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We discuss the results of a study of restricted solid-on-solid model Hamiltonians f@iX6c surfaces.
These models are simple modifications of the exactly solvable body-centered solid-on-solid model, and are
able to describe a (1) missing-row reconstructed surface as well as an unreconstructed surface. They are
studied in two different ways. The first is by mapping the problem onto a quantum%spin—dimensional
Hamiltonian of the Heisenberg type, with competiﬁésjZ couplings. The second is by standard two-
dimensional Monte Carlo simulations. We find phase diagrams with the following features, which we believe
to be quite generic(i) two flat, ordered phase@nreconstructed and missing-row reconstrugtedrough,
disordered phase; an intermediate disordered flat phase, characterized by monoatomic steps, whose physics is
shown to be akin to that of a dimer spin stdig). A transition line from the (X 1) reconstructed phase to the
disordered flat phase showing exponents that appear to be close, within our humerical accuracy, to the two-
dimensional Ising universality clagi ) A critical (prerougheningline with variable exponents, separating the
unreconstructed phase from the disordered flat phase. Possible signatures and order parameters of the disor-
dered flat phase are investigat¢80163-182006)04620-0

. INTRODUCTION (100 surface'® In particular, den Nij$? Jug and Tosatfi}
Kohanoff, Jug, and Tosattiand Mazzet al!! argued that
Surfaces of fcc metals, in particulét10) faces, display a (110 surfaces such as those of Ag and @hich do not
variety of phase transitions, which have been the subject afeconstrudgt are good candidates for realizations pfe-
considerable experimental and theoretical work. Experimenroughening a critical (nonuniversal transition from a low-
tally, the (110 faces of some fcc metals — such as Au or Pttemperature ordered phase to an intermediaterdered flat
— reconstruct at low temperature into aX2) missing-row  phase, previously identified in the context of restricted solid-
(MR) or related structures, whereas other metals — such asn-solid models for simple cubitLl00) surfaces? In terms
Ag, Ni, Cu, Rh, and Pd — retaifat least when cleartheir  of the two ground states of the unreconstructed surface, the
bulklike periodicity. As temperature is raised, reconstructecoreroughening transition can be viewed as a disordering of
surfaces tend to show two separate transitions: a critical dehe surface due to the proliferation of monoatomic sisee
construction transition, and, at a higher temperature, #ig. 2) separating terraces with one type of ground state from
Kosterlitz-Thouless roughening transitibh.On the other others where the other ground state is locally present. These
hand, unreconstructed surfaces have not been shown, so fateps retain, however, an up-down long-range-order — sta-
to reveal a similar two-transition scenario. Only a roughen-bilized by a combination of up-ufdown-down step repul-
ing transition is well documented in this casé. sion and entropy — which prevents the surface from being
Based on theoretical considerations and on simulatiomough®
work, an interesting and nontrivial interplay has been antici- On the (2<1) MR reconstructed surfaces, with half of
pated between in-plane disordering, related to deconstrughe (1) close-packed rows missing, the periodicity in the
tion, and vertical disordering, related to rougheriingnd  (001) direction is doubled. The surface therefore fas
many other studies have been devoted to the proBiém. degeneratd=0 ground states, which can be classified by a
The situation is, in principle, somewhat different for the two clock variable 8= 0,7/2,7,37/2, according to the “color”
types of situations, i.e., the unreconstructed and the MR reand the position of the MR in the doubled unit cell, i.e.,
constructed cases. On an frl0 surface one can identify determined by which of the four sublattices sits in the top
two interpenetrating rectangular sublattices, with origin, say|ayer (see Fig. 3 The elementary extended defects that one
at 0 (the “white” sublattice andA at (v2%+J+2)a/2 (the  can consider here were discussed by Vilfan and Viflaind
“black” sublattice) where a is the lattice parameter, den Nij$ (see Fig. 2 These arga) steps which simulta-
x=(001), y=(110), andz=(110). The unreconstructed neously change the average heightdly==*1, and the re-
(ideal) surface has therefotevo T=0 ground states, differ- construction variabled by A 6= m/2 [clockwiseor (3X 1)
ing for the sublattice that occupies the top laysze Fig. 3.  stepd or A #= — «/2 [anticlockwiseor (1X 1) step$, and(b)
den Nijs has argued that, in such a case, the phase diagrdsing wall defectswith Ah=0 and A=, which can be
should be qualitatively the same as that of a simple cubiseen as a tightly bound state between two steps of opposite
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sign (up and dow#, but thesameA 6.° realized in simple solid-on-soliBOS models. The question

In this framework, den Nijs introduced a phenomenologi-has been considered by Mazzetoal, who have introduced,
cal four-state clock-step model to describe the interplay beand studied by Monte Carlo simulation, a restricted SOS
tween reconstruction and roughening degrees of freedommodel that is able to deal with both unreconstructed and
The model is formulated on a length scale larger than microreconstructed situatiort$. Their model — which we will re-
scopic, through the introduction of a coarse-grained lattice ofer to as “K3 model” — is a simple modification of the
cells in which an integer variable, , representing the aver- exactly solvable body-centered solid-on-solid modéBC-
age height in the cell, and a clock reconstruction variabléeSOS obtained by adding a further neighbor interaction,
0, are defined. A bond in the lattice can be either empty  which can stabilize the (1) MR reconstruction if re-
defec}, or occupied by an up or down step of either kind, orquired. For a reconstructed case, they find two transitions: a
doubly occupied by an up and down step of the same kindwo-dimensional(2D) Ising deconstruction to a disordered
(equivalent to an Ising wall den Nijs found that when flat phase, and a KT roughening at a slightly higher tempera-
(1%x1) and (3x1) steps have the same energy — the soture. The unreconstructed case studied also shows two tran-
calledzero chirality limit— the model displays two possible sitions, with a nonuniversal critical transition to a disordered
scenarios{i) If the energy of an Ising walE,, is less than flat phase followed by a KT roughenidgThe nature of the
roughly twice the energy of a stép,, temperature drives the disordered flat phase present in the model was, however, not
system from the ordered phase to a disordered flat phadelly characterized.
through an Ising transition, and then to a rough phase In the spirit of investigating simple but fully microscopic
through a Kosterlitz-Thoules¢KT) transition. (i) When  models, Santoro and Fabrizio have studied a slightly differ-
steps are energetically favordsl, > 2E,, the system under- ent modification of the BCSOS model, which will be re-
goes a single roughening-plus-deconstruction transitionferred to as the K, model.”*® They found that this model
which is Ising-like for the reconstruction degrees of freedomcould be mapped onto a quantum spin-1/2 Heisenberg chain
and KT-like for the height degrees of freedom. The disor-with further-neighbor interaction'S. The phase diagram they
dered flat phase present fiaj, < 2E, is quite clearly charac- obtained has two low-temperature ordered phases — unre-
terized by the proliferation of Ising wall defecttheir free  constructed or (X 1) MR reconstructed, depending on the
energy per unit length goes to zero at the deconstructionparameters of the interactisn— a high-temperature rough
Accordingly, the surface shows a prevalencefsf0 and phase, and an intermediate disordered flat phase. The physics
0= 7 terraces, say, ovef= /2 and #=37/2 ones. Using of the disordered flat phase was argued, by analytical argu-
the terminology introduced in Ref. 12, such a phase could b&ents, to be akin to that of théimer quantum spin phase
called disordered even fI@DEF). It has an obvious nonzero studied by Haldan&) i.e., a doubly degenerate state that
order parameter that counts the difference in the abundand#eaks translational invariance and in which dimer-dimer
of 6=0,7 terraces over that of= 7/2,37/2 ones, and van- correlation functions acquire long-range order.
ishing only in the rough phase. By contrast, when single In this paper we extend and apply the approach of Ref. 18
steps dominate — i.e.,BA<E,, — there is apparently no in such a way as to provide a unified picture of the phase
mechanism, in this simple model, that may stabilize the updiagram of all the simple BCSOS-like microscopic models
down long-range order for steps, typical of disordered flatof fcc (110 surfaces studied so far. First we show that a
phases. It has been argued that suitable interactions penaligdantum sping Hamiltonian also underlies the more general
ing the crossing of two up-up or two down-down steps —restricted SOS model where both the couplings considered in
not considered by den Nijs — could stabilize such a hypoRefs. 11 and 18 are included. The spin-1/2 model is, in all
thetical step-dominated disordered flat ph¥s@.disordered  cases, a Heisenberg chain WEfS, competing antiferromag-
flat phase of this kind — termed DOF in Ref. 12 — should netic interactions ranging up to third neighbors. Secondly,
be characterized by an equal abundance of all types of cellse unambiguously show that the dimer-phase scenario is
0=0,7/2,7,3m/2, i.e., bya vanishing of the order param- realized in the disordered flat phase, and discuss in detail the
eter characterizing the DEF phadé surface physics implications of such a scenario. Long-range

Interestingly, the situation does not change much in thedimer order suggesisee Sec. Y a particular type of long-
so-calledstrong chirality limit considered by den Nijs, i.e., range order for the correlation function betweenx(®)
when anticlockwise steps, say, are very costly and thus consteps, and also betwedocal surface maximaln particular,
pletely negligible. In such a case the problem may beone is led to study an order paramefs,, — previously
mapped onto a one-dimensional fermionic model containingntroduced by Bernasconi and Tos#tti— which measures
a Hubbard-type on-site step-step interactidrsuch that the the difference in the number of local surface maxima belong-
energy of an Ising wall configuratiof@oubly occupied site  ing to the white and the black sublattice of a {dd0). Due
is E,,=2E+U.% For U<0, the result is the same as in the to “shadowing,” or to surface lattice contraction, this order
zero chirality limit case, i.e., a DEF phase is obtained. Whemparameter is related to antiphase scattering intensity of He
steps dominate — i.e., fay >0 — two distinct rough phases atoms of x rays, respectively, and is thus a quantity of direct
appear, the deconstruction transition is no longer of the Isingnterest.(See Sec. V.Pgy, is studied by finite-size analysis
type, but, again, no disordered flat phase exists. of classical Monte Carlo data, and found to be nonzero in the

The variety of possibilities introduced by the phenomeno-disordered flat phase of both tig andK, model. It has a
logical models is thus very rich. Dmicroscopicmodels dis- nonmonotonic temperature behavior, vanishing only at pre-
play just the same, or any new features, one might ask? Iroughening and in the rough phase.
the light of the previous discussion, the question naturally The present paper is organized as follows. Section Il in-
arises as to what kind of disordered flat phésephasesis  troduces the BCSOS type of models that we consider. In Sec.
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[l we show in detail how these models may be mapped onto

guantum spin-1/2 chain problems. In Secs. IV and V we ¢ ¢ ¢
discuss the phase diagrams as well as the physics of a ¢ o o
“dimer” disordered flat phase. In Sec. VI we present the

results of our Monte Carlo simulations and discuss possible b hd y b
experimental signatures of a dimer phase. Sectionl VII, fi- 4 o

nally, contains some concluding remarks as well as a discus-
sion of open problems.

Il. RESTRICTED SOLID-ON-SOLID MODELS
FOR A fcc (1100 METAL SURFACE

The (110 surface of a fcc lattice is comprised of two
interpenetrating rectangular sublattices of lattice constants Y . K;
a,= \/an, which we will conventionally refer to as the 1i-1
white (W) and the black B) sublattice. The surface lattice ©
basis_vectors arg&=a.x andy=a,y, wherex=(001), and

y=(110). In the ideal unreconstructéti10 surface, one of FIG. 1. Schematic top view of the fdd10 surface. The two

e n ) SublatticesW andB, are denoted by open and solid circles. In the
a,=a,/2. Within a SOS framework, one associates t0 each jgea| unreconstructetL 10) surface, one of the two sublattices lies

siter of the lattice a height variable, , which can take only 5t 5 distance,=a,/2 above the other. The couplings considered in
integer values (take a,=1). The models we are going t0 the model are indicated. Lattice basis vectors are also shown. The
study have an additional restriction, in that the height differ-dashed zig-zag lines represent successive row configuratitme

ence between each site and its four nearest neighlbers slices”) used in the spin-chain mapping.

longing to the other sublatti¢ges forced to beAh==*=1. A

height difference of 0 is therefore excluded, as well as largemore distant interactions, contained M7%. As for A.77,
values ofAh (they are energetically more costhyAs acon-  two possible simple choices have been made in the literature,
sequence, the values bf are forced to have opposite parity corresponding to what we will refer to as thés model”

on the two sublattices, say even Wand odd orB. This  and the ‘K, model.” TheK; model has been introduced by
restriction is typical of the BCSOS modEllt is probably  pazzeoet al,'* and is defined by

justified for a metal, where strong inward relaxation makes

the first and second layer bonds extra strong. On the con- K

trary, it should not be expected to hold for, say, a rare-gas AJ/(KB)= 72 [(ysxip— hr)2+(h,+x_y+b—hr)2], (©)]
solid (110 face, where these bonds are in fact weaker. '

Our Hamiltonian is written as with K3=0, andb=(x+y)/2 (see Fig. 1 The introduction

H=Hgesost AT, (1) of this further-neighbor interaction stabilizes thex(2) MR
reconstructed phagé.In fact, it is very easy to check that
where 7pgcsos describes interactions between sublatticek ,, <0, K;>0 stabilizes an ordered succession of up and
nearest neighbors, and.7 takes into account further- gown (1) steps, which is precisely the 21) MR state.
neighbor interactions, .v.vh|ch will favor or disfavor recon- an alternative way of stabilizing the same ¥2) MR state
structed phases. Specifically/gcsosis given by against (111) faceting is realized with tKg model, whose
A7 reads
n%Bcsos:KZyEr: (hr+y_hr)2+ K2x§r: (hrix—hp?, (2
074 _ 2
with different coupling strengths in the two directions to take Ay KAZ (R 2= o)™ .
into account the anisotropy of the surfa¢e,, will be al- ) ) ) o )
ways assumed to heositiveand is generally the largest en- With K,=0. The fourth neighbor interaction in thedirec-
ergy in the problem. The correspondent physics is that it i$ion has the effect, once again, of increasing the energy of
very costly to create a kink on a tightly packétio) row.  configurations with|h, . ,,—h/=4. This model was origi-
The absolute value oK,,, ie., of the coupling between Nally proposed by Kohanoff and Toséitiand has been re-
rows, is instead much smaller, since atoms in neighboringently studied in detail in Ref. 18. More generally, we could
rows are only second bulk neighbors. Fir,>0, the Include both types of couplings by taking
(110) surface is stable in its 1) unreconstructed form. If

A.7#=0 we recover the BCSOS model, which is exactly A"y[/:A'}K(Ka)—{_A"?Z/(KA;)' ®)
solved through a mapping to the six-vertex modeand
shows asingle transition This is of the Kosterlitz-Thouless In subsequent calculations and simulations, the lattice will

type, between a low-temperature ordefedreconstructed be taken to havél =N, X N, primitive cells, i.e., N, XN,

flat phase and a high-temperature disordered rough phassites. Periodic boundary conditions are assumed in both di-
For K,,<0 the surface becomes unstable againsD{istep rections. A schematic representation of the lattice and of the
formation. In this case the final stable state is determined binteractions considered is given in Fig. 1.
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(1x1) DEFECTS FIG. 2. Relevant extended defecteps and

walls) of a (1x 1) and of a (2 1) reconstructed
surface. The ground-state energies of these de-

fects are given in Table k., is the (2x1) (or
W W monoatomi¢ step discussed in Sec. V. ¥2)
steps proliferate in the DF phase, mantaining up-

down long-range ordere}, ; is a bound pair of
(2X1) steps, the relevant defect of an unrecon-
structed surfaceecg and e,g are clockwise[or
(3%1)] and anticlockwise[or (1x1)] steps.

€ising aNd Ef;ing are two possible types of domain
walls.

.
€ Ising €l-lng

€

(2x1) MISSING-ROW DEFECTS

e classical =0 ground states for both models are easyations can be somewhat misleading: the disordered phase
The classical'=0 ground for both model yati b hat misleading: the disordered ph
to work out as a function of the dimensionless ratioobtained does not have the features of an ideal DEF.
T=Kou Ky or .7 =K,/K,. For both models one finds
that.%2>0 corresponds to an unreconstructed ground staté || MAPPING INTO A QUANTUM SPIN- % CHAIN
[or (1X1)], whereas for—4<.%'<0 the ground state is . _
(2x1) MR reconstructed* For the sake of completeness, An elegant and convenient way of studying the tempera-
we mention that, for th&; model, the ground state degen- ture phase diagram of the classical two-dimensional models
erates into an infinite (111) large facet as soon adntroduced in the previous section consists in mapping them
<-4 For theK, model, on the contrary, an infinite iNto one-dimensional quantum problefisThe general pro-
series of intermediate regiong(12—8n)/(n—1)<.% specific case, and foy the_reag:ier’ls convenience.
<(20-8n)/(n—2) with n=3] where the ground state is  1he method consists in viewing the direction of the
(nx1) MR reconstructed. In the following we will be inter- 'attice as theimaginary time direction of an appropriate 1D
ested exclusively in the region of parameter space where tHgd@ntum problem, different row configurations in thedli-
interplay between unreconstructed and<(®) MR recon- rection being viewed as subsequent time slices for the quan-
structed phases takes place, herge — 4. tum problem. The physical requirement that will turn out to
Neglecting adatoms, vacancies a@as necessary in SOS be importa_nt is that the coup_lint§12y in the y direction is
model$ overhangs, the defects that should play a role in thétfong, while the other couplings are much wealstrong
disordering and roughening transitions are unbound steg@iSOtropy limil. The starting point for the mapping is a
and bound pairs of steps, i.e., Ising domain walls. Figure Jransfer matrix formulation of the classical partition function
illustrates the most relevant defects for both a(ll) and a - The notatior = (i) (andh,=h{?) for the lattice sites
(2)( 1) Surface. The ground_state energies Of these defect.ésed |n-the pl’_ese_nt Sectl.On IS I||UStl’ated N F|g 1: the Value Of
are given, for both th&; and theK, model, in Table I. Itis |, the time-slice index, is the same along each dashed zig-
worth noting that theK; model has defects whose energy Zag line shown in Fig. 1; within each zig-zag line, #heand
goes to zero aK,,—0. These are thé2x1) step and the the B sublattices are characterized, respectively, by even and
(2x1)* wall in the (1x1) case, and the anticlockwise step odd values oi. The classical partition function is given by
and the Ising wall in thé2x 1) reconstructed case. Since this

leads to zero-point entropy, th€,,—0 region is therefore > _ S e A= D (hW[T|hMNYY- - (h®)|T|h(@)

somewhat unphysical for th&; model, where one might (h)y hD (N

expect disorder to occur at very low temperatufreds a ' .

second point, we observe that in tkig model a combination X(h@|T|h®)y, (6)
of two Ising walls wins against combinations involving i )

clockwise steps forZ'= K, /K,> — 1, while it always wins  where[hW)y={h(:i=1, ... Ng is thejth row configura-

against anticlockwise steps. In principle, therefore, a DERion (a dashed zig-zag line in Fig. 1, containitg= 2N,
(wall dominatedd phase seems to be plausible for siteg, andT is the classical transfer matrix. Periodic bound-
—1<.92<0 in theK, model. Later on we will present re- ary conditions have been used in thedirection, and are
sults that show how ground-state defect energy considemnderstood in the direction. It is also understood that con-
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figurations differing by a uniform shift of the heights should
be included only once in the partition sum. For the models MNe e e ° oo
L A A

we are considering, the transfer matrix elements read ' LI I D R
Ng ut U2

G+D) TRy = — (+1) _pRi)y2
(h |T[h') BnneXp| ,3K2yi§1 (hi hi'") (1x1) UNRECONSTRUCTED GROUND STATES

N

- Bz, 3, (h() —h§”>2], (@)
e A R
LA I B I B B L R A A

whereB,,, is the Boltzmann weight contribution due to fur-
ther neighbor interactions. For tig; model,B,,, is given by 6=0

9=n/2
BK3
(Kg) _ _ 3 () __pin2 () _Rp+1)y2
B ¥=ex — h; h~")2+ (h; h:
" p{ 2 igen[( e T (=] o/./o\o/./O\\O O\./o/.\o\./o/.\o
N LI I L I I L2 I I B B R A
BKa G i i
_7 s ) _pRpin2
xexp{ 2 i%d[(hiLS hi'’) o=m 6=3n/2
. . (2x1) MISSING-ROW GROUND STATES
+(h§L§“—hE”>ZJ], ®)
_ FIG. 3. Schematic height profiles of the two ground states
whereas for th&, model the result is (U1 denotes whitel2 denotes bladkof the unreconstructed sur-
Ng face, and of the four ground states of the(2) missing-row sur-
Bgm“)=ex —BK4E (hi(1+)4_ hi(J))Z _ (9) fage. The reconstructlon vanabﬂa; mt_jlcated. 'Ifh.e spin r_epresen
=1 tation of each state, using E(L1), is given explicitly. Notice that

. . . the two unreconstructed ground states correspond to the two pos-
For the model in which both couplings are present, On&ye Nel states of a spif-chain.

clearly has

Bon= Bﬁ'ﬁ‘)Bfﬁ“). (20 Physically, one assumes that the “time” direction coincides
) ) - ) o o with the “hard” direction of the classical problem, i.e., that
Notice that in the partition function, E@6), it is implicitly  he coupling in they direction is much stronger than the
assumed that the configurations included have to fulfill theyiher couplings. This is plausibly the case for the &&0)
BCSOS constrainhh=*1 for nearest neig.hbors(..;é\s aCoN- grface, where the/=(110) direction is hard, and the
sequence, within each row we must havé,—h{("==1.  3_ 001) direction is soft, as discussed above. Anisotropy,

Therefore, we can associate to any row configurafish) a  moreover, is not expected to play any role in the qualitative
state|j) in the Hilbert space of a quantum spjrehain (of shape of the phase diagrd.

lengthNs) by the relationship In the strong anisotropy limit the quantum operaToy
h() NS will redu_ce to the i_mag_inary—tim_e evolution qperaEfrTHS
[N =11)=[81,%, - Sy, for a suitable Hamiltoniag, with =—0. To findHg, as-
L sumepK,, to be large, so thae™*#X2y=(J/2)7, 7 being a
S=3 (¥, —h"). (1) small quantityandJ of order ong. Assume also all the other

fcouplings to be small and proportional 9 i.e., BK < T,
BKsx 7, and BK, o 7. We need a spin Hamiltoniad 5 such
that Eq.(12) is verified with

(In doing so we lose information on the absolute height o
the surface, which is, however, irrelevant in a static context.
Figure 3 illustrates the explicit mapping of theX1) and
(2X1) ground states in terms of spin configurations.

The idea is now to reproduce the Boltzmann factors ap- To~e~ Ms~1—rHg+O(72), (13
pearing in the matrix elements of the classical transfer matrix
(hU+D|TIh(D) py a suitable quantum operafBg in the spin

. : up to first order in the small quantity. A diagonalmatrix
Hilbert space, i.e., p o q y g

elements ofT reads, using Eqg7)—(10),
(hIFDTIND) = (j+1|Tqlj), (12)

where|j) and|j+ 1) are the quantum spin states correspond- D3RG — 1 () _pii2
ing to |h®) and |hU* 1) respectively. In certain cases, the (T =1 ’BKZXZ (hi2~ i)
exact expression for the quantum operdtgrcan be worked

out quite easily.Tq for the K, model has been derived in —BKsz (h-(jja—h-(”)z
Ref. 18. The exacty is, however, of no practical use, being T :

a product of noncommuting terms involving sgimpera-

tors. The crucial step that makes the whole mapping useful is _BKAE (hi(j+)4_ hi(j))zJr (), (14)
the so-calledime-continuum limibr strong anisotropy limit i
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where we have expanded all the exponentials up to first orddndeed, the spin-flip part dfig reproduces the off-diagonal
in small quantities ¢ 7). The first requirement for g is that ~ matrix element in Eq(16), whereas th&*S* terms give rise
its diagonal terms must give the same result, i.e., using Eqso the correct diagonal matrix element in Eg5).

(13), (14), and(11), It is well known that this kind of mapping is such that the
] ] . . free energy per site of the classical problem — given by the
(il Toliy=1-(jIHgj)+O(7?) maximum eigenvalue of the transfer matrix — is related to
the ground-state energy per site of the one-dimensional
=1-48K, > (S+Si.1)? quantum problempBf = regs.2* The temperature clearly en-
I

ters through the spin couplings, see Ef8), so that any
genuine singularity of the classical free energy versus tem-
—4,8ng (S+S+1+Si42)? perature can be seen as a ground-state energy singularity for
! the quantum problem as a function of the couplidgsJ,
J, 13, andJ;/J. Moreover, temperature averages for corre-
—4BK,D, (S+Si1+S 12+ S43)2+0(7). lation functions of the classical problem can be likewise re-
i written in the form of ground-state averages for the corre-
(15) sponding quantum correlation functiéh.In summary, to
obtain information about the temperature phase diagram of

An off-diagonalmatrix element ofl must contain a Boltz-  the classical model one studies theound-state phase dia-
mann factore™*#2zy=(J/2)7, for each sitei such that gram of the spin chain modéf

h{i*D=h{x2. Therefore, up to first order in we need to Before entering into the discussion of the phase diagram,
consider only row configurations(”l) that differ from et us clarify that the quantum mapping not only gives the
h() only at a single sité. Let{ ... ,h_;,h;,hj 1, ...} be correctcritical behavior of the transitions(if anisotropy is

the local configuration of row around such a site. Itis  not “relevant” in the renormalization-group senseut pro-
easy to realize that, in order to satisfy the BCSOS constraintides alsoguantitativeresults on the transition temperatures
with h0*D=hD+2 and h(*V=h{) for ki, the only thatare expected to be quite good even if the anisotropy is in

possibility is to haveh(J) _h(J) —h(J)+ 1,ie., reality only weak. As a simple check of this point, consider
_ the exactly solvable BCSOS case, whose transition tempera-
IhY={ ... h=x1h h=1, ...} ture is given by Ref. 17
_)lh(i+1)>:{ - ,hiil,hiiz,hiil, .. } . e~ 4BcKay 4 @ 4BcKox=1 | (19)

In terms of the corresponding spin configurations, this sim-

ply leads to aspin flip of the spins at sites—1 andi, The BCSOS model maps — see Efj) — into the nearest-

neighborXXZ Heisenberg chain, which is known to have a

=] .S 1=FLS==1 .. )=|j+1) KT transition at the isotropic poirﬂzz_\]_.20 Using Eq.(3),
| S this readily implies a predicted transition temperatg{&’
=l....8-1=*3.5=F3...). satisfying
The corresponding-matrix element reads, up to first or-
derin~ P J P e_4B(CQ)K2y:4B(cQ)K2x- (20
(NI DT h(Dy=e 4B 1+ O(7) ]~ — =(j + 1|Hglj). Figure 4 shows both the exaolid line) and the quantum

mapping transition temperatu(dashed lingfor the BCSOS
as a function of the anisotropy ratid,,/K,,. The results
It is easy to verify, in conclusion, that the correct form of agree within a few percent even for rather weak anisotropies,
Hs verifying Egs.(15) and(16) is given, neglecting an over- such ak,,/K,,=0.2, and remain reasonable all the way to

all constant, by the full isotropic caseK,, /K,y =1.
Ny
:——2 [S'S1+S ST+ 3 [0S+ 1SS 'V PHASE DIAGRAMS
A. Phase diagram of the spin% chain
Z Z
+J35'S 3, 17) The spin chain Hamiltonian corresponding to our modi-
where the spin couplings are related to the original coupling§€d BCSOS model is a HeisenbeXXZ model with a
as follows: second-neighbor and @ess important third- ne|ghborSZSZ
coupling

rJ=2ex{ —4BKy,),

7J,=8B(Kyxt+ 2K3+ 3Ky), :__2 [S'S 1+S Skl

TJ2: 8ﬂ(K3+ 2K4),

+ J, SIS, 1+ 3,5 +J15S'S 21
73:=8BK,. (18) 21[ 299 +17 Y2 Sﬁ+2 3 +3] (21
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p(q)=2kclck+q. Here ¢,= —2tcoska) with t=J/2, and

10 T T T T T T T T T T T T T T T
L F e '_-l ] v(q) is the Fourier transform of the interaction potential,
8 (e 005 b 3 h v(q)=J,cosQa)+J,cos(Ha)+Jscos(ad). Since IS
F5 004 | 3 8 =2,n;—N/2, zero total magnetization for the spin system
. i ] implies half filling for the fermions, i.e., a Fermi surface
& 6 — consisting of two Fermi points at kg, with kra= /2. In
} C ] the absence of interactiod=J,=J;=0, i.e., theXY spin
4 - — chain we have a simple free-fermion problem. The two
C ] Fermi points induce nesting with a wave vectd:-2 w/a, a
s [ _ hint that the system would tend to open up a gap at the Fermi
o ] surface by developing long-range ord&iR0O) with wave
N S N A I I vectorsr/a and making the averagg =(c|, ,,.c,) different

0 0.2 0.4 0.6 0.8 from zero. A standard mean-field factorization of the quartic
K, /Ky term in Eq.(23), assuming(c;, ,,.c«)#0, leads to the fol-
e lowing mean-field Hamiltoniawe takea=1 from now on:

—

. . . RBZ
FIG. 4. The exact roughening temperature of the anisotropic ME

_N At T T
BCSOS modeisolid line) and the result obtained by making use of ~ HF = Ek €kl CkCk— Cit #Cik+ ] T [AkCiCis » T H.C,

the mapping onto th&XXZ Heisenberg chairidashed ling as a (24)
function of the anisotropy rati{,, /K,, . The inset shows the rela-
tive discrepancy between the two results. where  €=¢€— (2IN)Z . cgzv(k— k’)(cl,ck,), and

Qualitatively — and for not too large values of the cou- A= (2IN)Sy gzl v(m) —v(k—k')](Cy , Cir). Here RBZ
plings J,,J,,J3 — the physics of such a model is closely stands for the reduced magnetic Brillouin zone
related to that of the Heisenberg chain with spin-isotropic( — 7/2,7/2). Diagonalizing the simple 22 problem ap-
second-neighbor interactions, pearing inHYF . one readily finds that the “anomalous”

3 average Ak=<cl+wck> is simply related to A,
H=22 [S'S1+S Shul+ 2 (3,55, + 15§10l A= —AW/(2B) with = Ve[|, and thafé, and A,
' ! have to obey the self-consistency conditions

(22)
which we will refer to, in the following, as thel—J, - Rez , ) €
model?’ Haldane has discussed the qualitative phase dia- €k= €t NZ [v(k=k)—v(k—k +7T)]E_k,’
gram of theJ—J, model in the context of the Luttinger k
liquid framework, with special emphasis on the role played 1RBZ
by umklapp processes in the underlying spinless fermion Ak:__z —{[v(m)—v(k—K")]A
problem? (For a detailed quantitative analysis see Ref) 28. N B
For the spin model in Eq21), the discussion goes along , N
similar lines. For completeness we will give in Sec. IVC Hlo(m) —v(k=k'+m)]A}. (25

some details of this analysis based on standard techniques pf; \,s consider. for definiteness. the cdge 0. Solving the

H H 29
one-dimensional systerAs: self-consistency equations(25), one finds that if

Even a simple mean-field treatment, however, is quite m'véﬂ):Jz—Jz is sufficiently negative I, less than

structive about the nature of the ordered phases that are to R& 4; ), A, is real and has the form, = dy+ 6,c08(%)
expected. The starting point Is to perfqrm a ngn_er-JordarUpon ?ncreasing]z a transition occurs to a phase in which
transformation from spin variables to spinless fermion opera-Ak is purely imag,inary Ap=i8,sin(k). The transition ap-

: Z_ T +__ T N _ . ; B - '
tors ¢, 1.e., S=¢¢—1/2, § =Ci exp(m2<in). Neglect ears to be first order in mean field. To understand the mean-
ing c_onstants an_d terms p_roport|0nal t_o the total numbe_r Ong of the two phases, consider the average values of the
fermions, the spin model is then rewritten as the following¢amion density (n,), and of the bond kinetic energy

1/

spinless fermionnadel (clcii1+cl,,ci). A simple calculation shows that

N
RBZ

HF:_tizl [clciiitcliic] ()= 1_(_1)i£2 ReAy
- =32 N< E.
N
+ 2 [IaMiNi 1+ 3o o+ Janin; 3] oRBZ ImA
=1 t t i ey MAK
(cleira+el, o) =constr(—1)' &> sin(k) =
BZ 182 k k 26
=2 sl g2 v(@p(@p(-a), (29

The phase withA, real (small J,) is therefore a Rr site-
where ¢,=N~%23,e7*c; | with k belonging to the first centered charge-density wa\€DW) [i.e., a Nel phase
Brillouin zone[ — w/a,w/a] (BZ), andp(q) is the Fourier with 77| LRO in the spin language, or an ordered (&40
transform of the fermion density operator, face in the surface languafevhereas the phase at larger
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J,, with A, purely imaginary, is a B- bond-centered

charge-density wavéNe can picture the latter by assuming ot et
that on every other bond the fermions are in a state that L 1e[4] )
maximizes the kinetic energy of the bond, - (2x1) Ising
(cf+cly) 2r )
) _ 0), 2 L DIMER [2]
bondCD\/\I_ig[en \/E | > ( 7) QN (DF)
- 4
as opposed to the ideal site-CDW stathe Neel state F P k<i/z2 1
1111 1 ]
i XY [1] r414[2) ]
) - (ROUGH) (1x1) 1
Wsite cow™ H ¢|0). (28 i K>1/2 1
leven B | [
0
The spin interpretation of the bond-centered CDW state is 0 1 2 3 4
quite obviously a dimerized spin state with every other bond 1,/

engaged in a singlet{( — | 1).%” Unlike the site-centered
grga\i\;,yvgf;(?reae\éeorr)]/ds_igﬁ?; en de |ggg\c;\r/ |sr g gjgg;eczhindsgigi da_ n. FIG. 5. Gro_und-sta;tes phase (_Jliagram of the Heisenberg c_hain
neighbor average occupancy to about 1/2, and is thus favt! Second-neighbog Sy, , coupling. Ground-state degeneracies
. . . . . . ~_are given in square brackets, and the translation of the different
vored _upon increasingy . As will be dlsqussed in detail, this hases in the surface language is explicitly indicated. The 1()L
spin dimer phase corresponds to a disordered flat phase line starting at the poinP is continuous, with a variable expo-
the surface language. Clearly, for very laifig the system ot
will eventually prefer to minimize second-neighbor occupan-
cies by forming a site-centered CDW of double periodicity

(i.e., ake CDW), which we can picture as separated by a critical line of continuously varying exponent,
.C., F y

labeledP M in Fig. 6, along which the effective coupling of
the umklapp term vanishes and the system behaves as a Lut-
W, cow= 11 clcl,,|0). (29)  tinger model with a Luttinger exponent H& <1/2. Be-

F i=4n yond the pointM in Fig. 6, the nature of the line changes
from nonuniversal to first order. For even larger values of
J, the other ordered phase, with spins acquiririg. | LRO
\ . . ' nd a fourfold degenerate ground state, wins over the dimer
This phase can be included in a mean-field treatment by aghase. This is thegonly feat%re of Figs. 5 and 6 that is quali-

lowing, in the factorization of the quartic term, anomalous;_.. . .
+ : tatively new with respect to the phase diagram of dkel,
averages of the typéc,.. ..Cx), as well as the previous one model[Eq. (22)]3"

[Such a state correspondsitd| | LRO in spin language, or
a (2x1) MR reconstructed face in the surface languhge.

+
<Ck+ka_>- _ _ ) ) The nature of the line separating th¢| | phase from the

A finite-size scaling study of the spin model readily con- yimer phase is an open issue. Previous studies ofkthe
firms most of the qualitative features of the mean-field phasg, qet! and of the spin chald found exponents that ap-
diagram. A quantitative phase diagram for the spin modepeared to be compatible with the 2D Ising universality class.

corresponding to th&s model, i.e., Eq(21) with J3=0,iS  Recently, a transfer matrix study of a 2D model closely re-
presented in Fig. 5. The procedure to obtain such a phase

diagram from a finite-size scaling study of chains up to
N =28 sites® was described in detail in Ref. 185ee also
Ref. 28) A similar phase diagram for the spin chain corre-
sponding to the, model, i.e., Eq(21) with J;3=J,/2, was 2 Neel 4]
presented in Fig. 1 of Ref. 18. For the purpose of a general Myt LrO
discussion, we reproduce in Fig. 6 the essential qualitative
features of the spin chain phase diagram for a generic
J;=ad, with 0<a=<1/2. The model has a spin liquid
XY-like phase at small, andJ,, which corresponds, in the
fermion language, to a spinless Luttinger liquid characterized
by a certain Luttinger exponett. (See Sec. IV C for more
details on this discussionAt a given universal value of the
Luttinger exponentK =1/2), the Luttinger liquid phase be-
comes unstable — becausewhklapp processes- against
two different(gapped ordered phases, depending on the sign 0 1 1,0
of the effective coupling of the umklapp term: aélghase

with 7/7] LRO, for largeJ, and smallJ,, and a dimer FIG. 6. Qualitative ground-state phase diagram for the Heisen-
phase, for larged,. Both phases havegapin the excitation  berg chain with second- and third-neighb8fS; couplings, for
spectrum, and doubly degeneratground state thabreaks  J;=aJ, with 0<a<1/2. Ground-state degeneracies are given in
translational symmetr§??® These two ordered phases are square brackets. The line labelBd has a variable exponent.

1,1

First order

Ising—= \
Variable exponent

Dimer [2] 118<K<1/2

ni— Neel [2]
Spin Liquid [1] M LrO
K>1/2
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n-1
S T L L R L A G(m=([{"~hg"1})=4 3 (S'S)
L E ij=

ROUGH KT

i 4K
:n+8i=2l (n—i)(SéSf]):?ln(n)Jr Soe, N—oo,

(30

At low temperatures, corresponding to large valued dgfl
and/or J,/J in the spin-chain problem, a @1) and a
(2X1) ordered phase are present #5,>0 andK,,<0,
respectively. The (X1) and (2<x1) ordered phases corre-
spond, respectively, td| 7] and77]] LRO for the spins
(see Fig. 3 The other phase appearing in Figs. 7 and 8 is a
disordered flatDF) phase. It corresponds, in the spin lan-
K,,/K, guage, to the dimer phagsee Sec. V for a more extensive
discussion The transition line from the (1) recon-
structed phase to the DF phase is labeled “Ising,” in spite of
FIG. 7. Phase diagram for tH€; model, as obtained from the the fact that its nature is not completely assegsee previ-
quantum spin-chain mapping, fé;/Kz,=0.025. ous section The critical line separating the unreconstructed
phase from the disordered flat phase has variable exponents:
it is the preroughening liné® The parameteK appearing in
lated to theK, model has found exponents that are incom-Eq. (30) is the Luttinger exponent. In the rough phase
patible with Ising®? Moreover, a transfer matrix study of a K>1/2. Along the preroughening line correlation functions
two-component BCSOS model has found deviations fronftill behave as power laws with exponents related tdq.
Ising, possibly related to a crossover to Ising behavior not30) is still valid, with 1/8<K<1/2.
accessible by finite-size stripsl(;j;<22), when the critical
line approaches a KT lin€ A definite answer to the nature  C. Spinless Luttinger liquid and the variable exponent line

of this transition, possibly connected to the presence or ab- \we now discuss in more detail how to extract, using stan-
sence of the multicritical poinM in the phase diagraff,  dard techniques of one-dimensional systems, a qualitative
needs further study. In spite of this uncertainty, we will con-phase diagram for our spin chain model and some useful
tinue to refer to this line, for convenience, as “Ising.” information about the variable exponent line. The reader not

A second open issue concerns the region of the phasaterested in technical details might jump directly to the next
diagram where the KT line and the Ising line seem to apsection, where the surface interpretation of the dimer spin
proach each other. A relevant question, which we have ngbhase is discussed.
been able to answer, is whether the KT and the Ising lines The starting point is the spinless fermion model in Eqg.
actually merge, and, if so, what is the nature of the resulting23). The low-energy physics of such a model, as long as the
line. interactions are not too strong, can be conveniently analyzed

by going to the continuum limita—0 with Na=L fixed.

One linearizes the fermionic band around the two Fermi
B. Phase diagram of the modified BCSOS models points at+kg, and introduces a rightp=+) and a left

(p=—) branch of fermions, with fieldg,(x).>* All the in-

The translation of Fig. 5 into a temperature phase diagrarteraction processes in which particles are scattered in the
for K3 model, using Eqs(18), is shown in Fig. 7° The vicinity of the Fermi points are then classified in the so-
generic phase diagram of our modified BCSOS model, in th&alled “g-ology” schemé?® The resultingcontinuumfermi-
(T,K,y) plane for given values df ; andK ,, is qualitatively ~ onic model.7¢ turns out to be a sum of two terms
sketched in Fig. 8% Four phases are found in a region of
parameters relevant to the unreconstructed ard1(g MR e = T\ uttingert T umkiapps (31)
reconstructed case. At very high temperatures, there is a
rough phase. It corresponds, in the spin problem, to the re- Where. 7 uinger is @ spinless Luttinger mod&f,
gion close toXY-model point §,=J,=J3=0) in which
spin-spin correlation functions decay as power laws at large L . .
distancesthe Luttinger liquid or Gaussian model, see Sec.  ~Lutinger=UF Z f dx: ¢ (X)[ TPV —ke]ghp(x):

. . p=+ Jo
IVC). A large-distance uniform term of the type
—K/(27?n?) in the spin-spin correlation functiof8S5) — >
see Eq(41) — implies a logarithmic divergent height-height +
correlation function G(n)=([h{?—h{®?]?), signaling a
rough phase. Ipdeeq, using E(QD and _translational_ i.nvari— > dex:pp(x)pp,(x):, (32)
ance of the spin-spin correlation function, one verifies that 0

Dis. Flat

TT———Preroughening

0.5 — (8x1) (1x1).

N
-
o
-
n

[945p’,p+ gz5p’,7p]
p.p'==*
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and. 7 muapp F€presents the cruciaimklapp processese., vgK=J1—-(J,—J,+J3)/7mJ+---]. The umklapp term in
processes where two fermions are scattered from the vicinitigqg. (33), rewritten using Eq(34), gives rise to the cosine
of one Fermi point to the opposite ofie, term, with V=-2g3=2(J,—Jo+J3)+---. The
) renormalization-group equations for the sine-Gordon prob-
lem are well knowr?>?® and have the Kosterlitz-Thouless
Humwiopi= 93 fo X910y 0yl (09 ():+Hel. 8 Ae e EOW Y rer ot
(33

(Umklapp processes would not conserve the momentum for ar - =VA(I),

a general filling: at half-filling, however, momentum conser-

vation is fulfilled modulo a reciprocal lattice vector, dv

G=4kg=2m.) Herev=2t=1J is the Fermi velocity, and _:2[1_2K(|)]'\7(|), (37)
pp(x)=:ng(x)¢p(x): is the density operator for the di

branch of fermions(The :- - -: stands for a normal ordering with \/ simply proportional tov. V=0 with K>1/2 is a line
procedure, as explained in Ref. Bleglecting lattice renor-  of stable fixed points which represent the Luttinger
malization effects we have, for the Luttinger couplings Gaussiap model. V=0 with K<1/2, on the contrary, is a
94=v(0)=(J,+J2+J3) andg=v(0)—v(m)=2(J;+J3),  line of unstable fixed pointsthe smallestv=0 will grow
whereas the umklapp coupling readggs=v(m)  ypon renormalization ifK<1/2, the system will “go to

=(=J;+J,—J3). We stress the important point théie  strong coupling” and develop a gap in the excitation spec-
sign of umklapp coupling gresults from a competition of tym.

Jzand J,. We will see that this fact is crucial to the existence At the XY point, vs=ve=J andK= 1. For small values
of a line with variable exponents. of the couplingsJ,,J,,J; the exponenkK is larger than 1/2
The final step is tdosonizethe Hamiltonian in Eq(31).  and the umklapp term is irrelevant,— 0. This region cor-
This is achieved by introducing a bosonic representation offespondS to apin liquid The large distance behavior of the
the fermionic field3"*° correlation functions is characterized by power laws with
exponents related t&. For instance, spin-spin correlations
1 7P KEXgiP #5(0 (34) such as(S;S;) are related(recall that S'=n;—1/2) to
P ’ density-density correlations of the spinless fermions

_ ) N ) (n(0)n(x)). The density operator has a continuum limit ex-
wherea is a short-distance cutoff, ang,= », are Majorana pression of the type

fermions (7;§=1) ensuring correct anticommutation proper-
ties among right- and left-moving fermions. The field n(X)~[p+(X)+p,(X)]+[¢'1(X) Y_(X)+H.c]
#p(X) is related to the fermion density as follows:

'pr(x) =

2Ta

1 1
1 = —V®(X)+ —sin 47D (x) + 2kex].  (39)
Po(0= YN0 Up(0:= 5 Vebp(x), (39 Vm e

Using the fact that correlation functions of the bosonic field

and is expressed in terms of standard boson operatotge simple to calculate for the Gaussian mod&kQ), i.e.,

b,(q) as ,

1 o
12 _ —®2 —  ——
b 0= e“q’2<2—ﬁ [e~ PP (q)+ H.e]. G(X)=(P(x)P(0)—P(0))y=0 2722 (39
P q>0 Lq P

2 T

[Hereq=(2w/L)n, with n integer] The continuum model (8720 170Ny — o760 = a? |7

in Eq. (31) translates, in bosonic variables, into a quantum V=0 @’ +x2 ;
sine-Gordon probleAi3* (40)

vs (L 1 it is simple to show that
T =—f dx KII2+ — (Ve 2}
¢ 2 )0 K( ) K COSKgX

(n(O)n(x)>=—27T2X2+A 2K T (41)

\Y; L
* (27Ta)zjo dxcog y16m®), (36) A being a nonuniversal constant.

) ) _ Increasing the values of the couplings, the spin liquid
where we have introduced the canonical field phase becomes unstable, k=3, against two different
®(x)=(h,+¢_)/V47 and its conjugate momentum gapped phases, depending on the sign of the umkiapp term
M(x)=—V(¢.—¢_)\4m. The Lutinger model V. ForV>0 (large values ofl,) the strong-coupling fixed
M Lutinger 1S €Quivalent to free bosons i.e., to a masslesoint is characterized by a fietll, which is frozen at a value
Klein-Gordon(or Gaussianproblem (/=0) ** K is the cru-  such that co§16m®=—1, i.e.,J4xd= /2. Itis then clear
cial parameter governing the low-energy physics ofthat density-density correlations acquire LRO, since from
the problem, vs being the velocity of the sound- Eq.(38) we get
like gapless excitation¥. In weak coupling
we have vg/K=J[1+(3J,+J,+333)/wI+---], and (n(0)n(x))~sin(r/2+ 2kex) = cog 2kgX)
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K, L2 L e B S B B B N
1./1=3.0 "
107 T
1,/1=2.4 - 1
ROUGH [ " ]
Kosterlitz-Thouless 8 | __
L L] 24 __' 1T T T T » T £ e
] i “F . i
6 = ¥ 22fF - 4 7
i T E . ]
\4 [ wCE = 1]
— 4 g8k 3
~<— Preroughenin £ ] T
Ising/ DF (VariablegewonintS) [ Lef ) ! I 3]
Py 26 28 3 32 34 .|
L log, N L
2x1) M (1x1) [ o D o D o ]

0 X L %, ¥ . ¥ 1 . . ¥
10 15 20 25 30

FirstOrder/ N
K. /K FIG. 9. Finite-size behavior of different structure factors at the
2x 2y

point J,/J=3.0 andJ,/J=2.4 in the dimer phas&¥™(=) (solid
o ) - squarel S*4w) (crossel and S*4w/2) (open squargs The inset
FIG. 8. Qualitative phase diagram for the modified BCSOSgp s g logarithmic plot of the dimer structure factor, together with
model in Eq.(2) for fixed values of the couplingk; andK,. a dashed line of slope 1, for comparison.

signaling a site-centeredkp charge density wave. In the tion function exponent follows directly from Ed41), i.e.,
spin language this corresponds to aeNphase withl | 7| 7n=2K. The gap between the ground state and the first ex-
LRO. For V<0, on the contrary, the strong-coupling fixed cited state goes lik8

point is characterized by a field, which is frozen at the

value ®=0 (or 27). To guess what correlation functions A= E~|V|l/(274K)
acquire LRO, notice that the canonical transformation
y,— e~ Py changes the sign of the umklapp term in Eq.
(33), (Ref. 20 (in boson language this corresponds to
Jam®— JA7d + 7/2). Knowing that the R component

of the density operator acquires LRO in the éNghase

(V>0), we immediately conclude that the operator having
LRO for V<0 reads V. THE SPIN DIMER PHASE AND ITS SURFACE

INTERPRETATION

implying a correlation-length exponemt=1/(2—4K). The
order parameter exponent is given By vK. The specific-
heat exponent i&g=2—2v=(2—8K)/(2—4K).

In the spin dimer phase, ordinary spin-spin correlations
i[¢//1(x)¢//_(x)—H.c.]~ico§t \/ECD(x)wLZk,:x]. decay exponentiaJIy }o zero, E)Ut four-spin correlation func-
Ta tions of the type((S;- S+ 1)(S; S+ 1)) acquire LRO?® More
(42 specifically, everywhere inside the dimer phase in Figs. 5
and 6, one has
An operator whose continuum limitkz component is given

by Eq. (42) is readily found to be the bond kinetic energy S;*=($S))—0, j—,
(clci 1+cl,,c). The strong-coupling phase obtained for sim s O
V<0 is therefore &ond-centered charge-density wave ST=((SSD(SS/ 1)) =A+B(-1)), jo=. (43

be contrasted to theite-centeredDW obtained folV>0. In
spin language, this bond-centered CDW issgin dimer
phase.

Separating the N& (V>0) from the dimer phase
(V<0) is the line of unstable fixed pointsV&0 with
K<1/2) mentioned above. Along this lind*M in Fig. 6),
the system behaves as an effective Luttinger Gaussiah _ L
model with 1/8<K < 1/2. If K< 1/8, cosine terms of the type sim(g=m)=2 emsim, (44)
V'cos(2/167®) — formally coming from higher order um- .
klapp processes involving four-particle scattering — becomavhereas the open squares and the stars represent, respec-
relevant and open up a gap. The nature of the transition lingvely, the 7/2 and = component of the ordinary spin-spin
changes to first order. Correlation functions behave as powestructure factor. ClearlyS®™(q= =) divergeslinearly with
laws along the linePM. Density-density correlations, for the length of the chaifsee inset of Fig. @ implying long-
instance, are still given by E¢41). All the critical exponents ranged oscillations of the corresponding correlation function,
along theV=0 line are known in terms oK. The correla- whereas the usual spin-spin structure factor is finite.

This is illustrated in Fig. 9, where we show the size depen-
dence of various static structure factors at the point
(J,=33,3,=2.41,J,=0). These values are obtained from
exact diagonalizations of chains up to 28 sites. The solid
squares represent the dimer static structure factqr=air
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To illustrate in more detail some of the physics of this counting, respectively} | (step’) and|| (step ) combina-
disordered spin state, and its translation into the surface lanions at sites (— 1,j). An operator counting a step, irrespec-
guage, we consider a representative dimer phase point. Astite of its being up or down, is given by
happens, there is a special point in the phase diagram of the
J—J, model[Eq. (22) with J,=J=2J,], where the twofold step= steg+ +steg = 2(sz, 1sz+ 1/4). (49
degenerate exact ground state is exactly kndtwand ex- _ _ .
tremely simple: it is just a product of spin singlets. Explic- One can gasﬂy work out cor.relat[on functions for guch step
itly, for any finite (even sizeN the two ground states, which operators In th_e representative dimers states. Forjodar
turn into one another by translation of a lattice spacing, ardnstance, one finds

(1
|W1)=[12)[34)---[N—1N), 2 ifn=0
W,)=123)|45)-- - IN—2N—1)|N1). 45 3 ) ={ 1
|W,)=[23)[45) - | )IN1) (45 (V4| steg steff’, | 1) L i n>2 and even
Here|ij)=|71—11)/\2 denotes a singlet between sites _
andj. Equation(27) is just the spinless fermion translation . 0 otherwise,
of ¥,. Some of the properties of these prototype dimer
states, which we are going to illustrate, have been discussed, (1 it =2
in connection to the DF phase problem, in Ref. 15. Obvious 8 itn=
properties of¥',) are, for instance, that spin-spin correla- R _l 1
tions are extremely short ranged, (Vylstegstegn W)= 1 5 4even
16
(P4|S{|w1)=0, Vj, e otherwise,
v, S S =0, |i—j|>1, 46 1
(ry|ssivy =0, i-j 40 L o
and that translational invariance is spontaneously broken,
(Wy|stegsteg o ¥1)={ 1 .
— if n=2 and even
(V1S5-1S5|¥1)=—1/4, 4
S 0 otherwise.
(¥4]S5;S5;+4/¥1)=0. (47) (50)

In spite of this order parameter, such states are clearly spifimilar results apply to¥, for the case of even. It is
disordered (1% 1) order for the surface, for instance, trans- interesting to see how closely a point inside the dimer phase
lates into Nel LRO for the spin chairisee Fig. 3 whereas of Fig. 5 resembles such an ideal scendfibigure 10 shows

a dimer state has only short-range spin-spin correlations. Tsetep-step correlationstegstep., ,) obtained from exact di-
see why they describeftat surface, consider expanding the agonalization of a chain of 28 sites, for a point insidethe
product of singlets in Eq45) for |¥,), say. One obtains the dimer phase J,=3.0J,J,=2.41,J5=0), and (b) the Neel

sum of Z2NV2) spin configurations, one of which will be of the phase §,=3.0,J,=J3=0). In the Nel phase,[ 1 and | |

typical form steps are bound in pairs, and the correlation function decays
exponentially to the square of the step concentration, shown
ahahandananabaly---. (48) by a dashed line in Fig. 10). The relevant defect is there-

fore the domain wall denoted b}, , in Fig. 2. In the dimer
Here we have. taken the () part of the ginglet for the first phase, on the contrary,} and || steps are unbound, and
two pairs of sites, the([) part of the singlet for the next free to move in a fluidlike manner, but their correlation func-
three pairs of sites, and so on.down (2X1) step(i.e., @  tion displays long-ranged oscillations with peried In other
pair of neighboring down spins, see Fig.i2 obtained each \yords, the fluid of(roughly) alternating up and down steps
time a (L1) pair follows immediately after af(|) one, and, has the feature that steps prefer to stay at an even distance
vice versa, anup (2x1) step(a pair of neighboring up from each other. In the neighboring ¥2L) phase, this fluid
sping results from a {|) pair following a (L) one. In  of 2x 1 steps solidifies into an ordered structure of the type
between steps, there are regions witreNgpe of orderun- 11| | Wwe stress the fact that the oscillations displayed in
reconstructed regions in the surface languaGéearly, there Fig. 10a) are not due to (X 1) order; the point considered

is no way of having two up step®r two down stepsfol- i "as demonstrated in Fig. 9, disordered.
lowing each other: a step up is followed necessgrlly by a step step-step correlations of the type shown are simple mani-
down and vice-versa. The surface is thereftae festations of the spontaneous breaking of translational invari-

In the dimer phase there are chara_cteristic correlationgnce. Similarand relateiieffects can be seen in other prop-
between steps that are worth stressing. An (@Wn  erties of the disordered surface. Suppose we want to count, in
(2X1) step ending at sit¢ is “measured” (see previous the surface terminology, the difference in the number of
discussioh by the spin operator white and black local maxima in the surface. We restrict first

. our considerations to sites that are local maxima when con-
steg =(S{_1=1/2)(S{=1/2), sidered in thex direction only. In the spin language, a local
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] - (b) 1
(J,/1=80,/1=2.4) | i (1,/1=3,1,=0) |
0.3 (Dimer phase) 1 (Neel phase) J FIG. 10. (2x1) step-step correlations, see
- Eq. (49), for a chain of 28 sites,a) at the point
(J,=3.00,J,=2.43,J;=0) inside the dimer
phase, andb) at (J,=3.0J,J,=J;=0) inside the
Neel phase. For the ideal dimer stakg , see Eq.
(50), the correlation function would oscillate be-
tween the values 0 and 1[4he dashed line in
(@]. Inside the Nel phase the correlation func-
tion decays exponentially to the square of the step
7 density, denoted by the dashed line(i.
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“maximum” at site j occurs whenever the sife-1 has spin  the (1X1) order parameter?,.,, and the (1) recon-
1 and the sitg has spin|. An operator that “counts” the struction oneP,,

maximum atfj is therefore (SJ-Z,1+ 1/2)(1/2— S]-Z). The differ-

ence between whitéevenj) and black(odd j) maxima is 1 G 1

therefore measured by the order parameter P1x1= N—CZ he™")={ EW [he=heip] ),

crlre

PEPIN— (2IN) D el™i(SP_, +1/2)(1/2— ). 1 .
oW ] i ’ P2X1=<N2r hre'G'”2>. (53
C

PPN is odd under translation. Its value is 1 on théeNe . . 3 .
state [1/7/---), and —1 on the other Nel state HereN_. is the number of cells in each sublatti¢e., 2N, is
[L111- ). Quite generally, it is different from zero in the the number of atomsandG=(2m/a,)x. The square mean
whole Neel phase of the spin phase diagram. Consider no\,Wldth sh< diverges logarithmically in the rough phase as the
the value ofPSR™ on the dimer statéW,). Using the el-  Size Of the samplé — o

ementary results in Eq46) and (47), we arrive at
Sh?~K(T)InL,

(4| PSEY W)= — EE e (WS S|W)= z with a coefficientK(T) larger than auniversa) minimum

N 4 value K(Tg) = 1/7? attained at the roughening temperature.

(5D P« is different from zero only in the unreconstructed re-

gion of the phase diagram and goes to zero at the prerough-
Fning line.P, is different from zero in the reconstructed
region of the phase diagram and goes to zero at the Ising
ine. Clearly, the DF phase haB;.1=0, P,«;=0, and
8h?<0. On the basis of the spin mapping and of the dimer
Sphase scenario we expect, however, that some form of order
will be present: one should be able to tell which of the two
sublattices YV or B) prevails in the top layer. A way of
é_esting this is to define the “local peak” operator

Similarly, (W,|PSR"|W,)=—1/4. Therefore, the implica-
tion of the dimer scenario, with its spontaneous breaking o
translational symmetry, is that, on the disordered flat surfac
one of the two sublattices tends to dominate in the loca
maxima.

One can check this prediction by Monte Carlo simulation
of the original classical models. In the next section we will
present the results of our simulations for tke and theK,
model. The results strongly support the dimer phase sc

nario. 4
1
O,=r= ] [Ah;+1], (54)
VI. MONTE CARLO RESULTS AND DISCUSSION 16=1
We have performed classical Monte Carlo simulations ofvhereAh, ;=h,—h, ., andb; withi=1,...,4 are thevec-

theK; andK, model in the DF phase. We have measured, tdors connecting a chosen site to its four nearest neighbors
start with, standard quantities such as the square mean widthelonging to the opposite sublattjc®, takes the value 1
of the surfacegh?, for the atoms lying above all their neighbors, and zero oth-
erwise. Summing over all the sites with a phase factor 1 for
1 the W sites and— 1 for the B ones, we get a quantity mea-
5h2:<8—Nz > (hr_hr’)2>a (52)  suring which sublattice prevails in the top layer,

cr,r’
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surements are performed, each of which consists of

L L L 10°—10° sweeps, after a suitable equilibration of the system.

F . For the K; model, we used the parameters of Mazzeo

0.95 - g et al, roughly chosen to fit the glue model results of Erco-
. ] lessi, Parrinello, and Tosattifor gold: Kox/Kyy=—0.51,

. 09 |- -] K3/Ky=0.22 (i.e., %= —2.3). An Ising-type deconstruc-
© C ] tion transition has been reported to take place at
0.85 | - Tp~2.9K,,, while a Kosterlitz-Thouless roughening tran-

- ] sition has been found diz~3.0K, .** We have performed
0.8 | . a careful finite-size scaling analysis of the different order
C . parameters at the intermediate temperafre3.0K, .
[0 W2 T O TS NN T S S Y The surface is still flat at this temperature, as demon-
3 3.5 4 4.5 5 strated in Fig. 11, showing thath? versus I stays defi-
log,(L) nitely below the universal critical slopg€(Tg) = 1/72, which

implies that 6h? will eventually saturate to a constant as
FIG. 11. Finite-size scaling of the height fluctuations, Exp), L—oo. Figure 12(a) shows the results obtained fét,
for theK; model atk 5, /K= —0.51,K3/K;,=0.22,T/K;,=3. A (solid circles, and Pgy, (diamond$. The squares denote a
line with the critical slopeK(Tg)= 1/ is also shown, indicating further order parameter used by Mazzﬁcal.,ll

that the surface is smooth at this point.
1
Pow ' ={ o | 2 1S1—2 IS
4Nc rew reB

PBW=<NLE eiG'fo,>. (55)

er where the classical “spin” variableS,; are defined in terms
As defined,Pg,y is normalized to 1 on the unreconstructed of the nearest-neighbor height differences as
ground states, and to 1/2 on the reconstructed 12 ground 4
states’® Our expectation is tha®g,y is different from zero in 5= An. 57
the disordered flat phasend vanishes in the rough region =Tl
and on thepreroughening line(See Fig. 15. i . i ) o

A classical grand-canonical single-move Monte CarloP2x1 Vanishes ad ™", see inset of Fig. 12), confirming

code has been set up and used for lattices of linear siZat T=3.0Kz, is above the deconstruction temperature
L=N,=N, up to 100. Starting from a disordered surface, weTo . in agreement with Ref. 11. BotRgy, and Py " de-
randomly add or remove particles, making sure that the BCcrease, instead, much slower tHan'. Figure 12(b) shows
SOS constraint is fulfilled at each step, and accept movete logarithm ofPgyy versus If.. The data for small sizes
according to the standard Metropolis algorithm. The configu{L up to 48 can be fit with a power lav. ~°%’. For larger
rations resulting from consecutive sweeps of the latticevalues ofL, a crossover is seen to what is most probably an
(2L2 attempted movesare quite correlated, so that indepen- exponential convergence ta nonzero limitfor Pgy. In
dent values for the various averages are obtained as a resather words, systems up to=48 are still smaller than the
of a sufficiently large number of Monte Carlo sweeps. It isactual value of a correlation leng#fg,, So that a fictitious
on the basis of such “independent measurements” that stgpower-law behavior is initially seen. A similar behavior is

tistical errors are estimated. Typically 20 to 50 such meaalso found forPGy L.

L

0.8 T T T T T T T -1 LI N Y L L LB B
- 04— T T . L -
L L]
[ o3| o 47 i 1
& 0.2 —_ i | . . .
06 [ = I . | - . FIG. 12. (a) Finite-size scaling oP,., [the
T o1f e -1 ] reconstruction order parameter, E3), full
i ol e 117 circles, Pgw [Eq. (55), open diamonds and
a [0 0.02 004 1 Ay PZyY [Eq. (56, open squargsor the K3 model
04 VL 1 o at the same point considered in Fig. 11. The inset
r s o 1.8 shows thatP,.,; vanishes as the inverse of the
e o 1 linear sizeL of the lattice. The surface is thus
o T deconstructed(b) Log-log plot of the finite-size
02 o, e ] behavior of Pgy,, showing the saturation to a
I c e & nonzero value fot —«. The surface is in a dis-
- LI rdered flat state.
[ (a) ] [ () ] ordered flat state
ol o L 111 Y S I I B
0 20 40 60 80 100 120 3 3.5 4 4.5 5

L log (L)
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0.8 T T T T 1T T 717 TT T T [T T T T[T rT [ rrT1
L 04— .
I o3 =47 r ’
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. e 14
ol 1, T S PO N
a _ ° O'OT/L 004 i 9—"; | FIG. 13. Same as in Fig. 12, for a point inside
0.4 | ] gﬂ the disordered flat phase of theK,
| 0 o o — i ] mOde| (K2X/K2y:_o.056, K4/K2y:0.1,
I o T ] T/IK2y=2.3).
L 85 _ | ]
0.2 _ S o o _
o . - L ]
(a) . (b)
ol t o L 111 [Py I I B B
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The corresponding results for a point inside the DF phasgerms, the fact that every (21) step always ends int® top
of the K, model K,;/K;,=0.1, K5, /K;,=—-0.056, and atom, result in the above-mentioned feature of the absence of
T/K,,=2.3) are shown in Fig. 13. Entirely similar com- white MR regions, and are such thBg,y turns out to be

ments apply to this case. different from zero, albeit small. Altogether Fig. 14 is a nice
The point in theK, model phase diagram to which Fig. 13 illustration of how a dimer disordered flat phase should look.
refers, is in fact located close to the preroughening ifh&. These features should be of some relevance in the context

typical snapshot of the way this disordered flat surface look®f surface scattering experiments. We discuss here the case
at this temperature is shown in Fig. 14. Strictly speaking weof He scattering. In the kinematical approximation, and
are in a parameter region where the classical ground state vgithin a SOS framework, the intensity of the specular peak
(2Xx 1) MR reconstructed and the most energetically favoredparallel momentum transf€p~0) with perpendicular mo-
defects ardsing walls (see Table)l. However, Ising walls in  mentum transfer in the so-called antiphase configuration is
their ideal form(see Fig. 2 are almost totally absent. What given by

one finds, instead, are extended walls of the Ising type with a )

width of arbitrary length. These are nothing but large _ imh

(1x 1) unreconstructed regions lying between two oppositel-(Q’qZ_ mlag) <Er € ra’> 90T NsitedtaTX(Q),

(2% 1) steps. Such (2 1) steps, which are the very building (58)
blocks of a MR structure, are now free to move in a fluidlike

manner with the only constraint that an upstep is followed bywherea, is an appropriate “shadowing factor,” which takes

a downstep. Occasionally, sequences of up-dowix 12 into account the physical requirement that surface peaks scat-
steps gain positional order by “solidifying” in (1) MR ter more than valley& ' The first term is dBragg coherent
regions, which are, however, always of the same “color” contribution, proportional to the square of the order param-
(more precisely, black, for the phase illustrated in Fig). 14 eter and of the number of sites. The second contribution, due
Overall, the surface seems to have as many black regions &3 incoherent terms, is proportional to the susceptibility of
white ones: theP,,; order parameter, which counts pre- the order parameter and to the number of sites. For our BC-
cisely the relative abundance Wf andB (1x1) elementary SOS type of model, in which, is even in theW sublattice,
cells, is small, and goes to zero in the thermodynamic limitand odd in theB sublattice, one immediately concludes that
Correlations between steps, however, or, in more elementag/ ™ =¢/®" for any allowed height configuration. The coher-

\ FIG. 14. Snapshot of a surface configuration
\ as generated by the Monte Carlo simulation for

theK, model at the same point considered in Fig.
% \ 13, inside thg(dimer) disordered flat phase.

2

! 3 "-]*;lénllm-j.mn,.




13184 SANTORO, VENDRUSCOLO, PRESTIPINO, AND TOSATTI 53

TABLE |. Ground-state energy of the defects shown in Fig. Zing intensityl (Q=0,q,= 7/a,), which includes the incoher-
for the K3 andK, models. ent contributions(Strictly speaking, these contributions are
proportional to the susceptibility which diverges at the criti-

Ks model K4 model cal temperature als®~”, wherelL is the size of the system.
€951 4K, 4K, + 8K 4 SincelL?= N, the incoherent contributions will never win
€5q 8K,y 8K+ 8K, over the coherent part{N2,.) and an overall dip should be
€cs 2K 5+ 8K 2K o, + 8K 4 observable in the normalizeq scattering intgnsity at the criti-
€as — 2K, — 2K+ 8K, cal temperaturg.Clearly, an important requirement for the
€1sing — 4K, — 4K+ 8K, dimer scenario, which one sho_uld test expe_:nmentally, is that
€ing 4K 5, + 16K 5 AK pot 16K 4 the dominant defects proliferating on the disordered flat sur-

face are indeed monoatomic, orX2), steps. The correla-
tions of such monoatomic steps are, at least in principle, also
ent part of the specular antiphase peakaccessible by direct imaging tec_hniques, su_ch as fast_?SlTM.
1°°YQ=0,,= m/a,) would therefore be identically zero if ~ We mention here, befor.e ending the section, a.partlcularly
all the surface atoms were to scatter in the same wagimple choice of shadowing factors, proposed in Ref. 40,
(ey=1 for all r). In the opposite assumption that only the Which does notinvolve long-ranged operators:

local peaks scatter efficientlya(=1 if r is a local peak, n,

a,=0 otherwisg, we obtain that®®(Q=0,q,= 7/a,) is ex- =2-=,

actly proportional to the square of thd&g,, order

parameter? wheren, is the number of neighbors of the atomrithat are
o 5 5 found at a level higher than the atom itself. This expression
1°°YQ=0,0,= 7/a,) * Njed Pl > (59 Jinearly interpolates betweem=2 (local maximum and

Quite generally, for a reasonably large class of choices oft="0 (local minimum), and can can be recast in the form

shadowing factorsy,, the breaking of translational invari- 1A

ance should guarantee tH&"(Q=0,q,=m/a,) is different a,=1- —_2 [hrsp, =Nl

from zero(albeit possibly smallin the DF phase considered =1

here.(More precisely, this is so for all the shadowing factors,whereb; are the vectors connecting siteio the four neigh-
which can be written in terms of local operators of #ie  horing sites. Indeed, by exploiting this linearity, it is very
Variables, whose correlation function is IOng ranged in th%|mp|e to show that such a choice @fr leads to a
DF phase. 1°°(Q=0,g,= m/a,), which is proportional to the square of

Experimentally, a dimer type of disordered flat phasethe (1x 1) order parameteP, ., [see Eq(53)],
would manifest itself with a rapid fall of the antiphase scat-
<2 eiG'rhr>
r

tering as the critical temperature is approached, followed b¥°°h(Q=0q = mla,)o
™Mz Z
and therefore vanishes at and beyond the preroughening line.

an intermediate temperature region, where the surface is in
the disordered flat phase, in whichsmall coherent an-

tiphase scattering intensity survivesThis situation is . . i

sketched in Fig. 15. By normalizing the scattering intensityTherefore, expenmenta_l scattering geometnes.shogld be cho-
to its low-temperature value, a dip at the critical temperatur&€" SO as to emphasize peak-atom scattering, if the non

should be observable even if one considers the total scattnge(igg;fggic behavior of Fig. 15, typical dPgy, is to be

2
=NZIP14|%  (60)

A VII. CONCLUSIONS

Pow The motivation for the present work was a deeper under-
standing, based on well-defined Hamiltonians, of the nature
of the disordered flat phager phasesoccurring in simple
lattice models of fcd110) surfaces. In particular, for recon-
structed surfaces, in the spirit of the distinction proposed in
Ref. 12 between a DEHsing wall dominatetiphase as op-
posed to a DORstep dominatedphase, we wished to clarify
which of the two scenarios was at play in simple BCSOS-
type models. The outcome of our study is that neither of
those simple prototypes applies, strictly speaking, to the de-

- scription of the disordered flat phase we find, which is, on

Top T the contrary, closely related to the dimer phase of one-
dimensional quantum spihisystems.
The phase diagram in Fig. 8, very similar to the one dis-
FIG. 15. Sketch of the expected behavior of tRg, order ~ cussed in Ref. 32, shows many features that we believe to be
parametefEq. (55)], proportional to the antiphase scattering inten- quite robust: First, a transition between thex(2) MR re-

sity, as a function of temperature when the preroughening line ig€onstructed phase and the DF phase with exponents that ap-

crossed. pear to be very close to IsingAlthough the actual nature of
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the line is an open issue, see end of Sec. IY®econd, the first sight, as far as stabilizing a DOF is concerned: they
transition line between the unreconstructed and the DF phasaitomatically tend to disfavor crossing of parallel steps that
(prerougheninghas variable exponents, as was predi¢fed. involve large height differences. Moreover, tuning the model
Third, the disordered phase has a nontrivial order parametgrarameters offers, in principle, the possibility of making
Pew. It is quite remarkable that both the microscopic mod-stepsor walls more favorable, at least as far as their 0
els discussed here and the cell model of Ref. 9 point in thenergy is concerned. Things are, however, not so straightfor-
same direction, to a disordered flat phase that has a nonvaward in practice. Consider, as a remarkable counterexample,
ishing order parameter of the type Bky. We recognize the case of theK, model. When —1<K,,/K,;<0, the
that such a feature is also present in the phase diagram gfound state is (X 1) MR reconstructed, and simple Ising
Ref. 32. wall defects are energetically more favorable with respect to
The obvious open question is whether the disorderedll kinds of steps (see Table ) A value of
phase discussed above is the only one possible. In othét,,/K,=—0.56, which we considered in one of the simu-
words, can we build microscopic models where defects othdations, would have seemed therefore a quite promising can-
than (2x 1) steps play a role and the resulting disordered flatlidate for a DEF phase. What we end up with instead is a
phase(or phaseshas qualitatively different features ? situation quite well represented by the snapshot in Fig. 14.
The discussion has to consider separately, at this stag&he state of the system looks as predicted for a dimer spin
the case of semimicroscopic cell-type moddem that of  state. We clearly see that there are large regions in which the
fully microscopic surface models. In the former framework surface looks unreconstructédith either theW or the B
of a coarse-grained description of the system, as the foursublattice on the top laygrseparated by ( 1) steps, form-
state clock-step model of den Nijghe stage is clear and the ing a fluid with up-down order but without positional order.
actors are there: walls and steps. Since white atoms stay dhis worth stressing that the relevant objects in such a disor-
top in regions where the reconstruction variablés O or  dered phase — the (21) steps — are the most natural
7, and black atoms do so in regions whefeis w/2 or  defects of thaunreconstructedurface, and the very building
372, the Pg, order parameter has to be nonzero in theblocks of the neighboring MR reconstructed surfaegich
disordered flat phase of this model, which could therefore b&an be seen as a solid of alternating<(2) stepg. The result
called DEF. Indeed, the disordering transition resulting in aof tailoring the T=0 defect energies in such a way as to
DEF phase is mostly promoted by walls, which involve apromote an Ising wall dominated DEF phase ends up with an
change ofr for 6 on either side of the defect. On the con- amusing realization of a dimer state instead.
trary, Pgw is expected to vanish in a hypothetical DOF In conclusion, we believe that a dimer phase type of dis-
phase, since in this case the relevant defects are steps, whioldered flat phase is a natural candidate in systems with a
involve a change oft #/2 for 6.2 The four values ofé BCSOS type of symmetry such as the f¢xl0 surfaces
should appear with the same probability in such a disorderedonsidered in this work. Experimental signatures of such a
phase, and there is no way of telling which “color” prevails scenario would be the detection of a rapid fall of the an-
in the top atoms. tiphase scattering intensity as the critical temperature is ap-
The question of possibly finding a DOF phase in the senseroached, followed by an intermediate temperature region
of Ref. 12 in a model of the clock-step type deserves, how{before rougheningin which the dominant defects are
ever, a few comments. Suppose that steps were indeed th@onoatomic steps, and where a small coherent antiphase
most energetically favorable objects in the problem,scattering intensity survives.
E.<E,,, and imagine desiring a stable DOF phase, i.e., pre-
venting the appearance of steps from making the surface im- ACKNOWLEDGMENTS
mediately rough. The natural way of doing this is to assign
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