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We study theoretically a quantum dot in the quantum Hall regime that is strongly coupled to a single lead via
a point contact. We find that even when the transmission through the point contact is perfect, important features
of the Coulomb blockade persist. In particular, the tunneling into the dot via a second weakly coupled lead is
suppressed, and shows features that can be ascribed to elastic or inelastic cotunneling through the dot. When
there is weak backscattering at the point contact, both the tunneling conductance and the differential capaci-
tance are predicted to oscillate as a function of gate voltage. We point out that the dimensionless ratioj
between the fractional oscillations inG andC is an intrinsic property of the dot, which, in principle, can be
measured. We computej within two models of electron-electron interactions. In addition, we discuss the role
of additional channels.

I. INTRODUCTION

The Coulomb blockade occurs in an isolated mesoscopic
island when the capacitive charging energy to add a single
electron suppresses the discrete fluctuations in the island’s
charge.1 In the past several years, this physics has been stud-
ied extensively in both metallic systems2 and in semiconduc-
tor structures.3 The Coulomb blockade is most easily probed
by measuring transport through an island, which is weakly
coupled to two leads. By varying a gate voltageVG , which
controls the chemical potential of the island, peaks in the
conductance are observed each time an additional electron is
added. Between the peaks, the conductance is activated, re-
flecting the Coulomb barrier to change the number of elec-
trons on the dot.

The coupling to the island via tunnel junctions introduces
fluctuations on the dot, which relax the discreteness of its
charge. When the conductances of the junctions is very
small,s!e2/h, this effect is weak and gives rise to the well
known cotunneling effect, in which electrons may tunnel vir-
tually through the Coulomb barrier.4,5 Provided one is not
too close to a degeneracy between different charge states,
this physics may be described satisfactorily within low order
perturbation theory in the tunnel coupling.

For stronger coupling to the leads, the perturbative analy-
sis is no longer adequate, and a quantitative description of
the problem becomes much more difficult. Based on general
arguments, the Coulomb blockade is expected to be sup-
pressed whens'e2/h ~Ref. 6! since in that regime, the
RC decay time of the island leads to an uncertainty in the
energy, which exceeds the Coulomb barrier. However, this
argument is unable to predict quantitatively the nature of the
suppression of the Coulomb blockade.

A particularly well suited system to study this physics is a
semiconductor quantum dot at high magnetic fields. In the
integer quantum Hall effect regime, the states near the Fermi
energy of a quantum dot are edge states, and have a simple,
well organized structure, which is insensitive to the compli-
cating effects of impurities and chaotic electron trajectories.
In this paper, we shall study a quantum dot in the integer
quantum Hall regime, which is strongly coupled to a lead via

a quantum point contact with one~or a few! nearly perfectly
transmitting channel.

In a recent paper, Matveev7 has considered a dot con-
nected to a single lead by a nearly perfectly transmitting
point contact. When the transmission of the point contact is
perfect ~zero backscattering!, he showed that even in the
presence of a substantial Coulomb energyU, the differential
capacitanceC5dQ/dVG is independent ofVG . Thus, the
equilibrium chargeQ on the island is maximally unquan-
tized, since charge is added continuously as the gate voltage
is changed. He then showed that the presence of weak back-
scattering at the point contact leads to weak oscillations in
the differential capacitance, as a function of gate voltage
with a period corresponding to the addition of a single elec-
tron. These oscillations signal the onset of the quantization
of the equilibrium charge on the island.

In addition to the capacitance measurements,7,8 the fate of
the Coulomb blockade in an island connected to a single lead
via a point contact can be probed by transport, provided an
additional lead is present. This leads us to the interesting
possibility of simultaneouslymeasuring the conductance~a
transport property! and the capacitance~an equilibrium prop-
erty! of a quantum dot. In this paper, we build on Matveev’s
work and compute, in addition to the differential capaci-
tance, the tunnel conductance andI -V characteristics for an
island connected to one lead with a nearly perfectly transmit-
ting point contact and connected very weakly to another
lead.

Specifically, we consider the quantum dot depicted sche-
matically in Fig. 1. The center region surrounded by the
gates forms a quantum dot, which is connected to the leads
on both sides. In then51 quantum Hall regime, there is a
single edge channel going around the dot. The contact to the
left lead is a tunnel junction, characterized by a small tun-
neling amplitudet, which is controlled by the voltage on
gateA. The right contact is a nearly perfectly transmitting
point contact characterized by a small backscattering ampli-
tude v, which is controlled by the voltage on gateB. The
backscattering at the point contact involves tunneling of
electrons between the opposite moving edge channels at
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x5L and x52L, where x is a parameter specifying the
spatial coordinate along the edge channel.

A crude estimation of the Coulomb energy with the above
geometry givesU5Ke2/eL, whereK is a dimensionless
geometrical factor ande is the dielectric constant of the
semiconductor material. Another geometry-dependent en-
ergy scale is the level spacing between edge states in an
isolated dot,DE5p\vF /L. While there are few reliable es-
timates of the edge state velocityvF , the ratioDE/U is
typically of the order 0.1 in GaAs/AlxGa12xAs heterostruc-
tures, in the integer quantum Hall effect regime.9 The small-
ness of this ratio is assumed throughout this paper.

Though the equilibrium charge on the dot is not quantized
when the transmission at the point contact is perfect, we
nonetheless find that important features of the Coulomb
blockade remain in the tunneling characteristics. Remark-
ably, most of these features can be explained within the usual
weak couplingmodel. Specifically, we find that at zero tem-
perature, the Ohmic conductance is suppressed by a factor of
(DE/U)2 below its noninteracting~i.e., U50) value. This
suppression of the tunnel conductance is precisely of the
form predicted by the theory of elastic cotunneling through a
one dimensional system. Evidently, the cotunneling theory is
more general than its derivation within weak coupling per-
turbation theory suggests. In addition, when the temperature
T or the voltage biaseV exceedsDE, we find the behavior
analogous to inelastic cotunneling. In particular, for
DE!T!U, the tunneling conductance is suppressed by
(T/U)2. Moreover, forDE!eV!U, the tunneling current
varies asV3.

Inelastic cotunneling behavior has also recently been dis-
cussed by Furusaki and Matveev,10 for a quantum dot
strongly coupled to two leads. While similar in many re-
spects, it is worthwhile to distinguish the present work from
that in Ref. 10. In that reference, the two point contacts are
considered to be independent. An electron passing through
one contact can never coherently propagate to the second
contact. Elastic cotunneling can, therefore, not be described
within that framework. In general, the elastic cotunneling
will depend on the complicated transmission matrix of the
sample. In contrast, in the quantum Hall regime, the edge
channels have a particularly simple structure and directly
connect the leads. If the phase coherence length can exceed
the dot’s dimensions, then elastic cotunneling should be
present. This physics is correctly accounted for in our edge
state model. In addition, the results in Ref. 10 concerning the
Coulomb blockade for spin-degenerate systems is not appli-
cable here, since the magnetic field destroys that degeneracy.

In addition to the limiting behaviors discussed above, we
find that at low temperatureT!DE, there can be nontrivial
structure in theI -V characteristic forV'DE. In particular,
we find steps in thedifferential conductance,dI/dV as a
function of bias voltage. In the weak coupling limit, the ex-
istence of such steps has been discussed by Glattli.5 They are
a consequence of inelastic cotunneling when themany body
eigenstates of the quantum dot are discrete. Observation of
such steps could provide a spectroscopy of the low lying
many body states of a quantum dot. Remarkably, as we shall
show in Sec. III, these steps can remain sharp in the strong
coupling limit, even though it becomes meaningless in that
limit to speak of discrete single particle states.

When the transmission through the point contact is less
than perfect, charge quantization is introduced in the dot.
The rigidity of the quantization grows with increasing ampli-
tude of the backscattering at the contact. For weak back-
scattering, this is reflected in oscillations in the differential
capacitance as a function of gate voltage, with an amplitude
proportional to the backscattering matrix elementv. We find
that similar oscillations, proportional tov, should be present
in the conductance. A comparison of these oscillations
should therefore provide information about the intrinsic
structure of the quantum dot. We focus on the ratio of the
fractional oscillations in the conductance to that of the ca-
pacitance,

j5
G1 /G0

C1 /C0
. ~1!

G0 and C0 are the average capacitance and conductance,
whereasG1 andC1 are the amplitudes of the oscillations as
a function of gate voltage. By considering the fractional os-
cillations,G1 /G0 andC1 /C0 , the dependence on the tunnel-
ing matrix elementt necessary to measureG and the capaci-
tive lever armh necessary to measureC is eliminated.
Moreover, since in the weak backscattering limit both quan-
tities are proportional tov, the dependence onv is elimi-
nated by taking their ratio. Thus,j measures an intrinsic
property of the strongly coupled quantum dot, which is in-
dependent of the details of the tunneling matrix elements.
We have computedj within a constant interaction model, in
which the Coulomb interaction couples only to the total
number of electrons on the dot. We find thatj'1.59 for
T, DE!U, independent ofT, DE, andU. More generally,
j will depend on the specific form of the electron-electron
interactions.

With a few modifications, the above considerations can be
extended to the case in which there are more than one well
transmitted channels. We find that the low bias linear con-
ductance is less suppressed as the number of channelsN

increases. It has been recently shown that the suppression
factor becomes (DE/U)2/N in a constant interaction
model.11 However, if we take it into considerations that the
interaction strength may differ within the same channel and
between different channels, we find that the factor still has
the form (DE/U)2. In addition, the ratioj depends sensi-
tively on the form of the electron-electron interactions be-
tween different channels on the dot. It is equal to zero if
different channels do not interact and grows with increasing
strength of the interchannel interactions. Thus,j is a measure
of the interchannel interaction strength.

This paper is organized as follows. In Sec. II, we describe
the model and derive theI -V characteristic equation. In Sec.
III, we consider a single-channel system with a perfectly
transmitting point contact. We compute the current and dis-
cuss various features of the result. In Sec. IV, we consider
the effect of the weak backscattering to the conductance in
connection with the effect to the capacitance. We compute
j within two specific models of electron-electron interac-
tions. In Sec. V, we generalize the results of Sec. III and Sec.
IV to multiple channel systems. Finally, some concluding
remarks are given in Sec. VI.
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II. EDGE STATE MODEL

We begin in this section by describing our edge state
model of a quantum dot strongly coupled to a single lead.
Here, we will consider the case in which only a single chan-
nel is coupled to the lead by a nearly perfectly transmitting
point contact. Later, in Sec. V, we will consider the case
where more than one channel is transmitted.

In the absence of interactions, it is a simple matter to
describe this system in terms of the free electron edge state
eigenstates. Such a description is inconvenient, however, for
describing effects associated with the Coulomb blockade,
which are due to the presence of a Coulomb interaction. The
bosonization technique, however, allows for an exact de-
scription of the low energy physics in the interacting
problem.12

At energies small compared to the bulk quantum Hall
energy gap, the many body eigenstates are long wavelength
edge magnetoplasmons. These may be described as fluctua-
tions in the one dimensional edge density,n(x), wherex is a
coordinate along the edge. Following the usual bosonization
procedure, we introduce a fieldf(x), such that
n(x)5]xf/2p. The Hamiltonian, which describes the com-
pressibility of the edge may then be written,

H05E dx
vF
4p

~]xf!2. ~2!

The dynamics of the edge excitations follow from the Kac
Moody commutation relations obeyed byf,

F]xf~x!

2p
,f~x8!G5 id~x2x8!. ~3!

Using ~2! and~3!, it may easily be seen that] tn5vF]xn, so
that the edge excitations propagate in a single direction at
velocity vF along the edge. In this language, the electron
creation operator on the edge may be written as
c†(x)5eif(x).

Equations~2! and~3! are an exact description of a single
edge channel of noninteracting electrons. We may easily in-
corporate interactions into this description. Specifically, we
consider a ‘‘constant interaction model,’’ in which the Cou-
lomb interaction couples to the total number of electronsN
on the dot, which depends on the edge charge between
x52L andx5L,

N5
1

2p
@f~L !2f~2L !#. ~4!

The self-capacitance and the coupling to a nearby gate can
then be described by the Hamiltonian,

HU1HG5
U

2
N21ehVGN, ~5!

whereh is a ‘‘lever arm’’ associated with the capacitance
coupling to the gate. Since the interaction is still quadratic in
the boson fields, it may be treated exactly in this representa-
tion.

Now we consider tunneling between the edge channels.
We consider the left lead in Fig. 1 to be a Fermi liquid.
Without loss of generality, we model it as anothern51

quantum Hall edge, characterized by a boson fieldf l with a
HamiltonianH0 in ~2!. Tunneling from the left lead into the
dot atx50 is then described by the operator

T→5ei @f~0!2f l ~0!#[eiu, ~6!

where we defineu[f(0)2f l(0). For thereverse process,
T←5exp2iu. The left point contact may be characterized by
a tunneling Hamiltonian,

Ht5t cosu, ~7!

wheret is the tunneling matrix element.
Similarly, tunneling at the right point contact involves

transfer of electrons betweenx52L andx5L. The Hamil-
tonian describing these processes can be expressed as

Hv5vcos@f~L !2f~2L !#5vcos2pN, ~8!

wherev is the backscattering matrix element.
It is convenient to eliminate the linear gate voltage term in

~5! by the transformation N→N2N0 , where
N05ehVG /(DE1U) is the optimal number of electrons on
the dot. Our model Hamiltonian describing a quantum dot
with a single channel coupled to a lead may then be written

H5H0@f l #1H0@f#1
U

2
N21t cosu1vcos2p~N2N0!.

~9!

We will find it useful in our analysis to represent the
partition function as an imaginary time path integral. The
action corresponding toH0 is then given by

S05
1

4pE dx dt]xf~vF]xf1 i ]tf!. ~10!

FIG. 1. Schematic view of a quantum dot connected to leads on
both sides. Negative voltage on the gates~shaded area! confines
electrons in the dot. Thick solid lines show the edge channels
formed by strong magnetic fieldB, where the direction of the elec-
tron motion is depicted by arrows. Dashed lines show tunneling
paths, where the tunneling amplitudet and the backscattering am-
plitude v are controlled by voltage on gateA and gateB, respec-
tively.
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Since the remaining terms in the Hamiltonian depend only
on u and N, it is useful to integrate out all of the other
degrees of freedom. The resulting action, expressed in terms
of u(t) andN(t), is then given by

Stot5
1

2 (
ivn

@u~2vn! N~2vn!#G21F u~vn!

N~vn!
G

1E dt@ t cosu1vcos2p~N2N0!#, ~11!

wherevn is a Matsubara frequency.G
21 is the inverse of the

Green’s function matrix and can be explicitly expressed as

G215
1

TF uvnu
4p

~11e2puvnu/DE! 2
vn

2

vn

2

puvnu
12e2puvnu/DE 1U

G ,
~12!

whereDE[pvF /L.
We now briefly develop the framework for our calculation

of the tunneling current. TheI -V characteristic~or equiva-
lently the tunneling density of states! may be computed using
the actionStot in ~11!. Working perturbatively in the tunnel-
ing matrix elementt, we may compute the tunneling current
in the presence of a dc biasV, using Fermi’s golden rule.

I5
pet2

2\ (
m,n

e2Em /kT@ u^nuT→um&u2d~En2Em2eV!

2u^nuT←um&u2d~En2Em1eV!#, ~13!

where um& is an eigenstate of the unperturbed Hamiltonian
with energyEm . Since the sum onn is over a complete set
of states, we can reexpress the above equation as

I5
pet2

2h
P~eV!, ~14!

where

P~E!5E dt eiEt^@eiu~ t !,e2 iu~0!#&. ~15!

In order to computeP(E), it is useful to consider the
imaginary time ordered Green’s function, which may be
readily computed using path integral techniques.

P ~t![^Tte
iu~t!e2 iu~0!&. ~16!

The real time correlation function may then be deduced by
analytic continuation. The two terms in the commutater in
~15! lead to

P~E!5P.~E!2P,~E!, ~17!

with

P.,,~E!5E dt eiEtP ~t→ i t601!. ~18!

Limiting behavior of the tunneling current may be de-
duced analytically from the asymptotic behavior ofP (t). In

particular, at zero temperature, the Ohmic conductance is
proportional to the coefficient of the 1/t2 term. In addition, it
is possible to computeP(E) numerically, as is described in
the following section and in more detail in Appendix A.

III. POINT CONTACT WITH PERFECT TRANSMISSION

In this section, we will consider the case where the trans-
mission through the right point contact is perfect. In this
limit, there is no quantization of the charge on the dot. Since
charge may flow continuously through the point contact,
there is no preferred integer value for the charge. This may
be seen clearly from the Hamiltonian in Eq.~9!, where, for
v50, the dependence onN0 is absent.

It follows that, as the gate voltage is varied, there should
be no oscillations in either the differential capacitance or the
conductance. However, we will show below that tunneling
through a large barrier onto the dot is stillblockedby the
charging energy. This blockade is a result of the fact that the
tunneling electron has a discrete charge, which cannot imme-
diately be screened.

To compute the tunneling current, we evaluateP 0(t),
where the subscript 0 indicates thatv50. Since the action
~11! is quadratic, we may write

P 0~t!5e21/2 ^Tt@u~t!2u~0!#2& ~19!

5expF2(
vn

~12eivnt!GuuG , ~20!

whereGuu is the top left element of the matrixG defined in
~11!. This may be rewritten as

P 0~t!5S ptc /b

sinpt/b D 2expF22pT(
vn

~12eivnt!
f ~vn!

uvnu
,G
~21!

wheretc is the short time cutoff~which is of order the in-
verse of the cyclotron frequency! and

f ~v!5
U~12e2puvu/DE!2

2puvu1U~12e22puvu/DE!
. ~22!

The first term in~21! describes the response for noninter-
acting electrons,U50. This gives us a purely Ohmic tunnel-
ing currentI5GU50V. GU50 is related to the transmission
probability of a free electron through the left barrier,
GU505(e2/h)TL , whereTL}t

2.
In the presence of interactions, the low bias linear con-

ductance may be deduced from the long time behavior of
P 0(t). In the strong interaction limit,U@DE, we may es-
timate the limiting behavior of the exponential factor in~21!
by noting thatf (v) is approximately a constant in each of
the following three limits:

f ~v!'H 0 if v!DE,

1 if DE!v!U,

0 if U!v.

~23!

At zero temperature, we thus have, to logarithmic accuracy,
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P 0~t!'S tc
t D 2exp22E

DE

U dv

v
, ~24!

in the long time limit (t@DE21). It then follows that the
linear conductance is suppressed. Performing the integral in
~21! exactly, we find

G5c1
e2

h
TLS DE

U D 2, ~25!

with c1'3.11. This should be compared with the theory of
elastic cotunneling, which is derived in the case of weak
tunneling through both barriers,TL ,TR!1. When the dot is a
one dimensional system~as it is for quantum Hall edge
states!, the result has been shown to be

G}
e2

h
TLTRS DE

U D 2. ~26!

Evidently, theDE/U suppression predicted in~25! remains
valid all of the way up toTR51.

At finite temperatures or voltages,DE!eV,T!U, the
lower limit of the integral in~24! is cut off byT andeV. The
resulting tunneling current may thus be obtained by setting
DE50 and is written

I5c2
e2

h
TL

~eV!214p2T2

U2 V, ~27!

with c252p2e22C/3'2.07, whereC is Euler’s constant.
This result is, again, exactly in accordance with the theory of
inelastic cotunneling, settingTR51.

An alternative interpretation of this suppression of the
tunneling current has been pointed out in Ref. 13. Suppose
that an electron tunnels into the dot. The dot would minimize
its electrostatic energy by discharging exactly one electron.
According to Friedel sum rule, the number ofaddedelec-
trons, which is21 in this case, is equal tod/p, whered is
the scattering phase shift of the one dimensional channel. As
in Anderson orthogonality catastrophe,14 the suppression fac-
tor in the tunneling rate is related to the phase shift by

dI

dV
}«g, ~28!

where«5max(DE,T,eV) is the low energy cutoff and

g52S d

p D 2
52~21!252. ~29!

Combining~28! and ~29!, we may reproduce~25! and ~27!.
Note that~29! differs from the usual orthogonality exponent,
(d/p)2, by a factor of two. This is because we are tunneling
into the middle of a ‘‘chiral’’ system consisting only of right
moving electrons~or equally the end of a one dimensional
normal electron gas.!

Finally, we note that in the high bias limit,eV@U, we
recover the linearI -V characteristic with an offset character-
istic of the Coulomb blockade,

I5
e2

h
TLSV2

U

2eD . ~30!

This offset is a consequence of the fact that at short times,
the electron which tunnels cannot be effectively screened by
the point contact.

In addition to the limiting behaviors described above, we
have computed theI -V characteristic numerically at zero
temperature, as explained in Appendix A. Figure 2 shows the
differential conductancedI/dV. What is most striking is that
there are sharp steps, the sizes of which are approximately
DE. For a nearly isolated dot, a similar phenomenon has
been pointed out by Glattli,5 and can be understood as a
consequence of inelastic cotunneling through a dot with a
discrete energy level spectrum.

An inelastic cotunneling process leaves a particle-hole ex-
citation in the dot. As the bias voltage increases, the number
of available particle-hole combinations also increases. Be-
cause of the discrete nature of the energy spectrum of the
dot, this increase in number occurs discontinuously at every
DE/e of the bias voltage, which is manifested in the tunnel-
ing density of states or the differential conductance. How-
ever, the above explanations are not fully adequate in our
model, because the dot is strongly coupled to the lead. For
perfect transmission, the linewidth of a single particle energy
level is approximatelyG;DE. It means that the levels are as
broad as the level spacing and the steps are expected to be
wiped out altogether. The reason for the apparent discrep-
ancy is that the lifetime of amany bodyexcited state~i.e., a
particle-hole pair! can be much larger than the naive single
particle lifetime.

If the dot is weakly coupled to the lead, the lifetime of a
particle-hole excitation may be easily calculated. First, we
assume the excitation is relaxed only through the process in
which both the particle and the hole tunnel out of the dot. In
analogy with the theory of cotunneling,4 we use Fermi’s
golden rule to estimate the decay rate,

FIG. 2. Differential conductancedI/dV, as a function of scaled
bias voltageeV/U, computed in the absence of backscattering
(TR51) for variousDE. Curves are scaled, so thatdI/dV51 in
the high bias voltage limit. It is easy to see that the curves consist of
steps of approximate sizeDE.
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t215
2p

\ (
k,k8 UV1kV2k8F 1

ek2S e12
U

2 D 1
1

e21
U

2
2ek8

GU2
3d~e12e22ek1ek8!u~ek2m!u~m2ek8!, ~31!

wherem is the chemical potential of the lead ande1 and
e2 are the energies of the particle and the hole, respectively.
The electron eigenstates in the lead are labeled byk and
k8, andV1k andV2k8 are matrix elements of the coupling
Hamiltonian. Ife12e2!U/2, the above equation can be ap-
proximated

t215
32p

\

uVu4

D lead
2

e12e2
U2

5
4

p2h
~e12e2!S DE

U D 2TR2 , ~32!

where D lead is the level spacing of the lead and
TR'u2pVu2/DED lead is the transmission probability. We as-
sumeuV1ku2'uV2k8u

2'uVu2 is constant in the given range.
In our model, a simple consideration of theI -V character-

istic equation in~14! and ~A1! shows that the width of the
step risers is proportional to (DE/U)2. Since the width of the
risers is directly proportional to the linewidth of the energy
levels, it is evident that Eq.~32! is valid even up toTR51,
with a possible numerical factor. We thus conclude that even
in the presence of a perfectly transmitting contact, there can
be long-lived excited states in the dot, the decay of which is
suppressed by the Coulomb blockade.

So far we have assumed thatDE is constant. If we allow
nonuniform level spacing, degeneracy in the particle-hole
excitation energy is lifted and all steps but the first one split
into several substeps. As the degree of degeneracy increases
with the energy, more splittings occur at higher bias volt-
ages, finally making it hard to distinguish between steps.

Before we close this section, let us consider other relax-
ation processes. It is only when all relaxation rates are less
than DE that it is possible to experimentally observe the
steps. This criterion is equivalent to saying that the inelastic
scattering length,lf , is much longer than the circumference
of the dot. It is known that inelastic scattering is strongly
suppressed in the quantum Hall regime,15 most likely due to
the difficulty of conserving both energy and momentum
when scattering occurs in a one dimensional channel. These
steps may thus be observable in the quantum Hall regime.

IV. POINT CONTACT WITH WEAK BACKSCATTERING

In this section, we consider the case where there is weak
backscattering at the right point contact. As the contact is
pinched off, fractional charge fluctuations in the dot are
hampered and the discreteness of charge becomes important.
For weak backscatteringv, there is an energy cost, propor-
tional to v in the Hamiltonian~8! for nonintegral charge
configurations. This gives rise to oscillations in physical
quantities, such as the capacitance and the conductance as a
function of gate voltage. The period of these oscillations cor-
responds to changing the optimal number of electrons on the
dot N0 by one.

For nearly perfect transmission through the point contact,

we thus expect the conductance and the differential capaci-
tanceC52edN/dVG to have the form

C5C01C1cos2pN0 , ~33!

G5G01G1cos2pN0 , ~34!

where the oscillatory componentsC1 and G1 are propor-
tional tov. An intrinsic quantity, which is independent of the
backscattering amplitudev, the tunneling matrix elementt,
and the capacitive lever armh associated with the gate, is
the ratio

j[
G1 /G0

C1 /C0
. ~35!

Using the model we have developed so far, we can calcu-
late the capacitance and the linear conductance perturba-
tively in the backscattering matrix elementv. The differen-
tial capacitance is given byC5T(d2lnZ/dVG

2 )/h, whereZ is
the partition function. As shown by Matveev, to leading or-
der in v the differential capacitance has the form~33!, with
average and oscillatory components given by

C05
he2

DE1U
, ~36!

C15vhe22p2^N~0!2&0S 2pe

DE1U D 2. ~37!

The averagê &0 is with respect to the ground state of the
unperturbed actionStot in ~11!.

In order to compute the conductance, we must calculate
P (t) in the presence of the perturbationvcos2p(N2N0).
To the first order in v, we find that P (t)5P 0(t)
1P 1(t)cos2pN0, whereP 0(t) is given in ~19! and

P 1~t!52^Tte
i @u~t!2u~0!#Sv&01^Tte

i @u~t!2u~0!#&0^Sv&0,
~38!

whereSv5*0
bdt8vcos2pN(t8). This may be written as

P 1~t!5vP 0~t!e22p2^N~0!2&0

3E dt8$12cosh2p@GuN~t2t8!2GuN~t8!#%,

~39!

whereGuN(t) is the off-diagonal element of the Green’s
function defined in~11!, which may be computed explicitly
using ~12!.

In order to compute the linear conductance, we must com-
pute the larget limit of ~39!. ForUt@1, GuN(t) decays as
(Ut)21, so that the integral is independent oft. We thus
find

G15vG0e
22p2^N~0!2&032E dt8@12cosh2pGuN~t8!#,

~40!

whereG0 is the zeroth order linear conductance.
Using ~36!, ~37!, and~40!, we obtain an exact expression

for the ratioj,
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j5
DE1U

4p2 32E dt8@12cosh2pGuN~t8!#. ~41!

In the limit T,DE!U, the integral approaches a finite value,
which depends only onU. In this limit, we find

j'1.59. ~42!

The cancellation of input parameters likev,U, andDE
may tempt us to suspectj be a universal number being con-
stant for all samples. As will be shown below, however, Eq.
~42! is true only within a constant interaction model, in
which the dependence of the interaction on the spatial sepa-
ration is ignored. In order to see howj changes with differ-
ent models, let us consider a more general model the inter-
action Hamiltonian of which is given by

HU8 5
1

8p2E dx dx8]xf~x!U~x,x8!]xf~x8!. ~43!

The constant interaction model is regained by assuming
U(x,x8)5U to be uniform. It is sufficient, for our purpose,
to consider just another example. We can think of a local
interactionU(x,x8)52LUd(x2x8)u(L2uxu), which is cer-
tainly an extreme limit to the other direction from the con-
stant interaction model. The appropriate Green’s function is
given by

GuN~vn!5
T

vn
~12epuvnu/U!, ~44!

and then, using~41!, we get,

j51. ~45!

Now it is clear thatj depends on the form of the electron-
electron interaction. It is, however, noteworthy that the val-
ues of j computed in two extreme limits are of the same
order of magnitude.

V. MULTIPLE-CHANNEL SYSTEMS

In this section, we generalize the considerations in the
previous sections to the systems of which the right contact
~nearly! perfectly transmits more than one channel. As the
conductance of the contact increases with the number of well
transmitted channelsN , the shorterRC decay time allows a
higher uncertainty in the energy of the island. Therefore, it is
natural to expect that the effect of the Coulomb blockade
become weakened in multiple-channel systems, which will
be confirmed below.

It turns out that most of the qualitative considerations for
the single-channel systems can directly be applied to
multiple-channel systems. Similar calculations, as in Sec. III,
show that in the absence of backscattering, the low bias lin-
ear conductance is still suppressed below its noninteracting
value, although the suppression is less strong ifN is bigger.
On the other hand, there are different features arising from
the introduction of additional channels, on which we will
focus in this section.

For integer quantum Hall states withn.1, the edge chan-
nels tend to be spatially separated. The tunneling will be
dominated by the coupling to the nearest edge channel. As

indicated in Fig. 3, this means that the tunneling and back-
scattering will occur in different channels. Then the Hamil-
tonian forN channels is represented by

H5H0@f l #1(
i
H0@f i #1HU1t cosu1

1vcos2p~NN 2N0!, ~46!

where the notation is similar to that in Sec. III, with the
subscript denoting the channel number, except thatf l is the
boson field of the left lead. We have redefinedN0 as the
optimal number of electrons in channelN alone, which, in
general, depends on lever arms for all channels.

One of the simplest models to study a multiple-channel
system is a constant interaction model, in which the interac-
tion Hamiltonian depends only on the total charge in the
island. The interaction may be explicitly written

HU5
U

2 S (
i
Ni D 2. ~47!

The calculation of the tunneling conductance proceeds along
the same lines as in Sec. III. In this case, the functionf (v)
defined in~21! is given by

f ~v!5
U~12e2puvu/DE!2

2puvu1N U~12e22puvu/DE!
. ~48!

Note that the limiting values off (v) are

f ~v!'H 0 if v!DE,

1

N
if DE!v!N U,

0 if N U!v.

~49!

It immediately follows that

FIG. 3. Schematic view of a quantum dot analogous to Fig. 1,
with two well transmitted channels. The symbols are the same as in
Fig. 1. Note that the tunneling through the left contact occurs in the
outer channel, whereas the backscattering at the right contact occurs
in the inner channel.
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dI

dV
}
e2

h
TLS «

U D 2/N , ~50!

where«5max(DE,eV,T). The exponent 2/N has been de-
rived in some other papers in several different contexts.11,13

It is clear from~50! that the conductance is less suppressed if
there are more channels.

However, it turns out that the nonanalytic behavior with
exponent 2/N is correct only to the extent that the constant
interaction model is valid. As explained below, this is due to
a special symmetry of the charging energy, with respect to
redistribution of charge among the different channels. We
consider an effective-capacitance model, which is one step
more general and has been introduced and developed by sev-
eral authors to remedy some problems with the constant in-
teraction model.16 This model assumes that the edge chan-
nels are capacitively coupled metal bodies and the Coulomb
interaction energy depends on the number of electrons in
eachchannel. The Coulomb interaction part of the Hamil-
tonian can be written

HU5
1

2(i j NiUi j Nj , ~51!

whereU is anN 3N matrix that can be determined experi-
mentally. In order to get a clear understanding of the effect
of this generalization, let us consider a simple specific ex-
ample of the electron-electron interaction, i.e.,

Ui j5u@N ad i j1~12a!#. ~52!

The diagonal component (N a112a)u is the magnitude of
the interaction strength within each channel and the off-
diagonal component (12a)u is that between different chan-
nels. This matrix is chosen such that if the lever arms are all
equal to unity, the total capacitanceCtot[dQtot /dVG
5e2( i jUi j

215e2/u in the limit DE50, independent ofa.
Note that we regain a constant interaction model ifa50. As
a grows, we move away from the model, finally, reaching an
independent channel model ata51, where different channels
do not interact. As in~23!, the limiting behavior off (v)
defined in~21! is given by

f ~v!'5
0 if v!DE,

1 if DE!v!N au,

N a112a

N
N au!v!N u,

0 if N u!v.

~53!

It is clear from the above equation that ifa→0 ~constant
interaction!, ~49! is restored and we get the exponent 2/N ,
as we discussed earlier. Whena is not small, there is no
appreciable range in whichf (v)51/N , and the differential
conductance has a different exponent, 2, i.e.,

dI

dV
}
e2

h
TLS «

uD
2

, ~54!

provided«5max(DE,eV,T)!N au.
The above considerations can be generalized to a model

with a generic matrixU. Even thoughf (v) is a complicated
function, which depends on all matrix elements ofU, there

exists an energy scaleũ, which corresponds toau in the
above special model, such that

f ~v!'1 if DE!v!N ũ. ~55!

Then Eq.~54! is valid if «!N ũ, except for the factor de-
pending ona. In general,ũ50 for a constant interaction
model and it measures how far the used model is away from
the constant interaction model. van der Vaartet al.18 have
measured the matrix elements ofU for two Landau levels
confined in a quantum dot. Even though both contacts were
nearly pinched off in the reference as opposed to our model,
it is suggestive to estimate the magnitude ofũ using the
experimental data. With their particular setup, they got
U115800,U2251175, andU125650 ~all in meV!. A simple
estimation with these numbers givesN ũ;260 meV
@DE,T,eV, which suggests that~54! must be used rather
than~50! in this case. It has to be admitted that this is a naive
estimation considering the difference between their experi-
mental setup and our theoretical model. Opening up a point
contact would, in general, reduce the strength of electron-
electron interactions in the dot and it would change the ca-
pacitance appreciably. However, even though the above es-
timation of ũ may be merely speculative at its best, we
expect that~54! has to be true if different channels are
weakly coupled, which seems more general than the constant
interaction limit, in practice.

It is now evident that the exponent is 2/N only for the
constant interaction model. This is due to a special symmetry
of the constant interaction model, i.e., the interaction part of
the Hamiltonian~46! is invariant under redistribution of total
charge among the different channels. The effect of the sym-
metry on the exponent can be most easily understood in
terms of Anderson orthogonality catastrophe.13 Equation
~28! can be directly used with an appropriately generalized
definition ofg, i.e.,

g52(
i

S d i
p D 2, ~56!

whered i is the phase shift in channeli . It needs only a little
consideration of electrostatics to figure outd i . Following the
argument in Sec. III, let us suppose that an electron has just
tunneled into channel 1 through the left contact. The number
of electronsdischargedfrom each channel2d i /p depends
on the form of the interaction, provided they satisfy the con-
straint (d i /p521. If we work in a constant interaction
model, because the Hamiltonian depends only on the total
charge, from the symmetry,d i /p521/N for all i . There-
fore,

g52(
i51

N S 2
1

N
D 25 2

N
. ~57!

On the other hand, if we use an effective-capacitance model
and the system is safely away from the constant interaction
limit (N ũ @DE), it is always energetically favorable to
take a whole electron from channel 1 and have the exactly
same ground state charge configuration as before. Then
d1 /p521 andd i50 (i52 . . .N ), so that

g52~21!252. ~58!
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Then Eqs.~54! and ~50! are readily reproduced from~28!
and~56!. The physical distinction between the energy scales
u and ũ is thus clear. When an electron is added to the dot,
(N u)21, which corresponds to theRC decay time, sets the
time scale for the total charge of the dot to return to its
original value. However, even after the total charge has been
screened, there may be some imbalance in the distribution of
charge between the channels.~N ũ!21 sets the scale for the
relaxation of this imbalance. In the constant interaction
model, there is no Coulomb energy cost for such an imbal-
ance, soũ→0.

Now let us consider the effect of weak backscattering. As
in a single-channel model, the introduction of weak back-
scatteringv results in oscillations in the capacitance and the
conductance. However, an important difference arises from
the fact that the tunneling and backscattering occur in differ-
ent channels.

It has been shown both theoretically16 and
experimentally17 that the period of the conductance and the
capacitance oscillations increases with increasing number of
well transmitted channels. This is because the oscillations
arise only from the quantization ofNN , the number of elec-
trons in the backscattered channel. When there are many
perfectly transmitting channels, many electrons must be
added to the dot to increaseNN by 1.

The analysis of the amplitude of the oscillations is a little
more complicated. We will again focus on the ratioj defined
in ~35!, using the model interaction in~52!. We assume
DE,T!N au and all lever arms are taken to be unity. One
may include the lever arms explicitly, but it does not change
the result qualitatively. Along the same lines as in Sec. IV,
the fractional capacitance oscillation may be written

C1

C0
5ve22p2^NN ~0!2&0S 2p

N
D 2 1u . ~59!

The fractional conductance oscillation may also be written

G15vG0e
22p2^NN ~0!2&032E dt8@12cosh2pGuN~t8!#,

~60!

where the Green’s function is given by

GuN~t!5^Ttu1~t!NN ~0!&

52E dvne
2 ivnt

3
~12a!u sgn~vn!

~2puvnu1N au!~2puvnu1N u!
. ~61!

We may easily computeGuN(t) in several limits, namely,

GuN~t!'5
0 if t50,

2 i
p~12a!

N
if

2p

N u
!t!

2p

N au
,

0 if t→`,

~62!

and it is monotonically interpolated in between. The above
equation is not helpful ifa;1, but it is sufficient for our
purpose, which is to see howj changes as the system moves

away from the constant interaction limit. SinceGuN(t) mea-
sures the response ofNN , a period of timet after an elec-
tron is added into channel 1, the physical interpretation of the
above limiting behavior is clear. It takes a time period of
order 2p/N u for the total charge of the dot to return to its
original value. ChannelN contributes to this process by
discharging (12a)/N of an electron, which can be read
from the second line of~62!. The reason it is proportional to
12a is that the interchannel interaction strength is propor-
tional to 12a. After a time period of order 2p/N au, the
charge ineachchannel returns to its original value, which is
reflected in the vanishingGuN(t) in the long time limit. In
order to estimate the integral in~60!, we may make a crude
approximation by substituting a square function for
GuN(t), i.e., GuN(t)52 ip(12a)/N if 2p/N u,t
,2p/N au, andGuN(t)50 otherwise. Then we get

G1

G0
've22p2^NN ~0!2&0

8p~12a!

N au
sin2

p~12a!

2N
, ~63!

and finally

j'
2N

p

12a

a
sin2

p~12a!

2N
. ~64!

This is a good approximation ifa!1. This is a monotoni-
cally decreasing function ofa and as is explained below, it is
a consequence of the fact that the tunneling and the back-
scattering occur in different channels. A biggera implies
weaker interchannel interactions and consequently a weaker
effect of the backscattering to the conductance. Ata51 ~in-
dependent channels!, we cannot use the above equation, but
we know that the conductance oscillation would eventually
vanish, because the backscattering potential does not affect
the conductance at all, and thereforej50. At a50 ~constant
interaction!, G1 /G0 diverges, and so doesj. It is because
G1 /G0 diverges as (u/«)

1/N , if the low energy cutoff« is
small, suggesting that the perturbation theory break down.
Without detailed calculations, one might have been able to
infer it from the following physical argument. In a constant
interaction model, the total number of electrons in the dot
( iNi is the only gapped mode and there areN 21 combi-
nations ofNi , the fluctuations of which are not bounded,
leading to divergences in individual terms in the perturbation
expansion. Therefore, we need to sum up all higher order
terms in order to obtain a correct result. In a series of recent
papers, Matveev and Furusaki7,10 have calculated both the
conductance and the capacitance oscillations nonperturba-
tively in a spin-degenerate two-channel model, which they
related to the multichannel Kondo problem. Their calcula-
tions show that the oscillations are no longer sinusoidal and
the period becomesN times smaller, so that the maximum
occurs each time an electron is added to the dot as a whole
~not channelN alone!. Such results, however, clearly apply
only in the case where the degeneracy is guaranteed by a
symmetry and hence should not apply in this quantum Hall
system.

Without qualitative changes, the above considerations can
be generalized to an effective-capacitance model with a ge-
neric matrixU. As in the discussions of the differential con-
ductancedI/dV earlier in this section, an energy scaleũ,
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which plays the role ofau, can be determined from the
given matrixU. In most real situations of quantum Hall ef-
fect edge channels,j is a finite quantity, which can be nu-
merically calculated in the effective-capacitance model, if all
matrix elements ofU are known.

VI. CONCLUSIONS

In this paper, we have shown that characteristics of the
Coulomb blockade, which are normally associated with the
weak coupling limit, persist to strong coupling to a lead via a
single-channel point contact. In particular,~i! we find the
analogies of elastic and inelastic cotunneling in the («/U)2

suppression of the tunnel conductance.~ii ! We find that
particle-hole excitations on the dot can acquire a long life-
time, due to a ‘‘Coulomb blockade’’ to relaxation. This, in
principle, could lead to observable steps in the low bias dif-
ferential conductances, as a function of bias voltage.~iii ! The
high bias behavior of theI -V characteristic has an offset,
indicating the presence of a Coulomb gap. We find similar
conclusions when multiple channels are transmitted through
the contact, though the suppression of the Ohmic conduc-
tance is reduced. In the special case of the constant interac-
tion model, when there is no penalty towards redistribution
of charge between the channels, the exponent of the suppres-
sion is modified («/U)2/N .

When the transmission through the point contact is less
than perfect, the oscillations in the conductance and the ca-
pacitance may be characterized by the dimensionless ratio
j. While j is independent of the tunneling matrix elements,
it depends on the precise form of the Coulomb interactions.
For a single channel, we have computed it for two different
forms of the interaction, and its value is of order unity. For
multiple transmitted channels, its value depends even more
sensitively on the interchannel interactions, which is zero
when different channels are independent, and grows with
increasing strength of the interchannel interactions.
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APPENDIX A: INTEGRAL EQUATION FOR P0
>
„v…

In this Appendix, we will use Minnhagen’s integral
equation19 method to compute the spectral density function
P0(E), for the perfect transmission case. Functions will be

given the subscript 0 to explicitly show that they are calcu-
lated in the absence of backscattering. The calculation of the
imaginary time Green functionP 0(t) is straightforward
from ~20!, and by analytically continuing it, we get

P0
.~ t !5P 0~t→ i t101!

5e2^u~0!2&0expE
0

`

dv
a~v!

v
e2 ivt, ~A1!

where the averagê&0 is evaluated over the unperturbed ac-
tion (t5v50). The functiona(v) is defined

a~v![
v

2pE dt eivt^u~ t !u~0!&0

5 i
v

2p
[ ^uu~vn!u2&0 u uvnu→ iv2^uu~vn!u2&0 u uvnu→2 iv]

521

2
U

pv
sin

pv

DE S 12cos
pv

DED
S 11

U

pv
sin

pv

DED 222
U

pv
sin

pv

DE S 12cos
pv

DED .
~A2!

Now we differentiate~A1! with respect tot and Fourier
transform it. Then we finally get an integral equation

vP0
.~v!5E

0

v

dv8a~v8!P0
.~v2v8!. ~A3!

We have replaced the upper limit of the original integral`
with v, becauseP0

.(v)50 for negativev at zero tempera-
ture.

We now solve the above equation numerically following
the procedures described below. We partition the frequency
space into equal parts with step sizeDv!DE, using divi-
sion pointsv i . Then the functionP0

.(v) is replaced by an
array of numbersP0

.(v i) and the above integral equation by
a matrix equation. Instead of inverting a huge matrix, we
may calculateP0

.(v i), by solving an elementary first order
algebraic equation, if we knowP0

.(v j ) for all v j,v i .
Since we knowP0

.(v)}v in the low frequency limit where
v!DE ~see Sec. III!, we may use a linear function in a
small low frequency range as a ‘‘seed’’ to start sequential
calculations of the rest of the whole range of interest. Note
that we cannot determine a multiplicative overall constant in
computingP0

.(v), because the integral equation is homoge-
neous.
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