
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We also expect the functional dependence of the average
laminar lengths onEdc to change asEdc leaves the hysteretic
region. Consider the following situation: forEdc5(Ea1

2e)

(e[ arbitrarily small field value! the probability of obtaining
a ^ LL &LA of greater than one is fundamentally different than
for Edc5(Ea1

1e). This is because asEdc passes through

Ea1
in a noiseless system the LA state changes from an un-

conditionally unstable state to a conditionally stable state
~i.e., the system is hysteretic!. In contrast, asEdc is increased
pastEa2

the functional form of̂ LL &LA should not change

since the LA state remains a stable state of the system, but
we expect the shape of the^ LL & SA curve to change due to
the loss of stability of the SA state. In this manner, we expect
to see two regions of different functional behavior for
^ LL &LA , one forEdc,Ea1

and another forEdc.Ea1
.

Kahn, Mar, and Westervelt24 find intermittent switching
near the onset of solitary-wave-mediated oscillations. The
statistics of their intermittency are consistent with PM type-
III intermittency. The wave forms they observe are different
from those we see in Fig. 4~a!. The SA oscillations in the
experiments of Kahn, Mar, and Westervelt are noisy and are
suppressed after a region of LA spikes, whereas our SA os-
cillations are very regular and recover instantly after a LA
laminar region. Also, their LA oscillations have a more ir-
regular wave form than the uniform LA oscillations in our
simulations. This may indicate that our assumed noise
strength is below the level appropriate to the experimental
system.

The numerical simulations support our analytic predic-
tions for the probability-density distribution and the power-
law scaling of the average laminar lengths. The probability-
density distribution of LA laminar lengths for
Edc56.055 38V/cm is show in Fig. 4~b!. The histogram has
bins of width 5.0 and is normalized so that the area under the
histogram is equal to 1.0. We used 266 laminar regions to
construct the histogram. The solid line in Fig. 4~b! is
PLA
y PSA, where we have used Eq.~11! to determinePSA

from simulation result ^ LL &LA'40.7 for
Edc56.055 38V/cm. We then normalized the distribution so
that the area under the curve equals 1.0 over the domain of
the histogram. The numerics are consistent with the predic-
tions considering the limited number of laminar regions used
to construct the histogram. We perform an error-weighted
nonlinear least-squares fit of the average laminar lengths to
C•( Ecrit2Edc)

u, whereC is the proportionality constant in
Eq. ~13!. We use only the dataEdc.Ea1

—we ignore the data

Edc,Ea1
because there is a change in the functional behav-

ior of ^ LL &LA at Edc5Ea1
. We find from the fit that

Ecrit56.0572V/cm, which is in good agreement with the ana-
lytic prediction of Eq.~13! that Ec'6.0575 V/cm . The fit
also producesu5224.35. Kahn, Mar, and Westervlet find
u520.85 andEcrit '6.3 V/cm.24 Our resultu5224.35 in-
dicates that the bias must be belowEa1

for approximately 24
consecutive time steps before a SA pulse is nucleated from a
LA state; in contrast, the experimental result indicates that a
single step belowEa1

should nucleate a SA pulse. The ob-

served^ LL &LA and the fitted power law are shown in Fig.
4~c!, where we have defined (12e dc)[(Ecrit2Edc)/E crit .

Although our simple attempt at including noise in the
model system produces results that do not agree quantita-
tively with experiment, it does illustrate the potential for
noise as a source of switching behavior. The sensitivity of
our model system to noise during nucleation also fits well
with Kahn, Mar, and Westervelt’s observations that during
nucleation fluctuations in the electric-field profile are
enhanced.15 Rather than adding external noise to the voltage
bias, we could model the noise more realistically as spatially
distributed fluctuations in the electric field. The noise would
correspond to fluctuations in the carrier velocity due to ther-
mal effects and to fluctuations in the free hole concentration
due to generation and recombination (g2r ) processes.42,57

Kuhn et al.42 have performed a Monte Carlo study of the
noise processes in cooledp-type Ge. They find that theg-r
processes are the principal source of noise for electric-field
values in our range of interest. They find enhanced noise
levels for biases near the impurity breakdown value and ob-
serve bias-dependent high-frequency cutoffs of their Lorent-
zian noise spectra that approach 0.1 MHz, which corresponds
to a noise source that fluctuates on a time scale ten times
longer than the one we used in our simulations. Although
their results are not directly applicable to our system due to
the different donor (1012 cm23 and 1013 cm23! and acceptor
(1014 cm23! concentrations, their method of calculating the
g2r noise could be used in future simulations.

By using a noise spectrum such as Kuhn’s, with a lower
high-frequency cutoff, and by using a spatially distributed
noise source, the statistics of the intermittent switching may
become more like those found in type-III and on-off inter-
mittency. In particular, both type-III and on-off intermittency
have probability distributions for the laminar lengths that
scale as ( LL)3/2 for short laminar lengths and decay expo-
nentially for long lengths.48,51Also in both types of intermit-
tency, the average laminar length scales asD21, whereD is
the distance of the bifurcation parameter from the onset
value@in our caseD corresponds to (Ecrit2E dc)#.

48,51If such
statistics were found in our model, it would be~to our
knowledge! the first partial-differential-equation model of a
spatially extended continuum system to show on-off inter-
mittency.

V. SPATIALLY-VARYING COMPENSATION RATIO

Our model system is very sensitive to spatial variations in
the compensation ratioa(X). A variation in the compensa-
tion profile changes the localj sh(E) relationship19 and
causes the voltage associated with a solitary wave~the do-
main voltage! to change as the domain propagates across the
sample. The wave form of the current is determined by the
domain voltage. Following Kahnet al., we consider the
sample divided into two distinct regions: the region occupied
by the solitary wave and the region outside of the solitary
wave.24 The sum of the voltages of these two regions must
equal the voltage bias, and results in a smaller domain volt-
age producing a larger current. This is because in the region
outside the domain the electric field is in the positive differ-
ential resistance region of thej sh(E) curve, and in order to
increase the voltage falling across this region~in order to
compensate for the smaller domain voltage! the current must
increase correspondingly. We expect therefore that a varia-
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tion in the compensation ratio will affect the wave form of
the current; a decreasing/increasing domain voltage will
cause the current to increase/decrease simultaneously. We
take advantage of this relationship between the spatial profile
of the compensation ratio and the spatiotemporal dynamics
of the system to create behavior that is more consistent with
experiment. In particular, by selecting a linearly increasing
compensation profile we are able to produce sawtooth cur-
rent wave forms and decaying solitary waves that are similar
to the experimental results of Kahnet al.15

We expect smaller solitary waves for larger values ofa
due to the decreased range of electric-field values that dis-
play NDR.31,34 In fact, for a.1.825, NDR is not present in
j sh(E),

19 and the system does not support solitary waves. In
Fig. 5~a! and Fig. 5~b!, the electric-field profile and current
are shown for a(X)51.2110.015(X/ l ) with
Edc56.5 V/cm. For biases 5.9 V/cm&Edc&8.0V/cm, the
current wave forms have a sawtooth shape, but at higher
biases the wave forms are qualitatively different due to the
simultaneous presence of two solitary waves, one near the
injecting contact and one leaving the sample. The above
a(X) profile is consistent with the Czochralski growth
method and the zone refining technique used in the fabrica-
tion of the samples,15 where the different segregation coeffi-
cients of the impurities may cause a spatial variation in the
compensation ratio.58 The profile of the compensation ratio
for the crystal used in the experiments of Kahnet al. is not
known to the 1.0% accuracy necessary in our simulations,59

so we have chosen a linear profile as a simple model that
improves the agreement between our simulations and experi-
mental observations.

The linearly-increasing compensation ratio produces an
asymmetric dependency on the polarity of the bias and also

produces a continuous nonhysteretic transition from the
small-amplitude oscillatory state to the large-amplitude oscil-
latory state. Under reverse bias for the same contact resis-
tance, the current oscillations occur over a much smaller bias
range, 10.5 V/cm,Edc,13.25V/cm, but have approxi-
mately the same amplitude as the forward biased oscillations.
Kahn, Mar, and Westervelt15 find that the experimental sys-
tem is also asymmetric; the current oscillations are larger and
less noisy for a particular bias polarity. In contrast to our
results, they find that the onset bias to oscillatory behavior is
approximately the same for both polarities. There are at least
two possible reasons for the disagreement between the ex-
perimental and simulated reverse-bias results; the compensa-
tion profile could be more complicated than our simple linear
model or the receiving and injecting contacts could have
different resistivity values. We find that both the compensa-
tion profile and the contact resistivity have dramatic effects
on the behavior of the system, so that by ‘‘tuning’’ both we
could likely reproduce the experimental results. In previous
numerical simulations,19,29,33 we showed that there is an
abrupt hysteretic jump from the small-amplitude decaying-
wave state to the large-amplitude solitary wave state in a
system with a constant compensation profile. In the system
with the abovea(X) profile, there is no longer a jump but
rather as the bias is increased, the decaying waves grow in
amplitude and penetrate further into the sample, until for a
large enough bias, they reach the receiving contact. Upon
reaching the contact, the solitary wave is destroyed and a
new wave is nucleated at the injecting contact in the same
manner that periodic solitary waves were generated in the
uniforma system. The gradual increase in the amplitude and
penetration depth produces a continuous decrease in the fre-
quency and an increase in the magnitude of the current os-
cillations.

VI. CONCLUSIONS

The simplest form of our model—for a uniform compen-
sation profile and a noise-free voltage bias—captures only
some aspects of the experimental system. We find frequency
locking and quasiperiodic behavior under dc1ac bias, al-
though the critical line occurs at biases approximately a fac-
tor of 3 smaller than the experimental values.23 In order to
produce intermittent switching, we add a smalld-correlated
noise term to the bias. The small noise term does not perturb
the gross features of the system, but it does cause intermit-
tent switching between the SA and LA states for biases close
to the hysteretic transition region. The statistics of the inter-
mittent switching differ from those found in PM type-III and
on-off intermittency, but we speculate that a spatially distrib-
uted noise term with a reduced high-frequency cutoff value
could produce statistics that are more similar.

Also, the experimentally observed solitary waves de-
crease in amplitude as they propagate, whereas the solitary
waves we generate for a spatially uniform compensation ra-
tio have constant amplitude as they propagate across the
sample. By adding a small, linearly increasing term to the
constant compensation ratio we produce solitary waves that
shrink as they propagate across the sample. Furthermore, the
addition of a small, spatially-random component toa(X)

FIG. 5. ~a! E(X,t) as a domain propagates across the sample
with a linearly increasing compensation ratio,a(X)51.21
10.015(X/ l ), and Edc56.5 V/cm. ~b! The corresponding current
wave form.
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causes small variations in the domain voltage as the domain
propagates across the sample. The variation in domain volt-
age causes a scalloping of the current wave form that is
reminiscent of the current wave forms observed in
experiment.15 Spatial variation of the compensation profile
might also be necessary for chaotic behavior. As stated in
Sec. III, for a constant profile we find that our system does
not support chaotic behavior, but preliminary numerical re-
sults indicate that under dc1ac bias, a system with a small
random component ina(X) can be driven chaotic.56
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APPENDIX A: COEFFICIENT FUNCTIONS

The phenomenological forms of the recombination coef-
ficient, r (E), impact-ionization coefficient,k(E), and drift
velocity,vd(E), are stated here in terms of the dimensionless
electric field,E:

vd~E!5vsH 0.9~E10.33!1
1.8

p
~E20.5!tan21~5.0210.0E!

1
0.09

p
ln@1.01~5.0210.0E!2#J , ~A1!

r ~E!5r 0$0.051~1.041100.0E2!21.5%, ~A2!

k~E!5k0H F1.01expS 0.552E

0.015 D G21F0.2512.0expS 2E

0.34D G
10.1S E

1.15D
4J . ~A3!

APPENDIX B: NUMERICAL ALGORITHM

We use a second-order upwind finite-difference approxi-
mation to the spatial derivatives, and advance the solution in
time with a second-order Runge-Kutta method. The hyper-
bolic nature of the partial differential equation~PDE! neces-
sitates upwind differencing in order to obtain numerical
stability.43 The injecting-contact boundary condition and glo-
bal voltage constraint, along with the discretized PDE forms
a doubly bordered band matrix. We arrange the matrix sys-
tem so that it is efficiently solved using standard LINPACK
direct matrix solving routines.

We discretize Eq.~1a! by using the following approxima-
tions to the derivatives~in dimensionless units!:

S dEdxD
i

k

5
3Ei

k24Ei21
k 1Ei22

k

2Dx
1O~Dx2!, ~B1!

S dEdt D
i

k

5
Ei
k112Ei

k

Dt
1O~Dt!, ~B2!

where thek and i indicate discrete points in time and space,
respectively. The spatial grid spacing isDx, andDt is the
temporal step size. We discretize the problem on a spatial
grid with (N11) points@0,N#, and start from a uniform ini-
tial field, @Ei

k50#5fk50/L. We solve the discretized prob-
lem to machine precision on the interiorN points, subject to
an Ohmic boundary condition on the injecting contact. The
global boundary constraint is the (N11) equation—which
we evaluate using the trapezoid rule–and it completes the set
of equations that uniquely specifies our electric field on the
grid. The quasilinear nature of Eq.~1a! allows a simple ex-
plicit matrix formulation of the problem. By approximating
the temporal derivatives with Eq.~18! and evaluating the
coefficients,c1(E,J), c2(E,J), andc3(E,J) andV(E) at the
discrete time step,k, we explicitly advance the electric field
to first order in time by solving the following eigenvalue
problem:

AE5b. ~B3!

The components of the matrixA and the vectorb depend
only on Ei

k . The vector E contains the elements
@Ei

k11# i50
N . The matrixA has a doubly bordered band-matrix

form,

We block decompose the system so that we can use a
standard band matrix solver. We identifyT,v,u,x,s,a11,m,
ands1 from Eq. ~B3!,

S ~T!

~u!

~v !

~a11!
D S ~x!

~m! D5S ~s!

~s1!
D . ~B4!

We solve for two vectors,y andz, defined by

Ty5s, Tz5v. ~B5!

We have from Eq.~B4!

a11m1u•x5s1 , ~B6!

mv1Tx5s. ~B7!

Equation~B5! with Eqs.~B6! and ~B7! give

y5mz1x, ~B8!

m5
s12u•x

a11
. ~B9!

Using Eq.~B8! to eliminatex from Eq. ~B9! yields the
solution form,
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m5
s12u•y

a112u•z
. ~B10!

The rest of the electric-field values,x, are then specified
by Eq.~24!. This solves the system to first order in time. We

use the first-order advanced field values in a second-order
Runge-Kutta ~improved tangent! approximation to obtain
field values that are second order accurate in time.60 This
results in the final order of the advance field being
O(Dx2,Dt2).
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