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We discuss the results of a study of restricted solid-on-solid model Hamiltonians for fcc~110! surfaces.
These models are simple modifications of the exactly solvable body-centered solid-on-solid model, and are
able to describe a (231) missing-row reconstructed surface as well as an unreconstructed surface. They are
studied in two different ways. The first is by mapping the problem onto a quantum spin-1

2 one-dimensional
Hamiltonian of the Heisenberg type, with competingSi

zSj
z couplings. The second is by standard two-

dimensional Monte Carlo simulations. We find phase diagrams with the following features, which we believe
to be quite generic:~i! two flat, ordered phases~unreconstructed and missing-row reconstructed!; a rough,
disordered phase; an intermediate disordered flat phase, characterized by monoatomic steps, whose physics is
shown to be akin to that of a dimer spin state.~ii ! A transition line from the (231) reconstructed phase to the
disordered flat phase showing exponents that appear to be close, within our numerical accuracy, to the two-
dimensional Ising universality class.~iii ! A critical ~preroughening! line with variable exponents, separating the
unreconstructed phase from the disordered flat phase. Possible signatures and order parameters of the disor-
dered flat phase are investigated.@S0163-1829~96!04620-0#

I. INTRODUCTION

Surfaces of fcc metals, in particular~110! faces, display a
variety of phase transitions, which have been the subject of
considerable experimental and theoretical work. Experimen-
tally, the~110! faces of some fcc metals — such as Au or Pt
— reconstruct at low temperature into a (231) missing-row
~MR! or related structures, whereas other metals — such as
Ag, Ni, Cu, Rh, and Pd — retain~at least when clean! their
bulklike periodicity. As temperature is raised, reconstructed
surfaces tend to show two separate transitions: a critical de-
construction transition, and, at a higher temperature, a
Kosterlitz-Thouless roughening transition.1,2 On the other
hand, unreconstructed surfaces have not been shown, so far,
to reveal a similar two-transition scenario. Only a roughen-
ing transition is well documented in this case.3,4

Based on theoretical considerations and on simulation
work, an interesting and nontrivial interplay has been antici-
pated between in-plane disordering, related to deconstruc-
tion, and vertical disordering, related to roughening,5 and
many other studies have been devoted to the problem.6–12

The situation is, in principle, somewhat different for the two
types of situations, i.e., the unreconstructed and the MR re-
constructed cases. On an fcc~110! surface one can identify
two interpenetrating rectangular sublattices, with origin, say,
at 0 ~the ‘‘white’’ sublattice! andA at (A2x̂1 ŷ1 ẑ)a/2 ~the
‘‘black’’ sublattice! where a is the lattice parameter,
x̂5(001), ŷ5(110), and ẑ5(110). The unreconstructed
~ideal! surface has thereforetwo T50 ground states, differ-
ing for the sublattice that occupies the top layer~see Fig. 3!.
den Nijs has argued that, in such a case, the phase diagram
should be qualitatively the same as that of a simple cubic

~100! surface.13 In particular, den Nijs,13 Jug and Tosatti,14

Kohanoff, Jug, and Tosatti,7 and Mazzeoet al.11 argued that
~110! surfaces such as those of Ag and Pd~which do not
reconstruct! are good candidates for realizations ofpre-
roughening, a critical ~nonuniversal! transition from a low-
temperature ordered phase to an intermediatedisordered flat
phase, previously identified in the context of restricted solid-
on-solid models for simple cubic~100! surfaces.15 In terms
of the two ground states of the unreconstructed surface, the
preroughening transition can be viewed as a disordering of
the surface due to the proliferation of monoatomic steps~see
Fig. 2! separating terraces with one type of ground state from
others where the other ground state is locally present. These
steps retain, however, an up-down long-range-order — sta-
bilized by a combination of up-up~down-down! step repul-
sion and entropy — which prevents the surface from being
rough.15

On the (231) MR reconstructed surfaces, with half of
the (11̄0) close-packed rows missing, the periodicity in the
(001) direction is doubled. The surface therefore hasfour
degenerateT50 ground states, which can be classified by a
clock variableu50,p/2,p,3p/2, according to the ‘‘color’’
and the position of the MR in the doubled unit cell, i.e.,
determined by which of the four sublattices sits in the top
layer ~see Fig. 3!. The elementary extended defects that one
can consider here were discussed by Vilfan and Villain8 and
den Nijs9 ~see Fig. 2!. These are~a! steps, which simulta-
neously change the average height byDh561, and the re-
construction variableu by Du5p/2 @clockwiseor (331)
steps# or Du52p/2 @anticlockwiseor (131) steps#, and~b!
Ising wall defectswith Dh50 andDu5p, which can be
seen as a tightly bound state between two steps of opposite
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sign ~up and down!, but thesameDu.9

In this framework, den Nijs introduced a phenomenologi-
cal four-state clock-step model to describe the interplay be-
tween reconstruction and roughening degrees of freedom.9

The model is formulated on a length scale larger than micro-
scopic, through the introduction of a coarse-grained lattice of
cells in which an integer variablehr , representing the aver-
age height in the cell, and a clock reconstruction variable
u r are defined. A bond in the lattice can be either empty~no
defect!, or occupied by an up or down step of either kind, or
doubly occupied by an up and down step of the same kind
~equivalent to an Ising wall!. den Nijs found that when
(131) and (331) steps have the same energy — the so-
calledzero chirality limit— the model displays two possible
scenarios:~i! If the energy of an Ising wallEw is less than
roughly twice the energy of a stepEs , temperature drives the
system from the ordered phase to a disordered flat phase
through an Ising transition, and then to a rough phase
through a Kosterlitz-Thouless~KT! transition. ~ii ! When
steps are energetically favored,Ew.2Es , the system under-
goes a single roughening-plus-deconstruction transition,
which is Ising-like for the reconstruction degrees of freedom
and KT-like for the height degrees of freedom. The disor-
dered flat phase present forEw,2Es is quite clearly charac-
terized by the proliferation of Ising wall defects~their free
energy per unit length goes to zero at the deconstruction!.
Accordingly, the surface shows a prevalence ofu50 and
u5p terraces, say, overu5p/2 andu53p/2 ones. Using
the terminology introduced in Ref. 12, such a phase could be
called disordered even flat~DEF!. It has an obvious nonzero
order parameter that counts the difference in the abundance
of u50,p terraces over that ofu5p/2,3p/2 ones, and van-
ishing only in the rough phase. By contrast, when single
steps dominate — i.e., 2Es,Ew — there is apparently no
mechanism, in this simple model, that may stabilize the up-
down long-range order for steps, typical of disordered flat
phases. It has been argued that suitable interactions penaliz-
ing the crossing of two up-up or two down-down steps —
not considered by den Nijs — could stabilize such a hypo-
thetical step-dominated disordered flat phase.12 A disordered
flat phase of this kind — termed DOF in Ref. 12 — should
be characterized by an equal abundance of all types of cells
u50,p/2,p,3p/2, i.e., bya vanishing of the order param-
eter characterizing the DEF phase.12

Interestingly, the situation does not change much in the
so-calledstrong chirality limit considered by den Nijs, i.e.,
when anticlockwise steps, say, are very costly and thus com-
pletely negligible. In such a case the problem may be
mapped onto a one-dimensional fermionic model containing
a Hubbard-type on-site step-step interactionU such that the
energy of an Ising wall configuration~doubly occupied site!
is Ew52Es1U.16 ForU,0, the result is the same as in the
zero chirality limit case, i.e., a DEF phase is obtained. When
steps dominate — i.e., forU.0 — two distinct rough phases
appear, the deconstruction transition is no longer of the Ising
type, but, again, no disordered flat phase exists.

The variety of possibilities introduced by the phenomeno-
logical models is thus very rich. Domicroscopicmodels dis-
play just the same, or any new features, one might ask? In
the light of the previous discussion, the question naturally
arises as to what kind of disordered flat phase~or phases! is

realized in simple solid-on-solid~SOS! models. The question
has been considered by Mazzeoet al., who have introduced,
and studied by Monte Carlo simulation, a restricted SOS
model that is able to deal with both unreconstructed and
reconstructed situations.11 Their model — which we will re-
fer to as ‘‘K3 model’’ — is a simple modification of the
exactly solvable body-centered solid-on-solid model17 ~BC-
SOS! obtained by adding a further neighbor interaction,
which can stabilize the (231) MR reconstruction if re-
quired. For a reconstructed case, they find two transitions: a
two-dimensional~2D! Ising deconstruction to a disordered
flat phase, and a KT roughening at a slightly higher tempera-
ture. The unreconstructed case studied also shows two tran-
sitions, with a nonuniversal critical transition to a disordered
flat phase followed by a KT roughening.11 The nature of the
disordered flat phase present in the model was, however, not
fully characterized.

In the spirit of investigating simple but fully microscopic
models, Santoro and Fabrizio have studied a slightly differ-
ent modification of the BCSOS model, which will be re-
ferred to as the ‘‘K4 model.’’

18 They found that this model
could be mapped onto a quantum spin-1/2 Heisenberg chain
with further-neighbor interactions.19 The phase diagram they
obtained has two low-temperature ordered phases — unre-
constructed or (231) MR reconstructed, depending on the
parameters of the interactions — a high-temperature rough
phase, and an intermediate disordered flat phase. The physics
of the disordered flat phase was argued, by analytical argu-
ments, to be akin to that of thedimer quantum spin phase
studied by Haldane,20 i.e., a doubly degenerate state that
breaks translational invariance and in which dimer-dimer
correlation functions acquire long-range order.

In this paper we extend and apply the approach of Ref. 18
in such a way as to provide a unified picture of the phase
diagram of all the simple BCSOS-like microscopic models
of fcc ~110! surfaces studied so far. First we show that a
quantum spin-12 Hamiltonian also underlies the more general
restricted SOS model where both the couplings considered in
Refs. 11 and 18 are included. The spin-1/2 model is, in all
cases, a Heisenberg chain withSi

zSj
z competing antiferromag-

netic interactions ranging up to third neighbors. Secondly,
we unambiguously show that the dimer-phase scenario is
realized in the disordered flat phase, and discuss in detail the
surface physics implications of such a scenario. Long-range
dimer order suggests~see Sec. IV! a particular type of long-
range order for the correlation function between (231)
steps, and also betweenlocal surface maxima. In particular,
one is led to study an order parameterPBW — previously
introduced by Bernasconi and Tosatti12 — which measures
the difference in the number of local surface maxima belong-
ing to the white and the black sublattice of a fcc~110!. Due
to ‘‘shadowing,’’ or to surface lattice contraction, this order
parameter is related to antiphase scattering intensity of He
atoms of x rays, respectively, and is thus a quantity of direct
interest.~See Sec. V.! PBW is studied by finite-size analysis
of classical Monte Carlo data, and found to be nonzero in the
disordered flat phase of both theK3 andK4 model. It has a
nonmonotonic temperature behavior, vanishing only at pre-
roughening and in the rough phase.

The present paper is organized as follows. Section II in-
troduces the BCSOS type of models that we consider. In Sec.
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III we show in detail how these models may be mapped onto
quantum spin-1/2 chain problems. In Secs. IV and V we
discuss the phase diagrams as well as the physics of a
‘‘dimer’’ disordered flat phase. In Sec. VI we present the
results of our Monte Carlo simulations and discuss possible
experimental signatures of a dimer phase. SectionI VII, fi-
nally, contains some concluding remarks as well as a discus-
sion of open problems.

II. RESTRICTED SOLID-ON-SOLID MODELS
FOR A fcc „110… METAL SURFACE

The ~110! surface of a fcc lattice is comprised of two
interpenetrating rectangular sublattices of lattice constants
ax5A2ay , which we will conventionally refer to as the
white (W) and the black (B) sublattice. The surface lattice
basis vectors arex5axx̂ and y5ayŷ, wherex̂5(001), and
ŷ5(11̄0). In the ideal unreconstructed~110! surface, one of
the two sublattices lies above the other at a distance
az5ay/2. Within a SOS framework,21 one associates to each
site r of the lattice a height variablehr , which can take only
integer values ~take az51). The models we are going to
study have an additional restriction, in that the height differ-
ence between each site and its four nearest neighbors~be-
longing to the other sublattice! is forced to beDh561. A
height difference of 0 is therefore excluded, as well as larger
values ofDh ~they are energetically more costly!. As a con-
sequence, the values ofhr are forced to have opposite parity
on the two sublattices, say even onW and odd onB. This
restriction is typical of the BCSOS model.17 It is probably
justified for a metal, where strong inward relaxation makes
the first and second layer bonds extra strong. On the con-
trary, it should not be expected to hold for, say, a rare-gas
solid ~110! face, where these bonds are in fact weaker.

Our Hamiltonian is written as

H5HBCSOS1DH, ~1!

where HBCSOS describes interactions between sublattice
nearest neighbors, andDH takes into account further-
neighbor interactions, which will favor or disfavor recon-
structed phases. Specifically,HBCSOSis given by

HBCSOS5K2y(
r

~hr1y2hr !
21K2x(

r
~hr1x2hr !

2, ~2!

with different coupling strengths in the two directions to take
into account the anisotropy of the surface.K2y will be al-
ways assumed to bepositiveand is generally the largest en-
ergy in the problem. The correspondent physics is that it is
very costly to create a kink on a tightly packed~11̄0! row.
The absolute value ofK2x , i.e., of the coupling between
rows, is instead much smaller, since atoms in neighboring
rows are only second bulk neighbors. ForK2x.0, the
(110) surface is stable in its (131) unreconstructed form. If
DH50 we recover the BCSOS model, which is exactly
solved through a mapping to the six-vertex model,17 and
shows asingle transition. This is of the Kosterlitz-Thouless
type, between a low-temperature ordered~unreconstructed!
flat phase and a high-temperature disordered rough phase.
ForK2x,0 the surface becomes unstable against (110̄) step
formation. In this case the final stable state is determined by

more distant interactions, contained inDH. As for DH,
two possible simple choices have been made in the literature,
corresponding to what we will refer to as the ‘‘K3 model’’
and the ‘‘K4 model.’’ TheK3 model has been introduced by
Mazzeoet al.,11 and is defined by

DH~K3!5
K3

2 (
r

@~hr1x1b2hr !
21~hr1x2y1b2hr !

2#, ~3!

with K3>0, andb5(x1y)/2 ~see Fig. 1!. The introduction
of this further-neighbor interaction stabilizes the (231) MR
reconstructed phase.11 In fact, it is very easy to check that
K2x,0, K3.0 stabilizes an ordered succession of up and
down (11̄0) steps, which is precisely the (231) MR state.
An alternative way of stabilizing the same (231) MR state
against (111) faceting is realized with theK4 model, whose
DH reads

DH~K4!5K4(
r

~hr12x2hr !
2, ~4!

with K4>0. The fourth neighbor interaction in thex direc-
tion has the effect, once again, of increasing the energy of
configurations withuhr12x2hru54. This model was origi-
nally proposed by Kohanoff and Tosatti,22 and has been re-
cently studied in detail in Ref. 18. More generally, we could
include both types of couplings by taking

DH5DH~K3!1DH~K4! . ~5!

In subsequent calculations and simulations, the lattice will
be taken to haveNc5Nx3Ny primitive cells, i.e., 2Nx3Ny
sites. Periodic boundary conditions are assumed in both di-
rections. A schematic representation of the lattice and of the
interactions considered is given in Fig. 1.

FIG. 1. Schematic top view of the fcc~110! surface. The two
sublattices,W andB, are denoted by open and solid circles. In the
ideal unreconstructed~110! surface, one of the two sublattices lies
at a distanceaz5ay/2 above the other. The couplings considered in
the model are indicated. Lattice basis vectors are also shown. The
dashed zig-zag lines represent successive row configurations~‘‘time
slices’’! used in the spin-chain mapping.

53 13 171DISORDERED FLAT PHASE AND PHASE DIAGRAM FOR . . .



The classicalT50 ground states for both models are easy
to work out as a function of the dimensionless ratio
K5K2x /K3 or K5K2x /K4 . For both models one finds
thatK.0 corresponds to an unreconstructed ground state
@or (131)#, whereas for24,K,0 the ground state is
(231) MR reconstructed.11 For the sake of completeness,
we mention that, for theK3 model, the ground state degen-
erates into an infinite (111) large facet as soon as
K,24.11 For theK4 model, on the contrary, an infinite
(111) facet sets in only forK,28, and there is a whole
series of intermediate regions@(1228n)/(n21),K

,(2028n)/(n22) with n>3] where the ground state is
(n31) MR reconstructed. In the following we will be inter-
ested exclusively in the region of parameter space where the
interplay between unreconstructed and (231) MR recon-
structed phases takes place, henceK.24.

Neglecting adatoms, vacancies and~as necessary in SOS
models! overhangs, the defects that should play a role in the
disordering and roughening transitions are unbound steps
and bound pairs of steps, i.e., Ising domain walls. Figure 2
illustrates the most relevant defects for both a (131) and a
(231) surface. The ground-state energies of these defects
are given, for both theK3 and theK4 model, in Table I. It is
worth noting that theK3 model has defects whose energy
goes to zero asK2x→0. These are the~231! step and the
~231!* wall in the ~131! case, and the anticlockwise step
and the Ising wall in the~231! reconstructed case. Since this
leads to zero-point entropy, theK2x→0 region is therefore
somewhat unphysical for theK3 model, where one might
expect disorder to occur at very low temperatures.23 As a
second point, we observe that in theK4 model a combination
of two Ising walls wins against combinations involving
clockwise steps forK5K2x /K4.21, while it always wins
against anticlockwise steps. In principle, therefore, a DEF
~wall dominated! phase seems to be plausible for
21,K,0 in theK4 model. Later on we will present re-
sults that show how ground-state defect energy consider-

ations can be somewhat misleading: the disordered phase
obtained does not have the features of an ideal DEF.

III. MAPPING INTO A QUANTUM SPIN- 1
2 CHAIN

An elegant and convenient way of studying the tempera-
ture phase diagram of the classical two-dimensional models
introduced in the previous section consists in mapping them
into one-dimensional quantum problems.19 The general pro-
cedure is well known,19,24,25 but we review it here for our
specific case, and for the reader’s convenience.

The method consists in viewing they direction of the
lattice as the~imaginary! time direction of an appropriate 1D
quantum problem, different row configurations in thex di-
rection being viewed as subsequent time slices for the quan-
tum problem. The physical requirement that will turn out to
be important is that the couplingK2y in the y direction is
strong, while the other couplings are much weaker~strong
anisotropy limit!. The starting point for the mapping is a
transfer matrix formulation of the classical partition function
Z. The notationr5( i , j ) ~andhr5hi

( j )) for the lattice sites
used in the present section is illustrated in Fig. 1: the value of
j , the time-slice index, is the same along each dashed zig-
zag line shown in Fig. 1; within each zig-zag line, theW and
theB sublattices are characterized, respectively, by even and
odd values ofi . The classical partition function is given by

Z5 (
$hi

~ j !%

e2bH5(
h~1!

••• (
h~Ny!

^h~1!uT̂uh~Ny!&•••^h~3!uT̂uh~2!&

3^h~2!uT̂uh~1!&, ~6!

where uh( j )&5$hi
( j ) : i51, . . . ,Ns% is the j th row configura-

tion ~a dashed zig-zag line in Fig. 1, containingNs52Nx

sites!, andT̂ is the classical transfer matrix. Periodic bound-
ary conditions have been used in they direction, and are
understood in thex direction. It is also understood that con-

FIG. 2. Relevant extended defects~steps and
walls! of a (131) and of a (231) reconstructed
surface. The ground-state energies of these de-
fects are given in Table I.e231 is the (231) ~or
monoatomic! step discussed in Sec. V. (231)
steps proliferate in the DF phase, mantaining up-
down long-range order.e231* is a bound pair of
(231) steps, the relevant defect of an unrecon-
structed surface.eCS and eAS are clockwise@or
(331)# and anticlockwise@or (131)# steps.
e Ising ande Ising* are two possible types of domain
walls.
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figurations differing by a uniform shift of the heights should
be included only once in the partition sum. For the models
we are considering, the transfer matrix elements read

^h~ j11!uT̂uh~ j !&5BnnexpH 2bK2y(
i51

Ns

~hi
~ j11!2hi

~ j !!2

2bK2x(
i51

Ns

~hi12
~ j ! 2hi

~ j !!2J , ~7!

whereBnn is the Boltzmann weight contribution due to fur-
ther neighbor interactions. For theK3 model,Bnn is given by

Bnn
~K3!

5expH 2
bK3

2 (
i even

Ns

@~hi13
~ j ! 2hi

~ j !!21~hi13
~ j ! 2hi

~ j11!!2#J
3expH 2

bK3

2 (
i odd

Ns

@~hi13
~ j ! 2hi

~ j !!2

1~hi13
~ j11!2hi

~ j !!2#J , ~8!

whereas for theK4 model the result is

Bnn
~K4!

5expH 2bK4(
i51

Ns

~hi14
~ j ! 2hi

~ j !!2J . ~9!

For the model in which both couplings are present, one
clearly has

Bnn5Bnn
~K3!Bnn

~K4! . ~10!

Notice that in the partition function, Eq.~6!, it is implicitly
assumed that the configurations included have to fulfill the
BCSOS constraintDh561 for nearest neighbors. As a con-
sequence, within each row we must havehi11

( j ) 2hi
( j )561.

Therefore, we can associate to any row configurationuh( j )& a
stateu j & in the Hilbert space of a quantum spin-1

2 chain ~of
lengthNs) by the relationship

uh~ j !&→u j &5uS1 ,S2 , . . . ,SNs&,

Si5
1
2 ~hi11

~ j ! 2hi
~ j !!. ~11!

~In doing so we lose information on the absolute height of
the surface, which is, however, irrelevant in a static context.!
Figure 3 illustrates the explicit mapping of the (131) and
(231) ground states in terms of spin configurations.

The idea is now to reproduce the Boltzmann factors ap-
pearing in the matrix elements of the classical transfer matrix
^h( j11)uT̂uh( j )& by a suitable quantum operatorTQ in the spin
Hilbert space, i.e.,

^h~ j11!uT̂uh~ j !&5^ j11uTQu j &, ~12!

whereu j & andu j11& are the quantum spin states correspond-
ing to uh( j )& and uh( j11)&, respectively. In certain cases, the
exact expression for the quantum operatorTQ can be worked
out quite easily.TQ for the K4 model has been derived in
Ref. 18. The exactTQ is, however, of no practical use, being
a product of noncommuting terms involving spin-1

2 opera-
tors. The crucial step that makes the whole mapping useful is
the so-calledtime-continuum limitor strong anisotropy limit.

Physically, one assumes that the ‘‘time’’ direction coincides
with the ‘‘hard’’ direction of the classical problem, i.e., that
the coupling in they direction is much stronger than the
other couplings. This is plausibly the case for the fcc~110!
surface, where theŷ5(11̄0) direction is hard, and the
x̂5(001) direction is soft, as discussed above. Anisotropy,
moreover, is not expected to play any role in the qualitative
shape of the phase diagram.15

In the strong anisotropy limit the quantum operatorTQ
will reduce to the imaginary-time evolution operatore2tHS

for a suitable HamiltonianHS , with t→0. To findHS , as-
sumebK2y to be large, so thate24bK2y5(J/2)t, t being a
small quantity~andJ of order one!. Assume also all the other
couplings to be small and proportional tot, i.e., bK2x}t,
bK3}t, andbK4}t. We need a spin HamiltonianHS such
that Eq.~12! is verified with

TQ'e2tHS'12tHS1O~t2!, ~13!

up to first order in the small quantityt. A diagonalmatrix
elements ofT̂ reads, using Eqs.~7!–~10!,

^h~ j !uT̂uh~ j !&512bK2x(
i

~hi12
~ j ! 2hi

~ j !!2

2bK3(
i

~hi13
~ j ! 2hi

~ j !!2

2bK4(
i

~hi14
~ j ! 2hi

~ j !!21O~t2!, ~14!

FIG. 3. Schematic height profiles of the two ground states
(U1 denotes white,U2 denotes black! of the unreconstructed sur-
face, and of the four ground states of the (231) missing-row sur-
face. The reconstruction variableu is indicated. The spin represen-
tation of each state, using Eq.~11!, is given explicitly. Notice that
the two unreconstructed ground states correspond to the two pos-
sible Néel states of a spin-12 chain.
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where we have expanded all the exponentials up to first order
in small quantities (}t). The first requirement forHS is that
its diagonal terms must give the same result, i.e., using Eqs.
~13!, ~14!, and~11!,

^ j uTQu j &'12t^ j uHSu j &1O~t2!

5124bK2x(
i

~Si1Si11!
2

24bK3(
i

~Si1Si111Si12!
2

24bK4(
i

~Si1Si111Si121Si13!
21O~t2!.

~15!

An off-diagonalmatrix element ofT̂ must contain a Boltz-
mann factore24bK2y5(J/2)t, for each site i such that
hi
( j11)5hi

( j )62. Therefore, up to first order int we need to
consider only row configurationsh( j11) that differ from
h( j ) only at a single sitei . Let $ . . . ,hi21 ,hi ,hi11 , . . . % be
the local configuration of rowj around such a sitei . It is
easy to realize that, in order to satisfy the BCSOS constraint
with hi

( j11)5hi
( j )62, and hk

( j11)5hk
( j ) for kÞ i , the only

possibility is to havehi21
( j ) 5hi11

( j ) 5hi
( j )61, i.e.,

uh~ j !&5$ . . . ,hi61,hi ,hi61, . . .%

→uh~ j11!&5$ . . . ,hi61,hi62,hi61, . . .% .

In terms of the corresponding spin configurations, this sim-
ply leads to aspin flipof the spins at sitesi21 andi ,

u j &5u . . . ,Si2157 1
2 ,Si56 1

2 , . . . &→u j11&

5u . . . ,Si2156 1
2 ,Si57 1

2 , . . . &.

The correspondingT̂-matrix element reads, up to first or-
der in t,

^h~ j11!uT̂uh~ j !&5e24bK2y@11O~t!#'2t^ j11uHSu j &.
~16!

It is easy to verify, in conclusion, that the correct form of
HS verifying Eqs.~15! and~16! is given, neglecting an over-
all constant, by

HS52
J

2(i51

Ns

@Si
1Si11

2 1Si
2Si11

1 #1(
i51

Ns

@JzSi
zSi11

z 1J2Si
zSi12

z

1J3Si
zSi13

z #, ~17!

where the spin couplings are related to the original couplings
as follows:

tJ52exp~24bK2y!,

tJz58b~K2x12K313K4!,

tJ258b~K312K4!,

tJ358bK4 . ~18!

Indeed, the spin-flip part ofHS reproduces the off-diagonal
matrix element in Eq.~16!, whereas theSzSz terms give rise
to the correct diagonal matrix element in Eq.~15!.

It is well known that this kind of mapping is such that the
free energy per site of the classical problem — given by the
maximum eigenvalue of the transfer matrix — is related to
the ground-state energy per site of the one-dimensional
quantum problem,b f5teGS.

24 The temperature clearly en-
ters through the spin couplings, see Eq.~18!, so that any
genuine singularity of the classical free energy versus tem-
perature can be seen as a ground-state energy singularity for
the quantum problem as a function of the couplingsJz /J,
J2 /J, andJ3 /J. Moreover, temperature averages for corre-
lation functions of the classical problem can be likewise re-
written in the form of ground-state averages for the corre-
sponding quantum correlation function.24 In summary, to
obtain information about the temperature phase diagram of
the classical model one studies theground-state phase dia-
gramof the spin chain model.26

Before entering into the discussion of the phase diagram,
let us clarify that the quantum mapping not only gives the
correctcritical behavior of the transitions~if anisotropy is
not ‘‘relevant’’ in the renormalization-group sense!, but pro-
vides alsoquantitativeresults on the transition temperatures
that are expected to be quite good even if the anisotropy is in
reality only weak. As a simple check of this point, consider
the exactly solvable BCSOS case, whose transition tempera-
ture is given by Ref. 17

e24bcK2y1e24bcK2x51. ~19!

The BCSOS model maps — see Eq.~18! — into the nearest-
neighborXXZ Heisenberg chain, which is known to have a
KT transition at the isotropic pointJz5J.20 Using Eq.~3!,
this readily implies a predicted transition temperaturebc

(Q)

satisfying

e24bc
~Q!K2y54bc

~Q!K2x . ~20!

Figure 4 shows both the exact~solid line! and the quantum
mapping transition temperature~dashed line! for the BCSOS
as a function of the anisotropy ratioK2x /K2y . The results
agree within a few percent even for rather weak anisotropies,
such asK2x /K2y50.2, and remain reasonable all the way to
the full isotropic case,K2x /K2y51.

IV. PHASE DIAGRAMS

A. Phase diagram of the spin-12 chain

The spin chain Hamiltonian corresponding to our modi-
fied BCSOS model is a HeisenbergXXZ model with a
second-neighbor and a~less important! third-neighborSi

zSj
z

coupling

HS52
J

2(i51

N

@Si
1Si11

2 1Si
2Si11

1 #

1(
i51

N

@JzSi
zSi11

z 1J2Si
zSi12

z 1J3Si
zSi13

z #. ~21!
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Qualitatively — and for not too large values of the cou-
plings Jz ,J2 ,J3 — the physics of such a model is closely
related to that of the Heisenberg chain with spin-isotropic
second-neighbor interactions,

H5
J

2(i @Si
1Si11

2 1Si
2Si11

1 #1(
i

@JzSi
zSi11

z 1J2SW i•SW i12#,

~22!

which we will refer to, in the following, as theJ2J2
model.27 Haldane has discussed the qualitative phase dia-
gram of theJ2J2 model in the context of the Luttinger
liquid framework, with special emphasis on the role played
by umklapp processes in the underlying spinless fermion
problem.20 ~For a detailed quantitative analysis see Ref. 28.!
For the spin model in Eq.~21!, the discussion goes along
similar lines. For completeness we will give in Sec. IV C
some details of this analysis based on standard techniques of
one-dimensional systems.20,29

Even a simple mean-field treatment, however, is quite in-
structive about the nature of the ordered phases that are to be
expected. The starting point is to perform a Wigner-Jordan
transformation from spin variables to spinless fermion opera-
tors ci , i.e., Si

z5ci
†ci21/2, Si

15ci
†exp(ip(j,inj). Neglect-

ing constants and terms proportional to the total number of
fermions, the spin model is then rewritten as the following
spinless fermionmodel

HF52t(
i51

N

@ci
†ci111ci11

† ci #

1(
i51

N

@Jznini111J2nini121J3nini13#

5(
k

BZ

ekck
†ck1

1

N(
q

BZ

v~q!r~q!r~2q!, ~23!

where ck5N21/2( je
2 ika jcj , with k belonging to the first

Brillouin zone @2p/a,p/a# ~BZ!, andr(q) is the Fourier
transform of the fermion density operator,

r(q)5(kck
†ck1q . Here ek522tcos(ka) with t5J/2, and

v(q) is the Fourier transform of the interaction potential,
v(q)5Jzcos(qa)1J2cos(2qa)1J3cos(3qa). Since ( iSi

z

5( ini2N/2, zero total magnetization for the spin system
implies half filling for the fermions, i.e., a Fermi surface
consisting of two Fermi points at6kF , with kFa5p/2. In
the absence of interaction (Jz5J25J350, i.e., theXY spin
chain! we have a simple free-fermion problem. The two
Fermi points induce nesting with a wave vector 2kF5p/a, a
hint that the system would tend to open up a gap at the Fermi
surface by developing long-range order~LRO! with wave
vectorp/a and making the averageAk5^ck1p/a

† ck& different
from zero. A standard mean-field factorization of the quartic
term in Eq.~23!, assuminĝ ck1p/a

† ck&Þ0, leads to the fol-
lowing mean-field Hamiltonian~we takea51 from now on!:

HF
MF5(

k

RBZ

ẽk@ck
†ck2ck1p

† ck1p#1@Dkck
†ck1p1H.c.#,

~24!

where ẽk5ek2(2/N)(k8PBZv(k2k8)^ck8
† ck8&, and

Dk5(2/N)(k8PBZ@v(p)2v(k2k8)#^ck81p
† ck8&. Here RBZ

stands for the reduced magnetic Brillouin zone
(2p/2,p/2). Diagonalizing the simple 232 problem ap-
pearing inHF

MF , one readily finds that the ‘‘anomalous’’
average Ak5^ck1p

† ck& is simply related to Dk ,
Ak52Dk /(2Ek) with Ek5Aẽk

21uDku2, and thatẽk andDk

have to obey the self-consistency conditions

ẽk5ek1
1

N(
k8

RBZ

@v~k2k8!2v~k2k81p!#
ẽk8
Ek8

,

Dk52
1

N(
k8

RBZ
1

Ek8
$@v~p!2v~k2k8!#Dk8

1@v~p!2v~k2k81p!#Dk8
* %. ~25!

Let us consider, for definiteness, the caseJ350. Solving the
self-consistency equations~25!, one finds that if
v(p)5J22Jz is sufficiently negative (J2 less than
'0.4Jz), Dk is real and has the formDk5d01d2cos(2k).
Upon increasingJ2 , a transition occurs to a phase in which
Dk is purely imaginary, Dk5 id1sin(k). The transition ap-
pears to be first order in mean field. To understand the mean-
ing of the two phases, consider the average values of the
fermion density ^ni&, and of the bond kinetic energy
^ci

†ci111ci11
† ci&. A simple calculation shows that

^ni&5
1

2
2~21! i

1

N(
k

RBZ
ReDk

Ek
,

^ci
†ci111ci11

† ci&5const1~21! i
2

N(
k

RBZ

sin~k!
ImDk

Ek
.

~26!

The phase withDk real ~small J2) is therefore a 2kF site-
centered charge-density wave~CDW! @i.e., a Néel phase
with ↑↓↑↓ LRO in the spin language, or an ordered fcc~110!
face in the surface language#, whereas the phase at larger

FIG. 4. The exact roughening temperature of the anisotropic
BCSOS model~solid line! and the result obtained by making use of
the mapping onto theXXZ Heisenberg chain~dashed line!, as a
function of the anisotropy ratioK2x /K2y . The inset shows the rela-
tive discrepancy between the two results.
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J2 , with Dk purely imaginary, is a 2kF bond-centered
charge-density wave. We can picture the latter by assuming
that on every other bond the fermions are in a state that
maximizes the kinetic energy of the bond,

Cbond CDW5 )
ieven

~ci
†1ci11

† !

A2
u0&, ~27!

as opposed to the ideal site-CDW state~the Néel state
↑↓↑↓)

Csite CDW5 )
ieven

ci
†u0&. ~28!

The spin interpretation of the bond-centered CDW state is
quite obviously a dimerized spin state with every other bond
engaged in a singlet (↑↓2↓↑).27 Unlike the site-centered
CDW, where every second neighbor is occupied and pays an
energy J2 , a bond-centered CDW reduces the second-
neighbor average occupancy to about 1/2, and is thus fa-
vored upon increasingJ2 . As will be discussed in detail, this
spin dimer phase corresponds to a disordered flat phase in
the surface language. Clearly, for very largeJ2 , the system
will eventually prefer to minimize second-neighbor occupan-
cies by forming a site-centered CDW of double periodicity
~i.e., akF CDW!, which we can picture as

CkFCDW
5 )

i54n
ci
†ci11

† u0&. ~29!

@Such a state corresponds to↑↑↓↓ LRO in spin language, or
a (231) MR reconstructed face in the surface language.#
This phase can be included in a mean-field treatment by al-
lowing, in the factorization of the quartic term, anomalous
averages of the typêck6p/2

† ck&, as well as the previous one
^ck1p

† ck&.
A finite-size scaling study of the spin model readily con-

firms most of the qualitative features of the mean-field phase
diagram. A quantitative phase diagram for the spin model
corresponding to theK3 model, i.e., Eq.~21! with J350, is
presented in Fig. 5. The procedure to obtain such a phase
diagram from a finite-size scaling study of chains up to
N528 sites30 was described in detail in Ref. 18.~See also
Ref. 28.! A similar phase diagram for the spin chain corre-
sponding to theK4 model, i.e., Eq.~21! with J35J2/2, was
presented in Fig. 1 of Ref. 18. For the purpose of a general
discussion, we reproduce in Fig. 6 the essential qualitative
features of the spin chain phase diagram for a generic
J35aJ2 with 0,a<1/2. The model has a spin liquid
XY-like phase at smallJ2 andJz , which corresponds, in the
fermion language, to a spinless Luttinger liquid characterized
by a certain Luttinger exponentK. ~See Sec. IV C for more
details on this discussion.! At a given universal value of the
Luttinger exponent (K51/2), the Luttinger liquid phase be-
comes unstable — because ofumklapp processes— against
two different~gapped! ordered phases, depending on the sign
of the effective coupling of the umklapp term: a Ne´el phase
with ↑↓↑↓ LRO, for largeJz and smallJ2 , and a dimer
phase, for largerJ2 . Both phases have agap in the excitation
spectrum, and adoubly degenerateground state thatbreaks
translational symmetry.20,28 These two ordered phases are

separated by a critical line of continuously varying exponent,
labeledPM in Fig. 6, along which the effective coupling of
the umklapp term vanishes and the system behaves as a Lut-
tinger model with a Luttinger exponent 1/8,K,1/2. Be-
yond the pointM in Fig. 6, the nature of the line changes
from nonuniversal to first order. For even larger values of
J2 the other ordered phase, with spins acquiring↑↑↓↓ LRO
and a fourfold degenerate ground state, wins over the dimer
phase. This is the only feature of Figs. 5 and 6 that is quali-
tatively new with respect to the phase diagram of theJ2J2
model @Eq. ~22!#.31

The nature of the line separating the↑↑↓↓ phase from the
dimer phase is an open issue. Previous studies of theK3
model11 and of the spin chain18 found exponents that ap-
peared to be compatible with the 2D Ising universality class.
Recently, a transfer matrix study of a 2D model closely re-

FIG. 5. Ground-state phase diagram of the Heisenberg chain
with second-neighborSi

zSi12
s coupling. Ground-state degeneracies

are given in square brackets, and the translation of the different
phases in the surface language is explicitly indicated. The (131)
DF line starting at the pointP is continuous, with a variable expo-
nent.

FIG. 6. Qualitative ground-state phase diagram for the Heisen-
berg chain with second- and third-neighborSi

zSj
s couplings, for

J35aJ2 with 0,a<1/2. Ground-state degeneracies are given in
square brackets. The line labeledPM has a variable exponent.
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lated to theK4 model has found exponents that are incom-
patible with Ising.32 Moreover, a transfer matrix study of a
two-component BCSOS model has found deviations from
Ising, possibly related to a crossover to Ising behavior not
accessible by finite-size strips (Nstrip,22), when the critical
line approaches a KT line.33 A definite answer to the nature
of this transition, possibly connected to the presence or ab-
sence of the multicritical pointM in the phase diagram,32

needs further study. In spite of this uncertainty, we will con-
tinue to refer to this line, for convenience, as ‘‘Ising.’’

A second open issue concerns the region of the phase
diagram where the KT line and the Ising line seem to ap-
proach each other. A relevant question, which we have not
been able to answer, is whether the KT and the Ising lines
actually merge, and, if so, what is the nature of the resulting
line.

B. Phase diagram of the modified BCSOS models

The translation of Fig. 5 into a temperature phase diagram
for K3 model, using Eqs.~18!, is shown in Fig. 7.26 The
generic phase diagram of our modified BCSOS model, in the
(T,K2x) plane for given values ofK3 andK4 , is qualitatively
sketched in Fig. 8.23 Four phases are found in a region of
parameters relevant to the unreconstructed and (231) MR
reconstructed case. At very high temperatures, there is a
rough phase. It corresponds, in the spin problem, to the re-
gion close toXY-model point (Jz5J25J350) in which
spin-spin correlation functions decay as power laws at large
distances~the Luttinger liquid or Gaussian model, see Sec.
IV C!. A large-distance uniform term of the type
2K/(2p2n2) in the spin-spin correlation function̂S0

zSn
z& —

see Eq.~41! — implies a logarithmic divergent height-height
correlation function G(n)5^@hn

(0)2h0
(0)#2&, signaling a

rough phase. Indeed, using Eq.~11! and translational invari-
ance of the spin-spin correlation function, one verifies that

G~n!5^@hn
~0!2h0

~0!#2&54 (
i , j50

n21

^Si
zSj

z&

5n18(
i51

n

~n2 i !^S0
zSn

z&5
4K

p2 ln~n!1•••, n→`.

~30!

At low temperatures, corresponding to large values ofJz /J
and/or J2 /J in the spin-chain problem, a (131) and a
(231) ordered phase are present forK2x.0 andK2x,0,
respectively. The (131) and (231) ordered phases corre-
spond, respectively, to↑↓↑↓ and ↑↑↓↓ LRO for the spins
~see Fig. 3!. The other phase appearing in Figs. 7 and 8 is a
disordered flat~DF! phase. It corresponds, in the spin lan-
guage, to the dimer phase~see Sec. V for a more extensive
discussion!. The transition line from the (231) recon-
structed phase to the DF phase is labeled ‘‘Ising,’’ in spite of
the fact that its nature is not completely assessed~see previ-
ous section!. The critical line separating the unreconstructed
phase from the disordered flat phase has variable exponents:
it is thepreroughening line.15 The parameterK appearing in
Eq. ~30! is the Luttinger exponent. In the rough phase
K.1/2. Along the preroughening line correlation functions
still behave as power laws with exponents related toK; Eq.
~30! is still valid, with 1/8,K,1/2.

C. Spinless Luttinger liquid and the variable exponent line

We now discuss in more detail how to extract, using stan-
dard techniques of one-dimensional systems, a qualitative
phase diagram for our spin chain model and some useful
information about the variable exponent line. The reader not
interested in technical details might jump directly to the next
section, where the surface interpretation of the dimer spin
phase is discussed.

The starting point is the spinless fermion model in Eq.
~23!. The low-energy physics of such a model, as long as the
interactions are not too strong, can be conveniently analyzed
by going to the continuum limit,a→0 with Na5L fixed.
One linearizes the fermionic band around the two Fermi
points at6kF , and introduces a right (p51) and a left
(p52) branch of fermions, with fieldscp(x).

34 All the in-
teraction processes in which particles are scattered in the
vicinity of the Fermi points are then classified in the so-
called ‘‘g-ology’’ scheme.29 The resultingcontinuumfermi-
onic modelHF turns out to be a sum of two terms

HF5HLuttinger1Humklapp, ~31!

whereHLuttinger is a spinless Luttinger model,34

HLuttinger5vF (
p56

E
0

L

dx:cp
†~x!@2 ip¹2kF#cp~x!:

1 (
p,p856

@g4dp8,p1g2dp8,2p#

3E
0

L

dx:rp~x!rp8~x!:, ~32!

FIG. 7. Phase diagram for theK3 model, as obtained from the
quantum spin-chain mapping, forK3 /K2y50.025.
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andHumklapp represents the crucialumklapp processes, i.e.,
processes where two fermions are scattered from the vicinity
of one Fermi point to the opposite one,29

Humklapp5g3E
0

L

dx@ :c1
† ~x!c2~x!c1

† ~x!c2~x!:1H.c.#.

~33!

~Umklapp processes would not conserve the momentum for
a general filling: at half-filling, however, momentum conser-
vation is fulfilled modulo a reciprocal lattice vector,
G54kF52p.) HerevF52t5J is the Fermi velocity, and
rp(x)5:cp

†(x)cp(x): is the density operator for thep
branch of fermions.~The :•••: stands for a normal ordering
procedure, as explained in Ref. 34.! Neglecting lattice renor-
malization effects we have, for the Luttinger couplings
g45v(0)5(Jz1J21J3) andg25v(0)2v(p)52(Jz1J3),
whereas the umklapp coupling readsg35v(p)
5(2Jz1J22J3). We stress the important point thatthe
sign of umklapp coupling g3 results from a competition of
Jz and J2. We will see that this fact is crucial to the existence
of a line with variable exponents.

The final step is tobosonizethe Hamiltonian in Eq.~31!.
This is achieved by introducing a bosonic representation of
the fermionic fields34,29

cp~x!5
1

A2pa
hpe

ipkFxeipfp~x!, ~34!

wherea is a short-distance cutoff, andhp5hp
† are Majorana

fermions (hp
251) ensuring correct anticommutation proper-

ties among right- and left-moving fermions. The field
fp(x) is related to the fermion density as follows:

rp~x!5:cp
†~x!cp~x!:5

1

2p
¹fp~x!, ~35!

and is expressed in terms of standard boson operators
bp(q) as

fp~x!5 (
q.0

e2aq/2S 2p

Lq D 1/2@e2 ipqxbp
†~q!1H.c.#.

@Hereq5(2p/L)n, with n integer.# The continuum model
in Eq. ~31! translates, in bosonic variables, into a quantum
sine-Gordon problem28,34

HSG5
vS
2 E0

L

dxFKP21
1

K
~¹F!2G

1
V

~2pa!2
E
0

L

dxcos~A16pF!, ~36!

where we have introduced the canonical field
F(x)5(f11f2)/A4p and its conjugate momentum
P(x)52¹(f12f2)/A4p. The Luttinger model
HLuttinger is equivalent to free bosons i.e., to a massless
Klein-Gordon~or Gaussian! problem (V50).34 K is the cru-
cial parameter governing the low-energy physics of
the problem, vS being the velocity of the sound-
like gapless excitations.34 In weak coupling
we have vS /K5J@11(3Jz1J213J3)/pJ1•••#, and

vSK5J@12(Jz2J21J3)/pJ1•••#. The umklapp term in
Eq. ~33!, rewritten using Eq.~34!, gives rise to the cosine
term, with V522g352(Jz2J21J3)1•••. The
renormalization-group equations for the sine-Gordon prob-
lem are well known,35,28 and have the Kosterlitz-Thouless
form

dK

dl
52Ṽ2~ l !,

dṼ

dl
52@122K~ l !#Ṽ~ l !, ~37!

with Ṽ simply proportional toV. V50 with K.1/2 is a line
of stable fixed points which represent the Luttinger~or
Gaussian! model.V50 with K,1/2, on the contrary, is a
line of unstable fixed points: the smallestVÞ0 will grow
upon renormalization ifK,1/2, the system will ‘‘go to
strong coupling’’ and develop a gap in the excitation spec-
trum.

At the XY point, vS5vF5J andK51. For small values
of the couplingsJz ,J2 ,J3 the exponentK is larger than 1/2
and the umklapp term is irrelevant,V→0. This region cor-
responds to aspin liquid. The large distance behavior of the
correlation functions is characterized by power laws with
exponents related toK. For instance, spin-spin correlations
such as ^S0

zSn
z& are related~recall that Si

z5ni21/2) to
density-density correlations of the spinless fermions
^n(0)n(x)&. The density operator has a continuum limit ex-
pression of the type

n~x!;@r1~x!1r2~x!#1@c1
† ~x!c2~x!1H.c.#

5
1

Ap
¹F~x!1

1

pa
sin@A4pF~x!12kFx#. ~38!

Using the fact that correlation functions of the bosonic field
are simple to calculate for the Gaussian model (V50), i.e.,

G~x!5^F~x!F~0!2F2~0!&V505
1

4p
ln

a2

a21x2
, ~39!

^eigF~x!e2 igF~0!&V505eg2G~x!5F a2

a21x2G
g2/~4p!

,

~40!

it is simple to show that

^n~0!n~x!&52
K

2p2x2
1A

cos2kFx

x2K
1•••, ~41!

A being a nonuniversal constant.
Increasing the values of the couplings, the spin liquid

phase becomes unstable, atK5 1
2, against two different

gapped phases, depending on the sign of the umklapp term
V. For V.0 ~large values ofJz) the strong-coupling fixed
point is characterized by a fieldF, which is frozen at a value
such that cosA16pF521, i.e.,A4pF5p/2. It is then clear
that density-density correlations acquire LRO, since from
Eq. ~38! we get

^n~0!n~x!&;sin~p/212kFx!5cos~2kFx!
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signaling a site-centered 2kF charge density wave. In the
spin language this corresponds to a Ne´el phase with↑↓↑↓
LRO. For V,0, on the contrary, the strong-coupling fixed
point is characterized by a fieldF, which is frozen at the
value F50 ~or 2p). To guess what correlation functions
acquire LRO, notice that the canonical transformation
cp→e2 ipp/4cp changes the sign of the umklapp term in Eq.
~33!, ~Ref. 20! ~in boson language this corresponds to
A4pF→A4pF1p/2). Knowing that the 2kF component
of the density operator acquires LRO in the Ne´el phase
(V.0), we immediately conclude that the operator having
LRO for V,0 reads

i @c1
† ~x!c2~x!2H.c.#;

1

pa
cos@A4pF~x!12kFx#.

~42!

An operator whose continuum limit 2kF component is given
by Eq. ~42! is readily found to be the bond kinetic energy
(ci

†ci111ci11
† ci). The strong-coupling phase obtained for

V,0 is therefore abond-centered charge-density wave, to
be contrasted to thesite-centeredCDW obtained forV.0. In
spin language, this bond-centered CDW is aspin dimer
phase.

Separating the Ne´el (V.0) from the dimer phase
(V,0) is the line of unstable fixed points (V50 with
K,1/2) mentioned above. Along this line (PM in Fig. 6!,
the system behaves as an effective Luttinger~or Gaussian!
model with 1/8,K,1/2. If K,1/8, cosine terms of the type
V8cos(2A16pF) — formally coming from higher order um-
klapp processes involving four-particle scattering — become
relevant and open up a gap. The nature of the transition line
changes to first order. Correlation functions behave as power
laws along the linePM. Density-density correlations, for
instance, are still given by Eq.~41!. All the critical exponents
along theV50 line are known in terms ofK. The correla-

tion function exponent follows directly from Eq.~41!, i.e.,
h52K. The gap between the ground state and the first ex-
cited state goes like29

D5
1

j
;uVu1/~224K !,

implying a correlation-length exponentn51/(224K). The
order parameter exponent is given byb5nK. The specific-
heat exponent isa5222n5(228K)/(224K).

V. THE SPIN DIMER PHASE AND ITS SURFACE
INTERPRETATION

In the spin dimer phase, ordinary spin-spin correlations
decay exponentially to zero, but four-spin correlation func-
tions of the typê (SW i•SW i11)(SW j•SW j11)& acquire LRO.

20More
specifically, everywhere inside the dimer phase in Figs. 5
and 6, one has

Sj
zz5^S0

zSj
z&→0, j→`,

Sj
dim5^~S0

zS1
z!~Sj

zSj11
z !&'A1B~21! j , j→`. ~43!

This is illustrated in Fig. 9, where we show the size depen-
dence of various static structure factors at the point
(Jz53J,J252.4J,J350). These values are obtained from
exact diagonalizations of chains up to 28 sites. The solid
squares represent the dimer static structure factor atq5p

Sdim~q5p!5(
j
eip jSj

dim , ~44!

whereas the open squares and the stars represent, respec-
tively, the p/2 andp component of the ordinary spin-spin
structure factor. Clearly,Sdim(q5p) divergeslinearly with
the length of the chain~see inset of Fig. 9!, implying long-
ranged oscillations of the corresponding correlation function,
whereas the usual spin-spin structure factor is finite.

FIG. 8. Qualitative phase diagram for the modified BCSOS
model in Eq.~1! for fixed values of the couplingsK3 andK4 .

FIG. 9. Finite-size behavior of different structure factors at the
point Jz /J53.0 andJ2 /J52.4 in the dimer phase:Sdim(p) ~solid
squares!, Szz(p) ~crosses!, andSzz(p/2) ~open squares!. The inset
shows a logarithmic plot of the dimer structure factor, together with
a dashed line of slope 1, for comparison.

53 13 179DISORDERED FLAT PHASE AND PHASE DIAGRAM FOR . . .



To illustrate in more detail some of the physics of this
disordered spin state, and its translation into the surface lan-
guage, we consider a representative dimer phase point. As it
happens, there is a special point in the phase diagram of the
J2J2 model@Eq. ~22! with Jz5J52J2#, where the twofold
degenerate exact ground state is exactly known,36 and ex-
tremely simple: it is just a product of spin singlets. Explic-
itly, for any finite ~even! sizeN the two ground states, which
turn into one another by translation of a lattice spacing, are

uC1&5u12&u34&•••uN21N&,

uC2&5u23&u45&•••uN22N21&uN1&. ~45!

Here u i j &5u↑↓2↓↑&/A2 denotes a singlet between sitesi
and j . Equation ~27! is just the spinless fermion translation
of C2 . Some of the properties of these prototype dimer
states, which we are going to illustrate, have been discussed,
in connection to the DF phase problem, in Ref. 15. Obvious
properties ofuC1& are, for instance, that spin-spin correla-
tions are extremely short ranged,

^C1uSj
zuC1&50, ; j ,

^C1uSi
zSj

zuC1&50, u i2 j u.1, ~46!

and that translational invariance is spontaneously broken,

^C1uS2 j21
z S2 j

z uC1&521/4,

^C1uS2 j
z S2 j11

z uC1&50. ~47!

In spite of this order parameter, such states are clearly spin
disordered. (131) order for the surface, for instance, trans-
lates into Ne´el LRO for the spin chain~see Fig. 3!, whereas
a dimer state has only short-range spin-spin correlations. To
see why they describe aflat surface, consider expanding the
product of singlets in Eq.~45! for uC1&, say. One obtains the
sum of 2(N/2) spin configurations, one of which will be of the
typical form

~↑↓ !~↑↓ !~↓↑ !~↓↑ !~↓↑ !~↑↓ !~↑↓ !•••. ~48!

Here we have taken the (↑↓) part of the singlet for the first
two pairs of sites, the (↓↑) part of the singlet for the next
three pairs of sites, and so on. Adown (231) step~i.e., a
pair of neighboring down spins, see Fig. 2! is obtained each
time a (↓↑) pair follows immediately after a (↑↓) one, and,
vice versa, anup (231) step ~a pair of neighboring up
spins! results from a (↑↓) pair following a (↓↑) one. In
between steps, there are regions with Ne´el type of order~un-
reconstructed regions in the surface language!. Clearly, there
is no way of having two up steps~or two down steps! fol-
lowing each other: a step up is followed necessarily by a step
down and vice-versa. The surface is thereforeflat.15

In the dimer phase there are characteristic correlations
between steps that are worth stressing. An up~down!
(231) step ending at sitej is ‘‘measured’’ ~see previous
discussion! by the spin operator

stepj
65~Sj21

z 61/2!~Sj
z61/2!,

counting, respectively,↑↑ (step1) and↓↓ (step2) combina-
tions at sites (j21,j ). An operator counting a step, irrespec-
tive of its being up or down, is given by

stepj5stepj
11stepj

252~Sj21
z Sj

z11/4!. ~49!

One can easily work out correlation functions for such step
operators in the representative dimers states. For oddj , for
instance, one finds

^C1ustepj
1stepj1n

1 uC1&55
1

4
if n50

1

16
if n.2 and even

0 otherwise,

^C1ustepj
1stepj1n

2 uC1&55
1

8
if n52

1

16
if n.2 and even

0 otherwise,

^C1ustepjstepj1nuC1&55
1

2
if n50

1

4
if n>2 and even

0 otherwise.
~50!

Similar results apply toC2 for the case of evenj . It is
interesting to see how closely a point inside the dimer phase
of Fig. 5 resembles such an ideal scenario.37 Figure 10 shows
step-step correlationŝstepjstepj1n& obtained from exact di-
agonalization of a chain of 28 sites, for a point inside~a! the
dimer phase (Jz53.0J,J252.4J,J350), and ~b! the Néel
phase (Jz53.0J,J25J350). In the Néel phase,↑↑ and↓↓
steps are bound in pairs, and the correlation function decays
exponentially to the square of the step concentration, shown
by a dashed line in Fig. 10~b!. The relevant defect is there-
fore the domain wall denoted bye231* in Fig. 2. In the dimer
phase, on the contrary,↑↑ and ↓↓ steps are unbound, and
free to move in a fluidlike manner, but their correlation func-
tion displays long-ranged oscillations with periodp. In other
words, the fluid of~roughly! alternating up and down steps
has the feature that steps prefer to stay at an even distance
from each other. In the neighboring (231) phase, this fluid
of 231 steps solidifies into an ordered structure of the type
↑↑↓↓. We stress the fact that the oscillations displayed in
Fig. 10~a! are not due to (231) order; the point considered
is, as demonstrated in Fig. 9, disordered.

Step-step correlations of the type shown are simple mani-
festations of the spontaneous breaking of translational invari-
ance. Similar~and related! effects can be seen in other prop-
erties of the disordered surface. Suppose we want to count, in
the surface terminology, the difference in the number of
white and black local maxima in the surface. We restrict first
our considerations to sites that are local maxima when con-
sidered in thex direction only. In the spin language, a local
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‘‘maximum’’ at site j occurs whenever the sitej21 has spin
↑ and the sitej has spin↓. An operator that ‘‘counts’’ the
maximum atj is therefore (Sj21

z 11/2)(1/22Sj
z). The differ-

ence between white~even j ) and black~odd j ) maxima is
therefore measured by the order parameter

PBW
~spin!5~2/N!(

j
eip j~Sj21

z 11/2!~1/22Sj
z!.

PBW
(spin) is odd under translation. Its value is 1 on the Ne´el

state u↑↓↑↓•••&, and 21 on the other Ne´el state
u↓↑↓↑•••&. Quite generally, it is different from zero in the
whole Néel phase of the spin phase diagram. Consider now
the value ofPBW

(spin) on the dimer stateuC1&. Using the el-
ementary results in Eq.~46! and ~47!, we arrive at

^C1uPBW
~spin!uC1&52

2

N(
j
eip j^C1uSj21

z Sj
zuC1&5

1

4
.

~51!

Similarly, ^C2uPBW
(spin)uC2&521/4. Therefore, the implica-

tion of the dimer scenario, with its spontaneous breaking of
translational symmetry, is that, on the disordered flat surface,
one of the two sublattices tends to dominate in the local
maxima.

One can check this prediction by Monte Carlo simulations
of the original classical models. In the next section we will
present the results of our simulations for theK3 and theK4
model. The results strongly support the dimer phase sce-
nario.

VI. MONTE CARLO RESULTS AND DISCUSSION

We have performed classical Monte Carlo simulations of
theK3 andK4 model in the DF phase. We have measured, to
start with, standard quantities such as the square mean width
of the surface,dh2,

dh25K 1

8Nc
2 (
r ,r8

~hr2hr8!
2L , ~52!

the (131) order parameter,P131 , and the (231) recon-
struction one,P231 ,

P1315K 1

Nc
(
r
hre

iG•rL 5K 1

Nc
(
rPW

@hr2hr1b#L ,
P2315K 1

2Nc
(
r
hre

iG•r /2L . ~53!

HereNc is the number of cells in each sublattice~i.e., 2Nc is
the number of atoms!, andG5(2p/ax) x̂. The square mean
width dh2 diverges logarithmically in the rough phase as the
size of the sampleL→`

dh2'K~T!lnL,

with a coefficientK(T) larger than a~universal! minimum
valueK(TR)51/p2 attained at the roughening temperature.
P131 is different from zero only in the unreconstructed re-
gion of the phase diagram and goes to zero at the prerough-
ening line.P231 is different from zero in the reconstructed
region of the phase diagram and goes to zero at the Ising
line. Clearly, the DF phase hasP13150, P23150, and
dh2,`. On the basis of the spin mapping and of the dimer
phase scenario we expect, however, that some form of order
will be present: one should be able to tell which of the two
sublattices (W or B) prevails in the top layer. A way of
testing this is to define the ‘‘local peak’’ operator

Or5
1

16)
i51

4

@Dhr ,i11#, ~54!

whereDhr ,i5hr2hr1bi
andbi with i51, . . . ,4 are thevec-

tors connecting a chosen site to its four nearest neighbors
~belonging to the opposite sublattice!. Or takes the value 1
for the atoms lying above all their neighbors, and zero oth-
erwise. Summing over all the sites with a phase factor 1 for
theW sites and21 for theB ones, we get a quantity mea-
suring which sublattice prevails in the top layer,

FIG. 10. (231) step-step correlations, see
Eq. ~49!, for a chain of 28 sites,~a! at the point
(Jz53.0J,J252.4J,J350) inside the dimer
phase, and~b! at (Jz53.0J,J25J350) inside the
Néel phase. For the ideal dimer stateC1 , see Eq.
~50!, the correlation function would oscillate be-
tween the values 0 and 1/4@the dashed line in
~a!#. Inside the Ne´el phase the correlation func-
tion decays exponentially to the square of the step
density, denoted by the dashed line in~b!.

53 13 181DISORDERED FLAT PHASE AND PHASE DIAGRAM FOR . . .



PBW5K 1

Nc
(
r
eiG•rOrL . ~55!

As defined,PBW is normalized to 1 on the unreconstructed
ground states, and to 1/2 on the reconstructed (231) ground
states.38 Our expectation is thatPBW is different from zero in
the disordered flat phase, and vanishes in the rough region
and on thepreroughening line. ~See Fig. 15.!

A classical grand-canonical single-move Monte Carlo
code has been set up and used for lattices of linear size
L5Nx5Ny up to 100. Starting from a disordered surface, we
randomly add or remove particles, making sure that the BC-
SOS constraint is fulfilled at each step, and accept moves
according to the standard Metropolis algorithm. The configu-
rations resulting from consecutive sweeps of the lattice
(2L2 attempted moves! are quite correlated, so that indepen-
dent values for the various averages are obtained as a result
of a sufficiently large number of Monte Carlo sweeps. It is
on the basis of such ‘‘independent measurements’’ that sta-
tistical errors are estimated. Typically 20 to 50 such mea-

surements are performed, each of which consists of
1052106 sweeps, after a suitable equilibration of the system.

For theK3 model, we used the parameters of Mazzeo
et al., roughly chosen to fit the glue model results of Erco-
lessi, Parrinello, and Tosatti39 for gold: K2x /K2y520.51,
K3 /K2y50.22 ~i.e.,K522.3). An Ising-type deconstruc-
tion transition has been reported to take place at
TD'2.90K2y , while a Kosterlitz-Thouless roughening tran-
sition has been found atTR'3.09K2y .

11We have performed
a careful finite-size scaling analysis of the different order
parameters at the intermediate temperatureT53.0K2y .

The surface is still flat at this temperature, as demon-
strated in Fig. 11, showing thatdh2 versus lnL stays defi-
nitely below the universal critical slopeK(TR)51/p2, which
implies that dh2 will eventually saturate to a constant as
L→`. Figure 12~a! shows the results obtained forP231
~solid circles!, andPBW ~diamonds!. The squares denote a
further order parameter used by Mazzeoet al.,11

PBW
~231!5K 1

4Nc
F (
rPW

uSru2 (
rPB

uSruG L , ~56!

where the classical ‘‘spin’’ variablesSr are defined in terms
of the nearest-neighbor height differences as

Sr5(
i51

4

Dhr ,i . ~57!

P231 vanishes asL21, see inset of Fig. 12~a!, confirming
that T53.0K2y is above the deconstruction temperature
TD , in agreement with Ref. 11. BothPBW and PBW

(231) de-
crease, instead, much slower thanL21. Figure 12~b! shows
the logarithm ofPBW versus lnL. The data for small sizes
(L up to 48! can be fit with a power lawL20.37. For larger
values ofL, a crossover is seen to what is most probably an
exponential convergence toa nonzero limit for PBW . In
other words, systems up toL548 are still smaller than the
actual value of a correlation lengthjBW , so that a fictitious
power-law behavior is initially seen. A similar behavior is
also found forPBW

(231) .

FIG. 11. Finite-size scaling of the height fluctuations, Eq.~52!,
for theK3 model atK2x /K2y520.51,K3 /K2y50.22,T/K2y53. A
line with the critical slopeK(TR)51/p2 is also shown, indicating
that the surface is smooth at this point.

FIG. 12. ~a! Finite-size scaling ofP231 @the
reconstruction order parameter, Eq.~53!, full
circles#, PBW @Eq. ~55!, open diamonds#, and
PBW
(231) @Eq. ~56, open squares# for theK3 model

at the same point considered in Fig. 11. The inset
shows thatP231 vanishes as the inverse of the
linear sizeL of the lattice. The surface is thus
deconstructed.~b! Log-log plot of the finite-size
behavior ofPBW , showing the saturation to a
nonzero value forL→`. The surface is in a dis-
ordered flat state.
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The corresponding results for a point inside the DF phase
of the K4 model (K4 /K2y50.1, K2x /K2y520.056, and
T/K2y52.3) are shown in Fig. 13. Entirely similar com-
ments apply to this case.

The point in theK4 model phase diagram to which Fig. 13
refers, is in fact located close to the preroughening line.18 A
typical snapshot of the way this disordered flat surface looks
at this temperature is shown in Fig. 14. Strictly speaking we
are in a parameter region where the classical ground state is
(231) MR reconstructed and the most energetically favored
defects areIsingwalls ~see Table I!. However, Ising walls in
their ideal form~see Fig. 2! are almost totally absent. What
one finds, instead, are extended walls of the Ising type with a
width of arbitrary length. These are nothing but large
(131) unreconstructed regions lying between two opposite
(231) steps. Such (231) steps, which are the very building
blocks of a MR structure, are now free to move in a fluidlike
manner with the only constraint that an upstep is followed by
a downstep. Occasionally, sequences of up-down (231)
steps gain positional order by ‘‘solidifying’’ in (231) MR
regions, which are, however, always of the same ‘‘color’’
~more precisely, black, for the phase illustrated in Fig. 14!.
Overall, the surface seems to have as many black regions as
white ones: theP131 order parameter, which counts pre-
cisely the relative abundance ofW andB (131) elementary
cells, is small, and goes to zero in the thermodynamic limit.
Correlations between steps, however, or, in more elementary

terms, the fact that every (231) step always ends intoB top
atom, result in the above-mentioned feature of the absence of
white MR regions, and are such thatPBW turns out to be
different from zero, albeit small. Altogether Fig. 14 is a nice
illustration of how a dimer disordered flat phase should look.

These features should be of some relevance in the context
of surface scattering experiments. We discuss here the case
of He scattering. In the kinematical approximation, and
within a SOS framework, the intensity of the specular peak
~parallel momentum transferQ'0) with perpendicular mo-
mentum transfer in the so-called antiphase configuration is
given by

I ~Q,qz5p/az!}U K (
r
eiphra rL U2dQ,01NsiteskBTx~Q!,

~58!

wherea r is an appropriate ‘‘shadowing factor,’’ which takes
into account the physical requirement that surface peaks scat-
ter more than valleys.40,11The first term is a~Bragg! coherent
contribution, proportional to the square of the order param-
eter and of the number of sites. The second contribution, due
to incoherent terms, is proportional to the susceptibility of
the order parameter and to the number of sites. For our BC-
SOS type of model, in whichhr is even in theW sublattice,
and odd in theB sublattice, one immediately concludes that
eiphr5eiG•r for any allowed height configuration. The coher-

FIG. 13. Same as in Fig. 12, for a point inside
the disordered flat phase of theK4

model (K2x/K2y520.056, K4/K2y50.1,
T/K2y52.3).

FIG. 14. Snapshot of a surface configuration
as generated by the Monte Carlo simulation for
theK4 model at the same point considered in Fig.
13, inside the~dimer! disordered flat phase.
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ent part of the specular antiphase peak
I coh(Q50,qz5p/az) would therefore be identically zero if
all the surface atoms were to scatter in the same way
(a r51 for all r ). In the opposite assumption that only the
local peaks scatter efficiently (a r51 if r is a local peak,
a r50 otherwise!, we obtain thatI coh(Q50,qz5p/az) is ex-
actly proportional to the square of thePBW order
parameter:12

I coh~Q50,qz5p/az!}Nsites
2 uPBWu2. ~59!

Quite generally, for a reasonably large class of choices of
shadowing factorsa r , the breaking of translational invari-
ance should guarantee thatI coh(Q50,qz5p/az) is different
from zero~albeit possibly small! in the DF phase considered
here.~More precisely, this is so for all the shadowing factors,
which can be written in terms of local operators of thehr
variables, whose correlation function is long ranged in the
DF phase.!

Experimentally, a dimer type of disordered flat phase
would manifest itself with a rapid fall of the antiphase scat-
tering as the critical temperature is approached, followed by
an intermediate temperature region, where the surface is in
the disordered flat phase, in which asmall coherent an-
tiphase scattering intensity survives. This situation is
sketched in Fig. 15. By normalizing the scattering intensity
to its low-temperature value, a dip at the critical temperature
should be observable even if one considers the total scatter-

ing intensityI (Q50,qz5p/az), which includes the incoher-
ent contributions.~Strictly speaking, these contributions are
proportional to the susceptibility which diverges at the criti-
cal temperature asL22h, whereL is the size of the system.
SinceL25Nsites, the incoherent contributions will never win
over the coherent part (}N sites

2 ) and an overall dip should be
observable in the normalized scattering intensity at the criti-
cal temperature.! Clearly, an important requirement for the
dimer scenario, which one should test experimentally, is that
the dominant defects proliferating on the disordered flat sur-
face are indeed monoatomic, or (231), steps. The correla-
tions of such monoatomic steps are, at least in principle, also
accessible by direct imaging techniques, such as fast STM.41

We mention here, before ending the section, a particularly
simple choice of shadowing factors, proposed in Ref. 40,
which does notinvolve long-ranged operators:

a r522
nr
2
,

wherenr is the number of neighbors of the atom inr that are
found at a level higher than the atom itself. This expression
linearly interpolates betweena52 ~local maximum! and
a50 ~local minimum!, and can can be recast in the form

a r512
1

4(i51

4

@hr1bi
2hr#,

wherebi are the vectors connecting siter to the four neigh-
boring sites. Indeed, by exploiting this linearity, it is very
simple to show that such a choice ofa r leads to a
I coh(Q50,qz5p/az), which is proportional to the square of
the (131) order parameterP131 @see Eq.~53!#,

I coh~Q50,qz5p/az!}U K (
r
eiG•rhrL U25Nc

2uP131u2, ~60!

and therefore vanishes at and beyond the preroughening line.
Therefore, experimental scattering geometries should be cho-
sen so as to emphasize peak-atom scattering, if the non
monotonic behavior of Fig. 15, typical ofPBW , is to be
detected.

VII. CONCLUSIONS

The motivation for the present work was a deeper under-
standing, based on well-defined Hamiltonians, of the nature
of the disordered flat phase~or phases! occurring in simple
lattice models of fcc~110! surfaces. In particular, for recon-
structed surfaces, in the spirit of the distinction proposed in
Ref. 12 between a DEF~Ising wall dominated! phase as op-
posed to a DOF~step dominated! phase, we wished to clarify
which of the two scenarios was at play in simple BCSOS-
type models. The outcome of our study is that neither of
those simple prototypes applies, strictly speaking, to the de-
scription of the disordered flat phase we find, which is, on
the contrary, closely related to the dimer phase of one-
dimensional quantum spin-12 systems.

The phase diagram in Fig. 8, very similar to the one dis-
cussed in Ref. 32, shows many features that we believe to be
quite robust: First, a transition between the (231) MR re-
constructed phase and the DF phase with exponents that ap-
pear to be very close to Ising.~Although the actual nature of

TABLE I. Ground-state energy of the defects shown in Fig. 2
for theK3 andK4 models.

K3 model K4 model

e231 4K2x 4K2x18K4

e231* 8K2x 8K2x18K4

eCS 2K2x18K3 2K2x18K4

eAS 22K2x 22K2x18K4

e Ising 24K2x 24K2x18K4

e Ising* 4K2x116K3 4K2x116K4

FIG. 15. Sketch of the expected behavior of thePBW order
parameter@Eq. ~55!#, proportional to the antiphase scattering inten-
sity, as a function of temperature when the preroughening line is
crossed.
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the line is an open issue, see end of Sec. IV A.! Second, the
transition line between the unreconstructed and the DF phase
~preroughening! has variable exponents, as was predicted.15

Third, the disordered phase has a nontrivial order parameter
PBW . It is quite remarkable that both the microscopic mod-
els discussed here and the cell model of Ref. 9 point in the
same direction, to a disordered flat phase that has a nonvan-
ishing order parameter of the type ofPBW . We recognize
that such a feature is also present in the phase diagram of
Ref. 32.

The obvious open question is whether the disordered
phase discussed above is the only one possible. In other
words, can we build microscopic models where defects other
than (231) steps play a role and the resulting disordered flat
phase~or phases! has qualitatively different features ?

The discussion has to consider separately, at this stage,
the case of semimicroscopic cell-type models9 from that of
fully microscopic surface models. In the former framework
of a coarse-grained description of the system, as the four-
state clock-step model of den Nijs,9 the stage is clear and the
actors are there: walls and steps. Since white atoms stay on
top in regions where the reconstruction variableu is 0 or
p, and black atoms do so in regions whereu is p/2 or
3p/2, the PBW order parameter has to be nonzero in the
disordered flat phase of this model, which could therefore be
called DEF. Indeed, the disordering transition resulting in a
DEF phase is mostly promoted by walls, which involve a
change ofp for u on either side of the defect. On the con-
trary, PBW is expected to vanish in a hypothetical DOF
phase, since in this case the relevant defects are steps, which
involve a change of6p/2 for u.12 The four values ofu
should appear with the same probability in such a disordered
phase, and there is no way of telling which ‘‘color’’ prevails
in the top atoms.

The question of possibly finding a DOF phase in the sense
of Ref. 12 in a model of the clock-step type deserves, how-
ever, a few comments. Suppose that steps were indeed the
most energetically favorable objects in the problem,
Es!Ew , and imagine desiring a stable DOF phase, i.e., pre-
venting the appearance of steps from making the surface im-
mediately rough. The natural way of doing this is to assign
vertex energies to the crossing of steps, in such a way as to
disfavor the crossing of parallel stepswith respect to anti-
parallel ones.15 This is indeed the standard mechanism by
which a DOF is stabilized in the context of restricted SOS
models for simple cubic~100! surfaces. Such six-vertex en-
ergies have been neglected by den Nijs in deriving the zero-
chirality limit phase diagram for the clock-step model.9 It is
therefore an appealing suggestion, deserving further study,
that their proper inclusion might open up the possibility of a
genuine DOF phase in the model.12

Microscopic SOS models are in many ways attractive, at

first sight, as far as stabilizing a DOF is concerned: they
automatically tend to disfavor crossing of parallel steps that
involve large height differences. Moreover, tuning the model
parameters offers, in principle, the possibility of making
stepsor walls more favorable, at least as far as theirT50
energy is concerned. Things are, however, not so straightfor-
ward in practice. Consider, as a remarkable counterexample,
the case of theK4 model. When21,K2x /K4,0, the
ground state is (231) MR reconstructed, and simple Ising
wall defects are energetically more favorable with respect to
all kinds of steps ~see Table I!. A value of
K2x /K4520.56, which we considered in one of the simu-
lations, would have seemed therefore a quite promising can-
didate for a DEF phase. What we end up with instead is a
situation quite well represented by the snapshot in Fig. 14.
The state of the system looks as predicted for a dimer spin
state. We clearly see that there are large regions in which the
surface looks unreconstructed~with either theW or the B
sublattice on the top layer!, separated by (231) steps, form-
ing a fluid with up-down order but without positional order.
It is worth stressing that the relevant objects in such a disor-
dered phase — the (231) steps — are the most natural
defects of theunreconstructedsurface, and the very building
blocks of the neighboring MR reconstructed surface@which
can be seen as a solid of alternating (231) steps#. The result
of tailoring theT50 defect energies in such a way as to
promote an Ising wall dominated DEF phase ends up with an
amusing realization of a dimer state instead.

In conclusion, we believe that a dimer phase type of dis-
ordered flat phase is a natural candidate in systems with a
BCSOS type of symmetry such as the fcc~110! surfaces
considered in this work. Experimental signatures of such a
scenario would be the detection of a rapid fall of the an-
tiphase scattering intensity as the critical temperature is ap-
proached, followed by an intermediate temperature region
~before roughening! in which the dominant defects are
monoatomic steps, and where a small coherent antiphase
scattering intensity survives.
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