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We investigate the collective mode excitation spectrum of an electron gas in a quantum strip that is subjected
to a perpendicular magnetic field, with emphasis on the dipole-forbidden transitions. The quantum strip is
assumed to be defined in a two-dimensional electron gas by the application of a parabolic confining potential.
A classical continuum theory of the collective modes is developed and solved exactly. These results are used
to determine the density-response functions. An experimental method to detect the dipole-forbidden modes,
based on the use of an asymmetric planar metal grating above an array of quantum strips, is proposed, and
calculations of the expected infrared transmission spectrum of the combined grating-strip system are presented.
In a system with reasonable parameters, we find that some of the dipole-forbidden absorption peaks are large
enough to be observable.

I. INTRODUCTION

There has been great interest over the past several years in
the collective excitations of electrons in semiconductor nano-
structures such as quantum wells, quantum wires, and quan-
tum dots.1 Theoretical studies have focused primarily on the
dipole-allowed transitions in these structures, and their de-
pendence on the form of the confining potential, the number
of electrons, and the strength and orientation of an applied
magnetic field. For example, the long-wavelength optical ab-
sorption spectrum in such structures with parabolic confine-
ment is known to be independent of electron-electron inter-
action, and, in zero field, consists of a single peak at the bare
harmonic oscillator frequency, regardless of the number of
electrons in the structure.2 Much theoretical effort has also
been devoted to the study of dipole-allowed modes both in
parabolic structures with an applied magnetic field and in
imperfect parabolic structures.3–10

Here we extend this earlier work in a special way, exam-
ining the spectrum and external coupling of a subset of the
possible collective modes of electrons confined to two-
dimensional~2D! strips. For the systems we consider the
dynamics are quite different in each of three orthogonal di-
rections. Normal to the strip~along thex direction! we as-
sume complete quantum confinement. Only the lowest sub-
band of such motion is occupied and intersubband transitions
out of this subband are ignored. Within the plane of the strip
the motion along thez direction is free, while the motion in
the y direction is subject to classical confinement; i.e., the
motion is confined but a large number of the resulting bound
levels lie below the Fermi energy. In this limit it is possible
to apply a classical continuum theory for the collective mo-
tion of the electrons. Such a classical or semiclassical hydro-
dynamic approach, where the electrons are treated as a
charged fluid, has been extremely useful in other
studies.7,9,11,12The classical continuum approximation for the
2D motion in theyz plane will be valid if both the equilib-
rium and induced density vary slowly on the scale of the

average interparticle separation. Its use precludes consider-
ation of quantum size effects on the 2D motion, when only
one or a few subbands of the in-plane motion are below the
Fermi energy. See Ref. 13 for references to both theoretical
and experimental work on this alternative physical limit.

In this paper, we investigate the transverse collective
modes in a quantum strip with a parabolic confinement po-
tential, subjected to a perpendicular magnetic field. We study
only the modes in which the density is uniform along thez
direction. In Sec. II, the classical normal modes and their
frequencies are obtained exactly. In Sec. III, we derive ex-
pressions for the linear density response due to the collective
modes. An efficient way to probe experimentally the dipole-
forbidden transitions that are the special focus of this paper is
to use the so-called grating-coupler technique.1,14 Here, a
metallic grating near the laterally structured two-dimensional
electron system is subjected to far-infrared radiation, result-
ing in an induced electric field with a wavelength of the
order of the grating period. In Sec. IV, we present calcula-
tions of the infrared transmission spectrum of an array of
quantum strips combined with a nearby planar grating, in
zero field, for realistic system parameters. In addition to a
large dipole-allowed resonance, we find several observable
dipole-forbidden absorption peaks.

II. COLLECTIVE MODES

We consider first a single quantum strip or wire, of infi-
nite length, defined in a two-dimensional electron gas in the
yz plane by the application of a parabolic confining potential

V5
1

2
mV2y2, ~1!

wherem is the electron effective mass. The strip is oriented
in the z direction, and in this work we assume that the den-
sity is always uniform along this direction. The plane in
which the strip lies separates two half-spaces with local di-
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electric constantseo and es . A magnetic field of strength
B is applied perpendicular to the strip in thex direction. We
shall be concerned with the classical equations of motion for
the velocity fieldvW (y,t) of the electron fluid, namely,

mv̇y~y,t !52mV2y2mvcvz~y,t !12ẽ2E dy8
n~y8,t !

y2y8

1eE~y,t ! ~2!

and

mv̇z5mvcvy . ~3!

Here e,0 is the electron charge,ẽ 252e2/(eo1es) ac-
counts for the screening by the background dielectric,
vc[ueuB/mc is the cyclotron frequency, E(y,t)
5E(y)e2 ivt is the y component of an external time-
dependent driving field~which varies only in they direc-
tion!, andn(y,t) is the two-dimensional number density. In
writing these equations of motion we have already discarded
terms that are second order in the disturbance, such as
(mv•¹)v. We also have neglected the contribution of pres-
sure gradients to the driving terms since these are not of
quantitative importance for the long-wavelength response of
systems moving in fewer than 3D.15

The collective modes of the system may be found by lin-
earizing the density about the equilibrium distribution
n0(y),

n~y,t !5n0~y!1dn~y,t !. ~4!

In equilibrium ~with E50), all velocity components vanish,
son0(y) satisfies

2ẽ 2E dy8
n0~y8!

y2y8
5mV2y. ~5!

The Hilbert transform of the equilibrium density is therefore
equal tomV2y/2ẽ 2. Hence16

n0~y!5H 2l

pW
A12 ỹ 2, uyu<W

0, uyu.W,

~6!

whereỹ5y/W, l is the number of electrons per unit length
in the z direction, and 2W, defined via

4lẽ 2

mW2 5V2, ~7!

is the width of the electron gas in the strip.
Assuming that the time-dependent quantities vary as

e2 ivt @for example,dn(y,t)5dn(y)e2 ivt, etc.#, ~3! leads to
vz5 ivcvy /v which may be used to eliminate thevz in ~2! in
favor of vy . Performing the linearization~4! and using the
equilibrium condition~5! leads to

vy~y!5
2ivẽ 2

m~v22vc
2!
E

2W

W

dy8
dn~y8!

y2y8
1

ievE~y!

m~v22vc
2!
.

~8!

The linearized continuity equation is

2 ivdn~y!1
]

]y
~n0vy!1

]

]z
~n0vz!50. ~9!

The third term in~9! vanishes because of the assumed trans-
lational invariance in thez direction. Then~8! and ~9! to-
gether lead to

dn~y!1
2ẽ 2

m~v22vc
2!

]

]y Fn0~y!E
2W

W dy8

y82y
dn~y8!G

5
e

m~v22vc
2!

]

]y
@n0~y!E~y!#. ~10!

The free normal modes of the system are determined by
solving the eigenvalue problem~10! with E50. We now
present a remarkably simple exact analytic solution of this
eigenvalue problem. We shall show that the normal modes
may be indexed by positive integers with each one having
the form

dnj~y!5h j

Tj~ ỹ !

A12 ỹ 2
~ j51,2,3, . . .!, ~11!

where

Tj~x![
~21! j

~2 j21!!!
~12x2!1/2

dj

dxj
~12x2! j21/2 ~12!

are Chebyshev’s polynomials of the first kind,17 andh j is a
normalization constant with the dimensions of density. Fur-
thermore, the frequencies of the normal modes~11! are sim-
ply

v j[AjV21vc
2 ~ j51,2,3, . . .!. ~13!

Note that *dydnj50, and also that thej50 Chebyshev
polynomial is excluded from~11!. The spectrum~13!, for the
case of no magnetic field, was obtained by Shikin, Demel,
and Heitmann.11 The j51 mode is the well-known center-
of-mass mode,

dn1~y!5h1

ỹ

A12 ỹ 2
}2

]

]y
n0~y!, ~14!

with frequencyv15AV21vc
2. The j52 mode,

dn2~y!5h2

2ỹ 221

A12 ỹ 2
, ~15!

is abreathingmode with frequencyv25A2V21vc
2.

The proof that the normal modes are given by~11! fol-
lows from the identities

1

pE21

1 dỹ 8

ỹ 82 ỹ

Tj~ ỹ 8!

A12 ỹ 82
5Uj21~ ỹ ! ~16!

and

jT j~ ỹ !5 ỹU j21~ ỹ !1~ ỹ 221!Uj218 ~ ỹ !, ~17!

where the
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Uj~x![
~21! j~ j11!

~2 j11!!!
~12x2!21/2

dj

dxj
~12x2! j11/2

~18!

are Chebyshev’s polynomials of the second kind.17 Using
these relations we find that~11! is indeed a solution of Eq.
~10! whenv5v j .

III. LINEAR RESPONSE

The response of the electron gas to a weak driving field
E(y,t)5E(y)e2 ivt may be obtained by expanding the
charge density as

edn~y!5(
j51

`

cj
Tj~ ỹ !

A12 ỹ 2
. ~19!

Then ~10! and the orthonormality relation18

E
21

1 dx

A12x2
Ti~x!Tj~x!5

p

2
d i j , ~20!

valid for nonzeroi and j , lead to the response amplitudes

cj5
a jkV2

v22v j
2 ~21!

wherek5(eo1es)/2 and

a j[2
1

p2E
21

1

dỹ Tj8~ ỹ!A12 ỹ 2E~y!. ~22!

If we describeE(y) with a scalar potentialf(y), the
coupling coefficienta j becomes

a j5
1

Wp2E
21

1

dỹ Tj8~ ỹ !A12 ỹ 2f8~ ỹ !

52
1

Wp2E
21

1

dỹ @Tj8~ ỹ !A12 ỹ 2#8f~ ỹ !

5
j 2

Wp2E
21

1

dỹ
Tj~ ỹ !

A12 ỹ 2
f~ ỹ !, ~23!

where the last step follows from another formal identity.18

Thus

edn~y!5E
2W

W

dy8x~y,y8!fext~y8!, ~24!

where the susceptibility is

x~y,y8!5(
j

S j

pW

Tj~ ỹ !

A12 ỹ 2D kV2

v22v j
2 S j

pW

Tj~ ỹ 8!

A12 ỹ 82
D .
~25!

We have added a superscript of ‘‘ext’’ to the scalar po-
tential in ~24! to emphasize that this equation describes the
density response due to an external potential acting on a
single strip. It is also useful to consider the response to the

total potential or field. Then the two terms on the right hand
side of ~8! are combined into a single term involving
Etot(y,t) and ~10! becomes

dn~y!5
e

m~v22vc
2!

]

]y
@n0~y!Etot~y!#. ~26!

If we again assume thatdn(y) can be expanded as in~19!,
we find by a similar reduction that

edn~y!5E
2W

W

dy8x~0!~y,y8!f tot~y8!, ~27!

where the bare susceptibility is

x~0!~y,y8!5(
j

S j

pW

Tj~ ỹ !

A12 ỹ 2D kV2

v22vc
2 S j

pW

Tj~ ỹ 8!

A12 ỹ 82
D .

~28!

The only difference betweenx (0) and x is in the energy
denominators. As an independent-particle response,x (0)

does not depend on the collective mode frequenciesv j .
The induced density due to various functional forms of

f is readily determined from~25! and ~28!. For instance, if
one has many parallel wires spaced byd.2W and if

f tot~y!5 (
n.0

fn
totsin~Gny! ~29!

with Gn52pn/d, thenedn(y)5ds(y) is also given by a
sum of sines with

dsn5 (
m.0

xn,m
~0,e!fm

tot , ~30!

where

xn,m
~0,e!5

2

d(j
kV2

v22vc
2Mn

~e, j !Mm
~e, j ! . ~31!

The ‘‘matrix elements,’’

Mn
~e, j !5

j

pE21

1

dỹ
Tj~ ỹ !

A12 ỹ 2
sin~GnWỹ !, ~32!

are easily computed usingTj@cos(u)#5cos(ju).18 Since
Tj ( ỹ ) has the parity ofỹ j , theMn

(e, j ) are nonzero only for
odd j . The extrae superscript stands for even, which is the
parity in y of the associated fields and currents for these
excitations. There are also odd parity excitations, for which
f andds have a cosine expansion, and the analogue of~31!
is

xn,m
~0,o!5

2

d(j
kV2

v22vc
2Mn

~o, j !Mm
~o, j ! ~33!

with

Mn
~o, j !5

j

pE21

1

dỹ
Tj~ ỹ !

A12 ỹ 2
cos~GnWỹ !, ~34!

which are nonzero only for evenj . In Fig. 1 we show how
the dimensionlessM ( j ) vary with GW. They all vanish at
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GW50. For increasingj the maximum inuM ( j )u for larger
j is higher and occurs at a larger value ofGW.
It is also of interest to consider the response to a uniform,

external fieldEext(y)5Ē. For this case~20! and ~22! imply
that only thej51 center-of-mass mode will be excited:

ds~y!52
Ē

2p

kV2

v22v1
2

T1~ ỹ !

A12 ỹ 2
, u ỹ u,1. ~35!

This is the dipole-allowed excitation.
For an external electric field that is linear iny,

ds~y!;
kV2

v22v2
2

T2~ ỹ !

A12 ỹ 2
, u ỹ u,1, ~36!

which is resonant, in zero magnetic field, only at the breath-
ing mode frequencyA2V. This result is in contrast to those
in a recent paper that considered the response of electrons in
a quantum dot.19 These authors found that a quadrupolar
perturbation leads to energy absorption at twice the Kohn
mode frequencies as well as at the frequencies for modes of
relative motion~such are ourj.1 modes!. Because our strip
containsN→` number of electrons, the mass associated
with its center-of-mass motion,M5Nm, is divergent, which
suppresses the possibility of multiple excitation of this mode.

IV. TRANSMISSION SPECTRUM
OF THE GRATING-WIRE SYSTEM

In this section we explore the feasibility of detecting with
a grating coupler some of the rich spectrum our model pre-
dicts. The grating coupler we have in mind is a conducting
sheet that lies parallel to and separated byh from the plane
containing the quantum wires. Although it is common~but
not necessary! practice1,20–22 to use the grating’s shape to
produce the static potentials that confine the electrons, we
shall ignore how the ground state configuration is actually
produced and instead concentrate on how the system re-
sponds to infrared fields. Then it is sufficient to describe the

grating as a flat 2D conductor whose~local! resistivity varies
periodically in they direction. To enhance the signal strength
and simplify the analysis, we assume that the single wire
studied before has been periodically repeated in they direc-
tion with the same periodd.2W that the grating has.

The experiment we have in mind is for unpolarized infra-
red light to be incident along the normal. The corrugation in
both the grating coupler and quantum wire systems will
cause local fields varying on the scale ofd to be produced,
which in turn can excite various collective modes and reduce
the net transmission of the radiation. Since the collective
mode frequencies have a common dependence on normal
magnetic field~with no avoided crossings or splittings! we
will only analyze the case ofB50. This allows the simpli-
fication that the responses to incident fields polarized along
the y or z direction may be treated separately. We do not
expect that the coupling strengths we find will be signifi-
cantly changed forBÞ0, at least within our classical theory.
Let us also emphasize that we are proposing the use of the
spatial variation of the infrared exciting fields to get around
the restrictions of the generalized Kohn theorem2,19 rather
than modifying the parabolic form of the bare confining
potential.3–7,9,21–23An alternative path to the same goal is
provided by Raman scattering.24,25

We assume that the grating periodd is on the order of
micrometers and hence much smaller than the vacuum wave-
length of the infrared radiation. This plus the requirement
that h'd allows us to separate the calculation into macro-
scopic and microscopic stages.26 For the former the whole
system appears as a single, homogeneous, conducting layer
separating vacuum from the substrate whose dielectric con-
stant ises . The transmission coefficient through this layer is

Ti5Aesut i u2 ~37!

where the transmission amplitude is

t i52YF11Aes1
4p

c
S i i G . ~38!

FIG. 1. Matrix elements for coupling of col-
lective modes to sinusoidal fields. The solid
~dashed! curves are for odd~even! values of j .
Results for j51, . . . ,8 areshown. The largerj
is, the smalleruM ( j )u is near the origin.
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Here the subscripti refers to a Cartesian index and for un-
polarized light we needT5 1

2(Ty1Tz). TheS i i in ~38! is the
diagonal element of the macroscopic surface conductance,
which must be calculated microscopically.

It is easy to findSzz because we have assumed that there
is no spatial variation in thez direction. There are indepen-
dent contributions from the grating coupler and the quantum
wire system,Szz5Szz

(g)1Szz
(s) , where

Szz
~g!5

1

dE0
d

dys~y![s̄ ~39!

and at frequencyv

Szz
~s!5

ile2

dm~v1 i /t!
5

c

4p F2p2indSWd D 2kV2

ṽ2 G . ~40!

Heres(y)51/r(y) is the local, frequency-independent, 2D

conductivity of the grating coupler andt is the Drude relax-
ation time for the electrons in a strip. The final expression in
~40!, which derives from~7!, uses ṽ25v(v1 i /t) and
n5v/(2pc) for the frequency in wave numbers. The di-
mensionless productnd is small.

The calculation ofSyy is much more involved because we
must self-consistently account for the mutual influence of
density fluctuations in the quantum wires and grating cou-
pler. We do this by adapting earlier work,27 called hereafter
SPM. We work in the electrostatic limit, separating they
component of the total electric field into
Etot(y)5E02]f/]y. The constant term ofE0 represents the
transverse field, which on the scale ofd andh scarcely var-
ies. In contrast, the longitudinal electric field does have sig-
nificant microscopic variations and we represent it with a
scalar potential that is expanded in a series of sines and co-
sines. With the grating plane atx50 and the quantum wire
system in thex5h plane, we write

f tot55
(
n.0

H eGnxF2r n
~e!
sinGny

Gn
1r n

~o!
cosGny

Gn
G J , x,0

(
n.0

H e2GnxF2ln
~2,e!

sinGny

Gn
1ln

~2,o!
cosGny

Gn
G1e2Gn~h2x!F2ln

~1,e!
sinGny

Gn
1ln

~1,o!
cosGny

Gn
G J , 0,x,h

(
n.0

H e2Gn~x2h!F2tn
~e!
sinGny

Gn
1tn

~o!
cosGny

Gn
G J , h,x,

~41!

whereGn52pn/d with n a positive integer. The amplitudes
r , t, andl (6) all have the units of electric field and are the
same symbols used in SPM. We have addede/o superscripts
to denote whether the associatedy component of electric
field has even or odd parity iny. The latter possibility was
not allowed by SPM.

To determine the coefficients in~41! we impose boundary
conditions on parallelE and normalD across thex50 and
x5h interfaces. The background dielectric constant is 1 in
x,0, eo in 0,x,h, and es in h,x. Since the different
parity terms separate, we suppress thee/o superscripts to
write the matching conditions just once. Continuity of paral-
lel E leads to

r n5ln
~2 !1e2Gnhln

~1 ! , ~42!

tn5ln
~2 !e2Gnh1ln

~1 ! . ~43!

The discontinuity in normalD is set by the induced charge

estn2eo@ln
~2 !e2Gnh2ln

~1 !#54pdsn
~s! , ~44!

eo@ln
~2 !2ln

~1 !e2Gnh#1r n54pdsn
~g! . ~45!

Here the transforms of the interface charge densities,ds, are
with respect to2sinGny (cosGny) for the e (o) cases. For
the grating we use the equation of continuity to replace

dsn
~g!5

n

indc
Jn

~g! , ~46!

where they component of the grating current is transformed
with respect to cosGny (sinGny) for the e (o) cases. The
Jn
(g) can be expressed in terms of transforms of the grating
resistivity profile and the fieldsE0 and 2(]f/]y)ux50 .

27

Rather than proceeding similarly for the quantum strip
dsn

(s) , we make use instead of the susceptibility~27! and
~28! so

dsn
~s!5 (

m.0
xn,m

~0! tm /Gm1gn
~0!E0 ~47!

where

gn
~0!5

W

d

kV2

v2 Mn
~1! ~48!

and is nonzero only for the even-n terms.
It is straightforward to algebraically eliminate theln

(6)

and tn, yielding for n.0

(
m.0

F~n,m!rm5
4p

c
Jn

~g!1GnE0 ~49!

where

Gn5 i
nd

n

eo
sinhGnh

(
l .0

De
21~n,l !4pg l

~0! , ~50!
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F~n,m!5 i
nd

n H @11eocothGnh#dn,m

2
eo

sinhGnh
D21~n,m!

eo
sinhGmh

J , ~51!

with

D~n,m!5~es1eocothGnh!dn,m24pxn,m
~0! /Gm . ~52!

Note that theGn ~like thegn
(0)) are nonzero only for the even

terms. However, the matricesF andD have both even and
odd contributions, but no cross couplings.

The quantity we need,Syy , can be split into contri-
butions from the grating,Syy

(g) , and from the quantum
wire system,Syy

(s) . The latter may be calculated from
(1/d)*0

ddyJ(s)(y)/E0 , where by the equation of continuity

E
0

d

dyJ~s!~y!52 ivW2E
21

1

dỹ ỹds~s!~y!. ~53!

Since ỹ5T1( ỹ), only the j51 term in ~19! will contribute.
We find using~20! and the first line of~23!

4p

c
Syy

~s!54p indSWd D 2kV2

v2 E
21

1

dỹA12 ỹ 2Etot~y!/E0

52p2indSWd D 2kV2

v2 F112(
n

Mn
~e,1!tn

~e!/E0

GnW
G
~54!

where

tn
~e!5 (

m.0
De

21~n,m!F eo
sinhGmh

rm
~e!14pgm

~0,e!E0G . ~55!

Up to this point the algebraic reduction has been exact.
But, since we expect the dipole-forbidden absorption to be
weak, we now introduce the approximation@see Eq.~A10! of
SPM for the exact relation#

r n'rnj 0 , ~56!

where j 05Jn50
(g) 5Syy

(g)E0 . Then from Ohm’s law for the
grating,

E05 r̄ j 01
1

2(n.0
@rn

~e!Jn
~e,g!1rn

~o!Jn
~o,g!#, ~57!

and Eq.~49!, we obtain

4p

c
Syy

~g!'F11
1

2(n S crn
~e!

4p DGn
~e!G YH S cr̄

4p D
1
1

2(n,m F S crn
~e!

4p DF ~e!~n,m!S crm
~e!

4p D 1S crn
~o!

4p DF ~o!

3~n,m!S crm
~o!

4p D G J , ~58!

where we have restored all thee/o superscripts. Thern are
transforms of the grating’s resistivity profiler(y) with re-
spect to cosGny (sinGny) for the e (o) cases andr̄ is the
spatial average ofr(y).

Sharp structure in the transmission coefficient will arise
from rapid variations in theD21 matrices, whose singulari-
ties define the collective modes. The frequencies of these
excitations will differ from those of an isolated strip for sev-
eral reasons. The nearby grating changes the effective dielec-
tric background in which a wire sits. This is represented by
the fact that the diagonal term in~52! is not the constant
(es1eo). However, deviations due to this ‘‘screening’’ by
the grating are only important for smalln. Another factor
influencing mode locations is the interwire coupling. The
Coulomb potential of each strip will affect the response of its
neighbors. One can separate out this effect by writing
v5v (s)1dv wherev (s)(y,y8)52(2/k)lnuy2y8u only if both
y andy8 are inside the same strip, otherwisev (s) vanishes. It
is v (s) that enters the relation betweenx (0) and the suscepti-
bility for an independent set of strips:
x (s)5x (0)1x (0)v (s)x (s). The solution of this equation gives
x (s)(y,y8) in the form of~25!, with the constraint thaty and
y8 must be inside the same strip. The corrections due todv
can then be added back in a rapidly converging series of
multipolar couplings, leading to small depolarization shifts
away from thev j . This two-step resummation of the infinite
series expansion of 2kD21;(12x (0)v)21 is important
since it allows one to avoid a direct evaluation ofxn,m

(0) ,
which is numerically difficult to treat.

We have now determined all the formal ingredients, so we
turn to the choice of model parameters. With systems based
on GaAs/ Alx Ga12x As in mind, we setm50.069me and
eo5es513. The Drude relaxation time is chosen to be
t510 ps, which corresponds to a mobility of 255 000
cm2V21 s21. The factor ofv2 in ~25! and ~48! is replaced
with ṽ25v(v1 i /t) to broaden out the resonances andV is
set initially at 10 cm21. For simplicity we ignore the pos-
sible dependence oft on frequency. The resistivity profile
for the grating is represented with steps and ramps:r(y)
5r (e)(y)1r (o)(y) where

r~e!~y!5H ra , uyu,a/2

rb , uy2d/2u,b/2,
~59!

r~o!~y!5H rc
y2d/2

b/2
, uy2d/2u,b/2

0, uyu,a/2.

~60!

Here the grating periodd5a1b and the above definitions
are to be periodically extended. The Fourier transforms are
readily found. Note that r̄5(ara1brb)/d while
s̄5$a/ra10.5b ln@(rb1rc)/(rb2rc)#/rc%/d. We assume

ra>rb>rc . If rc50, thenr(y) has even parity while if
ra5rb there is odd parity forr(y)2 r̄ about y5d/2. We
imagine that the quantum wires lie either under thera region
or therb region, with 2W,a or 2W,b, respectively. Note
that ifW51mm, then from~7! l53.143107 cm.

As a first illustration of a transmission spectrum we show
in Fig. 2 results for an even-parity grating, with
ra51000 V/sq, rb530V/sq, and rc50. We choose
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d54 mm, h50.3 mm, anda/d50.2. The quantum strips
are centered under therb regions with W/b50.4 so
W51.28 mm. If W is chosen to be smaller the assumption
of parabolic confinement is better satisfied, but the coupling
strength is weaker. For good convergence of peak positions
and heights, one needs to keep about 30 reciprocal lattice
vectors. The strong peak nearn57 cm21 is due to the
j51 mode. Its position has been shifted downwards due to
the Coulomb interactions with the grating and between adja-
cent strips. The next visible peak near 16 cm21 arises from
the j53 resonance~at A3V517.3 cm21 for an isolated
strip!. The excitation of the resonances for evenj is forbid-
den by symmetry and the coupling to higher odd-j modes is
too weak to be seen. The Drude peak asn→0 is due to
conduction along the length of the wires.

In Fig. 3 we show what happens at the other symmetry
extreme. Here we have chosenra5rb51000V/sq and
rc5900V/sq so allrn.0

(e) vanish. The strips are still centered
under the rb regions but now with W/b50.3 and
b/d50.6. We have decreasedd to 4/3 mm and h to
0.1 mm while V has been increased to 30 cm21 so l is
roughly the same as for Fig. 2. The dipole-allowed mode at
25 cm21 is the dominant structure. Again, screening by the

grating and interwire interactions are responsible for its de-
polarization shift below the value 30 cm21 for a single strip.
The peak nearn540 cm21 is due to the first odd-parity col-
lective mode, with j52. The next even-j peak is near
60 cm21, but it is not visible. By symmetry, direct coupling
from the grating to odd-j peaks, exceptj51, is forbidden.
The quantum wire array can itself provide the necessary mo-
mentum, but for our choice of parameters this mechanism of
excitation does not appear to be efficient.

We have examined other cases in the large parameter
space of variablera , rb , rc , d, h, a, b, W, t, andV. The
relative strengths of the dipole-forbidden peaks are compa-
rable to or smaller than those shown here~unless one in-
creasest), so it will be a definite experimental challenge to
observe them. We hope that someone will take on this task.
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