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We develop a real-space method for exciton polaritons in a bounded medium with a tight-binding approxi-
mation. The creation and annihilation operators for photons are approximately constructed in a real-space
representation. The quantum-mechanical derivation gives all necessary boundary conditions and complete
solutions to the problem of reflection and transmission near the resonance of excitons. The present theory
without the long-wavelength approximation covers the whole range of system size. In addition we calculate
transient responses for short-pulse excitation. The results deeply reflect the spatial dispersion of exciton po-
laritons.

I. INTRODUCTION

For direct-gap semiconductors, an electronic polarization
of excitons interacts strongly with electromagnetic fields at
the crossing of their dispersion relations. The concept of po-
lariton as the quantum which combines excitons and photons
was first introduced by Hopfield and Thomas.1 In the low-
excitation regime the exciton polariton is regarded as a
bosonic particle and accounts for many optical properties.
This concept has a serious problem for responses of the
bounded dispersive medium, necessity for additional bound-
ary conditions~ABC’s!.2 There have been a great number of
attempts to solve the problem for many years, but most of
them depend on the so-called semiclassical theory of light-
matter interactions. The recent remarkable development of
technologies enables us to have mutual quantum control of
light and matter. Spontaneous emission in a microcavity is a
good example of it.3 Quantum electrodynamics~QED! is the
best theory to understand the features of the quantized elec-
tromagnetic field. But electronic properties in condensed
matters are so complicated that it is hopeless to calculate
optical responses of excitons with QED. Some approximate
methods of practical use are necessary. In the present paper
we introduce the tight-binding photon approach. In Sec. II
we develop a real-space method for photons interacting with
excitons by means of the tight-binding approximation. Di-
agonalization of the total Hamiltonian gives upper and lower
branch polariton modes. Appropriate boundary conditions
~BC’s! for photons and excitons are imposed to obtain opti-
cal responses of excitons in a film. In Sec. III we show nu-
merical results of reflection and transmission for a CuCl film.
This method without long-wavelength approximation can be
applied for films with any thicknesses. What is more, we
calculate the transient responses for short pulse excitation
and show the behavior of exciton polariton propagation.

II. FORMALISM OF TIGHT-BINDING PHOTON

A. Tight-binding approximation for photons

Photons cannot be localized in real space. To be precise it
is impossible to construct a position operator for photons.4

The main reason is that the photon is a massless vector par-

ticle. Therefore QED describes photons in thek-space repre-
sentation. The photon field Hamiltonian is

Hp5(
k,l

\vk(akl
† akl1 1

2 ), ~2.1!

wherevk5kc andakl
† , akl are, respectively, the photon cre-

ation and annihilation operators for the mode with wave vec-
tor k and polarizationl. For example, the energy shift of
atomic levels is evaluated with QED due to emission and
reabsorption of virtual photons. For that problem the contri-
butions of both high- and low-energy frequencies must be
summed up.5

For exciton systems the characteristic optical responses
are determined by the interaction with photons near the ex-
citon resonance. The LT splitting of CuClZ3 exciton is 5.7
meV and the linewidth of a 1 psoptical pulse is about 1 meV,
while the resonant energy of the transverse exciton is 3.2022
eV. Thus we have only to deal with photons correctly in such
a narrow energy range. Therefore, as shown in Fig. 1, we can
approximately change the dispersion relation so that the
group velocity agrees with that of exact photons near the
exciton resonance. This new dispersion relation gives us the
tight-binding Hamiltonian of photons represented in real
space:

Htbp5(
k

\@vex12tph cos~kexd!22tph cos~kd!#ak
†ak

5(
l

\@v0al
†al2tph~al11

† al1al
†al11!#, ~2.2!

where\vex is the resonant energy of the exciton,kex5vex/c,
v05vex12tph cos~kexd!, and tph is determined to make the
dispersion relation exact near the exciton resonance,

tph5
c

2d sinkexd
. ~2.3!
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For simplicity we consider the photon modes propagating in
one direction and neglect its polarization. Zero-point energy
is dropped from the Hamiltonian. The operatorsal are de-
fined as

al5
1

AN (
k
eikldak . ~2.4!

N is the number of modes andd is the lattice spacing which
determines a cutoff frequency. This expression shows that a
field mode is quantized in a one-dimensional cavity with
lengthNd. Theal

† (al) is the creation~annihilation! operator
of the photon localized at positionld in real space. So we
call the photons created by these operators ‘‘tight-binding
photons.’’

These operators do not work individually. However, ifd
is small enough thatkd!1, the field mode with wave num-
ber k becomes a superposition of localized modes approxi-
mately. In terms of localized modes electric field operators
are written as

E~ l !5(
k
iA \ck

2e0dN
~ake

ikld2ak
†e2 ikld!

. iA\vex

2e0d
~al2al

†!. ~2.5!

Here we neglect thek dependence of coefficients and replace
it with kex before Fourier transformation. As a result the local
intensity of the electric field is in proportion to the number of
localized photons.

These localized modes have a number of advantages. For
one thing, there is only local interaction between photons
and excitons in this approximation. Within the rotating wave
approximation the interaction Hamiltonian is given

H int5(
l

\g~al
†bl1albl

†!, ~2.6!

wherebl
† (bl) is the creation~annihilation! operator andg is

a coupling constant. Althoughg depends on the energy as
electric-field operators do, we replace it withvex as before.
This local Hamiltonian reduces the eigenvalue problem of
exciton-polariton to a simple equation, which is presented in
the next section. Second, there is no free parameter to deter-
mine ABC’s. To put it more precisely, when the system is
bounded, the correct linear combination of polariton modes
must be determined in the theory which treats the macro-
scopic polarization of excitons. BC’s are locally defined,
whereas the exciton polariton modes are diagonalized in the
k-space representation. That makes the BC’s of excitons am-
biguous. Thus the ABC’s seems to be required in addition to
Maxwell BC’s. But the argument of ABC is completely
avoided when the eigenvalue problems for excitons are
solved with proper consideration of quantum-mechanical
BC’s.6,7 The present theory is dependent on the quantum-
mechanical and microscopic model in the real-space repre-
sentation. We impose the BC’s of photons and excitons, re-
spectively, before diagonalization. These two are
independent of each other. Accordingly, we can solve the
problem withoutad hoc conditions. Third, since the long-
wavelength approximation is not assumed, this theory covers
the whole range of system sizes. What is more, the tight-
binding photon is not a classical wave but a quantum par-
ticle. It is easy to construct entangled states, coherent states,
squeezed states, and so on. Experimental results of photon
correlations are explained well by them. In the following
sections we show the calculations of optical responses with
the tight-binding photons.

B. Exciton-polariton system

We consider the photon propagation in a film. Light is
normally incident on a film occupying the region 0,x,L.
The 1S, Z3 exciton of CuCl is adopted as a model for this
study. The exciton is also approximated to the tight-binding
boson, which has effective mass and no internal structures.
The total Hamiltonian is

H tot5 (
n^0,n&N

\@v0an
†an2tph~an11

† an1an
†an11!#

1 (
0<n<N

\@v08an
†an2tph8 ~an11

† an1an
†an11!#

1 (
0<n<N

\@~vex12tex!bn
†bn2tex~bn11

† bn1bn
†bn11!#

1 (
0<n<N

\g~an
†bn1bn

†an!, ~2.7!

where tex5\/2md2 andm denotes exciton mass. The first
two lines are the Hamiltonian for photons inside and outside
a film, respectively. The on-site energy\v08 and transfer en-
ergy \tph8 in a film are different from those in vacuum be-
cause of the background dielectric constanteb which con-
tains contributions from all interactions except the exciton in
question. The third line represents the Hamiltonian of free

FIG. 1. The dispersion of real photons~dotted line! and tight-
binding photons~solid line!.
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excitons and the fourth line the interaction Hamiltonian. The
interactions between excitons are neglected in the low-
excitation limit. The effects of scattering by phonons and
defects are included as a damping constantg of excitons.
The lattice spacingd is a free parameter. The smaller it is,
the better the tight-binding approximation becomes. How-
ever, exciton states with large momentum are important in
exciton polariton systems. Thusd is assumed to be the lattice
constant of CuCl crystal unless the system size is so small
that tight-binding approximation is not valid for excitons.
The parameter values used in this paper are

\vex5\v t53.2022 eV, \v l53.2079 eV,

\m52.3m0 , eb55.59, \g50.04 meV,

where\vt , \vl are the energy of transverse and longitudinal
excitons, respectively, andm0 denotes the mass of the elec-
tron. The total Hamiltonian has a bilinear form and can be
diagonalized by polariton operators as linear combination of
exciton and photon operators,

H tot5(
k

\vkpk
†pk , ~2.8!

pk
†5(

n
~anan

†1bnbn
†!. ~2.9!

The dispersion relationvk is shown in Fig. 2. Because of the
tight-binding approximation the dispersion is very different
from that of the real exciton polariton in the region ofv!vex
andv@vex, but Fig. 2~b! shows that they agree very well
near the exciton resonance.

So far as the modes inside a film are concerned, they are
made of the upper and lower branch polaritons. On the other
hand, in vacuum, eigenmodes are plane waves of photons. It
seems that the presence of two propagating modes in a film
with spatial dispersion requires ABC’s at the interface be-
tween a film and vacuum. But this is not correct because the
bounded medium breaks translational symmetry. Without an
interaction between photons and excitons, two types of BC’s
are required to obtain eigenmodes for the system. One is the
BC at the interface. The Maxwell BC’s play the role for
photons. As for excitons, the condition is that there is no
exciton outside a film. The other is the quantum-mechanical
BC for the wave function. The BC’s are indispensable to
quantize particles and fields. It should be noted that the sur-
face effects on the dynamics of excitons are fully taken into
account by solving the Scro¨dinger equation precisely and
independent of the approximation for photons.

Now that the system is discrete in real space, BC’s are
equivalent to the boundary term of the Hamiltonian. To be
more concrete, for photons, the value of the transfer energy
at the interface should be changed according to the Maxwell
BC’s. That of excitons is zero since excitons do not exist
outside a film and other BC’s are needed for quantum-
mechanical systems. In general, the BC’s give the boundary
values and the first derivative of wave functions for continu-
ous systems. In discrete systems they determine the value of
transfer and on-site energy near the boundary. ABC’s are
replaced with them.

Let us determine the coefficientsan andbn of the one-
particle eigenstates for the Hamiltonian,

H totupk&5\vupk&, ~2.10!

upk&5(
n

~anan
†1bnbn

†!uvac&. ~2.11!

uvac& denotes the vacuum state of the system. From this
Schrödinger equation, we get the relations between the coef-
ficientsan andbn in a film:

~v2v08!an52tph8 ~an111an21!1gbn , ~2.12!

FIG. 2. The dispersion of an exciton polariton for CuCl with
real photons~dotted line! and tight-binding photons~solid line!.
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~v2vex12tex!bn52tex~bn111bn21!1gan .
~2.13!

These relations are rewritten with the transfer matrixT.

un115Tun ~2.14!

The vectorun and the transfer matrixT are defined as

T5S v02v

tph8

g

tph8
21 0

g

tex

vex12tex2v

tex
0 21

1 0 0 0

0 1 0 0

D ,

~2.15!

un5S an

bn

an21

bn21

D .

As is the case with the scattering problem, the asymptotic
behavior of photons outside the film is given by

an5H eikn1Are2 ikn ~n,0!

Ateikn ~n.N!,
~2.16!

whereur u is reflectivity andutu transmission. For excitons we
imposeb215bN1150 and change the values of transfer and
on-site energy at the interface. After the conditions are taken
into consideration, the problem is reduced to the next equa-
tions.

uN115T8TN21T9u0 , ~2.17!

whereT8 andT9 denote the transfer matrix at the boundary:

T95S v02v

tph8

g

tph8
2
tph
b

tph8
0

g

tex

vex
b 12tex2v

tex
0 0

1 0 0 0

0 1 0 0

D ,

~2.18!

T85S v02v

tph
b

g

tph
b 2

tph8

tph
b 0

g

tex

vex
b 12tex2v

tex
0 21

1 0 0 0

0 1 0 0

D ,

where constants with the superscriptb denote their boundary
values. Unknown parameters arer , t, b0, andbN . They de-
termine the eigenmodes for photons interacting with excitons
in a bounded medium.

It must be noted that the transfer matrixT has the modes
of evanescent wave. As a result the largest eigenvalue makes
a dominant contribution toTNu0. Since the equations should
be solved self-consistently to fix the parameters, it is difficult

to get correct results by means of the numerical calculation
of TN. Therefore we get the analytical expression ofr andt.
The numerical results with those expressions are shown in
the following section.

III. OPTICAL RESPONSES FOR CuCl FILMS

A. Reflection and transmission

We shall calculate reflection and transmission spectra in
this section. First, let us consider the interference effect in a
thin film. We impose the conditionvex

b 5vex. In the con-
tinuum limit d→0 this is equivalent to the Pekar ABC.2 The
dead layers are not taken into consideration because their
effect is negligible for CuCl excitons. The validity of these
conditions is discussed in many articles.8 The BC that the
on-site energy is changed at the interface is mentioned in the
last part of this section.

In Fig. 3~a! the solid line shows reflection and the dotted
line transmission for the 1-mm film. The interference spectra
wherev,vt andv.vl are due to LBP and UBP, respec-
tively. Figure 3~b! shows the spectra for the 150-nm film.
The structure of the spectrum abovevl has an approximately
doubled period in comparison with that belowvl . That is
because UBP and LBP are coupled with each other at the
boundary, where they can be transformed into the other.9 The
interference in the stopband also reflects the spatial disper-
sion of excitons. These results are in good agreement with
the experimental results by Mita and Nagasawa.10

Next, we consider responses for an ultrathin film. Experi-
mental results can be explained by the frequency-dependent
damping constant for excitons. To be strict,g should be cal-
culated from the microscopic model of scattering and include
effects of system size fluctuation. For simplicity, we assume
the following frequency dependence in the region of our in-
terest:

g5 H0.3 ~v,v t!

0.310.1~v2v t! ~v>v t! .
~3.1!

A unit of \g is 1 meV. This value of the damping constant is
much larger than that in the bulk crystal. For such a thin
film, a center-of-mass motion of excitons is quantized due
to the confinement: En5\v t1~\2/2mex!(pn/L)

2 with
n51,2,3, . . . . According to the long-wavelength approxi-
mation ~LWA !, the quantized exciton wave function gener-
ates the parity selection rule. The oscillator strength for the
excitons with even quantum numbers vanishes. Figure 4
shows reflection and transmission spectra for the film with
the thickness of 150 Å.11 This selection rule holds strictly
although LWA is not assumed. As a film becomes thicker, the
oscillator strength of those states grows up due to the break-
down of LWA. For the 150-nm film, all of the quantized
states make a nearly equal contribution to the interference of
the reflection spectrum in the regionv t,v,v l . Conse-
quently, the interval of peaks in thek space isp/L. This
condition equals to that of Fabry-Perot interference 2kL
52pn with n51,2, . . . . On theother hand, the interval is
2p/L on the high-frequency side ofvl . With the assumption
that the wave number of UBP is negligible in comparison
with that of LBP, the interference condition is approximately
kL52pn. Thus the contributions of excitons with even
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quantum numbers are dominant in terms of exciton confine-
ment. As is well-known, the interference of the polariton and
the exciton confinement are equivalent methods describing
the optical oscillations in thin films.12

For a semi-infinite crystal~in the limit N→`! we need a
little modification for the method shown in the previous sec-
tions. In this case there is no reflection at the back of crystal.
Thus the reflectivity are determined by the condition that
there are only two modes~LBP and UBP! propagating for-
ward ~including the evanescent wave! in the crystal. To be
precise the initial vectoru0 is decomposed into the eigenvec-
tors of the transfer matrixT and we set the coefficients of
modes propagating backward to vanish. It is easier to solve

the problem than that for a film with finite thickness because
we need not calculate theNth power ofT. The reflectivity is
given by

r5U12e2 i ~kL1kU!d2e2 ikd~2 cosk8d2e2 ikLd2e2 ikUd!

12e2 i ~kL1kU!d2eikd~2 cosk8d2e2 ikLd2e2 ikUd!
U2,
~3.2!

wherek andk8 are wave vectors of photons in a vacuum and
in a film with the background dielectric constanteb . kL and
kU are those of LBP and UBP, respectively. The result is
shown as the solid line in Fig. 5. The damping constantg is
assumed to be 0 so that the effects of BC’s become clear. In
the continuum limitd→0 the reflectivity becomes

r c5U12neff
11neff

U2, neff5
eb1nLnU
nL1nU

, ~3.3!

wherenL5kL/k andnU5kU/k. This is identical to the result
by Pekar2,12 and others.9,13 The numerical results ofr c is
almost equal to the solid line in Fig. 5.

Here we shall discuss the BC for excitons. A slight change
of the Hamiltonian at the interface modifies the spectra. The
dotted line in Fig. 5 shows the reflection spectrum where
vex
b 5vex2tex. This is equivalent to the BC that the deriva-

tive of polarization vanishes~coskx is used as the basis of
excitons instead of sinkx!. In other words the reflection co-
efficient of excitons at the boundary is changed from21 to
1. This figure shows that reflectivity with this BC is larger in
the stopband than that with Pekar’s ABC.14 Other values of
vex
b give other ABC’s. Especially, the conditionvex

b 5vex

2(12dG)tex corresponds to

FIG. 3. Reflection~solid line! and transmission~dotted line!
spectrum for a thin film for CuCl with the thickness of~a! 1mm and
~b! 150 nm.

FIG. 4. Reflection~solid line! and transmission~dotted line!
spectrum for a thin film for CuCl with the thickness of 150 Å. The
thin line above the spectra shows the dispersion of LBP. The open
and closed circles denote the energy of excitons with odd and even
quantum numbers, respectively.
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GP~x!1
]P

]x
~x!U

at the boundary

50 ~3.4!

in the continuum limit whereP(x) denotes the polarization
of excitons. In real systems the lattice spacingd has a finite
value. Consequently, as the value ofvex

b decreases fromvex
tovex2tex, the reflectivity continuously changes between the
solid line and the dotted line in Fig. 5. It is worth noting that,
in this method, what we need are notad hocconstraints but
the conditions for excitons near the boundary, to be concrete,
the values of on-site energy.

B. Transient responses for short-pulse excitation

In this section we calculate the time response of excitons
in a thin film for short-pulse excitation. Because we consider
only linear processes, the incident optical pulses can be de-
scribed in terms of one-photon states. The initial state
uC~t50!& is assumed to be

uC~ t50!&5(
n

expF2S n2n0
D D 21 ik0ndG un&, ~3.5!

whereun& is the photon state localized at the siten. This state
describes the Gaussian pulse with widthD centered at the
site n0. The purpose in this section is to calculate the time
evolution of this initial state. There are several points that we
should notice. First, the eigenmode with energyv5kc is
doubly degenerate because of propagating forward and back-
ward. It is necessary to transform them to orthogonal basis.
In this paper we use the symmetric and antisymmetric modes
$upk&S ,upk&A% with regards to the spatial inversion, which is
equal to$coskx,sinkx% in free space. Next, it is possible that
there are bound states in a film other than propagating
modes. The energy of bound states is lower than that of

continuum~propagating! states. Thus the value ofD should
be large enough to exclude the modes in the region where
the tight-binding approximation does not hold. We estimate
Dd/c.50 fs from the approximated dispersion relation. Af-
ter consideration of these conditions, we calculate

uC~ t !&5(
k
eivkt~ck

Supk&S1ck
Aupk&A) ~3.6!

and obtain time evolutions of an optical pulse in a thin film.
c k
S andc k

A are the coefficients in an expansion of the initial
state~3.5!.

Figure 6~a! shows the transient response for the 1.8-ps
pulse in the film with the thickness of 5.4mm. The energy of
the incident pulse is 3.15 eV far belowvt . The time interval
is 2 ps. Because the exciton polariton is almost photonlike,
the optical pulse reflects and transmits as if no interaction
takes place between photons and excitons.

For the incident pulse with 3.195 eV, the polariton takes
on more excitonic character. As a result the delay of the
transmitted pulse appears in Fig. 6~b! due to the small group
velocities for the exciton polariton nearvt .

15

Figure 7~a! shows the propagation in a film for excitons
and photons, respectively, for the incident pulse with 3.195
eV. Although the BC makes the amplitude of excitons vanish
at the interface, the form of amplitude for excitons is very
similar to that for photons inside a film. Namely, for the
picosecond incident pulse, the pulses of excitons and photons
propagate in the same way, not separately. The pulse width
becomes much narrower than that of the incident optical

FIG. 5. The reflectivity for CuCl bulk crystal with two different
BC’s.

FIG. 6. The time evolutions of 1.8-ps Gaussian optical pulse
with the peak at~a! 3.15 eV and~b! 3.195 eV. The time interval is
2 ps. The horizontal axis shows spatial position. The center line
denotes the CuCl film with the thickness of 5.4mm.
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pulse. On the other hand, this is not the case with the fem-
tosecond pulse. Figure 7~b! shows the propagation of exci-
tons and photons for the 90-fs incident pulse with 3.195 eV.
It appears that excitons and photons propagate separately in a
film. The linewidth of the 90 fs pulse is about 100 meV and
covers the stopbandv t,v,v l completely. The pulse con-
tains slow~excitonlike! and fast~photonlike! components in
a film due to the dispersion relation. That is why the ul-
trashort pulse cannot keep its shape while propagating in
spatially dispersive media. A number of excitons propagate
very slowly and are collected near the interface. What is
more, the envelope function of photons in a film is described
by an Airy function in the frequency region where the group
velocity of exciton polariton has a minimum.16 In Fig. 7~b!
this is reflected by the fact that the interval of intensity peaks
becomes smaller as the pulse propagates.

IV. CONCLUDING REMARKS

Let us briefly discuss the quantum nature for photons in
terms of tight-binding approximations. For the present we
shall concentrate on the state of two photons with wave vec-
tors kA and kB . The two photon Fock state isakA

† akB
† uvac&.

The real-space method enables us to construct the wave
function for it,

C~x1 ,x2!5
1

&

^vacuax2ax1akA
† akB

† uvac&

5
1

&

~e2 ikA•x12 ikB•x21e2 ikA•x22 ikB•x1!.

~4.1!

In terms of this wave function the normally ordered correla-
tion function of the photon~electric field! intensity I (x)
}ax

†ax is given by

G2~x1 ,x2!5^:I ~x1!I ~x2!:&

}uC~x1 ,x2!u2,

511cos@Dk–~x12x2!#,
~4.2!

whereDk5kA2kB . This interference shows an essentially
quantum effect.17 According to the classical theory the vis-
ibility is less than or equal to 50%. Thus the tight-binding
approximation does not change the quantum nature for pho-
tons at all.C~x1,x2! is regarded as the symmetrized wave
function of two photons in real space. For the states with
more than two photons the tight-binding photon approach
gives the symmetrized wave functions in the same way.
Therefore the quantum interference of multiphotons can be
interpreted as the result of symmetrization in the real-space
representation within the present theory. It is very interesting
to investigate propagation of the pulse with many photons in
an exciton system with nonlinear interactions.

In conclusion, we introduce a real-space and quantum-
mechanical theory for photons which do not extend so much
in k space. We considered the exciton polariton system in a
film. The interaction Hamiltonian has the local form in terms
of localized operators for photons and excitons. Reflection
and transmission problem is made into a very simple equa-
tion including the quantum-mechanical BC’s for excitons.
The solutions near the exciton resonance are in good agree-
ment with the experimental results in the whole range of film
thickness. For transient responses the present theory demon-
strates pulse propagation of exciton polaritons. The results
deeply reflect the spatial dispersion. Moreover, the tight-
binding approximation preserves the quantum nature for
photons and explains the nonclassical effect in the interfer-
ence of multiphotons. The tight-binding photon approach has
many another applications: squeezed states, dressed excitons,
photonic bands, and so on. In particular, it is important to
clarify the quantum dynamics in optical devices. The present
theory will be a useful tool for those problems.

FIG. 7. The time evolutions of the exciton polariton in the film.
The intensity of photons and excitons is plotted separately. The
widths of incident pulses are~a! 1.8 ps and~b! 90 fs. ~a! shows the
time evolution in a film of Fig. 6~b!. In ~b! the time interval is 100
fs. The horizontal line shows the number of CuCl layers in the film.
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