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Theory of polariton photoluminescence in arbitrary semiconductor microcavity structures
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A quantum theory of quantum well polaritons in semiconductor microcavities is developed. The model takes
into account the coupling between the exciton level and the structured continuum of electromagnetic modes
relative to the particular geometry of the microcavity. A general equation for the polariton dispersion is
obtained as a function of the cavity and exciton parameters. The equation is valid in both weak and strong
coupling regimes and reproduces the existing measurements of microcavity polariton dispersion. A model for
the polariton luminescence is then derived from the theory. It is possible to define a polariton decay rate only
when the resonances in the polariton density of states can be considered as quasimodes. The two limiting cases
of very weak and very strong coupling regimes are consequently identified. In these cases the polariton
radiative probabilities are derived for light emitted on the left and right sides of the microcavity separately. The
influence of the microcavity structure on the polariton dispersion and radiative rates is discussed and in
particular the role of the microcavity leaky modes is described in detail. A discussion of the luminescence
mechanism in the intermediate coupling case is also presented.

I. INTRODUCTION of the optical properties of QW’s in MC'’s also appeared in
the literature. Early theoretical work¥ used the Fermi
Nowadays, the physics of semiconductor microcavitiegyolden rule to calculate radiative recombination rates of ex-
(MC’s) has become a widespread research field.fact, citations in MC’s. The golden rule describes the coupling of
when a quantum wellQW) is placed in a MC, dramatic a discrete level to a continuum in first order perturbation
changes in the intensity of the optical response, the energy dheory? Its validity is limited to the cases when the interac-
the optical transitions, the radiative lifetimes, and the emistion matrix element between the discrete level and the con-
sion patterns are produced. All these changes appear astinuum is small compared to the energy broadening of the
consequence of the strong energy dependence and anisotrogntinuum density of states. In the MC case the discrete level
of the optical density inside a MC. Clearly, this density de-is the material excitatiofQW excitor) and the continuum is
pends on the particular shape of the MC dielectric structureconstituted by the eigenmodes of the cavity electromagnetic
Therefore a control on the optical response is achieved bfield. Since the density of states of the electromagnetic field
tailoring the geometry of the MC. A whole range of possi-in vacuum is flat, the Fermi golden rule works well in the
bilities for the design of light-emitting devices is thus case of a free-standing QW. In MC'’s this density of states
opened. In addition, the study of such systems is also intetsecomes peaked around the cavity resonance. Moreover, the
esting from a more fundamental point of view. In fact, thedipole matrix element is proportional to thacal density of
investigation of these modified optical properties in both fre-states, defined as the product between the density of states
guency and time domains allows a better understanding adnd the normalized amplitude of the electromagnetic field at
the dynamics of excitations in confined systems. the QW position. Still, the Fermi golden rule applies if the
Several experiments have been performed in order tavidth of the cavity mode is larger than the interaction matrix
characterize these structures. The early works by Weisbuoblement. This situation is called the weak coupling regime.
et al? and Yokoyamaet al® contain experimental evidence In the opposite case the interaction is no longer described by
of the modified optical response of cavity-embedded QW'sa purely dissipative process and the Fermi golden rule does
Following these works, several experiments have been penot apply. In this strong coupling regime, the decay of the
formed on MC systems. Houdet al? studied the lumines- exciton is no longer of exponential nature, and the energy is
cence of QW excitons in a MC as a function of the emissionexchanged between the exciton and the cavity mode several
angle and of the detuning between the exciton energy and thtemes before being dissipated outside the cavity.
cavity mode. The possibility of varying the detuning by In both cases, the most suitable description of the exciton-
means of an applied electric field or by varying the temperaradiation interaction in MC'’s is provided by a polariton for-
ture was proved by Fishat al® Tignon et al® have shown malism. Polaritons are the mixed exciton-radiation states ob-
the effect of Landau quantization of the carrier free motiontained by diagonalizing the total Hamiltonian including the
by measuring reflectivity spectra under a strong axial magexciton-radiation interaction. Polaritons were first introduced
netic field. Finally, time-resolved measureméfitsave been for bulk semiconductors> where the full translational sym-
carried out in which the dynamics of the luminescence prometry implies conservation of the wave vector in the exciton-
cess has been investigated. A nhumber of theoretical modefshoton interaction. Thus only one photon mode is coupled to
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each exciton level. In a QW, beacuse of the breaking of the
translational symmetry along tlzedirection, an exciton level €(2) — Ty
with a given in-plane wave vectdsj is coupled to the whole N, pairs N, pairs
continuum of photon modes having the saieand all

the possible values of the orthogonal comporient® Po-
laritons thus form a continuum which presents resonances in
the density of states. In a bare QW, for each exciton level
only one resonance appears, whose energy is shifted from the

-— 1‘IC&V

exciton energy by a negligible amotht(a few peV in - ] — M
GaAs. This is the typical situation where the exciton decay hyZ! L,

process can be described perturbatively, as we have pointed — QW

out. When a MC is present, the density of the final radiative | Ny
states is strongly peaked around the energy of the cavity T

mode. When this mode is resonant with the exciton level and Zow 7

if the system is in the strong coupling regime, two polariton
resonances appear, and the energy shift of each resonancer g, 1. piot of the dielectric constant profile of the multilayered
with respect to the exciton dispersion can be up to a feWsrycture considered.
meV. This “strong” polariton effect can be explained in
close analogy to the case of bulk polaritons. In a MC thethe experimental data without the use of any adjustable pa-
electromagnetic field is confined in two dimensions: the enrameter. The second part is devoted to the calculation of the
ergy broadening of the cavity modes is due to the fact thapolariton radiative rates in both weak and strong coupling
the cavity mirrors are not totally reflecting. When this broad-regimes, and to the description of the luminescence process.
ening is small compared to the interaction constant, the exyve show how, in the general case, decay rates for the polar-
citon interacts with a quasidiscrete two-dimensiof@D) jton modes cannot be defined. The validity of the description
mode and, in a rough approximation, the system behaves likg terms of decay rates is restricted to the limiting cases of
a 2D bulk semiconductdr® the polariton splitting is then very weak and very strong coupling regimes. A calculation
analogous to that of bulk polaritons. This splitting is usually of the polariton radiative rates in these two cases is carried
referred to as vacuum field Rabi splitting, in analogy with out. It turns out that the main sink of radiation is represented
atomic physics®*’ by the so called leaky modes. Leaky modes are cavity modes
The most recent theoretical works on MC’s make use ofyhich originate from the peculiar structure of the distributed
the polariton formalism mainly on two different bases. In thegragg reflector§DBR’s) and radiate in a non-normal direc-
first approach, the system is treated semiclassicily: tion inside the substrate only. The understanding of this
Maxwell equations are solved with a nonlocal response funcemission mechanism, alternative to that through the main
tion for the QW exciton. The second treatment consists irtavity mode, is very important for the design of any MC-
quantizing the electromagnetic field and diagonalizing thehased device. One of the advances of this work with respect
total Hamiltonian of the coupled exciton and radiationto the ones cited above is the inclusion of the realistic cavity
fields*>?°~?*Since the polariton Hamiltonian is quadratic in structure inside the polariton model and, consequently, the
the two fields, the two treatments give equal dispersion reladetailed description of the influence of leaky modes both on
tions for the polariton resonances, as was shown in Ref. 18he polariton dispersion and on the radiative rates relative to
However, while the first approach is most suitable for thejight emitted at large angles inside the substrate. In Sec. I,
calculation of reflectivity, transmission, and absorption of athe polariton dispersion relation is obtained in an analytical
MC system, the second one gives insight into the luminesform as a function of the reflection coefficients of the DBR'’s,
cence process which is closely related to the quantum natukge QW position, the exciton dispersion, and the oscillator
of the polariton states. strength. Then, in Sec. lll, the solutions of the dispersion
The purpose of the present work is to extend the polaritorelation are illustrated for some typical cavity structures. In
formalism for QW's to the case in which a MC is present. InSec. IV we provide a description of the luminescence process
the first part we present a rigorous quantum mechanicaind consider the problem of calculating separately the pho-
theory of QW exciton polaritons in MC’s. The total Hamil- ton emission probabilities on the air side and inside the sub-
tonian including radiation and exciton fields and the p0|ar'strate_ Section V contains a summary and the Conc|uding
iton interaction is diagonalized. The calculations follow theremarks of the present work.
same steps as in Ref. 20, but the results are extended to the
case of an arbitrary asymmetric MC with the QW at arbitrary Il THEORETICAL MODEL
position inside the cavity body, and to both TE and TM
cavity modes. We restrict the calculations to the case where The system under analysis is depicted in Fig. 1. It is com-
no mixing of the different exciton polarizations is induced by posed of a single QW grown inside a semiconductor MC. A
the polariton interaction. The approach here presented exsemiconductor MC is a planar FabrysBeresonator where
tends the formalism introduced in Refs. 15,20—23 to realistidoth the central spacer and the two mirrors are made of semi-
structures with arbitrary dielectric profile and allows one toconductor material. In particular, the mirrors, called distrib-
derive an analytical expression for the polariton dispersion asted Bragg reflectoréDBR’s), are stacks of semiconductor
a function of the exciton and cavity parameters. The model isayers with two alternating refraction indices. We have indi-
used to describe the measurements in Ref. 4, and reproduceated withN, andN, the number of pairs in the left and right
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mirrors, respectively. A DBR presents a wavelength intervaljuantization form. These two solutions are thus determined
centered at\, where\/4 is the optical thickness of each up to a rotation in thej(=1,j=2) space. The eigenmodes of
semiconductor layer, in which the square modulus of the3) are propagating modes whenis larger thanck)/ngp.
reflection coefficient at normal incidence is very close to 1,This region is usually called the radiative region. Since our
provided the number of pairs is sufficiently high. In addition, aim is to describe the radiative processes, in what follows we
the phase of the reflectivity within this region, called therestrict ourselves to the radiative region only. When
“stop band,” behaves linearly as a function of the fre- n.,>ng guided modes inside the cavity layer exist for
quency. The cavity spacer thickness is usually chosen to bek;/ng,,< w<ckj/ng,. These modes, however, are com-
an integer multiple ok /2. The properties of such a resonator pletely confined and, in ideal planar devices, do not contrib-
are described in Ref. 24. Here it is important to remark thaute to the radiative processes. Actually, guided modes inside
only a real, frequency independent, dielectric constant is aghe QW layer would appear due to the fact that usually
signed to each layer: no absorption by the MC structure isiq,,>n.,,. Having neglected the dielectric mismattive
taken into account. We consider two different refraction in-take now=n ), these latter modes do not appear in our
dices on the right and left sides of the whole structure bemodel It is known® that the coupling to these modes does
cause real devices usually have the substrate on one side anot introduce important effects inside the radiative region.
air on the other side. The whole structure is planar and @nce the electromagnetic modes of the cavity are known, the
dielectric profilee(z) is assigned. As shown in Fig. &(z) is  three Hamiltonians can be written in analogy to the deriva-
a piecewise constant function; it represents the local backion of Ref. 15. They read
ground dielectric constant which, inside each semiconductor
layer, accounts for the other resonances of the medium. The
QW is considered inside the cavity at an arbitrary position
Zow With respect to the center of the spacer. d(z) we
neglect the dielectric mismatch between the cavity and QW N
materials. Hexc:; hrog Ay ©
The polariton Hamiltonian is given by ”

H em_

— 2 1/2
j=12 kH J’ dk ﬁv(kl|+k) ]kH kaJ kH k! (5)

and
H=Hemt+Hex.+Hi, )
whereH,,, andH,,. are the noninteracting electromagnetic H=> > f dk; 1Cj ki, (B +al )
and exciton Hamiltonians, respectively, aHg is the stan- =12 % Jo ’ ’ I
dardA - p interaction between the electromagnetic and polar- X (A - Al”) @

ization fields® In H, we neglect the\? self-interaction term.

This term is important only.when we look for the pole_lriton In these Hamiltoniansa! ok, is the creation operator of a
dispersion far from the exciton ener§yIn order to derive 1

HemandH,, we need to find the electromagnetic modes Ofphoton with giveny, k;, andkz, Ak\ is the creation operator
the MC without the QW. The translational symmetry alongOf an exciton with a giverk;, wy is the exciton dispersion,

the plane allows us to write the electric field for a givenandv=c/n,. It is clear from(7) that the in-plane wave

in-plane wave vectok| and frequencyw in the form vector k| is conserved in the exciton-radiation interaction.
ik p The k| vector has been discretized, while tkecomponent
Ex(p.2)= Uy (2)e™I. (2 is varied on a continuous range from 0+oe. The interac-
Here ¢ is the polarization vector anki=k;+k,z. In what ~ tion coefficient in(7) is given by
follows, we usek,= (nZ,w?c?—kf)2 thez component of -
the wave vector in the cavity Iayer as the continuous index C. H —UF(O)E
. . : . ) Tk ok, = k 2 K212 k* Meo
for the cavity modes. Using the previous expression, Max (kj+k7)

well's equations give

d?U,(2) (a,Z ) -0 XJ’dZ Uj,k”,kZ(Z)P(Z)- (8)
k(2)=

—97 tloe z)—k?|U 3
d c? ( ” HereF(p) is the exciton envelope function in the QW plane,

This second order differential equation has two degeneratfe IS the dipole matrix element between conduction and
solutions for each value df, andk;, and for each of the valence bands, and(z)=v(2)c(2) is the exciton confine-

two polarizations. We call these two solutiohk (2) ment fu_nct_|or12 'We point out that we have neglected polar-
L - . LN ization indices in both exciton and photon operators. We are
with j=1,2. The polarization dependence is not indicated

h i t Ea(3) ob he followi h | thus considering materials where the polariton interaction
:-eIZtiitr)Tuuons of Eq(3) obey the following orthogonality 565 not introduce any polarization mixing and the Hamilto-

nians for the two polarizations are separated. This situation is
typical of heavy hole excitons in GaAs-based materials,
dz e(z)U (DU k (2)=2765;;:8(k,—KJ). where TE modes couple only to tiieexciton and TM modes
’ka 1K) Kz 1] 4 z . 14 . .
@) couple only to thel exciton:* The extension to light hole
Z-polarized excitons has been considered, in the case of a
The orthogonality betweep=1 andj =2 solutions has been symmetric cavity with metallic mirrors, in Ref. 21. Keeping
imposed in order to write the electromagnetic field in secondn mind that this twofold multiplicity exists, we introduce the
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polarization dependence only once we have an explicit ex- “r'" mode
pression for the polariton dispersion.

We use the Green'’s function formalism for the diagonal- I, T,
ization of the total Hamiltonian. The retarded exciton _— =5 — e
Green’s function is defined as the Fourier transform of the
probability amplitudePkH(t)=i<O|AkHG+(t)AI|0), where R,y I

[ - -

G, (1) is the time evolution operator fdr>0. The quantity
|PkH(t)|2 represents the probability that an initial exciton

state has not decayed into photons at tinté The retarded I DBRIE 1I DBRr| III
Green’s function is given by : : ! :

1 Tl,k Il,k
G{*(E)= : 9 ) ) E
g (B) E—fiw,— A3 (E) ©
I I
. . . Tk Ry
where the retarded exciton self-energy is defined as — -
= |Cix w220 (Kf+K2)M2
(ret) — i i z nlu d
AEE) = lim 2 fo e e 07— 1202+ kD) moce

(10 FIG. 2. A sketch of the modes and | defined in the text.

These two expressions derive from the standard Green®Regions 1, I, and Il correspond to the external space on the left of
function formalism’ and have been used in the frameworkthe MC, the central_ cavity layer, and the external space on the right
of thezﬁ)(z)zlariton formalism both in bare QW(&Ref. 13 and  °f the MC, respectively.
MC’s.“““From the diagonalization dfl) we obtain polar- i ,
iton eigenstates for every value of andk; in the radiative WhereA(l_Jl,k” ,§(Z)'U2.,kH &2)is th? Wronskian between the
region. The density of states of this continuum presentéwo solutions. Equatioril4) constitutes a very well known
peaks which correspond to the polariton resonances. The efesult of the Green’s function formalism. Nevertheless, it has
ergy position and broadening of these peaks are given by thHeot yet been introduced in the context of polariton theory. It
real and imaginary parts of the poles @ in the complex allows one to avoid the integration ovky appearing in the
energy plané®?8 The polariton dispersion is defined as the expression for the retarded self-energy, thus constituting a
real and imaginary parts of the polariton resonances as Rowerful tool to diagonalize the polariton problem in planar
function ofk|. The polariton resonances are closely relatedstructures with arbltrary dielectric cpnstant profile. It is im-
to the luminescence process, as we will point out in Sec. IvVportant to remark that in Eq14) two independent solutions
A closed form for the exciton self-energy is obtained byof Maxwell's equations are required which, however, do not
replacing(8) into (10): need to be orthogonal. This allows us to drop the assump-
tion of orthogonality in the index and to choose a conve-
(red, o ko , , nient form for the two modes. In E¢14) and in those which
2 (B)= TJ dz dZp(2)p(2')G(z,2"), (1D  follow we use, instead of the two orthogonal solutions
Uik k(2) and Uy, (2), two linear combinations
whereko=wo /v, £2=E?/(h%?)—kf, and I 5

Uj,k” 'kz(z), with j=1,r. They are defined as the modes origi-
. U]_*k (24 1 (2) nating fror_‘n a plane wave traveling frops + o0, — oo respec-
Gy(z,2')=lim E f dk,— 172 , ' H'ZZ (12) tively, as in Fig. 2:
s—0i=12 Jo (§=10)°—k;
. . ikyz —ikyz zel
is the retarded Green'’s function of the Maxwell equaiidn k, € %Rf'ke ! <
expressed as a series development in terms of its eigenU,'kH]kZ(z)z nz—\k’ |r,kelkzZ+Jr’ke_lkzz, zell
modes. In Eq(11) cavz T,'ke“"zlz zelll |
27 wg [F(0)]?| pe, - € 13 (15)
0—— _——
Neay C h -
cav s TI ke_'kZZ, zel
is the bare QW exciton radiative rate lgt=0." Since Eq. K, ' _ik,z ik,2
(3) defines a Sturm-Liouville problem, E412) can be re- Uik k(2= 2K, X\ hae TEH et zell
written ag’ e K2R, ek77 zelll.
16
, o (16)
Glz.z ):_A(Ul,k (2).Usy 2) Rezgions I, 2II, ?nd 1 azre defineog in2 Fig.. 2,
| I k;?=(wcA)nZ;—kf, and Kj*=(w?/c?)ni—kf. This
Uik ,g(z)Uzka'f(z’), z<7' choice of modes is the most convenient for treating planar

(19 MC’s.%! We further definer; , andt;,, with j=I,r as the

Uzlku’f(z)ulvkuf(z ), 227, complex reflection and transmission coefficients of the left
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and right mirror, respectively, for light coming from region Ill. RESULTS AND COMPARISON
Il. The coefficients in Eq(15) can then be calculated, by WITH EXPERIMENTAL DATA
imposing the boundary conditions on the mirrors, as
The dispersion relation derived in the previous section can

k. t, kei(szké)LCIZ be solved on the complex energy plane as a functiok of
— ; - ik, L i i i
'r,k—k_Z WWTC, Jrk=rrilr k€ ze, (17 and of the exciton and cavity parameters. First, however, we

remark that, by letting; =0 andzq,,=0 in Eq. (20), the
polariton dispersiof? for heavy hole(HH) excitons in a bare

k) t, ke‘“‘z*"'z')'-c’2 L QW is recovered, as expected. A further remark concerns the
k=1 mﬂ(z_Lcy Jik=rilie*ze. (18  quantitiesP(k,), Q(k,), andR(k,). The term proportional
z , r,

to P(k,) is equal to the one which appears in the QW polar-
iton dispersio”’ and is known to introduce a very small
energy shift in the radiative region. We neglect this contri-
bution in the calculations which follow. In the evaluation of
Q(k,) and R(k,), when L<L, it is possible to replace
p(z) by a Dirac delta functiond(z—zqy). We thus take
Q(k,) =coskzow) andR(k,) =sinkzqw). Under these ap-
proximations, in the case of a symmetric cavity and
Zow=0, the results of Refs. 18 and 20 follow from EGO).
f dz e(z2)U*, (DU «(2)=2m8(k,—K.). (19 In order to illustrate the behavior of the MC polariton
1Kk e z dispersion, we solve Eq20) numerically for a realistic
structure like that in Fig. 1. We point out that, apart from
neglecting the term proportional t8(k,) and introducing
i ) the approximations mentioned above for the functions
other., We also define the functlonsUj,k”,w(z) Q(k,) and R(k,), we solve EqG.(20) without any pole ap-
=[w/(kzv2)]1’2Uj,k”'kz(z), which obey an orthogonality re- proximation. In particular, the complex coefficients, for
lation analogous to19) but with (w— ') in place of complex k values are calculated using a transfer matrix
8(k,—K.). These latter functions will be used in Sec. IV. approactf’ The parameters used for the calculation are the
We can finally replacé17) and (18) into (14) and obtain a following: Lc=N, N;=20, N;=14, ng;,;=3.5, Nex=1,
closed form for the polariton dispersion as a function of then1=3.35, n;=3.01, n¢,,= 3.0, andzqy=0. We consider a

We do not give the expressions gy , andT; . In fact,
we are interested only in the expression lf—QFkH 'kz(z) inside
the cavity becausp(z), appearing inf11), is different from
zero only in the QW region. It is important to keep in mind
that the mirror coefficients; , andt; , depend on the polar-
ization. Modeg15) and(16) obey the normalization relation

However, it can be verified that, for a givdg, the two
modesUr,kH Ykz(z) andULkH ,kz(z) are not orthogonal to each

mirror coefficients: 75 A GaAs QW with an exciton energyw,=1.59 eV. For
this QW, a realistic value of the exciton radiative rate is
E—fwy+ 2T kP(ky) AT o=32 ueV.?® The cavity length and the mirrors are cho-

sen so that the cavity mode is resonant with the exciton level

(1471, ety (141, ekee) at kj=0. The solutions of(20) on the complex plane are

+itl, 11 f, &5%te Q*(ky) calledEk” 'nzh(wk" ,n—ika n), where the index runs over
L C kL the different polariton resonances at fixed The real and
(1—r "z e)(1—r "7 R2(K,) imaginary parts 01'Ek”,n are plotted as a function dj in
11 irp 72 ’ Figs. 3a) and 3b), respectively. From now on we indicate
2i(r| —r, )ekee only _the de_pendence on the _moduluskp_f if not othervx_/ise _
= r'l - l;e2'kch Q(k,)R(k,) |=0. (200 required, since we have considered an isotropic Hamiltonian.

As solutions of(20), two polariton resonances appear for

Here, a runs over the two polarization§,re=T"gko/k, and each value OKH. We recall that these two qu_antities repre-
T'ry=Tok,/ko. The definitions of function®(k,), Q(k,), sent the position of the peaks in the polariton density of

andR(k,) are given, in complete analogy with those by Tas-States anq their broadening, respe_ctively. The most natural
soneet al.2® by interpretation of these resonances is that they correspond to

effective quantum levels with a radiative decay rate. We re-

1 (zqwtlr2 fer to these resonances simply as polariton modes. In Sec. IV
P(k,)=— 2K dz dZp(2)p(z2')sink,|z—2'|), we will discuss the limits of this interpretation. The two po-
2Kz ) zqu-Lr2 lariton modes present an energy splitting of 3 meV at

(21) k;=0; thus the system is in the strong coupling regime. In
this resonance region the polariton modes are admixtures of

Q(k,) = fZQ"V*"/ZdZ p(2)cogk,2) 22 exciton and photon modes with equal weights. Outside the
z Zqw-LI2 = resonance region the two polariton modes approach the dis-
persion of the exciton and cavity mode, respectively, and
and correspondingly they become exciton- and photonlike. This
P behavior is analogous to that of bulk polaritons, as pointed
_[Fewt . out in the introduction. Figure(B) shows that the polariton
R(ks)= f Zqw-L12 dz p(z)sin(kz2), 23 radiative rates are substantially different from the bare QW

case: the radiative rate of the lower branch shows a peak at
wherelL is the QW thickness. k=0, where it is much higher than the rdig of the bare
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FIG. 3. In graphga) and(b), the energy and the radiative rate of FIG. 4. Same as Fig. 3, but for the weak coupling case described
the polariton modes are plotted as a functiorkpfor TE polariza-  in the text.
tion. The parameters of the structure are described in the text. In
lot (@) the dashed lines are the noninteracting exciton and cauvit . .
(Fj)isper)sion, while the dashed-dotted line repregsents the border b}é@racnon between the exciton and the leaky moc_jes produpes
tween radiative and nonradiative regions. The inset in [t an energy shift and an enhancement of the_ po'af't"” radlatl_ve
shows a detail of the lower polariton dispersion and includes aIscEate_' in the same way as for .thellnteractlon V\,"th the_ main
the TM polarization. cavity mode. In Sec. IV we will discuss more in detail the

consequences of the interaction with the leaky modes for the

QW, and approaches zero at higher valuekofThe peak is ~emission process.
a signature of the enhancement of the spontaneous emission As a comparison between the weak and the strong cou-
due to the resonance with the cavity mode. In the strongpling cases, we solve again EQO) using the same param-
coupling regime it can be shown that the radiative rate aeters except for the thickness of the right DBR, for which we
resonance is given by one-half of the cavity modechoose nowN,=8. The real and imaginary parts of the po-
broadening? if no nonradiative exciton broadening is in- lariton dispersion are plotted in Fig. 4. Two main differences
cluded in the calculation. This result has been known for éetween Figs. 3 and 4 are evident. First, the Rabi splitting in
long time in atomic physics in the case of strong couplingthe polariton energies &=0 has disappeared. Second, the
between a two-level atom and a resonant cavity médaut  two radiative rates d =0 are now different by a substantial
of resonance the lower polariton becomes more excitonlikemount. A physical interpretation of these results is the fol-
and consequently its radiative rate lowers to zero. On théowing. In the weak coupling regime the square modulus of
contrary, the radiative rate of the upper polariton follows thethe interaction matrix element is smaller than the broadening
broadening of the cavity mode and goes to zerkpg#-  of the cavity mode. In this situation the exciton level is
creases. The abrupt change in the slope of the upper polateupled to an almost flat continuum of photon states. The
iton rate is due to the onset of total internal reflection on thesystem presents a full analogy with the bare QW case, the
air side. At larger values df up toko, the energy of the only difference being an increased density of radiative
lower polariton presents several oscillations, which aremodes at the exciton energy. As a consequence, the two po-
shown in detail in the inset of Fig(&. Correspondingly, the lariton resonances are degenerat& at0. In addition, there
radiative rate presents several peaks. These features are daanot, as in the strong coupling case, a considerable admix-
to the coupling of the exciton level to the cavity leaky ture of exciton and photon modes: in this case one of the two
modes. Leaky modes are electromagnetic modes propagatipglariton modes is mainly excitonlike and has a smaller ra-
at finite angles with respect to the growth direction throughdiative broadening, while the other is more photonlike and
the DBR into the substrate. They are due to the peculiahas a larger broadening. In the limit where the reflectivity of
structure of the DBR’s, which introduces additional reso-both mirrors vanishes, the broadening of the first polariton
nances in the electromagnetic field at finite angles. The inapproached’y, while that of the other polariton tends to
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r

prediction. The sample in Ref. 4 consists of ax3MC with

FIG. 5. Plots(a) and (b) represent the polaritofRabj splitting ~ Six embedded GaAs/liGa;_,As QW's. Our model takes
and the radiative rate of the lower polariton branch respectively, atht0 account one QW only. The most rigorous treatment of
kj=0, as a function of the number of pairs of the right hand sidethe multiple-QW case consists in diagonalizing the coupled
mirror, N, . In plot (b) the energy broadening of the cavity mode is problem of theN QW exciton states plus the radiation field,
shown for comparison. as was shown by Citrin for bare multiple QWPSFrom this

treatment it turns out that only one of ti multiple-QW

infinity, as can be seen from both EQO) and the results of exciton states giyes rise_ to a radi_ati_ve polariton_, the other
Ref. 18. This limit corresponds, as pointed out at the beginN—1 states having negligible radiative broadening. In the
ning of this section, to the bare QW case where only Onéong wavelength approximation, the r_adlatlve state has an
polariton resonance existé From the comparison between Oscillator strength equal tl times the single-QW oscillator
the weak and the strong coupling cases, it comes out that tH&rengtte* In a MC, however, this approximation is not very
main difference appears in the resonance region. Here, whifgccurate. It turns out from Ref. 30 that a more accurate ap-
in the strong coupling case the two polariton modes are fulProximation consists in weighting the oscillator strength of
admixtures of exciton and cavity modes, in the weak Cou_gach QW_Wlth the square modulus of the normalized electric
pling case they preserve exciton and photon character, rételd amplitude at the QW position. Following this approach,
spectively. Outside the resonance region, in both cases, ti effective number of QW'sNeg, is derived in Ref. 18. In
amount of exciton_photon admixture is neg||g|b|e the present CaSNeff: 5.34. In the calculation we have used
In order to understand the transition from weak to strongtI'0=22 ueV, which has been obtained from the existing
coupling regime, we plot in Fig.(8) the Rabi splitting at Mmeasurements ofsghe excitpn oscillator strength in GaAs/
kj=0 as a function of the numbe\, of pairs of the mirror  InxGa;-,As QW's. The cavity parameters used for the cal-
on the air side. In correspondence, Fi¢h)Sshows the radia- culation are those described in Ref. 4 and no fitting proce-
tive rate of the lower polariton mode. For smhl) the sys- ~dure was necessary. It can be seen in Fig. 6 that the data are
tem is in the weak coupling regime and no Rabi splitting isreProduced very well by the present model. The deviation in
present. In the weak coupling regime the polariton radiativéhe upper polariton branch at hidg¢ values must be attrib-
rate is the one given by the Fermi golden rule. Increasing th&ited to an experimental uncertainty in the measurement of
confinement of the radiation, we can clearly see the transithe angle??
tion from weak to strong coupling and the onset of a finite Before introducing, in the next section, a description of
Rabi splitting. The broadening of the cavity mode has beerhe luminescence process, we address the problem of includ-
plotted for comparison. It is clear from Fig(i§ that in the ing a nonradiative dissipation rate for the exciton. This rate
strong coupling regime the polariton radiative rate is equal teshould account for all the possible exciton dephasing mecha-
one-half of the cavity mode broadening. The radiative ratelisms, like phonon and impurity scattering, radiative traps,
shows its maximum in the transition from weak to strongSurface recombination, etc. A way to take into account the
coupling. Moreover, the value at the maximum is muchhomogeneous broadening of the exciton level is to include an
larger thanl'y. This effect is usually called enhancement of imaginary part in the exciton dispersion appearing in Eq.
the spontaneous emission. For lowdr, the radiative rate (20). Oncew, is replaced byw —iyex, Whereyeyis the
decreases, approaching the value of the bare ¥ as  nonradiative exciton broadening, the polariton dispersion can
mentioned above. be solved for energies on the complex plane, as before. In
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this case, however, the imaginary part of the solutions repverified3*° For this reason, here we assume the polariton
resents the total polariton decay rate, including the directlistribution as given, regardless of its thermal character, and
radiative recombination and the exciton nonradiative dissipaconcentrate on the calculation of the polariton radiative rates
tion mechanisms. In the general case, the separate calculatigs a function ok .

of the radiative and nonradiative rates of polariton modes is e point out that, in the picture presented above, the
not a trivial task. In fact, acoustic phonons act both as scaistates in the radiative region are identified as coherent polar-
tering centers for the coherent polaritons and as a source @b, states. This means that we assumed dephasing effects on
phase-coherence loss for exciton stdgesl consequently for  q hojariton interaction to be negligible. These effects origi-
the polariton interaction Even if these two mechanisms can 46 from exciton-phonon interactions, exciton-exciton inter-

fberm'r;i(:lﬁdgggzltﬁe?r?rﬁteily "; bath QWldex0|tqn tr;])olanlton actions, and interface and alloy disorder. While the first two
ormalism, € Inclusion of both would require the SO~ o, oaq of dephasing can be limited by performing experi-

tion of the three-field problem at finite temperature. This ents at sufficiently low temperature and excitation density,

problem, to the authors’ knowledge, has never been ao(pe effect of disorder is important in anv experimental
dressed. In the next section the polariton radiative deca}-‘ : IS 1mp ! y exper

. 36 . . . .
probabilities are calculated in the presence of the nonradi cgime. We WI||h(.IiIiCUIfS at the enq of this section the con-
tive homogeneous broadening introduced before, under sonfliions under which the assumption of coherent polariton

assumptiongwhich will be stated lateron the relaxation and  INtéraction is justified. o o .
dephasing processes, in two general cases. In order to compute the radiative recombination rates, it is

necessary to know the initial states of the decay process. We
distinguish two cases where the initial state is determined by
IV. POLARITON PHOTOLUMINESCENCE simple considerations. The first situation is that of the very

In this section we describe the photoluminescence procesweak coupling regime between degenerate exciton and cav-

of cavity polaritons and show that a simple description inItsy modes. In this case, as we have seen, the two polariton

L . . ; . nan r ner n i
terms of emission rates is possible only in well defined cased>onances are degenerate and one is much broader than the

In a photoluminescence experiment, excited states are pr ther. The broader resonance is almost completely photon-

duced at energies larger than those of the observed sign |*<e while the other is almost completely excitonlike. The

The excitations thus created relax towards the lowest ener 2?;0\’\,\\//2?'(0;: ?#glin% Isotl::a(;'st(ce)r:orézgngifegys\,/ gf?esg egntl)y tpeei
states which, in our case, are the cavity polaritons. The re| WO polar ! y

laxation takes place through all the different polariton SCat_:a\xation mechanisms and therefore significant for the optical

tering mechanisms. In particular, in high quality samples ap_ropertles. As a consequence, in the very weak coupling re-

low temperature the dominant mechanism is the scattering'm?’ the initial state 1o calculate a de<_:ay rate is the bare
by acoustic phonorn$. When the relaxation process brings xciion  state. The second situation arises when
polaritons inside the radiative region, some of them radiaté”2 wk\\'1>(7k\\ at 7k\|'2)/,2’ .namely, When there is a large
while the others further relax towards the bottom of the po-SPlitting and two clearly distinct peaks in the polariton den-
lariton dispersion. Only the radiated signal is observed b);sny_of states. This situation takes place when the exciton and
external detection. The balance between relaxation and emi§avity modes are completely detuned or, in case they are
sion processes is determined by the radiative rates at diffef€Sonant, when the system is in the very strong coupling
entk; values within the radiative region and the scattering’®gime. The structure of the polariton density of states allows
rates between polaritons at different wave vectors. A detaile§S to identify the polariton peaks as quasiparticles in the
analysis of the competition between these two effects hagénse of many-body theory. The natural choice of the initial
been presented elsewhéPddere we just want to remark that State of decay in the very strong coupling case is a polariton
points in the radiative region where the radiative rate is muctfluasiparticle. This can be explained by introducing a simple
larger than the scattering one will behave as radiative sinkBicture of the MC polariton quasiparticle, as a superposition
for polaritons. This, in turn, will result in a bottleneck in the Of an exciton and the discrete mode of a closed cavity. The
relaxation process. We will further consider this mechanisnflecay arises when the weak coupling to the external con-
later on in this section, in connection with the discussion oftinuum of radiation is considered. This picture is usually
the influence of cavity leaky modes on the radiative processcalled the quasimode pictuféin very strong coupling, the

In general, the complete dynamics of the relaxation and reRabi oscillation, of period 2(wy ,—~ wy 1) ~*, between the
combination processes has to be computed in order to derivexciton and photon states which constitute the quasimode is
the intensity of the radiated light as a function of time andpresumably much faster than scatterings involved in the re-
emission angle. Here, however, we want to consider the lulaxation processes. Consequently, the polariton quasimode
minescence process under continuous excitation. In this pawould be the appropriate initial state. In the following calcu-
ticular case the detailed balance principle assures that a sti&tion, however, we choose the exciton as the initial state of
tionary polariton distribution will exist. In case relaxation is decay. The exciton itself can be expressed as a superposition
faster than the recombination rates of the system, this distrief the polariton quasimodes. It will be shown that the two
bution will of course correspond to the thermal one. Otherpolariton decay rates may be easily extracted from this cal-
wise, fast decaying states and bottlenecks in the relaxatiooulation.

will result in a nonthermal, but still stationary, distribution.  In order to calculate the total radiative rate in the very
In bare and in MC-embedded QW'’s, at temperatures wherereak and very strong coupling cases, we choose the appro-
the scattering on acoustic phonons is the main relaxatiopriate linear superposition éfandr modes, whose electric
mechanism, the second hypothesis is most likely to bdield is symmetric around the QW positiag,y. This mode



53 THEORY OF POLARITON PHOTOLUMINESCENCEN. ..

13059

is the radiative one, since we assume a symmetric excitomvolve interference between the two modes. However, as
wave function, while the antisymmetric combination clearly mentioned above, this is a consequence of having chosen the
does not couple to the exciton. We call this modeexciton as the initial state of the decay. When only one po-
Usi, »(2), and alka . the corresponding photon creation lariton quasimode is used, only the corresponding term will
operator. The time dependent probability per unit frequency@PPear. This allows us to carry out the calculation for each
of an initial exciton decaying into the symmetric mode is 'éSenance and in both very weak and very strong coupling

defined as we finally obtain forykH nt<1
Py .0 o dPy o |Cs,k” ol? Vit 1o
do (t):|<0|asyk||,wG+(t)Aku|0>|' @49 do VT %2 (w—wku,n)2+ Vi\bn, T
(28)

The matrix element appearing {@4) could in principle be

calculated perturbatively. However, in order to obtain theThe radiative rate is calculated by taking the time derivative
correct time dependent probability in the strong coupling reof (28), and integrating over the frequenay.
gime it is necessary to go beyond perturbation theory. In the

present case, the perturbation series deriving ft@d can

be summed exactly and the result, in terms of the interac-

2
rad __ ) 2
ka n- hZ |Cs,kH ,wkH i 'ka ,n| . (29)

tion matrix element and the retarded Green’s function, is

given by

2m
gl (ho—E)t/h

- (rey
X dEE—hw+ieGku (B),

(Olasy oG (HAL0)=

(25

WhereG(ere‘)(E) has been defined in Sec. Il. Usiri@ we

express the matrix element (@5) as

(Olas i oHIALI0)=iCs 0, (26

I

where the coefficientCS,kH,w is defined as in(8) with
Us,kH,m(z) in place oij,k”,kZ(z). Equation(25) allows the

This expression is analogous to the Fermi golden rule, but is
calculated on the polariton resonances. The coefficient
Cj’kH » €an be evaluated for complex using(8), (15), and

(16), and extending the calculation gf andt; , to complex
values ofk, .

Equation(29) defines the total radiative rate. Actually, in
a MC, light with a givenk can radiate through the two
DBR'’s on both sides of the structure. Moreover, because of
the asymmetry of the MC, the probabilities of a photon being
emitted through the left mirror inside the substrate and
through the right mirror in empty space will in general be
different. As a consequence of this asymmetry, a hypotheti-
cal time resolved luminescence experiment, performed sepa-
rately on the two sides of the sample, would result in the
same decay time, determined by the total radiative rate cal-
culated above, but different intensities of the measured signal
at a given time. As an example, it is clear that for large

calculation of the time dependent decay probability in anyenoughk, total internal reflection sets in for the mirror on
coupling regime. However, as stated above, we are studyinge air side and light is emitted in the substrate only. Since in
only the two limiting cases of very weak and very strongmost of the luminescence experiments luminescence is de-
coupling. In these two cases some approximations can bcted on the air side only, it is necessary to further distin-
introduced in order to derive a simple expression for theyyish a left and a right emission probability in the emission
decay probability. As a first step, E®5) can be integrated process. In what follows, in order to avoid confusion, we will
on the complex plane. The result is speak of radiative “rate” only in relation to the total radia-
tive rate calculated above, while we will call left and right
1 emission “probabilities” the two quantities derived below,
w— wkH—EE(TO(hw) even if their derivation closely follows that of the total_rate.
We remark that modes of typeandr are the appropriate
modes to represent a right and lefitgoingphoton, respec-
tively. This becomes evident if the time reversal operator is
applied to these two modes, as can be seen from Fig. 2. The
(27 derivation of the left and right decay probabilities cannot be
) ) ] carried out as was done for the total rate, because the two
where the second term in square brackets is obtained undgfodes| andr are not orthogonal. This fact represents the
the approximation Otf tw%85|mple polariton poles for the main difference between our case and cases where the stan-
Green's funcUont(rHe )(E).* In both very weak and very dard scattering theory can be applied. We are forced to cal-
strong coupling cases, the first term in square brackets can leilate the decay probability over finite photon wave packets
approximated by a sum over the two simple poles, in analogyn order to overcome this difficulty. We define our incoming
to the second term. As explained before, the two polaritorwave packet from the right as
modes contribute to the matrix elemd@2f). In very weak
coupling, only one mode contributes significantly to the cal- in , , (K- p— o'
culagiong, bec)z/iuse the other has a ver)g/J large b)rloadening. In ’M,Iz”,w(rvt):J’ do'é{(o—o )Ur,kH,w’(Z)el(kH p-o't)
very strong coupling, instead, the time dependence would (30

CS,kH , W

h

i
(Olas kG +(DAL0)=

e—i(wi<H ,n_“’)te_ ka ,nt:|

n=l2 @ @ Tl Yiy.n
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gion where leaky modes are found is by far the largest por-
tion of the two-dimensional phase space involved in the de-
cay process. This fact has two important consequences. First,
it constitutes the most important limiting factor in the design
; of light-emitting devices based on semiconductor MC's,
KI where the optimization of the extraction efficiency on the air

100 B ----- My, (@I1) 1
—-=- hy,’k"’1 (substrate)

side is pursued® Furthermore, it strongly influences the po-
lariton dynamics. In fact, the radiative rates corresponding to
leaky modes are much larger than the acoustic phonon scat-
tering rate. Consequently, most of the polaritons relaxing
inside the radiative zone are emitted through the leaky
modes, and only a relatively small fraction of them relaxes to
. : . the bottom of the polariton dispersion where they radiate in
0.0 0.5 1.0 15 20 25 the normal directiorf® Thus leaky modes are responsible for
k, (10° cm™) a bottleneck effect in the relaxation of excitons from the
nonradiative region to polariton states in the radiative region,
FIG. 7. The total radiative rate and the corresponding emissiohich takes place in a typical luminescence experiment with
probabilities for left and right emitted photons are plotted for thenonresonant excitation.
structure withN, =8 described in the text. The above calculations allow us to write an expression for
the measured luminescence intensity under the hypothesis
The wave packet outgoing in the o direction is simply that the effects of the inhomogeneous broadening mecha-
obtained by applying the time reversal operator on the innhisms on the exciton level are negligible. The luminescence
coming packet asp{O™ (r,t)=[4™ (r,t)]*. Incoming spectrum is then simply proportional to a sum of Lorentzian

LK @ rKi,o
Ky Ky - .
and outgoing wave packets on the right side are defined in alf'€ Shapes as follows:

analogous way usingmodes. The calculation of the exciton
decay probability into the outgoing packets follows the sam (
steps as for the total radiative rate. If we consider the prob-
ability for o nt>1, we obtain

Radiative rate (meV)

1 'ka n

Kj,w)oc =— N
I ) 27Tn=21,2 k”'n‘yr’k”'n(w_wku,n)z'i_'yﬁu,n

. (33

where we have indicated With,k” the assumed stationary

Cj,kH,w’ ‘2 distribution of polariton modes. Exp(essicQE_3) giyes the .
- G luminescence spectrum along an arbitrary direction. In addi-
w _“’kH_EkH (fo") tion, usingk= (w/c)sin(6), whered is the emission angle in
air, Eq.(33) provides the intensity pattern of the photolumi-
i=lr. (3D nescence signal.
, i e . As a concluding remark of this section, we want to men-
As usual, this expression can be simplified in the two limit-(,, the problem of describing the effect of disorder in these
ing cases of very weak and very strong couplmgz regIMeSgystems. In this work we do not consider the influence of
The result is again proportional d@jvkur“’ku,n_WkH,n| and  gisorder at any level. It is well known that, in QW’s, inter-
depends on the shape of the wave packet. This latter depeface roughness and alloy disorder destroy the in-plane trans-
dence drops out in the ratio between left and right decayational invariance of the system. In particular, in sufficiently
probabilities obtained, as before, by integrati81) over  narrow QW’s Low~200 A or les$, there is experimental
w: evidence for the dominant role of interface roughness in de-
termining the exciton properti€S. Interface roughness re-
Pl,k” n |Cr'ku Ok g sults in a perturbation of the otherwise flat potential govern-
= >, n=1,2. (32)  ing electron and hole motion along the QW plane. This, in
n| turn, influences both the relative electron-hole motion and
the exciton center of mass motiéhin particular, the pres-
The values obtained for the left and right probabilities andence of “islands” of lateral confining potential along the
the total radiative rate of the lower polariton branch areplane suggests the existence of exciton states with localized
shown in Fig. 7 in the case of the weak coupling regimecenter of mass mation. Exciton localization is known to
discussed in the previous section. Both probabilities arenodify the exciton radiative properties in bare QW'sin
peaked ak =0. The value at the peak is larger on the airthis case, we can argue that the localized exciton wave func-
side. This result is expected because of the strong asymmettipn will be characterized by & uncertainty, in contrast
of the cavity and of the low number of pairs of the right with free exciton states. The order of magnitude of tkjis
DBR. At kj=0.8X 10° cm~ ! the emission probability in air uncertainty is given by the inverse of the size of the confin-
vanishes, due to the onset of total internal reflection on théng islands. For good quality samples, this size is of the order
air side mirror. For still higher values d¢f, light is totally ~ of 300 A, which corresponds to ak of the order of ten
emitted on the substrate side, and the sequence of peaks ctimes the width of the radiative region. However, in absorp-
responding to the emission through leaky modes is found. ltion or photoluminescence experiments, the direct evidence
is clear at this point how leaky modes represent the mosdf disorder effects is represented by an inhomogeneouds
important decay channel in MC systems. In fact, kjge-  ergy broadening of the exciton line shape. How these two

1
Pj,kH.w: %E j dw’gj(w—w’)

| 2

Pr,kH,n |C|'kH’wkan_i’kay
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guantities are related is not, at present, very clear from themission along the normal direction, as required in most ver-
existing literature. Moreover, when considering measuretical emitting structures. A comparison of the present results
ments on MC’s, the value afk; estimated above is in con- with existing measurements of the polariton dispersion in the
trast with the experimental observations. In fact, Houdrestrong coupling case has been made. The data are well re-
et al* have measured the MC polariton dispersion by meangroduced by our calculations if the exact cavity geometry is
of a photoluminescence experiment with nonresonant excitaised. Moreover, no adjustable parameter has been introduced
tion. This dispersion amounts to a few meV within the radia-and the known value of the exciton oscillator strength was
tive region. This is in accord with the results of the presentused.

work and confirms the picture of free excitons here adopted. In the second part of this work we tried to link the results
We argue that these two apparently contrasting pieces aff the theory of microcavity polaritons to experimentally ob-
evidence can be explained if we suppose that the excitorserved quantities, namely, the photoluminescence spectrum.
photon coupling “rebuilds” the in-plane coherence of the In order to properly characterize the photoluminescence pro-
localized exciton states lying within the frequency width of cess, it is necessary to identify the lowest excited states from
the cavity mode. In fact, the photon modes still maintainwhich the luminescence originates, and to define for them a
their translational symmetry inside the MC, independently ofradiative decay rate. We have shown that this identification
the nature of the exciton states. Thus we expect that, wheis unambiguous only in two limiting cases where the polar-
the inhomogeneous energy broadenitfie only parameter iton resonances can be considered as quasimodes. This hap-
which allows one to quantify disorder in real samplés pens when the system is in the very strong or very weak
smaller than the nominal Rabi splitting, the phase-coherenceoupling regime. In these two cases an expression for the
loss is slower than the Rabi oscillation and, consequently, theadiative rates has been provided. In addition, these rates
translational invariance of the mixed exciton-photon state idiave been further subdivided by considering emission into
preserved. This condition can be used to extend the definthe substrate and into air separately. This finally leads to an
tion of very strong coupling regime to include the overall expression for the observed photoluminescence intensity as a
(homogeneous plus inhomogenepesciton broadening. We  function of frequency and emission angle. The most impor-
conclude that, in the very strong coupling regime, localiza-tant result of this analysis concerns the role of leaky modes
tion is strongly inhibited because of the strong exciton-of the MC system on the emission process. Leaky modes
photon coupling, and the picture of free excitons is stillconstitute the dominant decay channel in luminescence ex-
valid, provided an inhomogeneous energy broadening of thperiments performed with nonresonant excitation. This effect
exciton level is included in the calculations. We are currentlyis undesirable when trying to improve the performances of
addressing this problem, which will be the subject of a subdight-emitting devices, because radiation through leaky
sequent publication. Concerning the weak coupling regimemodes is totally dissipated inside the sample substrate. Our
it is clear that in this case the states involved in the luminesmodel provides the radiative decay rates in the leaky mode
cence problem are those perturbed by the lateral disorderedgion ofk space as well as those through the main cavity
potential. In this case, the influence of localization on themode. This result consitutes the first step for a detailed de-
radiative rates should be described, as in Ref. 34 for barscription of the relaxation-emission process, aimed at both a
QW’s, by allowing for the modification of the photon density better understanding of the radiative processes peculiar to

of states due to the cavity. these structures and an improvement of the performance of
modern MC-based light-emitting devices. Finally, we remark
V. CONCLUSIONS that this analysis of the luminescence process gives evidence

) ) ) ] for the existence of an intermediate region of coupling where
This paper mainly consists of two parts. In the first partthe dynamics of the relaxation and of the decay processes
we have presented a quantum theory of QW exciton polarizannot be treated separately. In this case a simple description
tons in arbitrary semiconductor microcavities. The polaritongf the luminescence in terms of decay rates of polariton
dispersion relation has been obtained and solved in SOM&uasimodes becomes impossible and an extension of the
representative cases. The dispersion represents the enetgisent model, which includes relaxation into the whole con-
position and broadening of the resonances in the polaritofinyym of polariton states, would be necessary. We have al-
density of states. Two coupling regimes are usually distinyeady remarked that the intermediate coupling region is the
guished: the weak coupling regime and the strong couplingnost interesting for device application. The extension of the

regime. This model applies equally well to the two cases. Wenode to these cases will thus constitute the leading subject
have described the polariton dispersion in two model strucyf qur future work on microcavities.

tures presenting weak and strong coupling behavior at reso-
nance, respectively. Furthermore, by varying the cavity

mode confinement, we have shown the behavior of the po-
lariton energy and decay rate in the transition from the weak We wish to thank L. C. Andreani, R. HoudrB. Pellan-

to the strong coupling regime. The most important aspect oflini, S. Savasta, and R. P. Stanley for many useful hints and
this transition is that the peak in the polariton decay ratdruitful discussions. F.T. acknowledges support from the

appears in the intermediate coupling region. This is signifi-Swiss Optics Priority Program and C.P. from the Swiss Na-

cant if we seek for a maximum enhancement of the radiativéional Foundation.
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