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A quantum theory of quantum well polaritons in semiconductor microcavities is developed. The model takes
into account the coupling between the exciton level and the structured continuum of electromagnetic modes
relative to the particular geometry of the microcavity. A general equation for the polariton dispersion is
obtained as a function of the cavity and exciton parameters. The equation is valid in both weak and strong
coupling regimes and reproduces the existing measurements of microcavity polariton dispersion. A model for
the polariton luminescence is then derived from the theory. It is possible to define a polariton decay rate only
when the resonances in the polariton density of states can be considered as quasimodes. The two limiting cases
of very weak and very strong coupling regimes are consequently identified. In these cases the polariton
radiative probabilities are derived for light emitted on the left and right sides of the microcavity separately. The
influence of the microcavity structure on the polariton dispersion and radiative rates is discussed and in
particular the role of the microcavity leaky modes is described in detail. A discussion of the luminescence
mechanism in the intermediate coupling case is also presented.

I. INTRODUCTION

Nowadays, the physics of semiconductor microcavities
~MC’s! has become a widespread research field.1 In fact,
when a quantum well~QW! is placed in a MC, dramatic
changes in the intensity of the optical response, the energy of
the optical transitions, the radiative lifetimes, and the emis-
sion patterns are produced. All these changes appear as a
consequence of the strong energy dependence and anisotropy
of the optical density inside a MC. Clearly, this density de-
pends on the particular shape of the MC dielectric structure.
Therefore a control on the optical response is achieved by
tailoring the geometry of the MC. A whole range of possi-
bilities for the design of light-emitting devices is thus
opened. In addition, the study of such systems is also inter-
esting from a more fundamental point of view. In fact, the
investigation of these modified optical properties in both fre-
quency and time domains allows a better understanding of
the dynamics of excitations in confined systems.

Several experiments have been performed in order to
characterize these structures. The early works by Weisbuch
et al.2 and Yokoyamaet al.3 contain experimental evidence
of the modified optical response of cavity-embedded QW’s.
Following these works, several experiments have been per-
formed on MC systems. Houdre´ et al.4 studied the lumines-
cence of QW excitons in a MC as a function of the emission
angle and of the detuning between the exciton energy and the
cavity mode. The possibility of varying the detuning by
means of an applied electric field or by varying the tempera-
ture was proved by Fisheret al.5 Tignon et al.6 have shown
the effect of Landau quantization of the carrier free motion
by measuring reflectivity spectra under a strong axial mag-
netic field. Finally, time-resolved measurements7,8 have been
carried out in which the dynamics of the luminescence pro-
cess has been investigated. A number of theoretical models

of the optical properties of QW’s in MC’s also appeared in
the literature. Early theoretical works9,10 used the Fermi
golden rule to calculate radiative recombination rates of ex-
citations in MC’s. The golden rule describes the coupling of
a discrete level to a continuum in first order perturbation
theory.11 Its validity is limited to the cases when the interac-
tion matrix element between the discrete level and the con-
tinuum is small compared to the energy broadening of the
continuum density of states. In the MC case the discrete level
is the material excitation~QW exciton! and the continuum is
constituted by the eigenmodes of the cavity electromagnetic
field. Since the density of states of the electromagnetic field
in vacuum is flat, the Fermi golden rule works well in the
case of a free-standing QW. In MC’s this density of states
becomes peaked around the cavity resonance. Moreover, the
dipole matrix element is proportional to thelocal density of
states, defined as the product between the density of states
and the normalized amplitude of the electromagnetic field at
the QW position. Still, the Fermi golden rule applies if the
width of the cavity mode is larger than the interaction matrix
element. This situation is called the weak coupling regime.
In the opposite case the interaction is no longer described by
a purely dissipative process and the Fermi golden rule does
not apply. In this strong coupling regime, the decay of the
exciton is no longer of exponential nature, and the energy is
exchanged between the exciton and the cavity mode several
times before being dissipated outside the cavity.

In both cases, the most suitable description of the exciton-
radiation interaction in MC’s is provided by a polariton for-
malism. Polaritons are the mixed exciton-radiation states ob-
tained by diagonalizing the total Hamiltonian including the
exciton-radiation interaction. Polaritons were first introduced
for bulk semiconductors,12 where the full translational sym-
metry implies conservation of the wave vector in the exciton-
photon interaction. Thus only one photon mode is coupled to
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each exciton level. In a QW, beacuse of the breaking of the
translational symmetry along thez direction, an exciton level
with a given in-plane wave vectorki is coupled to the whole
continuum of photon modes having the sameki and all
the possible values of the orthogonal componentkz .

13 Po-
laritons thus form a continuum which presents resonances in
the density of states. In a bare QW, for each exciton level
only one resonance appears, whose energy is shifted from the
exciton energy by a negligible amount14 ~a few meV in
GaAs!. This is the typical situation where the exciton decay
process can be described perturbatively, as we have pointed
out. When a MC is present, the density of the final radiative
states is strongly peaked around the energy of the cavity
mode. When this mode is resonant with the exciton level and
if the system is in the strong coupling regime, two polariton
resonances appear, and the energy shift of each resonance
with respect to the exciton dispersion can be up to a few
meV. This ‘‘strong’’ polariton effect can be explained in
close analogy to the case of bulk polaritons. In a MC the
electromagnetic field is confined in two dimensions: the en-
ergy broadening of the cavity modes is due to the fact that
the cavity mirrors are not totally reflecting. When this broad-
ening is small compared to the interaction constant, the ex-
citon interacts with a quasidiscrete two-dimensional~2D!
mode and, in a rough approximation, the system behaves like
a 2D bulk semiconductor:15 the polariton splitting is then
analogous to that of bulk polaritons. This splitting is usually
referred to as vacuum field Rabi splitting, in analogy with
atomic physics.16,17

The most recent theoretical works on MC’s make use of
the polariton formalism mainly on two different bases. In the
first approach, the system is treated semiclassically:18,19

Maxwell equations are solved with a nonlocal response func-
tion for the QW exciton. The second treatment consists in
quantizing the electromagnetic field and diagonalizing the
total Hamiltonian of the coupled exciton and radiation
fields.15,20–23Since the polariton Hamiltonian is quadratic in
the two fields, the two treatments give equal dispersion rela-
tions for the polariton resonances, as was shown in Ref. 18.
However, while the first approach is most suitable for the
calculation of reflectivity, transmission, and absorption of a
MC system, the second one gives insight into the lumines-
cence process which is closely related to the quantum nature
of the polariton states.

The purpose of the present work is to extend the polariton
formalism for QW’s to the case in which a MC is present. In
the first part we present a rigorous quantum mechanical
theory of QW exciton polaritons in MC’s. The total Hamil-
tonian including radiation and exciton fields and the polar-
iton interaction is diagonalized. The calculations follow the
same steps as in Ref. 20, but the results are extended to the
case of an arbitrary asymmetric MC with the QW at arbitrary
position inside the cavity body, and to both TE and TM
cavity modes. We restrict the calculations to the case where
no mixing of the different exciton polarizations is induced by
the polariton interaction. The approach here presented ex-
tends the formalism introduced in Refs. 15,20–23 to realistic
structures with arbitrary dielectric profile and allows one to
derive an analytical expression for the polariton dispersion as
a function of the exciton and cavity parameters. The model is
used to describe the measurements in Ref. 4, and reproduces

the experimental data without the use of any adjustable pa-
rameter. The second part is devoted to the calculation of the
polariton radiative rates in both weak and strong coupling
regimes, and to the description of the luminescence process.
We show how, in the general case, decay rates for the polar-
iton modes cannot be defined. The validity of the description
in terms of decay rates is restricted to the limiting cases of
very weak and very strong coupling regimes. A calculation
of the polariton radiative rates in these two cases is carried
out. It turns out that the main sink of radiation is represented
by the so called leaky modes. Leaky modes are cavity modes
which originate from the peculiar structure of the distributed
Bragg reflectors~DBR’s! and radiate in a non-normal direc-
tion inside the substrate only. The understanding of this
emission mechanism, alternative to that through the main
cavity mode, is very important for the design of any MC-
based device. One of the advances of this work with respect
to the ones cited above is the inclusion of the realistic cavity
structure inside the polariton model and, consequently, the
detailed description of the influence of leaky modes both on
the polariton dispersion and on the radiative rates relative to
light emitted at large angles inside the substrate. In Sec. II,
the polariton dispersion relation is obtained in an analytical
form as a function of the reflection coefficients of the DBR’s,
the QW position, the exciton dispersion, and the oscillator
strength. Then, in Sec. III, the solutions of the dispersion
relation are illustrated for some typical cavity structures. In
Sec. IV we provide a description of the luminescence process
and consider the problem of calculating separately the pho-
ton emission probabilities on the air side and inside the sub-
strate. Section V contains a summary and the concluding
remarks of the present work.

II. THEORETICAL MODEL

The system under analysis is depicted in Fig. 1. It is com-
posed of a single QW grown inside a semiconductor MC. A
semiconductor MC is a planar Fabry-Pe´rot resonator where
both the central spacer and the two mirrors are made of semi-
conductor material. In particular, the mirrors, called distrib-
uted Bragg reflectors~DBR’s!, are stacks of semiconductor
layers with two alternating refraction indices. We have indi-
cated withNl andNr the number of pairs in the left and right

FIG. 1. Plot of the dielectric constant profile of the multilayered
structure considered.

13 052 53V. SAVONA et al.



mirrors, respectively. A DBR presents a wavelength interval
centered atl, wherel/4 is the optical thickness of each
semiconductor layer, in which the square modulus of the
reflection coefficient at normal incidence is very close to 1,
provided the number of pairs is sufficiently high. In addition,
the phase of the reflectivity within this region, called the
‘‘stop band,’’ behaves linearly as a function of the fre-
quency. The cavity spacer thickness is usually chosen to be
an integer multiple ofl/2. The properties of such a resonator
are described in Ref. 24. Here it is important to remark that
only a real, frequency independent, dielectric constant is as-
signed to each layer: no absorption by the MC structure is
taken into account. We consider two different refraction in-
dices on the right and left sides of the whole structure be-
cause real devices usually have the substrate on one side and
air on the other side. The whole structure is planar and a
dielectric profilee(z) is assigned. As shown in Fig. 1,e(z) is
a piecewise constant function; it represents the local back-
ground dielectric constant which, inside each semiconductor
layer, accounts for the other resonances of the medium. The
QW is considered inside the cavity at an arbitrary position
zQW with respect to the center of the spacer. Ine(z) we
neglect the dielectric mismatch between the cavity and QW
materials.

The polariton Hamiltonian is given by

H5Hem1Hexc1HI , ~1!

whereHem andHexc are the noninteracting electromagnetic
and exciton Hamiltonians, respectively, andHI is the stan-
dardA•p interaction between the electromagnetic and polar-
ization fields.15 In HI we neglect theA

2 self-interaction term.
This term is important only when we look for the polariton
dispersion far from the exciton energy.15 In order to derive
Hem andHI , we need to find the electromagnetic modes of
the MC without the QW. The translational symmetry along
the plane allows us to write the electric field for a given
in-plane wave vectorki and frequencyv in the form

Ek~r,z!5ekUk~z!eiki•r. ~2!

Here ek is the polarization vector andk5ki1kzz. In what
follows, we usekz5(ncav

2 v2/c22ki
2)1/2, thez component of

the wave vector in the cavity layer, as the continuous index
for the cavity modes. Using the previous expression, Max-
well’s equations give

d2Uk~z!

dz2
1S v2

c2
e~z!2ki

2DUk~z!50. ~3!

This second order differential equation has two degenerate
solutions for each value ofkz and ki , and for each of the
two polarizations. We call these two solutionsUj ,ki ,kz

(z)

with j51,2. The polarization dependence is not indicated.
The solutions of Eq.~3! obey the following orthogonality
relation:

E dz e~z!Uj 8,ki ,kz8
* ~z!Uj ,ki ,kz

~z!52pd j j 8d~kz2kz8!.

~4!

The orthogonality betweenj51 andj52 solutions has been
imposed in order to write the electromagnetic field in second

quantization form. These two solutions are thus determined
up to a rotation in the (j51,j52) space. The eigenmodes of
~3! are propagating modes whenv is larger thancki /nsub.
This region is usually called the radiative region. Since our
aim is to describe the radiative processes, in what follows we
restrict ourselves to the radiative region only. When
ncav.nsub, guided modes inside the cavity layer exist for
cki /ncav,v,cki /nsub. These modes, however, are com-
pletely confined and, in ideal planar devices, do not contrib-
ute to the radiative processes. Actually, guided modes inside
the QW layer would appear due to the fact that usually
nQW.ncav. Having neglected the dielectric mismatch~we
take nQW5n cav), these latter modes do not appear in our
model. It is known25 that the coupling to these modes does
not introduce important effects inside the radiative region.
Once the electromagnetic modes of the cavity are known, the
three Hamiltonians can be written in analogy to the deriva-
tion of Ref. 15. They read

Hem5 (
j51,2

(
ki

E
0

`

dkz \v~ki
21kz

2!1/2aj ,ki ,kz
† aj ,ki ,kz

, ~5!

Hexc5(
ki

\vki
Aki

† Aki
, ~6!

and

HI5 (
j51,2

(
ki

E
0

`

dkz iC j ,ki ,kz
~aj ,ki ,kz

1aj ,2ki ,kz
† !

3~A2ki
2Aki

† !. ~7!

In these Hamiltonians,aj ,ki ,kz
† is the creation operator of a

photon with givenj , ki , andkz , Aki

† is the creation operator

of an exciton with a givenki , vki
is the exciton dispersion,

and v5c/ncav. It is clear from ~7! that the in-plane wave
vector ki is conserved in the exciton-radiation interaction.
The ki vector has been discretized, while thekz component
is varied on a continuous range from 0 to1`. The interac-
tion coefficient in~7! is given by

Cj ,ki ,kz
5

vki

c
A \v

~ki
21kz

2!1/2
F~0!ek•mcv

3E dz Uj ,ki ,kz
~z!r~z!. ~8!

HereF(r) is the exciton envelope function in the QW plane,
mcv is the dipole matrix element between conduction and
valence bands, andr(z)5v(z)c(z) is the exciton confine-
ment function.26 We point out that we have neglected polar-
ization indices in both exciton and photon operators. We are
thus considering materials where the polariton interaction
does not introduce any polarization mixing and the Hamilto-
nians for the two polarizations are separated. This situation is
typical of heavy hole excitons in GaAs-based materials,
where TE modes couple only to theT exciton and TM modes
couple only to theL exciton.14 The extension to light hole
Z-polarized excitons has been considered, in the case of a
symmetric cavity with metallic mirrors, in Ref. 21. Keeping
in mind that this twofold multiplicity exists, we introduce the
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polarization dependence only once we have an explicit ex-
pression for the polariton dispersion.

We use the Green’s function formalism for the diagonal-
ization of the total Hamiltonian. The retarded exciton
Green’s function is defined as the Fourier transform of the
probability amplitudePki

(t)5 i ^0uAki
G1(t)Aki

† u0&, where

G1(t) is the time evolution operator fort.0. The quantity
uPki

(t)u2 represents the probability that an initial exciton

state has not decayed into photons at timet.11 The retarded
Green’s function is given by

Gki
~ret!~E!5

1

E2\vki
2\Ski

~ret!~E!
, ~9!

where the retarded exciton self-energy is defined as

\Ski
~ret!~E!5 lim

d→0
(
j51,2

E
0

`

dkz
uCj ,ki ,kz

u22\v~ki
21kz

2!1/2

~E2 id!22\2v2~ki
21kz

2!
.

~10!

These two expressions derive from the standard Green’s
function formalism27 and have been used in the framework
of the polariton formalism both in bare QW’s~Ref. 13! and
MC’s.21,22 From the diagonalization of~1! we obtain polar-
iton eigenstates for every value ofv andki in the radiative
region. The density of states of this continuum presents
peaks which correspond to the polariton resonances. The en-
ergy position and broadening of these peaks are given by the
real and imaginary parts of the poles of~9! in the complex
energy plane.15,28 The polariton dispersion is defined as the
real and imaginary parts of the polariton resonances as a
function of ki . The polariton resonances are closely related
to the luminescence process, as we will point out in Sec. IV.

A closed form for the exciton self-energy is obtained by
replacing~8! into ~10!:

Ski
~ret!~E!5

G0k0
p E dz dz8r~z!r~z8!Gj~z,z8!, ~11!

wherek05v0 /v, j25E2/(\2v2)2ki
2 , and

Gj~z,z8!5 lim
d→0

(
j51,2

E
0

`

dkz
U j ,ki ,kz
* ~z8!Uj ,ki ,kz

~z!

~j2 id!22kz
2 ~12!

is the retarded Green’s function of the Maxwell equation~3!,
expressed as a series development in terms of its eigen-
modes. In Eq.~11!

G05
2p

ncav

v0

c

uF~0!u2umcv•eku2

\
~13!

is the bare QW exciton radiative rate atki50.26 Since Eq.
~3! defines a Sturm-Liouville problem, Eq.~12! can be re-
written as27

Gj~z,z8!52
2p

D„U1,ki ,j
~z!,U2,ki ,j

~z!…

3H U1,ki ,j
~z!U2,ki ,j

~z8!, z<z8

U2,ki ,j
~z!U1,ki ,j

~z8!, z>z8,
~14!

whereD„U1,ki ,j
(z),U2,ki ,j

(z)… is the Wronskian between the
two solutions. Equation~14! constitutes a very well known
result of the Green’s function formalism. Nevertheless, it has
not yet been introduced in the context of polariton theory. It
allows one to avoid the integration overkz appearing in the
expression for the retarded self-energy, thus constituting a
powerful tool to diagonalize the polariton problem in planar
structures with arbitrary dielectric constant profile. It is im-
portant to remark that in Eq.~14! two independent solutions
of Maxwell’s equations are required which, however, do not
need to be orthogonal.27 This allows us to drop the assump-
tion of orthogonality in the indexj and to choose a conve-
nient form for the two modes. In Eq.~14! and in those which
follow we use, instead of the two orthogonal solutions
U1,ki ,kz

(z) and U2,ki ,kz
(z), two linear combinations

Uj ,ki ,kz
(z), with j5 l ,r . They are defined as the modes origi-

nating from a plane wave traveling fromz51`,2` respec-
tively, as in Fig. 2:

Ur ,ki ,kz
~z!5A kz

ncav
2 kz8

3H eikz8z1Rr ,ke
2 ikz8z, zPI

I r ,ke
ikzz1Jr ,ke

2 ikzz, zPII

Tr ,ke
ikz9z, zPIII ,

~15!

Ul ,ki ,kz
~z!5A kz

ncav
2 kz9

3H Tl ,ke
2 ikz8z, zPI

I l ,ke
2 ikzz1Jl ,ke

ikzz, zPII

e2 ikz9z1Rl ,ke
ikz9z, zPIII.

~16!

Regions I, II, and III are defined in Fig. 2,
kz8

25(v2/c2)nsub
2 2ki

2 , and kz9
25(v2/c2)next

2 2ki
2 . This

choice of modes is the most convenient for treating planar
MC’s.21 We further definer j ,k and t j ,k , with j5 l ,r as the
complex reflection and transmission coefficients of the left

FIG. 2. A sketch of the modesr and l defined in the text.
Regions I, II, and III correspond to the external space on the left of
the MC, the central cavity layer, and the external space on the right
of the MC, respectively.
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and right mirror, respectively, for light coming from region
II. The coefficients in Eq.~15! can then be calculated, by
imposing the boundary conditions on the mirrors, as

I r ,k5
kz8

kz

t l ,ke
i ~kz2kz8!Lc/2

12r l ,kr r ,ke
2ikzLc

, Jr ,k5r r ,kI r ,ke
ikzLc, ~17!

I l ,k5
kz9

kz

tr ,ke
i ~kz2kz9!Lc/2

12r l ,kr r ,ke
2ikzLc

, Jl ,k5r l ,kI l ,ke
ikzLc. ~18!

We do not give the expressions forRj ,k andTj ,k . In fact,
we are interested only in the expression forUj ,ki ,kz

(z) inside

the cavity becauser(z), appearing in~11!, is different from
zero only in the QW region. It is important to keep in mind
that the mirror coefficientsr j ,k and t j ,k depend on the polar-
ization. Modes~15! and~16! obey the normalization relation

E dz e~z!Uj ,ki ,kz8
* ~z!Uj ,ki ,kz

~z!52pd~kz2kz8!. ~19!

However, it can be verified that, for a givenkz , the two
modesUr ,ki ,kz

(z) andUl ,ki ,kz
(z) are not orthogonal to each

other. We also define the functionsUj ,ki ,v
(z)

5@v/(kzv
2)#1/2Uj ,ki ,kz

(z), which obey an orthogonality re-

lation analogous to~19! but with d(v2v8) in place of
d(kz2kz8). These latter functions will be used in Sec. IV.
We can finally replace~17! and ~18! into ~14! and obtain a
closed form for the polariton dispersion as a function of the
mirror coefficients:

E2\vki
12\GakzP~kz!

1 i\GaF ~11r l ,ke
ikzLc!~11r r ,ke

ikzLc!

12r l ,kr r ,ke
2ikzLc

Q2~kz!

1
~12r l ,ke

ikzLc!~12r r ,ke
ikzLc!

12r l ,kr r ,ke
2ikzLc

R2~kz!

1
2i ~r l ,k2r r ,k!e

ikzLc

12r l ,kr r ,ke
2ikzLc

Q~kz!R~kz!G50. ~20!

Here,a runs over the two polarizations,GTE5G0k0 /kz and
GTM5G0kz /k0 . The definitions of functionsP(kz), Q(kz),
andR(kz) are given, in complete analogy with those by Tas-
soneet al.,29 by

P~kz!52
1

2kz
E
zQW2L/2

zQW1L/2

dz dz8r~z!r~z8!sin~kzuz2z8u!,

~21!

Q~kz!5E
zQW2L/2

zQW1L/2

dz r~z!cos~kzz!, ~22!

and

R~kz!5E
zQW2L/2

zQW1L/2

dz r~z!sin~kzz!, ~23!

whereL is the QW thickness.

III. RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA

The dispersion relation derived in the previous section can
be solved on the complex energy plane as a function ofki
and of the exciton and cavity parameters. First, however, we
remark that, by lettingr j ,k50 andzQW50 in Eq. ~20!, the
polariton dispersion29 for heavy hole~HH! excitons in a bare
QW is recovered, as expected. A further remark concerns the
quantitiesP(kz), Q(kz), andR(kz). The term proportional
to P(kz) is equal to the one which appears in the QW polar-
iton dispersion29 and is known to introduce a very small
energy shift in the radiative region. We neglect this contri-
bution in the calculations which follow. In the evaluation of
Q(kz) and R(kz), when L!Lc it is possible to replace
r(z) by a Dirac delta functiond(z2zQW). We thus take
Q(kz)5cos(kzzQW) andR(kz)5sin(kzzQW). Under these ap-
proximations, in the case of a symmetric cavity and
zQW50, the results of Refs. 18 and 20 follow from Eq.~20!.

In order to illustrate the behavior of the MC polariton
dispersion, we solve Eq.~20! numerically for a realistic
structure like that in Fig. 1. We point out that, apart from
neglecting the term proportional toP(kz) and introducing
the approximations mentioned above for the functions
Q(kz) andR(kz), we solve Eq.~20! without any pole ap-
proximation. In particular, the complex coefficientsr j ,k for
complex k values are calculated using a transfer matrix
approach.24 The parameters used for the calculation are the
following: Lc5l, Nl520, Nr514, nsub53.5, next51,
n153.35, n253.01, ncav53.0, andzQW50. We consider a
75 Å GaAs QW with an exciton energy\v051.59 eV. For
this QW, a realistic value of the exciton radiative rate is
\G0532 meV.26 The cavity length and the mirrors are cho-
sen so that the cavity mode is resonant with the exciton level
at ki50. The solutions of~20! on the complex plane are
calledEki ,n

5\(vki ,n
2 igki ,n

), where the indexn runs over

the different polariton resonances at fixedki . The real and
imaginary parts ofEki ,n

are plotted as a function ofki in
Figs. 3~a! and 3~b!, respectively. From now on we indicate
only the dependence on the modulus ofki , if not otherwise
required, since we have considered an isotropic Hamiltonian.
As solutions of~20!, two polariton resonances appear for
each value ofki . We recall that these two quantities repre-
sent the position of the peaks in the polariton density of
states and their broadening, respectively. The most natural
interpretation of these resonances is that they correspond to
effective quantum levels with a radiative decay rate. We re-
fer to these resonances simply as polariton modes. In Sec. IV
we will discuss the limits of this interpretation. The two po-
lariton modes present an energy splitting of 3 meV at
ki50; thus the system is in the strong coupling regime. In
this resonance region the polariton modes are admixtures of
exciton and photon modes with equal weights. Outside the
resonance region the two polariton modes approach the dis-
persion of the exciton and cavity mode, respectively, and
correspondingly they become exciton- and photonlike. This
behavior is analogous to that of bulk polaritons, as pointed
out in the introduction. Figure 3~b! shows that the polariton
radiative rates are substantially different from the bare QW
case: the radiative rate of the lower branch shows a peak at
ki50, where it is much higher than the rateG0 of the bare
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QW, and approaches zero at higher values ofki . The peak is
a signature of the enhancement of the spontaneous emission
due to the resonance with the cavity mode. In the strong
coupling regime it can be shown that the radiative rate at
resonance is given by one-half of the cavity mode
broadening,18 if no nonradiative exciton broadening is in-
cluded in the calculation. This result has been known for a
long time in atomic physics in the case of strong coupling
between a two-level atom and a resonant cavity mode.17 Out
of resonance the lower polariton becomes more excitonlike
and consequently its radiative rate lowers to zero. On the
contrary, the radiative rate of the upper polariton follows the
broadening of the cavity mode and goes to zero aski in-
creases. The abrupt change in the slope of the upper polar-
iton rate is due to the onset of total internal reflection on the
air side. At larger values ofki up to k0 , the energy of the
lower polariton presents several oscillations, which are
shown in detail in the inset of Fig. 3~a!. Correspondingly, the
radiative rate presents several peaks. These features are due
to the coupling of the exciton level to the cavity leaky
modes. Leaky modes are electromagnetic modes propagating
at finite angles with respect to the growth direction through
the DBR into the substrate. They are due to the peculiar
structure of the DBR’s, which introduces additional reso-
nances in the electromagnetic field at finite angles. The in-

teraction between the exciton and the leaky modes produces
an energy shift and an enhancement of the polariton radiative
rate, in the same way as for the interaction with the main
cavity mode. In Sec. IV we will discuss more in detail the
consequences of the interaction with the leaky modes for the
emission process.

As a comparison between the weak and the strong cou-
pling cases, we solve again Eq.~20! using the same param-
eters except for the thickness of the right DBR, for which we
choose nowNr58. The real and imaginary parts of the po-
lariton dispersion are plotted in Fig. 4. Two main differences
between Figs. 3 and 4 are evident. First, the Rabi splitting in
the polariton energies atki50 has disappeared. Second, the
two radiative rates atki50 are now different by a substantial
amount. A physical interpretation of these results is the fol-
lowing. In the weak coupling regime the square modulus of
the interaction matrix element is smaller than the broadening
of the cavity mode. In this situation the exciton level is
coupled to an almost flat continuum of photon states. The
system presents a full analogy with the bare QW case, the
only difference being an increased density of radiative
modes at the exciton energy. As a consequence, the two po-
lariton resonances are degenerate atki50. In addition, there
is not, as in the strong coupling case, a considerable admix-
ture of exciton and photon modes: in this case one of the two
polariton modes is mainly excitonlike and has a smaller ra-
diative broadening, while the other is more photonlike and
has a larger broadening. In the limit where the reflectivity of
both mirrors vanishes, the broadening of the first polariton
approachesG0 , while that of the other polariton tends to

FIG. 3. In graphs~a! and~b!, the energy and the radiative rate of
the polariton modes are plotted as a function ofki for TE polariza-
tion. The parameters of the structure are described in the text. In
plot ~a! the dashed lines are the noninteracting exciton and cavity
dispersion, while the dashed-dotted line represents the border be-
tween radiative and nonradiative regions. The inset in plot~a!
shows a detail of the lower polariton dispersion and includes also
the TM polarization.

FIG. 4. Same as Fig. 3, but for the weak coupling case described
in the text.

13 056 53V. SAVONA et al.



infinity, as can be seen from both Eq.~20! and the results of
Ref. 18. This limit corresponds, as pointed out at the begin-
ning of this section, to the bare QW case where only one
polariton resonance exists.28 From the comparison between
the weak and the strong coupling cases, it comes out that the
main difference appears in the resonance region. Here, while
in the strong coupling case the two polariton modes are full
admixtures of exciton and cavity modes, in the weak cou-
pling case they preserve exciton and photon character, re-
spectively. Outside the resonance region, in both cases, the
amount of exciton-photon admixture is negligible.

In order to understand the transition from weak to strong
coupling regime, we plot in Fig. 5~a! the Rabi splitting at
ki50 as a function of the numberNr of pairs of the mirror
on the air side. In correspondence, Fig. 5~b! shows the radia-
tive rate of the lower polariton mode. For smallNr the sys-
tem is in the weak coupling regime and no Rabi splitting is
present. In the weak coupling regime the polariton radiative
rate is the one given by the Fermi golden rule. Increasing the
confinement of the radiation, we can clearly see the transi-
tion from weak to strong coupling and the onset of a finite
Rabi splitting. The broadening of the cavity mode has been
plotted for comparison. It is clear from Fig. 5~b! that in the
strong coupling regime the polariton radiative rate is equal to
one-half of the cavity mode broadening. The radiative rate
shows its maximum in the transition from weak to strong
coupling. Moreover, the value at the maximum is much
larger thanG0 . This effect is usually called enhancement of
the spontaneous emission. For lowerNr , the radiative rate
decreases, approaching the value of the bare QWG0 , as
mentioned above.

As a test of the present model, we show in Fig. 6 the
polariton dispersion measured in Ref. 4 and our theoretical
prediction. The sample in Ref. 4 consists of a 3/2l MC with
six embedded GaAs/InxGa12xAs QW’s. Our model takes
into account one QW only. The most rigorous treatment of
the multiple-QW case consists in diagonalizing the coupled
problem of theN QW exciton states plus the radiation field,
as was shown by Citrin for bare multiple QW’s.30 From this
treatment it turns out that only one of theN multiple-QW
exciton states gives rise to a radiative polariton, the other
N21 states having negligible radiative broadening. In the
long wavelength approximation, the radiative state has an
oscillator strength equal toN times the single-QW oscillator
strength.21 In a MC, however, this approximation is not very
accurate. It turns out from Ref. 30 that a more accurate ap-
proximation consists in weighting the oscillator strength of
each QW with the square modulus of the normalized electric
field amplitude at the QW position. Following this approach,
an effective number of QW’s,Neff , is derived in Ref. 18. In
the present case,Neff55.34. In the calculation we have used
\G0522 meV, which has been obtained from the existing
measurements of the exciton oscillator strength in GaAs/
In xGa12xAs QW’s.31 The cavity parameters used for the cal-
culation are those described in Ref. 4 and no fitting proce-
dure was necessary. It can be seen in Fig. 6 that the data are
reproduced very well by the present model. The deviation in
the upper polariton branch at highki values must be attrib-
uted to an experimental uncertainty in the measurement of
the angle.32

Before introducing, in the next section, a description of
the luminescence process, we address the problem of includ-
ing a nonradiative dissipation rate for the exciton. This rate
should account for all the possible exciton dephasing mecha-
nisms, like phonon and impurity scattering, radiative traps,
surface recombination, etc. A way to take into account the
homogeneous broadening of the exciton level is to include an
imaginary part in the exciton dispersion appearing in Eq.
~20!. Oncevki

is replaced byvki
2 igexc, wheregexc is the

nonradiative exciton broadening, the polariton dispersion can
be solved for energies on the complex plane, as before. In

FIG. 5. Plots~a! and~b! represent the polariton~Rabi! splitting
and the radiative rate of the lower polariton branch respectively, at
ki50, as a function of the number of pairs of the right hand side
mirror,Nr . In plot ~b! the energy broadening of the cavity mode is
shown for comparison.

FIG. 6. The comparison between experimental data from Ref. 4
and our calculation. The parameters used in the calculation are
given in the text. The dashed lines represent the noninteracting
exciton and cavity modes.
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this case, however, the imaginary part of the solutions rep-
resents the total polariton decay rate, including the direct
radiative recombination and the exciton nonradiative dissipa-
tion mechanisms. In the general case, the separate calculation
of the radiative and nonradiative rates of polariton modes is
not a trivial task. In fact, acoustic phonons act both as scat-
tering centers for the coherent polaritons and as a source of
phase-coherence loss for exciton states~and consequently for
the polariton interaction!. Even if these two mechanisms can
be included separately in a QW exciton polariton
formalism,33,34 the inclusion of both would require the solu-
tion of the three-field problem at finite temperature. This
problem, to the authors’ knowledge, has never been ad-
dressed. In the next section the polariton radiative decay
probabilities are calculated in the presence of the nonradia-
tive homogeneous broadening introduced before, under some
assumptions~which will be stated later! on the relaxation and
dephasing processes, in two general cases.

IV. POLARITON PHOTOLUMINESCENCE

In this section we describe the photoluminescence process
of cavity polaritons and show that a simple description in
terms of emission rates is possible only in well defined cases.
In a photoluminescence experiment, excited states are pro-
duced at energies larger than those of the observed signal.
The excitations thus created relax towards the lowest energy
states which, in our case, are the cavity polaritons. The re-
laxation takes place through all the different polariton scat-
tering mechanisms. In particular, in high quality samples at
low temperature the dominant mechanism is the scattering
by acoustic phonons.33 When the relaxation process brings
polaritons inside the radiative region, some of them radiate
while the others further relax towards the bottom of the po-
lariton dispersion. Only the radiated signal is observed by
external detection. The balance between relaxation and emis-
sion processes is determined by the radiative rates at differ-
ent ki values within the radiative region and the scattering
rates between polaritons at different wave vectors. A detailed
analysis of the competition between these two effects has
been presented elsewhere.35 Here we just want to remark that
points in the radiative region where the radiative rate is much
larger than the scattering one will behave as radiative sinks
for polaritons. This, in turn, will result in a bottleneck in the
relaxation process. We will further consider this mechanism
later on in this section, in connection with the discussion of
the influence of cavity leaky modes on the radiative process.
In general, the complete dynamics of the relaxation and re-
combination processes has to be computed in order to derive
the intensity of the radiated light as a function of time and
emission angle. Here, however, we want to consider the lu-
minescence process under continuous excitation. In this par-
ticular case the detailed balance principle assures that a sta-
tionary polariton distribution will exist. In case relaxation is
faster than the recombination rates of the system, this distri-
bution will of course correspond to the thermal one. Other-
wise, fast decaying states and bottlenecks in the relaxation
will result in a nonthermal, but still stationary, distribution.
In bare and in MC-embedded QW’s, at temperatures where
the scattering on acoustic phonons is the main relaxation
mechanism, the second hypothesis is most likely to be

verified.33,35 For this reason, here we assume the polariton
distribution as given, regardless of its thermal character, and
concentrate on the calculation of the polariton radiative rates
as a function ofki .

We point out that, in the picture presented above, the
states in the radiative region are identified as coherent polar-
iton states. This means that we assumed dephasing effects on
the polariton interaction to be negligible. These effects origi-
nate from exciton-phonon interactions, exciton-exciton inter-
actions, and interface and alloy disorder. While the first two
sources of dephasing can be limited by performing experi-
ments at sufficiently low temperature and excitation density,
the effect of disorder is important in any experimental
regime.36 We will discuss at the end of this section the con-
ditions under which the assumption of coherent polariton
interaction is justified.

In order to compute the radiative recombination rates, it is
necessary to know the initial states of the decay process. We
distinguish two cases where the initial state is determined by
simple considerations. The first situation is that of the very
weak coupling regime between degenerate exciton and cav-
ity modes. In this case, as we have seen, the two polariton
resonances are degenerate and one is much broader than the
other. The broader resonance is almost completely photon-
like while the other is almost completely excitonlike. The
very weak coupling is close to the bare QW case: only the
narrower of the two polariton resonances is affected by re-
laxation mechanisms and therefore significant for the optical
properties. As a consequence, in the very weak coupling re-
gime, the initial state to calculate a decay rate is the bare
exciton state. The second situation arises when
vki,2

2vki,1
@(gki ,1

1gki,2
)/2, namely, when there is a large

splitting and two clearly distinct peaks in the polariton den-
sity of states. This situation takes place when the exciton and
cavity modes are completely detuned or, in case they are
resonant, when the system is in the very strong coupling
regime. The structure of the polariton density of states allows
us to identify the polariton peaks as quasiparticles in the
sense of many-body theory. The natural choice of the initial
state of decay in the very strong coupling case is a polariton
quasiparticle. This can be explained by introducing a simple
picture of the MC polariton quasiparticle, as a superposition
of an exciton and the discrete mode of a closed cavity. The
decay arises when the weak coupling to the external con-
tinuum of radiation is considered. This picture is usually
called the quasimode picture.37 In very strong coupling, the
Rabi oscillation, of period 2p(vki,2

2vki,1
)21, between the

exciton and photon states which constitute the quasimode is
presumably much faster than scatterings involved in the re-
laxation processes. Consequently, the polariton quasimode
would be the appropriate initial state. In the following calcu-
lation, however, we choose the exciton as the initial state of
decay. The exciton itself can be expressed as a superposition
of the polariton quasimodes. It will be shown that the two
polariton decay rates may be easily extracted from this cal-
culation.

In order to calculate the total radiative rate in the very
weak and very strong coupling cases, we choose the appro-
priate linear superposition ofl and r modes, whose electric
field is symmetric around the QW positionzQW. This mode
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is the radiative one, since we assume a symmetric exciton
wave function, while the antisymmetric combination clearly
does not couple to the exciton. We call this mode
Us,ki ,v

(z), and as,ki ,v
† the corresponding photon creation

operator. The time dependent probability per unit frequency
of an initial exciton decaying into the symmetric mode is
defined as

dPki ,v

dv
~ t !5 z^0uas,ki ,v

G1~ t !Aki

† u0& z2. ~24!

The matrix element appearing in~24! could in principle be
calculated perturbatively. However, in order to obtain the
correct time dependent probability in the strong coupling re-
gime it is necessary to go beyond perturbation theory. In the
present case, the perturbation series deriving from~24! can
be summed exactly11 and the result, in terms of the interac-
tion matrix element and the retarded Green’s function, is
given by

^0uas,ki ,v
G1~ t !Aki

† u0&5
^0uas,ki ,v

HIAki

† u0&

2p

3E dE
ei ~\v2E!t/\

E2\v1 i e
Gki

~ ret!~E!,

~25!

whereGki

(ret)(E) has been defined in Sec. II. Using~7! we

express the matrix element in~25! as

^0uas,ki ,v
HIAki

† u0&5 iCs,ki ,v
, ~26!

where the coefficientCs,ki ,v
is defined as in~8! with

Us,ki ,v
(z) in place ofUj ,ki ,kz

(z). Equation~25! allows the
calculation of the time dependent decay probability in any
coupling regime. However, as stated above, we are studying
only the two limiting cases of very weak and very strong
coupling. In these two cases some approximations can be
introduced in order to derive a simple expression for the
decay probability. As a first step, Eq.~25! can be integrated
on the complex plane. The result is

^0uas,ki ,v
G1~ t !Aki

† u0&5
iCs,ki ,v

\ F 1

v2vki
2Ski

~ret!~\v!

2 (
n51,2

e2 i ~vki ,n
2v!te2gki ,n

t

v2vki ,n
1 igki ,n

G ,
~27!

where the second term in square brackets is obtained under
the approximation of two simple polariton poles for the
Green’s functionGki

(ret)(E).38 In both very weak and very

strong coupling cases, the first term in square brackets can be
approximated by a sum over the two simple poles, in analogy
to the second term. As explained before, the two polariton
modes contribute to the matrix element~27!. In very weak
coupling, only one mode contributes significantly to the cal-
culation, because the other has a very large broadening. In
very strong coupling, instead, the time dependence would

involve interference between the two modes. However, as
mentioned above, this is a consequence of having chosen the
exciton as the initial state of the decay. When only one po-
lariton quasimode is used, only the corresponding term will
appear. This allows us to carry out the calculation for each
resonance and in both very weak and very strong coupling
we finally obtain forgki ,n

t!1

dPki ,v

dv
~ t !5

uCs,ki ,v
u2

\2

gki ,n
t

~v2vki ,n
!21gki ,n

2 , n51,2 .

~28!

The radiative rate is calculated by taking the time derivative
of ~28!, and integrating over the frequencyv:

gki ,n
rad 5

2p

\2 uCs,ki ,vki ,n
2 igki ,n

u2. ~29!

This expression is analogous to the Fermi golden rule, but is
calculated on the polariton resonances. The coefficient
Cj ,ki ,v

can be evaluated for complexv using ~8!, ~15!, and

~16!, and extending the calculation ofr j ,k andt j ,k to complex
values ofkz .

Equation~29! defines the total radiative rate. Actually, in
a MC, light with a givenki can radiate through the two
DBR’s on both sides of the structure. Moreover, because of
the asymmetry of the MC, the probabilities of a photon being
emitted through the left mirror inside the substrate and
through the right mirror in empty space will in general be
different. As a consequence of this asymmetry, a hypotheti-
cal time resolved luminescence experiment, performed sepa-
rately on the two sides of the sample, would result in the
same decay time, determined by the total radiative rate cal-
culated above, but different intensities of the measured signal
at a given time. As an example, it is clear that for large
enoughki , total internal reflection sets in for the mirror on
the air side and light is emitted in the substrate only. Since in
most of the luminescence experiments luminescence is de-
tected on the air side only, it is necessary to further distin-
guish a left and a right emission probability in the emission
process. In what follows, in order to avoid confusion, we will
speak of radiative ‘‘rate’’ only in relation to the total radia-
tive rate calculated above, while we will call left and right
emission ‘‘probabilities’’ the two quantities derived below,
even if their derivation closely follows that of the total rate.
We remark that modes of typel and r are the appropriate
modes to represent a right and leftoutgoingphoton, respec-
tively. This becomes evident if the time reversal operator is
applied to these two modes, as can be seen from Fig. 2. The
derivation of the left and right decay probabilities cannot be
carried out as was done for the total rate, because the two
modesl and r are not orthogonal. This fact represents the
main difference between our case and cases where the stan-
dard scattering theory can be applied. We are forced to cal-
culate the decay probability over finite photon wave packets
in order to overcome this difficulty. We define our incoming
wave packet from the right as

c r ,ki ,v
~ in! ~r ,t !5E dv8j r~v2v8!Ur ,ki ,v8~z!ei ~ki•r2v8t !.

~30!

53 13 059THEORY OF POLARITON PHOTOLUMINESCENCE IN . . .



The wave packet outgoing in the2` direction is simply
obtained by applying the time reversal operator on the in-
coming packet asc l ,ki ,v

(out) (r ,t)5@c r ,ki ,v
(in) (r ,t)#* . Incoming

and outgoing wave packets on the right side are defined in an
analogous way usingl modes. The calculation of the exciton
decay probability into the outgoing packets follows the same
steps as for the total radiative rate. If we consider the prob-
ability for gki ,n

t@1, we obtain

Pj ,ki ,v
5

1

\2U E dv8j j~v2v8!
Cj ,ki ,v8

v82vki
2Ski

~ret!~\v8!U
2

,

j5 l ,r . ~31!

As usual, this expression can be simplified in the two limit-
ing cases of very weak and very strong coupling regimes.
The result is again proportional touCj ,ki ,vki ,n

2 igki ,n
u2 and

depends on the shape of the wave packet. This latter depen-
dence drops out in the ratio between left and right decay
probabilities obtained, as before, by integrating~31! over
v:

Pl ,ki ,n

Pr ,ki ,n
5

uCr ,ki ,vki ,n
2 igki ,n

u2

uCl ,ki ,vki ,n
2 igki ,n

u2
, n51,2 . ~32!

The values obtained for the left and right probabilities and
the total radiative rate of the lower polariton branch are
shown in Fig. 7 in the case of the weak coupling regime
discussed in the previous section. Both probabilities are
peaked atki50. The value at the peak is larger on the air
side. This result is expected because of the strong asymmetry
of the cavity and of the low number of pairs of the right
DBR. At ki.0.83105 cm21 the emission probability in air
vanishes, due to the onset of total internal reflection on the
air side mirror. For still higher values ofki , light is totally
emitted on the substrate side, and the sequence of peaks cor-
responding to the emission through leaky modes is found. It
is clear at this point how leaky modes represent the most
important decay channel in MC systems. In fact, theki re-

gion where leaky modes are found is by far the largest por-
tion of the two-dimensional phase space involved in the de-
cay process. This fact has two important consequences. First,
it constitutes the most important limiting factor in the design
of light-emitting devices based on semiconductor MC’s,
where the optimization of the extraction efficiency on the air
side is pursued.39 Furthermore, it strongly influences the po-
lariton dynamics. In fact, the radiative rates corresponding to
leaky modes are much larger than the acoustic phonon scat-
tering rate. Consequently, most of the polaritons relaxing
inside the radiative zone are emitted through the leaky
modes, and only a relatively small fraction of them relaxes to
the bottom of the polariton dispersion where they radiate in
the normal direction.35 Thus leaky modes are responsible for
a bottleneck effect in the relaxation of excitons from the
nonradiative region to polariton states in the radiative region,
which takes place in a typical luminescence experiment with
nonresonant excitation.

The above calculations allow us to write an expression for
the measured luminescence intensity under the hypothesis
that the effects of the inhomogeneous broadening mecha-
nisms on the exciton level are negligible. The luminescence
spectrum is then simply proportional to a sum of Lorentzian
line shapes as follows:

I ~ki ,v!}
1

2p (
n51,2

Nki ,n
g r ,ki ,n

gki ,n

~v2vki ,n
!21gki ,n

2 , ~33!

where we have indicated withNn,ki
the assumed stationary

distribution of polariton modes. Expression~33! gives the
luminescence spectrum along an arbitrary direction. In addi-
tion, usingki5(v/c)sin(u), whereu is the emission angle in
air, Eq.~33! provides the intensity pattern of the photolumi-
nescence signal.

As a concluding remark of this section, we want to men-
tion the problem of describing the effect of disorder in these
systems. In this work we do not consider the influence of
disorder at any level. It is well known that, in QW’s, inter-
face roughness and alloy disorder destroy the in-plane trans-
lational invariance of the system. In particular, in sufficiently
narrow QW’s (LQW;200 Å or less!, there is experimental
evidence for the dominant role of interface roughness in de-
termining the exciton properties.36 Interface roughness re-
sults in a perturbation of the otherwise flat potential govern-
ing electron and hole motion along the QW plane. This, in
turn, influences both the relative electron-hole motion and
the exciton center of mass motion.36 In particular, the pres-
ence of ‘‘islands’’ of lateral confining potential along the
plane suggests the existence of exciton states with localized
center of mass motion. Exciton localization is known to
modify the exciton radiative properties in bare QW’s.34 In
this case, we can argue that the localized exciton wave func-
tion will be characterized by aki uncertainty, in contrast
with free exciton states. The order of magnitude of thiski
uncertainty is given by the inverse of the size of the confin-
ing islands. For good quality samples, this size is of the order
of 300 Å, which corresponds to aDki of the order of ten
times the width of the radiative region. However, in absorp-
tion or photoluminescence experiments, the direct evidence
of disorder effects is represented by an inhomogeneousen-
ergy broadening of the exciton line shape. How these two

FIG. 7. The total radiative rate and the corresponding emission
probabilities for left and right emitted photons are plotted for the
structure withNr58 described in the text.

13 060 53V. SAVONA et al.



quantities are related is not, at present, very clear from the
existing literature. Moreover, when considering measure-
ments on MC’s, the value ofDki estimated above is in con-
trast with the experimental observations. In fact, Houdre´
et al.4 have measured the MC polariton dispersion by means
of a photoluminescence experiment with nonresonant excita-
tion. This dispersion amounts to a few meV within the radia-
tive region. This is in accord with the results of the present
work and confirms the picture of free excitons here adopted.
We argue that these two apparently contrasting pieces of
evidence can be explained if we suppose that the exciton-
photon coupling ‘‘rebuilds’’ the in-plane coherence of the
localized exciton states lying within the frequency width of
the cavity mode. In fact, the photon modes still maintain
their translational symmetry inside the MC, independently of
the nature of the exciton states. Thus we expect that, when
the inhomogeneous energy broadening~the only parameter
which allows one to quantify disorder in real samples! is
smaller than the nominal Rabi splitting, the phase-coherence
loss is slower than the Rabi oscillation and, consequently, the
translational invariance of the mixed exciton-photon state is
preserved. This condition can be used to extend the defini-
tion of very strong coupling regime to include the overall
~homogeneous plus inhomogeneous! exciton broadening. We
conclude that, in the very strong coupling regime, localiza-
tion is strongly inhibited because of the strong exciton-
photon coupling, and the picture of free excitons is still
valid, provided an inhomogeneous energy broadening of the
exciton level is included in the calculations. We are currently
addressing this problem, which will be the subject of a sub-
sequent publication. Concerning the weak coupling regime,
it is clear that in this case the states involved in the lumines-
cence problem are those perturbed by the lateral disordered
potential. In this case, the influence of localization on the
radiative rates should be described, as in Ref. 34 for bare
QW’s, by allowing for the modification of the photon density
of states due to the cavity.

V. CONCLUSIONS

This paper mainly consists of two parts. In the first part
we have presented a quantum theory of QW exciton polari-
tons in arbitrary semiconductor microcavities. The polariton
dispersion relation has been obtained and solved in some
representative cases. The dispersion represents the energy
position and broadening of the resonances in the polariton
density of states. Two coupling regimes are usually distin-
guished: the weak coupling regime and the strong coupling
regime. This model applies equally well to the two cases. We
have described the polariton dispersion in two model struc-
tures presenting weak and strong coupling behavior at reso-
nance, respectively. Furthermore, by varying the cavity
mode confinement, we have shown the behavior of the po-
lariton energy and decay rate in the transition from the weak
to the strong coupling regime. The most important aspect of
this transition is that the peak in the polariton decay rate
appears in the intermediate coupling region. This is signifi-
cant if we seek for a maximum enhancement of the radiative

emission along the normal direction, as required in most ver-
tical emitting structures. A comparison of the present results
with existing measurements of the polariton dispersion in the
strong coupling case has been made. The data are well re-
produced by our calculations if the exact cavity geometry is
used. Moreover, no adjustable parameter has been introduced
and the known value of the exciton oscillator strength was
used.

In the second part of this work we tried to link the results
of the theory of microcavity polaritons to experimentally ob-
served quantities, namely, the photoluminescence spectrum.
In order to properly characterize the photoluminescence pro-
cess, it is necessary to identify the lowest excited states from
which the luminescence originates, and to define for them a
radiative decay rate. We have shown that this identification
is unambiguous only in two limiting cases where the polar-
iton resonances can be considered as quasimodes. This hap-
pens when the system is in the very strong or very weak
coupling regime. In these two cases an expression for the
radiative rates has been provided. In addition, these rates
have been further subdivided by considering emission into
the substrate and into air separately. This finally leads to an
expression for the observed photoluminescence intensity as a
function of frequency and emission angle. The most impor-
tant result of this analysis concerns the role of leaky modes
of the MC system on the emission process. Leaky modes
constitute the dominant decay channel in luminescence ex-
periments performed with nonresonant excitation. This effect
is undesirable when trying to improve the performances of
light-emitting devices, because radiation through leaky
modes is totally dissipated inside the sample substrate. Our
model provides the radiative decay rates in the leaky mode
region of k space as well as those through the main cavity
mode. This result consitutes the first step for a detailed de-
scription of the relaxation-emission process, aimed at both a
better understanding of the radiative processes peculiar to
these structures and an improvement of the performance of
modern MC-based light-emitting devices. Finally, we remark
that this analysis of the luminescence process gives evidence
for the existence of an intermediate region of coupling where
the dynamics of the relaxation and of the decay processes
cannot be treated separately. In this case a simple description
of the luminescence in terms of decay rates of polariton
quasimodes becomes impossible and an extension of the
present model, which includes relaxation into the whole con-
tinuum of polariton states, would be necessary. We have al-
ready remarked that the intermediate coupling region is the
most interesting for device application. The extension of the
model to these cases will thus constitute the leading subject
of our future work on microcavities.
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