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Classical continuum theory of the dipole-forbidden collective excitations in quantum strips
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We investigate the collective mode excitation spectrum of an electron gas in a quantum strip that is subjected
to a perpendicular magnetic field, with emphasis on the dipole-forbidden transitions. The quantum strip is
assumed to be defined in a two-dimensional electron gas by the application of a parabolic confining potential.
A classical continuum theory of the collective modes is developed and solved exactly. These results are used
to determine the density-response functions. An experimental method to detect the dipole-forbidden modes,
based on the use of an asymmetric planar metal grating above an array of quantum strips, is proposed, and
calculations of the expected infrared transmission spectrum of the combined grating-strip system are presented.
In a system with reasonable parameters, we find that some of the dipole-forbidden absorption peaks are large
enough to be observable.

[. INTRODUCTION average interparticle separation. Its use precludes consider-
ation of quantum size effects on the 2D motion, when only
There has been great interest over the past several yearsdne or a few subbands of the in-plane motion are below the
the collective excitations of electrons in semiconductor nanoFermi energy. See Ref. 13 for references to both theoretical
structures such as quantum wells, quantum wires, and quagnd experimental work on this alternative physical limit.
tum dots! Theoretical studies have focused primarily on the In this paper, we investigate the transverse collective
dipole-allowed transitions in these structures, and their demodes in a quantum strip with a parabolic confinement po-
pendence on the form of the confining potential, the numbetential, subjected to a perpendicular magnetic field. We study
of electrons, and the strength and orientation of an applie@nly the modes in which the density is uniform along the
magnetic field. For example, the long-wavelength optical abdirection. In Sec. Il, the classical normal modes and their
sorption spectrum in such structures with parabolic confinefrequencies are obtained exactly. In Sec. Ill, we derive ex-
ment is known to be independent of electron-electron interpressions for the linear density response due to the collective
action, and, in zero field, consists of a single peak at the bar@odes. An efficient way to probe experimentally the dipole-
harmonic oscillator frequency, regardless of the number oforbidden transitions that are the special focus of this paper is
electrons in the structufeMuch theoretical effort has also to use the so-called grating-coupler technigtiéHere, a
been devoted to the study of dipole-allowed modes both ifnetallic grating near the laterally structured two-dimensional
parabolic structures with an applied magnetic field and irelectron system is subjected to far-infrared radiation, result-
imperfect parabolic structurés® ing in an induced electric field with a wavelength of the
Here we extend this earlier work in a special way, exam-order of the grating period. In Sec. IV, we present calcula-
ining the spectrum and external coupling of a subset of théions of the infrared transmission spectrum of an array of
possible collective modes of electrons confined to two-guantum strips combined with a nearby planar grating, in
dimensional(2D) strips. For the systems we consider thezero field, for realistic system parameters. In addition to a
dynamics are quite different in each of three orthogonal dilarge dipole-allowed resonance, we find several observable
rections. Normal to the strigalong thex direction we as- dipole-forbidden absorption peaks.
sume complete quantum confinement. Only the lowest sub-
band of such motion is occupied and intersubband transitions Il. COLLECTIVE MODES
out of this subband are ignored. Within the plane of the strip ) i ] ) ) o
the motion along the direction is free, while the motion in ~ We consider first a single quantum strip or wire, of infi-
the y direction is subject to classical confinement; i.e., thenite length, defined in a two-dimensional electron gas in the
motion is confined but a large number of the resulting bound/Z Plane by the application of a parabolic confining potential
levels lie below the Fermi energy. In this limit it is possible
to apply a classical continuum theory for the collective mo- Ve lmQZ 2 )
tion of the electrons. Such a classical or semiclassical hydro- 2 ’
dynamic approach, where the electrons are treated as a
charged fluid, has been extremely useful in otherwherem is the electron effective mass. The strip is oriented
studies”*'+*2The classical continuum approximation for the in the z direction, and in this work we assume that the den-
2D motion in theyz plane will be valid if both the equilib- sity is always uniform along this direction. The plane in
rium and induced density vary slowly on the scale of thewhich the strip lies separates two half-spaces with local di-
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electric constant, and e;. A magnetic field of strength _ 9 9
B is applied perpendicular to the strip in tkelirection. We —iwon(y)+ W(novy) + = (Nguz) =0. )
shall be concerned with the classical equations of motion for
the velocity fieldo (y,t) of the electron fluid, namely, The third term in(9) vanishes because of the assumed trans-
lational invariance in the direction. Then(8) and (9) to-
n(y t) gether lead to
moy(y,t)=—mQ2y—mwu,(y,t) +2e2J dy’
=~ 2 |: fw dyr }
n(y)+—————1n —on(y’
+eE(y,t) (2) (y) m(w?—w?) dy o(y) vy (y")
and e d
. = ———— —[Ng(Y)E(Y)]. (10
Mb,= M, . 3) M(w®— wg) 7y LMOVEW)]
Here e<0 is the electron chargé&s 2=2e%/(e,+€s) ac- The free normal modes of the system are determined by

counts for the screening by the background dielectricsolving the eigenvalue problerfi0) with E=0. We now
w=|e|B/mc is the cyclotron frequency, E(y,t) present a remarkably simple exact analytic solution of this
=E(y)e "' is the y component of an external time- eigenvalue problem. We shall show that the normal modes
dependent driving fieldwhich varies only in they direc- may be indexed by positive integers with each one having
tion), andn(y,t) is the two-dimensional number density. In the form

writing these equations of motion we have already discarded

terms that are second order in the disturbance, such as T V) _

(mv-V)v. We also have neglected the contribution of pres- onj(y)=n——= (=123, ..), (11

sure gradients to the driving terms since these are not of 1=y

quantitative importance for the long-wavelength response ofyhere

systems moving in fewer than 3D.

The collective modes of the system may be found by lin- (—1)) dl ‘

earizing the density about the equilibrium distribution T;(x)= (Zj_—l),,(1—X2)1/20|—XJ'(1—X2)'_1/2 (12

No(Y). h
are Chebyshev’s polynomials of the first kitdand njis a

n(y,t) =ne(y)+én(y,t). (4)  normalization constant with the dimensions of density. Fur-

thermore, the frequencies of the normal mo@Es are sim-

In equilibrium (with E=0), all velocity components vanish,

song(y) satisfies ply

v') 0j=\j0%+ 0l (j=1,23,..). (13

= 2 ’ No — 2

ze fdy y—y' may. ©) Note that fdyén;=0, and also that thg =0 Chebyshev
polynomial is excluded fronil1). The spectruntl3), for the
case of no magnetic field, was obtained by Shikin, Demel,
and Heitmanrt! The j=1 mode is the well-known center-
of-mass mode,

The Hilbert transform of the equilibrium density is therefore
equal tomQ2y/2€ 2. Hencé®

) —
V1=V 72 lyl=sw

no(y)=4 ™W (6) N y d ¥ 14
n =9 ——==%— —Ng(y),
0, ly|>W, Wy)=mn1 ,—21_,)7 gy 0 y
wherey=y/W, \ is the number of electrons per unit length . _ [0z .2 C_
in the z direction, and 2V, defined via with frequencyw; = yQ*+ wg. Thej=2 mode,
2
4\8? 2y °~
oy ony(y) =12 = (15
is the width of the electron gas in the strip. is abreathingmode with frequencyo,= 2Q%+ wcz_

Assuming that the time-dependent quantities vary as The proof that the normal modes are given () fol-
e '“! [for example,on(y,t)=on(y)e '“!, etc], (3) leads to  lows from the identities
v,=lwy/w which may be used to eliminate thein (2) in

favor of v, . Performing the linearizatio() and using the T, (’37 ) B
equilibrium condition(5) leads to 5y \/7 Uj-a(y) (16)
2iwe ? f ,on( y ) iewE(y) and
R aTpre ) T (e o)) o _
8 JTi(V)=YU;1:(¥))+F >-DU[_(¥), (A7)

The linearized continuity equation is where the
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(—1)i(j+1) di _ total potential or field. Then the two terms on the right hand
) 2\—1/2 2\j+1/2 : . X - ; .
- (1=x%)" " 775 (1-x9) side of (8) are combined into a single term involving
2]+ dx
(18) EY(y,t) and(10) becomes

U;(x)=

are Chebyshev's polynomials of the second KihdJsing 3 e J ot
these relations we find th&l1l) is indeed a solution of Eq. on(y)= mM(w?— w?) 5[no(y)E W]
(10) whenw=w;.

(26)

If we again assume thain(y) can be expanded as (49),

Il LINEAR RESPONSE we find by a similar reduction that

The response of the electron gas to a weak driving field esn(y)= J'W dy’ xO(y,y") ®y"), (27)
-W

E(y,t)=E(y)e”'“t may be obtained by expanding the

charge density as where the bare susceptibility is

< TG) i T6) |« [ TG
eon(y) 121 CJ\/l——&?z' (19 xOy,y' )= 2 (wW W) 02— w2 (Trw /1—y ,2>
(28

Then(10) and the orthonormality relatidf
The only difference betweeg(®) and y is in the energy
denominators. As an independent-particle respongé

f \/—z does not depend on the collective mode frequeneies
The induced density due to various functional forms of

valid for nonzero andj, lead to the response amplitudes ¢ is readily determined froni25) and(28). For instance, if
one has many parallel wires spaceddy 2W and if

= H(X)Ti(X)= 36, (20

a; kQ? (21)
Ci=——
b0 $°(y)= 3, #sinGyy) (29
wherex=(e,+ €5)/2 and . . :
with G,=2wn/d, thenedn(y)=3da(y) is also given by a
sum of sines with

111
q=——3| dY T (HVI-Y 2E(y). (22)
mJ-1

Son= E (0 €) ¢tot' (30
If we describeE(y) with a scalar potentiakp(y), the m=0
coupling coefficienta; becomes where
1 (1 _ _ _ KQZ . .
“i:vWLdV TGNV %' ) Xnm =g 2 ZMEME. (3

1 - _ _ The “matrix elements,”
:_WWZJ,ldV[TJ’(yNl—yz]’d)(y) 5
Y sin(GWYy ), (32

M) = lf VRILRE
) ), 23 -y

dy

WW f V1-y are easily computed usmgj[cos(a)] cos(j #).'® Since

T;(Y¥ ) has the parity of !, the M{®)) are nonzero only for
ddj The extrae superscript stands for even, which is the

parity in y of the associated fields and currents for these

excitations. There are also odd parity excitations, for which

where the last step follows from another formal identfty.
Thus

w
esn(y)= f dy’ x(y,y") ¢*(y’), (24 ¢ anddo have a cosine expansion, and the analogu@bf
W is
where the susceptibility is 2 Q)2 ' '
_ ~ Xom =g oz gzMn Mg (33
2 i TG | < [ TG b
x(y,y')= AW 1y 2] o= w2 | 7W 15 2 with
(25)
M(©D) = 1 ’(y ) G, Wy 34
We have added a superscript of “ext” to the scalar po- COS{ y), (34)

tential in (24) to emphasize that this equation describes the
density response due to an external potential acting on which are nonzero only for evejn In Fig. 1 we show how
single strip. It is also useful to consider the response to théhe dimensionles) vary with GW. They all vanish at
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GW=0. For increasing the maximum in|M ()| for larger ~ grating as a flat 2D conductor whofecal) resistivity varies

j is higher and occurs at a larger value@¥V. periodically in they direction. To enhance the signal strength
It is also of interest to consider the response to a uniformand simplify the analysis, we assume that the single wire

external fieldE®{y)=E. For this casé20) and(22) imply  studied before has been periodically repeated inytidérec-

that only thej =1 center-of-mass mode will be excited: tion with the same period>2W that the grating has.
. The experiment we have in mind is for unpolarized infra-
E «x0Q% Tuy) red light to be incident along the normal. The corrugation in

So(Y)=—5———=27=—=, [Y[<l. (39 both the grating coupler and quantum wire systems will
2T 0T 01 1-y cause local fields varying on the scaledto be produced,

This is the dipole-allowed excitation. which in turn can excite various collective modes and reduce
For an external electric field that is linear yn the net transmission of the radiation. Since the collective
mode frequencies have a common dependence on normal
Q2 TY) _ magnetic field(with no avoided crossings or splittinga/e
So(y)~—— —, [y |<1, (36)  will only analyze the case d8=0. This allows the simpli-
wrmwz J1-y fication that the responses to incident fields polarized along

which is resonant, in zero magnetic field, only at the breatht€ ¥ Or z direction may be treated separately. We do not

ing mode frequency/2Q. This result is in contrast to those expect that the coupling strengths we e W”.I be signifi-
in a recent paper that considered the response of electrons "ﬁfimtly changed fOB%O' at least within our c_IassmaI theory.

a quantum dot® These authors found that a quadrupolar"et us aIS(_) e_mpha5|ze_that W€ are proposing the use of the
perturbation leads to energy absorption at twice the Kohl’?patlal variation of the mfrared. exciting fields ti(})égnet around
mode frequencies as well as at the frequencies for modes {)Ee restrl(;:_uqns ct):\ the gege;ahfzed Kofh?h thio ratr}(.er-
relative motion(such are ouj>1 mode$. Because our strip an ’T‘°3_'%29_23 € paraboiic Torm of the bare confining
containsN—e number of electrons, the mass associate(f)?;\e;irgg'b' YRam Qnsig(tatrenr?égg path to the same goal is
with its center-of-mass motio = Nm, is divergent, which P y )

suppresses the possibility of multiple excitation of this mode. .We assume that the grating periadis on the order of
micrometers and hence much smaller than the vacuum wave-

length of the infrared radiation. This plus the requirement
IV. TRANSMISSION SPECTRUM thath~d allows us to separate the calculation into macro-
OF THE GRATING-WIRE SYSTEM scopic and microscopic stag&sFor the former the whole

In this section we explore the feasibility of detecting with SyStém appears as a single, homogeneous, conducting layer
a grating coupler some of the rich spectrum our model preSeparating vacuum from the substrate whose dielectric con-
dicts. The grating coupler we have in mind is a conductingStant ises. The transmission coefficient through this layer is
sheet that lies parallel to and separatechbfyjom the plane
containing the quantum wires. Although it is commgut Ti= \/Zs|ti|2 (37
not necessajypracticé?°~?to use the grating’s shape to o _ _
produce the static potentials that confine the electrons, w¥here the transmission amplitude is
shall ignore how the ground state configuration is actually 4
produced and instead concentrate on how the system re- _ T
sponds to infrared fields. Then it is sufficient to describe the t=2 /[1+ Vest c E“}' (38)
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Here the subscript refers to a Cartesian index and for un- conductivity of the grating coupler andis the Drude relax-

polarized light we nee@= 3(T,+T,). The3;; in (38) isthe  ation time for the electrons in a strip. The final expression in

diagonal element of the macroscopic surface conductancé40), which derives from(7), uses@’=w(w+i/7) and

which must be calculated microscopically. v=w/(2wc) for the frequency in wave numbers. The di-
It is easy to findS,, because we have assumed that therénensionless produatd is small.

is no spatial variation in the direction. There are indepen-  The calculation ok, is much more involved because we

dent contributions from the grating coupler and the quantuninust self-consistently account for the mutual influence of
wire system222=2§%)+2(s) where density fluctuations in the quantum wires and grating cou-

zzZ )

1(d _
39=3 JO dyo(y)=c (39
and at frequency
S e ¢ b 2i 4 W\ k0?2 20
2 dme+iin)  4n| 7 U] 2 (40

pler. We do this by adapting earlier wotkgalled hereafter
SPM. We work in the electrostatic limit, separating the
component of the total electric field into
EYy)=Ey— d¢/dy. The constant term d&, represents the
transverse field, which on the scaledfindh scarcely var-

ies. In contrast, the longitudinal electric field does have sig-
nificant microscopic variations and we represent it with a
scalar potential that is expanded in a series of sines and co-
sines. With the grating plane at=0 and the quantum wire

Here o(y)=1/p(y) is the local, frequency-independent, 2D system in thex=h plane, we write

4 .
sinG,y coG,y
G X (e) n (0) n
e’ | —r +r , X<O0
nzo [ " Gn " Gn ]
sinG cos sinG cos
o= S [e T a9 o ey S ”G—YH o<x<h
SinG,y coG y“
—Gp(x=h)| _t(e n (0) n
e “n t +1 , h<x,
\ n>0 ( [ n Gn n Gn
(42)
T
whereG,=2mn/d with n a positive integer. The amplitudes L
r, t, and\(*) all have the units of electric field and are the soy :mJng , (46)

same symbols used in SPM. We have adéexdsuperscripts
to denote whether the associatgdcomponent of electric
field has even or odd parity ip. The latter possibility was
not allowed by SPM.

To determine the coefficients {#1) we impose boundary
conditions on paralleE and normalD across thex=0 and

x=h interfaces. The background dielectric constant is 1 inda(?,

x<0, €, in 0<x<h, and e in h<x. Since the different
parity terms separate, we suppress #ie superscripts to

write the matching conditions just once. Continuity of paral-

lel E leads to
rp=A4 " +e CM{"), (42)

th=A4 e G4 A (D). (43)

The discontinuity in normab is set by the induced charge

estn—eo[)\g_)e_enh—)\51+)]=4'n'5a'£15), (44

eI\ —ADe Gy =4ms0l?) (45)
Here the transforms of the interface charge densities,are
with respect to—sinG,y (co$,y) for the e (0) cases. For
the grating we use the equation of continuity to replace

where they component of the grating current is transformed
with respect to cdS,y (sinG,y) for the e (0) cases. The
J'9 can be expressed in terms of transforms of the grating
resistivity profile and the field&€, and — (d¢/dy)|y—o.>’
Rather than proceeding similarly for the quantum strip
we make use instead of the susceptibiliB7) and

(28) so
8= X\ntm/Gmt ¥y Eo (47)
m>0
where
W k2
K= q 2 M i (48)

and is nonzero only for the evanterms.
It is straightforward to algebraically eliminate the ")
andt,, yielding forn>0

4
> F(nm)r,=—3J9+TE, (49)
m=0 c
where
vd € _1 , 0
r.=i > DMn)Amy?, (50

" " n sinhG,h o



d
F(n,m):i% [1+ €oCOthGuh ]S

€o

sinhG,h

D Y(n,m)

o]
e

with
D(n,m) = (€s+ €,0thG,h) 8y = 47X /G- (52)

Note that thd",, (like the y{*’) are nonzero only for the even
terms. However, the matricds andD have both even and
odd contributions, but no cross couplings.

The quantity we needX,,, can be split into contri-
butions from the grating3{, and from the quantum
wire system,3(). The latter may be calculated from
(1/d) f3dy I (y)/E,, where by the equation of continuity

d 1
f dyJo(y)=—iwW? f dyysoS(y). (53
0 -1

Sincey=T,(y), only thej=1 term in(19) will contribute.
We find using(20) and the first line 0f23)

W\ 2 k0?2 (1 —
E) 7],107‘/1_3/ “E°(y)/Ey

41
T2§?=47Ti vd

2

2 8
5 [W\ Pk MieDtE/E,

142X — oy

(54)

where

t®=> D *n,m)
m>0

€o (o (0€)
— 2 @y / .
sinhG h fm T4mym ™ Eo (59

Up to this point the algebraic reduction has been exac
But, since we expect the dipole-forbidden absorption to b

weak, we now introduce the approximati@mee Eq(A10) of
SPM for the exact relatidn

'n=~pnios (56)

where jo=J{2,=3{9E,. Then from Ohm’s law for the
grating,

1
Eo=plot 52 [pn I +p 3R], (87)

and Eqg.(49), we obtain

47 1 Cp(e) cp
_s@ - BLSLEN § O -
c Eyy 1+ 2; 4 Ty 4
(e) (e) (0)
1 P e@in,m| 2| [ £ | o
2im 4 47 4
(0)
Cc
><<n,m)< fjj) ] (59
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where we have restored all tleéo superscripts. The, are
transforms of the grating’s resistivity profile(y) with re-
spect to coS,y (sinGy) for the e (0) cases ang is the
spatial average gb(y).

Sharp structure in the transmission coefficient will arise
from rapid variations in thé® ~! matrices, whose singulari-
ties define the collective modes. The frequencies of these
excitations will differ from those of an isolated strip for sev-
eral reasons. The nearby grating changes the effective dielec-
tric background in which a wire sits. This is represented by
the fact that the diagonal term i{52) is not the constant
(est+€,). However, deviations due to this “screening” by
the grating are only important for smail. Another factor
influencing mode locations is the interwire coupling. The
Coulomb potential of each strip will affect the response of its
neighbors. One can separate out this effect by writing
v=0v®+ v wherev®(y,y’)=—(2/k)Inly—y’| only if both
y andy’ are inside the same strip, otherwis@ vanishes. It
is v(® that enters the relation betwegff) and the suscepti-
bility  for an independent  set of  strips:
x9=xO+ x©y () The solution of this equation gives
x®(y,y") in the form of(25), with the constraint thag and
y’ must be inside the same strip. The corrections duévto
can then be added back in a rapidly converging series of
multipolar couplings, leading to small depolarization shifts
away from thew; . This two-step resummation of the infinite
series expansion of £D 1~ (1—x(®v)~ ! is important
since it allows one to avoid a direct evaluation ;@ﬁor)n
which is numerically difficult to treat.

We have now determined all the formal ingredients, so we
turn to the choice of model parameters. With systems based
on GaAs/ Al Ga _, As in mind, we setm=0.069n, and
€,=€s,=13. The Drude relaxation time is chosen to be
7=10 ps, which corresponds to a mobility of 255000
cm?V~1 s71. The factor ofw? in (25) and(48) is replaced
with @?= w(w+i/7) to broaden out the resonances dhis
set initially at 10 cm®. For simplicity we ignore the pos-
sible dependence of on frequency. The resistivity profile

=p(y)+p(y) where

pa, |yl<al2
pOy)={ " "_ (59
po,  |y—di2/<b/2,
y—di2 ly—d/2|<b/2
Pt Y=
p@(y)={ P b2 (60)
0, lyl<as2.

Here the grating period=a+b and the above definitions
are to be periodically extended. The Fourier transforms are
readily found. Note that p=(ap,+bpy)/d while
o={alp,+0.% In[(py+p)/(p,—p)l/pJ/d. We assume
pa=pp=pc- If pc=0, thenp(y) has even parity while if
pa=py, there is odd parity fop(y)—p abouty=d/2. We
imagine that the quantum wires lie either under gheegion
or the p,, region, with 2¥<<a or 2W<b, respectively. Note
that if W=1um, then from(7) A=3.14x 10" cm.

As a first illustration of a transmission spectrum we show
in Fig. 2 results for an even-parity grating, with
pa=1000 Q/sq, pp,=30Q/sq, and p.,=0. We choose
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FIG. 2. Relative change in transmission between when the quan- F!CG- 3. Relative change in transmission between when the quan-
tum strips are absent or present versus infrared radiation frequendy™M Strips are absent or present versus infrared radiation frequency
v. See text for specific parameter values of the grating coupler and- S€€ text for specific parameter values of the grating coupler and
the quantum wire system. There is no coupling to modes of eveltqe quantum wire system. There is coupling to modes of afl
j in (19).

_ grating and interwire interactions are responsible for its de-
d=4 um, h=0.3 um, anda/d=0.2. The quantum strips poarization shift below the value 30 crh for a single strip.
are centered under the, regions with W/b=0.4 SO  The peak near=40 cmi ! is due to the first odd-parity col-
W=1.28 um. If W is chosen to be smaller the assumption g ctive mode, withj=2. The next everj- peak is near
of parabolic confinement is better satisfied, but the couplingg cm 2, but it is not visible. By symmetry, direct coupling
strength is weaker. For good convergence of pgak positio_nﬁom the grating to odg- peaks, excepi=1, is forbidden.
and heights, one needs to keep abou_t13(_) reciprocal latticthe quantum wire array can itself provide the necessary mo-
vectors. The strong peak near=7 cm ~ is due 0 the  menyym, but for our choice of parameters this mechanism of
j=1 mode. Its position has been shifted downwards due t@ygitation does not appear to be efficient.
the Coulomb interactions with the grating and between adja- \y/e nave examined other cases in the large parameter
cent strips. The next visible peak near 16 cnarises from space of variable,, pp, pe, d, h, a, b, W, 7, andQ. The
the j=3 resonance(at 30 =17.3cn* for an isolated relative strengths of the dipole-forbidden peaks are compa-
strip). The excitation of the resonances for eyeis forbid-  rable to or smaller than those shown héualess one in-
den by symmetry and the coupling to higher gdahodes is  creases), so it will be a definite experimental challenge to
too weak to be seen. The Drude peak:asO is due to  gbserve them. We hope that someone will take on this task.
conduction along the length of the wires.

In Fig. 3 we show what happens at the other symmetry
extreme. Here we have chosgn=p,=1000Q/sq and
pc=900Q/sq so allp{?, vanish. The strips are still centered ~ We thank Allan MacDonald for useful discussions. This
under the p, regions but now with W/b=0.3 and work was supported by the National Science Foundation
b/d=0.6. We have decreased to 4/3 um and h to  through Grant No. DMR-9403908. M.R.G. and G.V. ac-
0.1 um while Q has been increased to 30cmso A is  knowledge the kind hospitality of the Condensed Matter
roughly the same as for Fig. 2. The dipole-allowed mode afheory Group at Indiana University, under NSF Grant No.
25 cm 1 is the dominant structure. Again, screening by theDMR-9416906, where this work was initiated.
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