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Coulomb blockade in a quantum dot coupled strongly to a lead
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We study theoretically a quantum dot in the quantum Hall regime that is strongly coupled to a single lead via
a point contact. We find that even when the transmission through the point contact is perfect, important features
of the Coulomb blockade persist. In particular, the tunneling into the dot via a second weakly coupled lead is
suppressed, and shows features that can be ascribed to elastic or inelastic cotunneling through the dot. When
there is weak backscattering at the point contact, both the tunneling conductance and the differential capaci-
tance are predicted to oscillate as a function of gate voltage. We point out that the dimensionlegs ratio
between the fractional oscillations & andC is an intrinsic property of the dot, which, in principle, can be
measured. We computewithin two models of electron-electron interactions. In addition, we discuss the role
of additional channels.

[. INTRODUCTION a quantum point contact with orfer a few nearly perfectly
transmitting channel.

The Coulomb blockade occurs in an isolated mesoscopic In a recent paper, Matveéhas considered a dot con-
island when the capacitive charging energy to add a singleected to a single lead by a nearly perfectly transmitting
electron suppresses the discrete fluctuations in the islandjsoint contact. When the transmission of the point contact is
charget In the past several years, this physics has been stugberfect (zero backscattering he showed that even in the
ied extensively in both metallic syste?nmd in semiconduc- presence of a substantial Coulomb enetyythe differential
tor structures. The Coulomb blockade is most easily probed capacitanceC=dQ/dV; is independent oW/ . Thus, the
by measuring transport through an island, which is _VVeakWequiIibrium chargeQ on the island is maximally unquan-
coupled to two leads. By varying a gate voltagg, which izeq, since charge is added continuously as the gate voltage
controls the chemical potential of the island, peaks in thq_S changed. He then showed that the presence of weak back-

cggdléctgnce are (?]bservelij eaﬁh t'm% an additional ‘?Iec"g”é%attering at the point contact leads to weak oscillations in
added. Between the peaks, the conductance Is activated, gy, jitterential capacitance, as a function of gate voltage

flecting the Coulomb barrier to change the number of elec?/vith a period corresponding to the addition of a single elec-
trons on the dot.

The coupling to the island via tunnel junctions introducestron' These oscillations signal the onset of the quantization

fluctuations on the dot, which relax the discreteness of it?lc :he sg.liilllbrlur?hcharge 9{” the island. h fate of
charge. When the conductanee of the junctions is very n addition to the capacitance measuremerithe fate o

small, c<e?/h, this effect is weak and gives rise to the well the Coulpmb blockade in an island connected to a single lead
known cotunneling effect, in which electrons may tunnel vir-Vi& & point contact can be probed by transport, provided an
tually through the Coulomb barriéf Provided one is not add|t_|o_n_al Ieao_l is present. This Iegds us to the interesting
too close to a degeneracy between different charge stateRossibility of simultaneouslymeasuring the conductanca
this physics may be described satisfactorily within low ordertransport properfyand the capacitanden equilibrium prop-
perturbation theory in the tunnel coupling. erty) of a quantum dot. In this paper, we build on Matveev’s

For stronger coupling to the leads, the perturbative analywork and compute, in addition to the differential capaci-
sis is no longer adequate, and a quantitative description daince, the tunnel conductance anf characteristics for an
the problem becomes much more difficult. Based on generasland connected to one lead with a nearly perfectly transmit-
arguments, the Coulomb blockade is expected to be suging point contact and connected very weakly to another
pressed wherr~e?/h (Ref. 6 since in that regime, the lead.
RC decay time of the island leads to an uncertainty in the Specifically, we consider the quantum dot depicted sche-
energy, which exceeds the Coulomb barrier. However, thignatically in Fig. 1. The center region surrounded by the
argument is unable to predict quantitatively the nature of thgates forms a quantum dot, which is connected to the leads
suppression of the Coulomb blockade. on both sides. In the=1 quantum Hall regime, there is a

A particularly well suited system to study this physics is asingle edge channel going around the dot. The contact to the
semiconductor quantum dot at high magnetic fields. In thdeft lead is a tunnel junction, characterized by a small tun-
integer quantum Hall effect regime, the states near the Fernmieling amplitudet, which is controlled by the voltage on
energy of a quantum dot are edge states, and have a simplgate A. The right contact is a nearly perfectly transmitting
well organized structure, which is insensitive to the compli-point contact characterized by a small backscattering ampli-
cating effects of impurities and chaotic electron trajectoriestude v, which is controlled by the voltage on gaBe The
In this paper, we shall study a quantum dot in the integebackscattering at the point contact involves tunneling of
guantum Hall regime, which is strongly coupled to a lead viaelectrons between the opposite moving edge channels at
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x=L and x=—L, wherex is a parameter specifying the = When the transmission through the point contact is less
spatial coordinate along the edge channel. than perfect, charge quantization is introduced in the dot.
A crude estimation of the Coulomb energy with the aboveThe rigidity of the quantization grows with increasing ampli-
geometry givesU=Ke?/eL, whereK is a dimensionless tude of the backscattering at the contact. For weak back-
geometrica| factor and is the dielectric constant of the Scattering, this is reflected in oscillations in the differential
semiconductor material. Another geometry-dependent erf@pacitance as a function of gate voltage, with an amplitude
ergy scale is the level spacing between edge states in ;mopo.rtl(.)nal to Fhe .backscattenng matrix elemenie find
isolated dotAE = mhv /L. While there are few reliable es- that similar oscillations, proportional te, should be present
timates of the edge state velocity-, the ratioc AE/U is N the conductance. A comparison of these osglllgt|ons
typically of the order 0.1 in GaAs/AGa,_,As heterostruc- should therefore provide information about the intrinsic
tures, in the integer quantum Hall effect regifighe small- ~ Structure of the quantum dot. We focus on the ratio of the
ness of this ratio is assumed throughout this paper. frac_nonal oscillations in the conductance to that of the ca-
Though the equilibrium charge on the dot is not quantized®@citance,
when the transmission at the point contact is perfect, we
nonetheless find that important features of the Coulomb G, /Gy
blockade remain in the tunneling characteristics. Remark- =C.C.
ably, most of these features can be explained within the usual 17=0
weak couplingnodel. Specifically, we find that at zero tem-
perature, the Ohmic conductance is suppressed by a factor 6 and C, are the average capacitance and conductance,
(AE/U)? below its noninteractindi.e., U=0) value. This WhereasG; andC, are the amplitudes of the oscillations as
suppression of the tunnel conductance is precisely of the function of gate voltage. By considering the fractional os-
form predicted by the theory of elastic cotunneling through &cillations, G, /G, andC, /Cy, the dependence on the tunnel-
one dimensional system. Evidently, the cotunneling theory i$ng matrix element necessary to measu@and the capaci-
more general than its derivation within weak coupling per-tive lever arm » necessary to measut€ is eliminated.
turbation theory suggests. In addition, when the temperaturboreover, since in the weak backscattering limit both quan-
T or the voltage biagV exceedsAE, we find the behavior tities are proportional tw, the dependence om is elimi-
analogous toinelastic cotunneling. In particular, for nated by taking their ratio. Thug measures an intrinsic
AE<T<U, the tunneling conductance is suppressed byoroperty of the strongly coupled quantum dot, which is in-
(T/U)2. Moreover, forAE<eV<U, the tunneling current dependent of the details of the tunneling matrix elements.
varies asvs. We have computed within a constant interaction model, in
Inelastic cotunneling behavior has also recently been diswhich the Coulomb interaction couples only to the total
cussed by Furusaki and Matve®\ for a quantum dot number of electrons on the dot. We find the¢1.59 for
strongly coupled to two leads. While similar in many re- T, AE<U, independent off, AE, andU. More generally,
spects, it is worthwhile to distinguish the present work fromé will depend on the specific form of the electron-electron
that in Ref. 10. In that reference, the two point contacts arénteractions.
considered to be independent. An electron passing through With a few modifications, the above considerations can be
one contact can never coherently propagate to the secor@ktended to the case in which there are more than one well
contact. Elastic cotunneling can, therefore, not be describetlansmitted channels. We find that the low bias linear con-
within that framework. In general, the elastic cotunnelingductance is less suppressed as the number of chanhels
will depend on the complicated transmission matrix of theincreases. It has been recently shown that the suppression
sample. In contrast, in the quantum Hall regime, the edgdéactor becomes XE/U)?’ in a constant interaction
channels have a particularly simple structure and directlynodel*! However, if we take it into considerations that the
connect the leads. If the phase coherence length can exceideraction strength may differ within the same channel and
the dot’'s dimensions, then elastic cotunneling should bdetween different channels, we find that the factor still has
present. This physics is correctly accounted for in our edgéhe form (AE/U)2. In addition, the ratio¢ depends sensi-
state model. In addition, the results in Ref. 10 concerning théively on the form of the electron-electron interactions be-
Coulomb blockade for spin-degenerate systems is not appltween different channels on the dot. It is equal to zero if
cable here, since the magnetic field destroys that degeneraajifferent channels do not interact and grows with increasing
In addition to the limiting behaviors discussed above, westrength of the interchannel interactions. Th{is a measure
find that at low temperatur€<AE, there can be nontrivial of the interchannel interaction strength.
structure in thd -V characteristic foM~AE. In particular, This paper is organized as follows. In Sec. Il, we describe
we find steps in thalifferential conductancedl/dV as a the model and derive thieV characteristic equation. In Sec.
function of bias voltage. In the weak coupling limit, the ex- lll, we consider a single-channel system with a perfectly
istence of such steps has been discussed by Gldttiey are  transmitting point contact. We compute the current and dis-
a consequence of inelastic cotunneling whenrttemy body cuss various features of the result. In Sec. IV, we consider
eigenstates of the quantum dot are discrete. Observation tiie effect of the weak backscattering to the conductance in
such steps could provide a spectroscopy of the low lyingconnection with the effect to the capacitance. We compute
many body states of a quantum dot. Remarkably, as we shafl within two specific models of electron-electron interac-
show in Sec. lll, these steps can remain sharp in the strontipns. In Sec. V, we generalize the results of Sec. Il and Sec.
coupling limit, even though it becomes meaningless in thatV to multiple channel systems. Finally, some concluding
limit to speak of discrete single particle states. remarks are given in Sec. VI.

@
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Il. EDGE STATE MODEL

We begin in this section by describing our edge state
model of a quantum dot strongly coupled to a single lead.
Here, we will consider the case in which only a single chan-
nel is coupled to the lead by a nearly perfectly transmitting
point contact. Later, in Sec. V, we will consider the case
where more than one channel is transmitted.

In the absence of interactions, it is a simple matter to
describe this system in terms of the free electron edge state
eigenstates. Such a description is inconvenient, however, for
describing effects associated with the Coulomb blockade,
which are due to the presence of a Coulomb interaction. The
bosonization technique, however, allows for an exact de-
scription of the low energy physics in the interacting
problem?*?

At energi mall compar h Ik ntum Hall o
t energies small compared to the bulk quantu a h FIG. 1. Schematic view of a quantum dot connected to leads on

energy gap, the many body eigenstates are Io_ng Wavemn%oth sides. Negative voltage on the gatebaded argaconfines
edge magnetoplasmons. These may be described as fluctu

fi in th di : | edae densit h . fectrons in the dot. Thick solid lines show the edge channels
ions in the one dimensional edge densitgx), wherex is a formed by strong magnetic fiel, where the direction of the elec-

coordinate along the edge. FOIIOW',ng the usual boSon'zat'o'ﬂon motion is depicted by arrows. Dashed lines show tunneling
procedure, we introduce a fieldg(x), such that pamg where the tunneling amplitutl@nd the backscattering am-
n(x) = dx¢/27. The Hamiltonian, which describes the com- pjitude v are controlled by voltage on gafe and gateB, respec-
pressibility of the edge may then be written, tively.

UF
Ho= f dx——(dx)?. 2
0 477( x) @ guantum Hall edge, characterized by a boson figlavith a

HamiltonianH, in (2). Tunneling from the left lead into the

The dynamics of the edge excitations follow from the Kac
Y J dot atx=0 is then described by the operator

Moody commutation relations obeyed kb

Bpx)
5 $(X)

T =60~ 6(0]=gi0 )

=id6(x—x"). 3

where we defined= ¢(0)— ¢,(0). For thereverse process,

Using (2) and (3), it may easily be seen thain=uvd,n, so T_=exp—i6. The left point contact may be characterized by

that the edge excitations propagate in a single direction &t tunneling Hamiltonian,
velocity v along the edge. In this language, the electron
creation operator on the edge may be written as Hi=t cosd, (@)
wT(X):e,“ﬁ(X)- o . wheret is the tunneling matrix element.

Equations(2) and(3) are an exact description of a single  gimjjarly, tunneling at the right point contact involves
edge channel of noninteracting electrons. We may easily ing4nsfer of electrons betweer= — L andx=L. The Hamil-

corporate interactions into this description. Specifically, We;qnian describing these processes can be expressed as
consider a “constant interaction model,” in which the Cou-

lomb interaction couples to the total number of electrbhs H,=vcog ¢(L)— ¢(—L)]=vcos2aN )
on the dot, which depends on the edge charge between v
x=—L andx=L, wherev is the backscattering matrix element.

L Itis convenient to eliminate the linear gate voltage term in
_ o (5 by the transformation N—N-—Ng,, where
N= 27[¢(L) ¢(=L)]. “) No=enVs/(AE+U) is the optimal number of electrons on
the dot. Our model Hamiltonian describing a quantum dot

The self-capacitance and the coupling to a nearby gate cajt 5 single channel coupled to a lead may then be written
then be described by the Hamiltonian,

U
H=Hg[ ¢ ]+Ho[ ¢]+ §N2+t cosf+vcos2m(N—Ny).

U
Hy+He=75N2+enVeN, (5)
2
9
where 7 is a “lever arm” associated with the capacitance o . )
coupling to the gate. Since the interaction is still quadratic in We Will find it useful in our analysis to represent the

the boson fields, it may be treated exactly in this representd@tition function as an imaginary time path integral. The

tion. action corresponding tblg is then given by

Now we consider tunneling between the edge channels. 1
We consider the left lead in Fig. 1 to be a Fermi liquid. _ f n

. . . =— . 1
Without loss of generality, we model it as anothes 1 So A dx droxp(vedxp+ids) (10
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Since the remaining terms in the Hamiltonian depend onlyparticular, at zero temperature, the Ohmic conductance is
on @ and N, it is useful to integrate out all of the other proportional to the coefficient of the & term. In addition, it
degrees of freedom. The resulting action, expressed in terms possible to comput®(E) numerically, as is described in

of (7) andN(7), is then given by the following section and in more detail in Appendix A.
1 0(wp)
Smtzz z [0(— w,) N(— wn)]Gl[ N(w”)} lIl. POINT CONTACT WITH PERFECT TRANSMISSION
fop n

In this section, we will consider the case where the trans-
mission through the right point contact is perfect. In this
+ f d7t cosf+vcos2m(N—No)], (1) Jimit, there is no quantization of the charge on the dot. Since
charge may flow continuously through the point contact,
wherew,, is a Matsubara frequenc ~* is the inverse of the  there is no preferred integer value for the charge. This may
Green’s function matrix and can be explicitly expressed as pe seen clearly from the Hamiltonian in E§), where, for

PN v=0, the dependence d¥, is absent.
n

(1+ e~ lenl/AE) _®n It follows that, as the gate voltage is varied, there should
. 1| 4= 2 be no oscillations in either the differential capacitance or the
T o, 7|, : conductance. However, we will show below that tunneling

> anU through a large barrier onto the dot is stilockedby the

charging energy. This blockade is a result of the fact that the
(12 . ; . .
tunneling electron has a discrete charge, which cannot imme-

whereAE=wve/L. diately be screened.

We now briefly develop the framework for our calculation  To compute the tunneling current, we evaluatg(r),
of the tunneling current. The-V characteristidor equiva-  where the subscript 0 indicates that 0. Since the action
lently the tunneling density of stafesiay be computed using (11) is quadratic, we may write
the actionSy, in (11). Working perturbatively in the tunnel-

ing matrix element, we may compute the tunneling current Pl 1-)=e71/2<TT[0<r)*0(0>]2> (19
in the presence of a dc bidg using Fermi’'s golden rule.
met? =exg — 1—e'“n")G,y,
|=——2 e =M T(n[T_|m)|*5(E,~Ep—eV) F{ = : ”} (20
m,n

—(n|T_|m)[?8(Eq—EmteV)], (13)  whereG,, is the top left element of the matri@ defined in

where|m) is an eigenstate of the unperturbed Hamiltonian(1D- This may be rewritten as

with energyE,,. Since the sum on is over a complete set

2
of states, we can reexpress the above equation as Po(7)= melB 24T (1—élen) f(wn)
, 0 sinw/ B on |wn|
met 21
=D p(ew), 14 2

where 7. is the short time cutoffwhich is of order the in-
where verse of the cyclotron frequencand

. . ) U(l— —|w|/AEy2
P(E)= f dt 5[, e1%]). (15 f(w)= 2W|w|(+ufl_e_2ﬂ)m)- (22

_ In order to computeP(E), it is useful to consider the The first term in(21) describes the response for noninter-
imaginary time ordered Green's function, which may begcting electrons) = 0. This gives us a purely Ohmic tunnel-
readily computed using path integral techniques. ing currentl =G _,V. Gy_ is related to the transmission
,, i i robability of a free electron through the left barrier,
Am)=(Te"7e 1), (16) gu=o=(e%/h)TL, whereT, «t?, ’
The real time correlation function may then be deduced by In the presence of interactions, the low bias linear con-
analytic continuation. The two terms in the commutater inductance may be deduced from the long time behavior of

(15) lead to Z(7). In the strong interaction limity>AE, we may es-
timate the limiting behavior of the exponential factor(#)
P(E)=P~(E)—P<(E), (17) by noting thatf(w) is approximately a constant in each of
. the following three limits:
with
0 if w<AE,
P>’<(E):f dt eIEt/)(THItiO-*—) (18) f(w)% 1 |f AE<w<U’ (23)
0 if U<w.

Limiting behavior of the tunneling current may be de-
duced analytically from the asymptotic behaviorzofr). In At zero temperature, we thus have, to logarithmic accuracy,
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Udw

(O]

T 2
%&ﬂ~<f>emr2f (24)

AE

in the long time limit >AE"1). It then follows that the

linear conductance is suppressed. Performing the integral in

(21) exactly, we find

AE
U

e2

G:C]_FTL (25)

Sl

with ¢;~3.11. This should be compared with the theory of

elastic cotunneling, which is derived in the case of weak

tunneling through both barrier$, ,Tg<1. When the dot is a
one dimensional systerfas it is for quantum Hall edge
state$, the result has been shown to be

Sl
Evidently, theAE/U suppression predicted i25) remains
valid all of the way up tolg=1.

At finite temperatures or voltagea E<eV,T<U, the
lower limit of the integral in(24) is cut off by T andeV. The

e2

G FTLTR

AE

U (26)
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1.0

(b) —— AE=0

dl/dv

0.0 | | I I

0.6 0.8 1.0

eV/U

FIG. 2. Differential conductancel/dV, as a function of scaled
bias voltageeV/U, computed in the absence of backscattering
(Tg=1) for variousAE. Curves are scaled, so thdt/dV=1 in
the high bias voltage limit. It is easy to see that the curves consist of

resulting tunneling current may thus be obtained by setting

AE=0 and is written

I e2_|_ (e\/)2+4772T2V )
=Clh—/z—V,

Cz h L U ( 7)
with ¢c,=272e 2¢/3~2.07, where C is Euler's constant.
This result is, again, exactly in accordance with the theory o
inelastic cotunneling, settingzr= 1.

An alternative interpretation of this suppression of the

2

e
a

h |V~ 2

steps of approximate sizkE.

U

. (30

This offset is a consequence of the fact that at short times,
the electron which tunnels cannot be effectively screened by
the point contact.
f In addition to the limiting behaviors described above, we
have computed thé-V characteristic numerically at zero
temperature, as explained in Appendix A. Figure 2 shows the

tunne“ng current has been pointed out in Ref. 13. Suppos@ifferential conductancdl/dV. What is most Striking is that
that an electron tunnels into the dot. The dot would minimizethere are sharp steps, the sizes of which are approximately
its electrostatic energy by discharging exactly one electrorAE. For a nearly isolated dot, a similar phenomenon has

According to Friedel sum rule, the number afldedelec-
trons, which is—1 in this case, is equal té/ 7, whered is

been pointed out by Glattli,and can be understood as a
consequence of inelastic cotunneling through a dot with a

the scattering phase shift of the one dimensional channel. Adiscrete energy level spectrum.

in Anderson orthogonality catastropHethe suppression fac-
tor in the tunneling rate is related to the phase shift by

dl
—xg?,

qv (29

wheree =max@E,T,eV) is the low energy cutoff and

oy

=2(—1)%=2.

6

w
(29

Combining(28) and (29), we may reproducé25) and (27).
Note that(29) differs from the usual orthogonality exponent,
(8/1r)?, by a factor of two. This is because we are tunneling
into the middle of a “chiral” system consisting only of right
moving electrongor equally the end of a one dimensional
normal electron gak.

Finally, we note that in the high bias limigV>U, we
recover the lineat-V characteristic with an offset character-
istic of the Coulomb blockade,

An inelastic cotunneling process leaves a particle-hole ex-
citation in the dot. As the bias voltage increases, the number
of available particle-hole combinations also increases. Be-
cause of the discrete nature of the energy spectrum of the
dot, this increase in number occurs discontinuously at every
AE/e of the bias voltage, which is manifested in the tunnel-
ing density of states or the differential conductance. How-
ever, the above explanations are not fully adequate in our
model, because the dot is strongly coupled to the lead. For
perfect transmission, the linewidth of a single particle energy
level is approximately’~ AE. It means that the levels are as
broad as the level spacing and the steps are expected to be
wiped out altogether. The reason for the apparent discrep-
ancy is that the lifetime of amany bodyexcited statdi.e., a
particle-hole pair can be much larger than the naive single
particle lifetime.

If the dot is weakly coupled to the lead, the lifetime of a
particle-hole excitation may be easily calculated. First, we
assume the excitation is relaxed only through the process in

which both the particle and the hole tunnel out of the dot. In

analogy with the theory of cotunneliigwe use Fermi's
golden rule to estimate the decay rate,
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_, 2w 1 1 2 we thus expect the conductance and the differential capaci-
T 272 VikVokr ot 0 tanceC=—edNdV to have the form
ek ek—(el—5 62+§—ek,
C:CO+ C]_COSZWN(), (33)
X 6(€1— €3~ et €r) O(ex— w) O — €xr), (31

G=Gy+ G, cos2mNy, (34
where u is the chemical potential of the lead am¢g and

€, are the energies of the particle and the hole, respectivel;y,vher:a the :sc.:illgtor.y comppnenﬁl ha,nd, c;l aredprop(?r-h
The electron eigenstates in the lead are labeledk and tional toy. An Intrinsic quantity, which is independent of the

k', andV, and V,, are matrix elements of the coupling bagkshcattermg'e.lmpllltudze, the tunne'llngdma.trr:x ﬁlememt ;
Hamiltonian. Ife;— e,<U/2, the above equation can be ap- and the capacitive lever arm associated with the gate, Is

proximated the ratio
L, 327 V[t - e EGl/GO. (35
T TR AL, U2 C,/C,

lead

AE\2 Using the model we have developed so far, we can calcu-

T) Té, (32 late the capacitance and the linear conductance perturba-
tively in the backscattering matrix elememt The differen-

where A, is the level spacing of the lead and tial capacitance is given b@=T(d?Inz/d\VZ)/75, whereZ is

Tr~|27V|*/ AEA o54is the transmission probability. We as- the partition function. As shown by Matveev, to leading or-

sume|Vyy|?~|V,|?~|V|? is constant in the given range. der inv the differential capacitance has the fot88), with

In our model, a simple consideration of th&/ character- average and oscillatory components given by
istic equation in(14) and (Al) shows that the width of the
step risers is proportional ta\E/U)?. Since the width of the ne

4
:?ﬁ(el—fz)

2

risers is directly proportional to the linewidth of the energy Co:m, (36)
levels, it is evident that Eq:32) is valid even up torg=1,

with a possible numerical factor. We thus conclude that even o 2me \2

in the presence of a perfectly transmitting contact, there can Ci=vnye 27 NO >O(AE+ 0 (37)

be long-lived excited states in the dot, the decay of which is

suppressed by the Coulomb blockade. The averagd), is with respect to the ground state of the

So far we have assumed thiE is constant. If we allow unperturbed actioi®,,; in (11).
nonuniform level spacing, degeneracy in the particle-hole In order to compute the conductance, we must calculate
excitation energy is lifted and all steps but the first one split/(7) in the presence of the perturbatietos2r(N—Np).
into several substeps. As the degree of degeneracy increases the first order inv, we find that JA(7)=%(7)
with the energy, more splittings occur at higher bias volt-+ 22, (7)cos2rN,, whereZy(7) is given in(19) and
ages, finally making it hard to distinguish between steps.

Before we close this section, let us consider other relax- 7 (7)=—(T, %D =0OIg (T D=0y (g
ation processes. It is only when all relaxation rates are less
than AE that it is possible to experimentally observe the _ , , : .
steps. This criterion is equivalent to saying that the inelasti(\:NhereS”_fng veos2m(r'). This may be written as
scattering lengthl,, , is much longer than the circumference
of the dot. It is known that inelastic scattering is strongly
suppressed in the quantum Hall regifienost likely due to
the difficulty of conserving both energy and momentum XJ d7'{1—-cosh2r[Gy\(7—7") = Gyn(7') ]},
when scattering occurs in a one dimensional channel. These
steps may thus be observable in the quantum Hall regime. (39

where G, (7) is the off-diagonal element of the Green’s
IV. POINT CONTACT WITH WEAK BACKSCATTERING function defined in(11), which may be computed explicitly
ng(12).

Py(r) =0 Fp(r)e 2T N0

In this section, we consider the case where there is weal™ .
backscattering at the right point contact. As the contact is In order to CO.mPUte the linear conductance, we must com-
pinched off, fractional charge fluctuations in the dot are pute Ehle larger limit OT (39). Fc_)rL_Jr>1, Gyn(7) decays as
hampered and the discreteness of charge becomes importa?nllj. 7)"", so that the integral is independent af We thus
For weak backscattering, there is an energy cost, propor- ind
tional to v in the Hamiltonian(8) for nonintegral charge
configurations. This gives rise to oscillations in physical G,=uvGye 2™ N®%0x 2 f d7'[1—cosh2rG ()],
guantities, such as the capacitance and the conductance as a (40)
function of gate voltage. The period of these oscillations cor-
responds to changing the optimal number of electrons on thethere Gy is the zeroth order linear conductance.
dot Ny by one. Using (36), (37), and(40), we obtain an exact expression

For nearly perfect transmission through the point contactfor the ratioé,
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B AE+U
T A4g?

><2f d7'[1—cosh2rG,(7')]. (4D

In the limit T,AE<U, the integral approaches a finite value,
which depends only o). In this limit, we find

£~1.59. (42

The cancellation of input parameters likeU, and AE
may tempt us to suspeétbe a universal number being con-
stant for all samples. As will be shown below, however, Eqg.
(42) is true only within a constant interaction model, in
which the dependence of the interaction on the spatial sepa-
ration is ignored. In order to see hagvchanges with differ-
ent models, let us consider a more general model the inter-
action Hamiltonian of which is given by

1
Hy= WJ dx dX dxp(X)U(X,X")dxp(X").  (43) FIG. 3. Schematic view of a quantum dot analogous to Fig. 1,
with two well transmitted channels. The symbols are the same as in

The constant interaction model is regained by assumingig. 1. Note that the tunneling through the left contact occurs in the
U(x,x")=U to be uniform. It is sufficient, for our purpose, outer channel, whereas the backscattering at the right contact occurs
to consider just another example. We can think of a locain the inner channel.
interactionU (x,x')=2LU 8(x—x") (L —|x|), which is cer-
tainly an extreme limit to the other direction from the con-

stant interaction model. The appropriate Green’s function igndicated in Fig. 3, this means that the tunneling and back-
given by scattering will occur in different channels. Then the Hamil-

tonian for./” channels is represented by

Gon(wp)= T (1-erionvy, (44)
@n H=Ho[ ¢y]+ X Hol¢]+Hy+t cos,
and then, using41), we get, '
+vcos2m(N ,—Ng), (46)
é=1. (45) o . .
where the notation is similar to that in Sec. Ill, with the

Now it is clear that{ depends on the form of the electron- sypscript denoting the channel number, except #has the
electron interaction. It is, however, noteworthy that the val-ngson field of the left lead. We have redefindg as the
ues of ¢ computed in two extreme limits are of the same gptimal number of electrons in channél” alone which, in

order of magnitude. general, depends on lever arms for all channels.
One of the simplest models to study a multiple-channel
V. MULTIPLE-CHANNEL SYSTEMS system is a constant interaction model, in which the interac-

. . . . . . tion Hamiltonian depends only on the total charge in the
In this section, we generalize the considerations in the P y g

previous sections to the systems of which the right conta((:?tSIand' The interaction may be explicitly written

(nearly perfectly transmits more than one channel. As the U 2

conductance of the contact increases with the number of well HU:—( > Ni) . (47)
transmitted channeld”, the shorteR C decay time allows a 2\

higher uncertainty in the energy of the island. Therefore, it 'SThe calculation of the tunneling conductance proceeds along
natural to expect that the effect of the Coulomb blockad

: . ) .the same lines as in Sec. lll. In this case, the funcfitm)
become weakened in multiple-channel systems, which wil efined in(21) is given by

be confirmed below.

It turns out that most of the qualitative considerations for U(1— e Tlel/AE)2
the single-channel systems can directly be applied to flw)= 7 — o 2alwllAEy - (48
multiple-channel systems. Similar calculations, as in Sec. lll, 2mw|+./U(1-e )
show that in the absence of backscattering, the low bias linygte that the limiting values of(w) are
ear conductance is still suppressed below its noninteracting
value, although the suppression is less strong’ifs bigger. 0 if w<AE,
On the other hand, there are different features arising from
the introduction of additional channels, on which we will fw)~ i if AE<w<.)U (49)
focus in this section. N '
For integer quantum Hall states with> 1, the edge chan- 0 if JU<ow.

nels tend to be spatially separated. The tunneling will be
dominated by the coupling to the nearest edge channel. Al§ immediately follows that
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dl e [g\2 exists an energy scale, which corresponds tau in the
FTVAR U) : (50 above special model, such that
where e =max(AE,eV,T). The exponent 2/ has been de- flw)~1 if AE<w<./JT1. (55

rived in some other papers in several different cont&xts.
It is clear from(50) that the conductance is less suppressed i
there are more channels.

However, it turns out that the nonanalytic behavior with
exponent 2/ is correct only to the extent that the constant

interaction model is valid. As explained below, this is due to onfined in a auantum dot. Even thouah both contacts were
a special symmetry of the charging energy, with respect t& 9 : 9

redistribution of charge among the different channels. Wém_arly plnche_d Off in thg reference as o_pposgd to_ our model,
e%(ls suggestive to estimate the magnitude wlusing the

f'I'hen Eq.(54) is valid if e<./U, except for the factor de-
pending ona. In general,u=0 for a constant interaction
model and it measures how far the used model is away from
the constant interaction model. van der Vaarral® have
measured the matrix elements Offor two Landau levels

consider an effective-capacitance model, which is one ste . ; ) ;

more general and has been introduced and developed by s xperimental data. With their part|c1_JIar setup, _they got

eral authors to remedy some problems with the constant in=11_ 800, U= 1175, andU,,=650 (aII_ n '“/SV)' A simple

teraction modet® This model assumes that the edge chan-SStimation with these numbers gives/u~260 ueVv
AE,T,eV, which suggests that4) must be used rather

nels are capacitively coupled metal bodies and the Coulom X . . N .
P y P Ean(SO) in this case. It has to be admitted that this is a naive

interaction energy depends on the number of electrons i’ "\~ o . ; ;
eachchannel. The Coulomb interaction part of the Hamil- estimation considering the d|fference between their expert-
tonian can be written mental setup and our theoretical model. Opening up a point
contact would, in general, reduce the strength of electron-

1 electron interactions in the dot and it would change the ca-
HUZEZ N;jUi;Nj, (5))  pacitance appreciably. However, even though the above es-

. timation of U may be merely speculative at its best, we

whereU is an./"X./" matrix that can be determined experi- expect that(54) has to be true if different channels are
mentally. In order to get a clear understanding of the effectwveakly coupled, which seems more general than the constant

of this generalization, let us consider a simple specific exinteraction limit, in practice.

ample of the electron-electron interaction, i.e., It is now evident that the exponent is 2/ only for the
B constant interaction model. This is due to a special symmetry
Uj=ul./ag;+(1-a)]. (52 of the constant interaction model, i.e., the interaction part of

The diagonal component{‘a+1—a)u is the magnitude of the Hamiltonian(46) i§ invariant under redistribution of total
the interaction strength within each channel and the offcharge among the different channels. The effect of the sym-
diagonal component (2a)u is that between different chan- Metry on the exponent can be most easily understood in
nels. This matrix is chosen such that if the lever arms are affe'Mms Of Anderson orthogonality catastr_or}ﬁeEquatmn_
equal to unity, the total capacitanc€.=dQy/dVs (28) can be d|rgctly used with an appropriately generalized
=e?3;;U;;'=¢€’/u in the limit AE=0, independent of. definition of y, i.e.,

Note that we regain a constant interaction model=f0. As S5
a grows, we move away from the model, finally, reaching an 7:22 (—'
independent channel modelat 1, where different channels AT
do not interact. As in(23), the limiting behavior off(w)
defined in(21) is given by

2
: (56)

where§; is the phase shift in channkl It needs only a little
consideration of electrostatics to figure dut Following the

; argument in Sec. I, let us suppose that an electron has just
0 if w<AE, i

) . tunneled into channel 1 through the left contact. The number
1 if AE<w<Jay, of electronsdischargedfrom each channetl- 6, /7 depends

f(w)~{ S/ a+1l—a . . (53 on the form of the interaction, provided they satisfy the con-

—  Jau<se<Ju, straint = 8;/7=—1. If we work in a constant interaction

i B model, because the Hamiltonian depends only on the total
0 if Ju<ow. charge, from the symmetny, /7= — 1./ for all i. There-

It is clear from the above equation thatdf-0 (constant fOre;

interactiorn), (49) is restored and we get the exponent/2/ y >

as we discussed earlier. Whenis not small, there is no 7:22 (__) - (57)
appreciable range in which w)=1/./", and the differential = A v

conductance has a different exponent, 2, i.e., ) . !
On the other hand, if we use an effective-capacitance model

di e [g)\? and the system is safely away from the constant interaction
VER a) , (54 |imit (/T >AE), it is always energetically favorable to
take a whole electron from channel 1 and have the exactly
providede = max(AE,eV,T)<./ au. same ground state charge configuration as before. Then

The above considerations can be generalized to a model, /7=—1 and§=0 (i=2..../), so that
with a generic matrixJ. Even thoughf (w) is a complicated
function, which depends on all matrix elementslbf there y=2(—1)?=2. (58
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Then Egs.(54) and (50) are readily reproduced frort28)  away from the constant interaction limit. SinGgy(7) mea-
and(5§). The physical distinction between the energy scalesures the response bf -, a period of timer after an elec-

u andu is thus clear. When an electron is added to the dottron is added into channel 1, the physical interpretation of the
(#"u)~*, which corresponds to thRC decay time, sets the above limiting behavior is clear. It takes a time period of
time scale for the total charge of the dot to return to itsorder 2r/./ u for the total charge of the dot to return to its
original value. However, even after the total charge has beegriginal value. Channel/" contributes to this process by
screened, there may be some imbalance in the distribution @fischarging (+a)/./" of an electron, which can be read
charge between the channelsi T) " sets the scale for the from the second line of62). The reason it is proportional to
relaxation of this imbalance. In the constant interactionl_a is that the interchannel interaction Strength is propor-
model, there is no Coulomb energy cost for such an imbaltional to 1-a. After a time period of order #/./ au, the
ance, sal—0. charge ineachchannel returns to its original value, which is

Now let us consider the effect of weak backscattering. Aseflected in the vanishin@ g (7) in the long time limit. In
in a single-channel model, the introduction of weak back-prder to estimate the integral {60), we may make a crude
scatteringv results in oscillations in the capacitance and theapproximation by substituting a square function for
conductance. However, an important difference arises frong (7), ie., Gy(7)=—in(l-a)./" if 2=l)u<r
the fact that the tunneling and backscattering occur in differ< 27/ /-au, andG,(7)=0 otherwise. Then we get
ent channels.

It has been shown both theoreticdfly and G, , . 8m(1-a) .m(1-a)
experimentally’ that the period of the conductance and the G—~ve_27 (N4 (00 7 sin? 5
capacitance oscillations increases with increasing humber of 0 ~rad -
well transmitted channels. This is because the oscillationgnd finally
arise only from the quantization &f ,-, the number of elec-
trons in the backscattered channel. When there are many 2/ 1-a _m(l-a)
perfectly transmitting channels, many electrons must be &~— 3 sir? S (64)
added to the dot to increade, - by 1. -

The analysis of the amplitude of the oscillations is a little This is a good approximation &<1. This is a monotoni-
more complicated. We will again focus on the ragidefined  cally decreasing function af and as is explained below, it is
in (35), using the model interaction if52). We assume a consequence of the fact that the tunneling and the back-
AE,T<./7au and all lever arms are taken to be unity. Onescattering occur in different channels. A biggerimplies
may include the lever arms explicitly, but it does not changewyeaker interchannel interactions and consequently a weaker
the result qualitatively. Along the same lines as in Sec. IV effect of the backscattering to the conductanceaAtl (in-
the fractional capacitance oscillation may be written dependent channglsve cannot use the above equation, but
277)21 we know that the conductance oscillation would eventually

(63

Ci
C_o_

The fractional conductance oscillation may also be written

pe— 2N (0% - (59) vanish, because the backscattering potential does not affect
u the conductance at all, and theref@gre 0. At a=0 (constant
interaction, G,/G, diverges, and so doe& It is because
G, /G, diverges as /)", if the low energy cutoffe is
5 ) small, suggesting that the perturbation theory break down.
G=vGge 2™ (N0 >°><2f d7'[1—cosh2rGyn(7')], Without detailed calculations, one might have been able to
(60) infer it from the following physical argument. In a constant

interaction model, the total number of electrons in the dot

A

where the Green'’s function is given by =;N; is the only gapped mode and there afé—1 combi-
nations ofN;, the fluctuations of which are not bounded,
Gon(7)=(T-01(1)N.,(0)) leading to divergences in individual terms in the perturbation
_ expansion. Therefore, we need to sum up all higher order
= —f dw,e'“n" terms in order to obtain a correct result. In a series of recent
papers, Matveev and Furus&ki have calculated both the
(1—a)u sgn w,) conductance and the capacitance oscillations nonperturba-

X(27T|wn|+L/J/“/au)(27r|a)n|+‘/7/"u)' (61) tively in a spin—degenerate two-channel model, vyhich they

related to the multichannel Kondo problem. Their calcula-

We may easily comput&,(7) in several limits, namely, tions show that the oscillations are no longer sinusoidal and
the period becomes/” times smaller, so that the maximum

0 if 7=0, occurs each time an electron is added to the dot as a whole
m(l—a) _ 2w 2 (not channel/ " alone. Such results, however, clearly apply
Gn(r)=~{ ' if ﬂ<7<m (62 only in the case where the degeneracy is guaranteed by a
) ' symmetry and hence should not apply in this quantum Hall
0 if 7—oo, system.

Without qualitative changes, the above considerations can
and it is monotonically interpolated in between. The abovebe generalized to an effective-capacitance model with a ge-
equation is not helpful ila~1, but it is sufficient for our neric matrixU. As in the discussions of the differential con-
purpose, which is to see hoguichanges as the system movesductancedl/dV earlier in this section, an energy scale
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which plays the role ofau, can be determined from the given the subscript 0 to explicitly show that they are calcu-
given matrixU. In most real situations of quantum Hall ef- lated in the absence of backscattering. The calculation of the
fect edge channelg; is a finite quantity, which can be nu- imaginary time Green function/y(7) is straightforward
merically calculated in the effective-capacitance model, if allfrom (20), and by analytically continuing it, we get
matrix elements ofJ are known.
Py (1) =Z(7—it+07)
VI. CONCLUSIONS a(w)

:ef<9(0)2>0epr\ do e*iwt, (Al)
0

In this paper, we have shown that characteristics of the )

Coulomb blockade, which are normally associated with the ]

weak coupling limit, persist to strong coupling to a lead via awvhere the averagg), is evaluated over the unperturbed ac-
single-channel point contact. In particuld) we find the tion (t=v=0). The functiona(w) is defined

analogies of elastic and inelastic cotunneling in théU)?

suppression of the tunnel conductan¢g) We find that a(w)zif dt €4 6(t)6(0))q

particle-hole excitations on the dot can acquire a long life- 2

time, due to a “Coulomb blockade” to relaxation. This, in

principle, could lead to observable steps in the low bias dif- =j i[<|9(wn)|2>0 ||w |Aiw_<|0(wn)|2>0 ||w ial
ferential conductances, as a function of bias voltéige. The 2m " "

high bias behavior of thé-V characteristic has an offset, U . o

indicating the presence of a Coulomb gap. We find similar 2— sin—( 1 cos—)
conclusions when multiple channels are transmitted through =24 mo — AE AE

the contact, though the suppression of the Ohmic conduc- U  7o\? Uu 7o T
tance is reduced. In the special case of the constant interac- 1+ o S'”E) _ZE S'”E( 1_C°SA_E)
tion model, when there is no penalty towards redistribution (A2)

of charge between the channels, the exponent of the suppres-
sion is modified ¢/U)*". Now we differentiate(Al) with respect tot and Fourier
When the transmission through the point contact is lesgransform it. Then we finally get an integral equation
than perfect, the oscillations in the conductance and the ca-
pacitance may be characterized by the dimensionless ratio
&. While ¢ is independent of the tunneling matrix elements,
it depends on the precise form of the Coulomb interactions.
For a single channel, we have computed it for two differentWe have replaced the upper limit of the original integral
forms of the interaction, and its value is of order unity. Forwith , becausé; (w)=0 for negativew at zero tempera-
multiple transmitted channels, its value depends even moreire.
sensitively on the interchannel interactions, which is zero We now solve the above equation numerically following
when different channels are independent, and grows witlthe procedures described below. We partition the frequency

ng(w)Ifowdw’a(a)')l:’g(a)—w'). (A3)

increasing strength of the interchannel interactions. space into equal parts with step six@<<AE, using divi-
sion pointsw; . Then the functiorP; (w) is replaced by an
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APPENDIX A: INTEGRAL EQUATION FOR Pj(w)
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