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The states and energies of an impurity electron confined within a single quantum well~QW! in the presence
of a strong magnetic field directed perpendicular to the layers are derived. An analytical model in which the
impurity may be positioned anywhere between the midpoint and edge of the QW is developed. The depen-
dencies of the electron energies upon the magnitude of the magnetic field, the width of the QW, and the
position of the impurity within the well are derived explicitly. Expressions for the levels of lowest energy are
obtained, and have a quasi-Coulomb character, while the expressions for levels of higher energy are of the
form of the size quantization levels, which form the excited subbands. Both types of levels are derived from the
same original equations. The results obtained are compared with those of existing numerical calculations and
specifically for the quantum numbersN5m50. The relation between the states and the labels derived here and
those obtained by others is also given.@S0163-1829~96!04320-2#

I. INTRODUCTION

During the last decade, the subject of shallow-donor im-
purities in quasi-two-dimensional systems has been studied
extensively both experimentally and theoretically. The
wealth of data obtained experimentally has been possible on
account of the advances made in growth techniques and con-
trol by the development of molecular-beam epitaxy and
metal-organic chemical vapor deposition methods of manu-
facturing specific structures. Also, improvements in the tech-
niques frequently used in the experiments, such as far-
infrared and intersubband spectroscopy, have resulted in the
availability of more accurate and reliable data. Much of this
work has concentrated on the GaAs/GaxAl12xAs system.
The study of impurities in such systems is very important
because the optical and transport properties of devices made
from these materials are greatly affected by the presence of
shallow impurities. References to a selection of the results
that have been obtained experimentally may be found in the
recent paper by Shi, Peeters, and Devresse.1

In parallel with the experiments, a considerable literature
of theoretical work has developed in order to provide accu-
rate explanations of these data. This is summarized also by
Shi, Peeters, and Devresse.1 Much of this theoretical work
has involved variational-type calculations of the energies and
wave functions of the isolated impurity particularly in an
isolated single quantum well~SQW! and also in multiple-
quantum-well~MQW! systems. Various additional contribu-
tions to the energies of the impurity states have also been
included in many of these analyses, particularly the effects
due to band nonparabolicity and resonant and nonresonant
polaron corrections arising from the vibronic coupling of the
impurity electron to the longitudinal optical phonons.

In addition to the many variational-type calculations that
have been cited in Shi, Peeters, and Devresse,1 other alterna-
tive theoretical approaches have been used. Dunn and Bates

have been involved in a matrix diagonalization procedure
~MDP! developed originally by Dunn and Pearl2 and ex-
tended in Barmbyet al.,3–5 in the case of magnetic fields
pointing at different angles relative to the layers in a MQW
system. They have also been involved in calculations of im-
purity transition energies involving the metastable states;6

one nonvariational approach to such calculations is to inte-
grate directly the Schro¨dinger equation using an iterative
technique for the whole range of magnetic field values.7

Monozon has been involved in analytical calculations of
shallow-donor impurity states and energy levels in cases of a
large magnetic field8,9 acting perpendicular to the layers by
extending the approach used originally by Hasegawa and
Howard10 for confined systems. This theory8 does not con-
tain any free parameters but was limited because it did not
allow for the possibility that the impurity may be positioned
very close to the boundary of the QW.

In this paper, we extend and improve the analytical
model8 to the case when the impurity can be positioned any-
where between the midpoint and edge of the QW. This ana-
lytical approach introduces a free parameter, which may be
defined from a comparison with either the previous results8

or with experiment. Both the low-energy quasi-Coulomb im-
purity states and the high-energy size quantization states in
the QW are found as different solutions to the same equation.

II. BACKGROUND

Let us consider a single QW of widthd bounded by infi-
nite barriers at the planesz57 1

2d containing an impurity at
a positionb such that21

2d<b< 1
2d. In the effective mass

approximation and using cylindrical coordinates, the equa-
tion describing the electron of massm at positionr ~r,z! in a
magnetic fieldB parallel to thez axis in a medium with
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relative permittivityk has the form

H 1

2m
~2 i\“1 1

2e@B3r # !2

2
e2

4pe0kAr21~z2b!2
J C~r,z!5EC~r,z!. ~2.1!

By solving this equation, the energyE of this electron and its
wave functionC~r,z! can be found in principle, which sat-
isfy the boundary conditions

C~r,6 1
2d!50. ~2.2!

The characteristic dimensional parameters of the problem are
the impurity radius a05(4p\2e0k/me

2), the magnetic
lengthaH[5(\/eB)1/2], and the width of the QWd.

In the strong magnetic field limit for whichaH/a0!1, the
effect of the magnetic field is much greater than that of the
Coulomb field of the impurity. Under these conditions, the
solution to~2.1! may be written in the form

CN,m~r !5X'N,m~r! f ~N,m!~z!, ~2.3!

where the functionX'N,m~r! describes the motion of the
electron in the magnetic field in thex-y plane. Its corre-
sponding Landau energyE'N,m , including the spin term, is
given by

E'N,m5Eg1
\eB

2m
~2N1umu1m11!6mBB. ~2.4!

Eg is the QW energy gap,mB is the effective Bohr magneton
for the electron, and the quantum numbers areN,m, where
N50,1,2,... andm50,61,62,.... .

The function f (N,m)(z) describes the motion in thez di-
rection and satisfies the equation

2
\2

2m

d2f ~N,m!~z!

dz2
1VN,m~z! f ~N,m!~z!5E ~N,m! f ~N,m!~z!,

~2.5!

with the boundary conditions

f ~N,m!~6 1
2d!50, ~2.6!

with

VN,m~z!52
e2

4pe0k
E uX'N,m~r!u2

@r21~z2b!2#1/2
dr,

E ~N,m!5E2EtN,m . ~2.7!

The potentialVN,m(z) has the following characteristic prop-
erties:

~i! Its depth is given by

VN,m~b!;2
e2

4pe0kaH
. ~2.8!

~ii ! If uz2bu@aH , it reduces to the Coulomb form

VN,m~z!52
e2

4pe0kuz2bu
. ~2.9!

Unfortunately,8 it is impossible to use the above form for the
potential function~2.7! when the impurity is positioned close
to the boundaries of the QW at positions for which

ub6 1
2du<aH . ~2.10!

Consequently, our approach here is based on the replacement
of the exact potential~2.7! by the model potential

VN,m~z!52
e2

4pe0k~aN,maH1uz2bu!
, ~2.11!

whereaN,m is the free parameter of the theory. It can be
determined by comparison of either the solutions to Eq.~2.5!
with the potentials~2.7! and ~2.11! or from the comparison
with the experimental data. The form of the potential func-
tion given in~2.11! has been used previously11 for an analy-
sis of excitons in bulk semiconductors. It is important to note
that the latter expression for the potential has properties simi-
lar to those contained in the earlier expressions~2.8! and
~2.9! but it avoids the limitation given by Eq.~2.10!. This is
because the solution to~2.5! with the potential~2.11! can be
obtained in analytical form for any values ofb. The sche-
matic form of the potentials~2.7! and~2.11! is shown in Fig.
1.

III. THE SPECTRUM IN THE REGION OF NEGATIVE
ENERGIES: THE QUASI-COULOMB SPECTRUM

The mathematical problem is to obtain solutions to Eq.
~2.5! with the potential function~2.11!, which satisfy the
boundary conditions given by~2.6!. At z5b, the solutions

FIG. 1. The schematic form of the potential functionVN,m given
by ~2.7! and ~2.11!. The solid lines refer to the ground~n50! and
first two excited Coulomb levels~n51,2! of energyEl given by
~3.1! and also the two lowest size quantization levelsEs given by
~5.10! for even-@Eqs.~5.11! and~5.12!# and odd-parity@Eqs.~5.19!
and ~5.20!# states. The dashed lines are the unperturbed levelsE 1

~0!

of the even-~5.11! and odd-parity~5.19! states.

53 12 939IMPURITY CENTER IN A SINGLE QUANTUM WELL IN THE . . .



and their first derivatives are continuous. It is convenient to
attach a parameterl to the functionf (N,m), which then be-
comesf l

(N,m) such thatl is defined by the expression

E ~N,m!⇒El52
\2

2ma0
2l2 ~3.1!

for the energy. Writingf l for f l
(N,m) the differential equation

~2.5! becomes

f 9l~u!1S l

uuu1gD f l~u!2 1
4 f l~u!50 ~3.2!

in which the new variables are defined by

u5
2~z2b!

a0l
, g5aN,m

2aH
a0l

, where g!1 ~3.3!

and where the primes denote the appropriate differentiation.
The boundary condition~2.6! becomes

f l~u1,2!50, where u1,25
d

a0l
S 612

2b

d D . ~3.4!

For u.0 and writingu for uuu, the general solution to Eq.
~3.2! can be written in the form

f 1l~x!5A1Wl,1/2~x!1B1Ml,1/2~x!, ~3.5!

wherex5u1g.0 and whereWl,1/2(x) andMl,1/2(x) are
Whittaker functions.12,13

In the regionu,0 ~i.e., uuu52u!, the general solution to
~3.2! is

f 2l~y!5A2Wl,1/2~y!1B2Ml,1/2~y!, ~3.6!

wherey(52u1g).0. The two boundary conditions~3.4!,
the continuity condition for the two functions

f 1l~u!5 f 2l~u! for u50 ~ that is, z5b!, ~3.7!

and for their first derivatives

d f1l~u!

du
5
d f2l~u!

du
for u50 ~3.8!

lead to the following set of four homogeneous algebraic
equations for the coefficientsA1, A2, B1, andB2:

A1W11B1M150,

A2W21B2M250,

A1W1B1M5A2W1B2M ,

A1W81B1M 852A2W82B2M 8, ~3.9!

where

W1,2[Wl,1/2~x1,2!, M1,2[Ml,1/2~x1,2!,

W~g![Wl,1/2~g!, M ~g![Ml,1/2~g! ~3.10!

and where

x1,25
d

a0l
S 11

a0lg

d
7
2b

d D ~3.11!

with the labels 1 and 2 corresponding to the signs2 and1,
respectively.

The coefficientsA1,2 andB1,2 may be determined by solv-
ing Eqs.~3.9!. After a considerable amount of algebraic ma-
nipulation, the condition that these equations are solvable
may be expressed by the equation

FW2

M2
1
W1

M1
22

W8

M 8
1F GFW2

M2
1
W1

M1
22

W

M
2F G50,

~3.12!

where

F5
21

G~2l11!MM 8
2F S 2

1

G~2l11!MM 8D
2

1SW2

M2
2
W1

M1
D 2G1/2. ~3.13!

In deriving the above, use has been made of the Wronskian
of the functionsW(g) andM (g) from which we have

W8~g!

M 8~g!
2
W~g!

M ~g!
52

1

G~2l11!M ~g!M 8~g!
, ~3.14!

whereG is theG function.12

The rootsln , with n50,1,2,..., of Eq.~3.12! give the
required energiesEn of the problem and the coefficients
A1,2(n) andB1,2(n) give the required wave functionsf 1l

n (u)
and f 2l

n (u). Equation~3.12! is an exact equation that is valid
for any values of the variablesx1 andx2 for the case when
g!1. However, special considerations are needed in their
evaluation for the two particular cases when the impurity is
close to the center of the well~x.1! and when the impurity
is close to the barrier~x!1!. It is thus necessary to look at
these special cases in more detail and this is discussed in the
next section. In this connection, the Appendix contains ap-
proximate expressions for the Whittaker functions appropri-
ate to these two limits.

IV. ANALYSIS OF SPECIAL CASES

A. Impurity close to the midpoint of the QW „b50…

In this case, the approximation for smallx given in the
Appendix may be used so that we rewrite the expressions for
x1,2 given in ~3.10! in the form

x1,25x0~17S!,

where

x05
d

a0l
S 11

a0lg

d D , S5
2b

d1a0lg
, ~4.1!

with

x0.1, S!1

so that

W2

M2
2
W1

M1
!1. ~4.2!

Then, Eq.~3.12! simplifies to
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F SW2

M2
1
W1

M1
D22

W8~g!

M 8~g!GF SW2

M2
1
W1

M1
D22

W~g!

M ~g!G50.

~4.3!

If the impurity is at the exact center of the QW~i.e., b50!
we have

x15x25x0 ,
W2

M2
5
W1

M1
5
Wl,1/2~x0!

Ml,1/2~x0!
. ~4.4!

On equating the left-hand square bracket of Eq.~4.3! to zero,
the solutions are found to satisfy the relationshipsA15A2
and B15B2 . The functionsf l(z) are thenevensuch that
f l(z)5 f l(2z). Thus the energy levels described by the left-
hand brackets of Eqs.~4.3! and ~3.12! can be classified as
quasi-even(g) levels. Similarly, under the same conditions,
on equating the right hand of~4.3! to zero, the solutions
satisfy the relationshipsA152A2 andB152B2 . The func-
tions f l(z) then becomeoddsuch thatf l(z)52 f l(2z) and
thus the energy levels described by the right-hand brackets of
Eqs.~4.3! and~3.12! can be classified asquasi-odd(u) lev-
els. We discuss now these two solutions in turn.

1. Quasi-even levels

The condition for the quasi-even energy levels is obtained
by using Eqs.~4.1! and~4.2! to obtainW8(g) andM 8(g) for
g!1. Thus we find

ln g1C~12l!12C1
1

2l
2
1

2
G~2l!FW2

M2
1
W1

M1
G50.

~4.5!

This equation can be used to obtain a definition for the pa-
rametera. It will be shown that the effect of the parameterg
on the energies of the quasi-even levels is of order~2ln g!21

and on the quasi-odd levels it has a magnitude of (ng) as
found previously.8,10 However, asg!1, then@(ng)ln g#!1.
Therefore, it is advantageous to use Eq.~4.5! for the quasi-
even levels rather than the corresponding equation for the
quasi-odd solutions. In particular, from the theory of Mono-
zon and Zhilich,8 the potentialV0,0(z) given in ~2.7! leads to
the equation

ln
&aH
a0l

1C~12l!12C1
1

2l
2
1

2
C

2
1

2
G~2l!FW2

M2
1
W1

M1
G50, ~4.6!

which describes the quasi-even levels. Thus from Eqs.~4.5!
and ~4.6! we obtain the expression

g5&e2~1/2!C
aH
a0l

. ~4.7!

Using Eq.~3.3! for g, we can define the unknown parameter
a0,0 of the theory by

a0,05
e2~1/2!C

&

.0.5. ~4.8!

In the case of a general potentialVN,m(z), the corresponding
unknown parameteraN,m is given by

aN,m5A1/2e~1/2!c~N1umu11!.

In order to further simplify the analysis, we use the asymp-
totic expansions~A.3! and ~A.4! given in the Appendix for
Wl,1/2 andMl,1/2 for x0@1 and the logarithmic approxima-
tion g!1. This implies that uln gu@1. On substituting
l5n1d n

(g) into ~4.5! and using Eq.~A.5! for C andG, we
obtain for then50 ground state, the result

1

d0
~g!~S!

5
1

g0
~g!~0!

~12b0S
2!, ~4.9!

where

1

d0
~g!~0!

522~ ln ḡ!~122e2x0!,

where

g 5̄g~l51!, b05x0
2e2x0. ~4.10!

For then51,2,3,... excited states we obtain similarly

1

dn
~g!~S!

5
1

dn
~g!~0!

~12bnS
2!, ~4.11!

where

1

dn
~g!~0!

52 ln g2
n

~n! !2
~ ln g!2x0

2ne2x0 ~4.12!

and

bn5
n

2~n! !2
u ln gux0

2ne2x0~x022n!2. ~4.13!

2. Quasi-odd levels

On equating the right-hand brackets in Eq.~4.3! to zero,
and using Eq.~A.1! for W(g) and~A.2! for M (g) with g!1
from the Appendix, we obtain

2
1

lg
1 ln g1C~12l!12C211

1

2l

2
1

2
G~2l!FW2

M2
1
W1

M1
G50. ~4.14!

Following the same procedure as above, by substituting
l5n1d n

(u) ~n51,2,3,...! into ~4.14!, we obtain the expres-
sion

1

dn
~u!~S!

5
1

dn
~u!~0!

@12gnS
2#, ~4.15!

where

1

dn
~u!~0!

5
1

ng
2

n

~n! !2~ng!2
x0
2le2x0 ~4.16!

and

gn5
1

2~n! !2g
x0
2ne2x0~x022n!2. ~4.17!

The formal solution to Eq.~4.14! is given by
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l5d0.S 2

lgD
21

'
aH
a0

for n50 but, as it does not satisfy the condition~3.3!, it
should be dropped.

3. The energy-level pattern

If the center is close to the midpoint of the QW, the above
calculations have shown that the energy spectrum consists of
a singlet ground level~n50, d0!1!. In contrast, all excited
levels form pairs of states that are very close in energy. They
consist of quasi-even (l (g)5n1d n

(g)) and quasi-odd
(l (u)5n1d n

(u)) components withn51,2,3,... . It is also easy
to see from Eqs.~4.9!, ~4.11!, and~4.15! that the final result
for the energiesEl(S), as defined originally in Eq.~3.1!, are
given by the approximate relation:

El~S!;2@n1dn~S!#22 ~4.18!

and that they increase withS. This result is indicated sche-
matically in the lower part of Fig. 2.

We have also found that the binding energiesuElu de-
crease with the displacement of the impurity from the center
of the QW. Forx.2, the shift of the ground state exceeds
that of the excited states. As a consequence, the transition
energy from the ground state decreases with the displace-
ment of the impurity from the midpoint of the QW. It fol-
lows from Eqs.~4.9!, ~4.11!, and~4.15! that the reciprocal of
the derivative of the transition energy with respect to the
central positionb is proportionalb21. With the narrowing of

the QW, the positive shifts of the extended excited states
exceed that of the localized ground state. As a result, the
transition energy from the ground state increases as the width
of the QW decreases. All these conclusions are confirmed by
numerical calculations.2,14

B. Impurity at the edge of the QW

In this case, we haveb5 1
2d, x15g!1, and

xs→ x̄25
2d

a0l
S 11

a0lg

2d D.2x0 . ~4.19!

The right-hand brackets in~3.12!, which gave the quasi-odd
solutions previously, are equal to zero under the condition

Wl,1/2~g!

Ml,1/2~g!
2
Wl,1/2~ x̄2!

Ml,1/2~ x̄2!
50. ~4.20!

In contrast, the left-hand bracket in~3.12!, which corre-
sponded previously to the quasi-even solutions, cannot be
equated to zero for any values ofl so that this equation has
no roots and should be dropped.

Equation~4.20! can be formally obtained from~4.14! by
the substitution

1

2 SW2

M2
1
W1

M1
D→Wl,1/2~ x̄2!

Ml,1/2~ x̄2!
. ~4.21!

The roots of ~4.20! have the form l5n1dn where
n51,2,3,... . The expression fordn can be obtained from
~4.16! by the substitution ofx̄2 for x0. Therefore, if the im-
purity is at the edge of the QW, all energy levels are very
clearly nondegenerate as shown in the lower part of Fig. 2
for those states for whichN5m50. ~This was pointed out
originally by Green and Lane.15! These ground and the first
excited states are defined by the quantum numbersl511d1
andl521d2, respectively.

The transition energyDEl,l8(b) is readily deduced and is
given by

DEl,l8~b!5uEl~b!2El8~b!u ~4.22!

so that, ifd1,2!1, then

DE12~
1
2d!>DE02~0!2DE01~0!. ~4.23!

These calculations are in good qualitative agreement with the
results obtained using other numerical methods.16

V. THE SPECTRUM IN THE REGION OF POSITIVE
ENERGY: THE SIZE QUANTIZATION SPECTRUM

In the above, we have considered the solutions to~2.5! in
which the energyEl given by~3.1! is negative. We consider
now the region for which this energy is positive~see Fig. 1!.
In bulk semiconductors, for whichd is effectively infinite, a
continuous spectrum results but in a quantum well of finite
width, the spectrum is quantised.

A. Definitions

In order to consider this region, we introduce a new set of
parametersX, g, ands, which replaceu, g, andl, respec-
tively used previously in Sec. III. They are defined by

FIG. 2. The correlation diagram of the quasi-Coulomb levels
~3.1! El , l5n1d n

(u,g) and the size quantization levels~5.1! Es for
s[5d/(pa0p]!1 vs the displacement of the centerb relative to the
QW boundary12d for N5m50.
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E ~N,m!⇒Es5
\2

2ma0s
2 , X5

2uz2bu
ia0s

1g,

where g5
2aaH
ia0s

, aN,m⇒a with ugu!1. ~5.1!

Thus Eq.~2.5! may be written in the form

d2f s~X!

dX2
1
is

X
f s~X!2 1

4 f s~X!50 ~5.2!

for the functionf s(X). On choosing the two linear indepen-
dent solutions to~5.2! in the form

Wis,1/2~X!, W2 is,1/2~2X!

the general solution to~5.2! for z>b is given by

f s~X!5eiuWis,1/2~X!1e2 iuW2 is,1/2~2X! ~5.3!

and forz<b, we have

f s~X!5D@eifWis,1/2~X!1e2 ifW2 is,1/2~2X!#. ~5.4!

Much of what follows is similar to Sec. III as the boundary
conditions~2.6! on the functionf s(X) are as before. These
conditions and the requirements of the continuity of the func-
tion f s(X) and its first derivative forz56 1

2d lead again to a
set of four homogeneous algebraic equations for the coeffi-
cients involvingDe6 if and e6 iu similar to those given by
~3.9!. Thus by requiring that the equations are solvable we
obtain the equation

FW1,2

W2,2
1
W1,1

W2,1
12

W18

W28
1FGFW1,2

W2,2
1
W1,1

W2,1
22

W1

W2
2FG50,

~5.5!

where

W61,25W6 is,1/2~y1,2!,

where y1,25
d

ia0s
F11

ia0sg

d
7
2b

d G
and where

W65W6 is,1/2~6g!, W68 5W6 is,1/28 ~6g!

and

F5
esp

W2W28
2F e2sp

~W2W28 !2
1SW1,2

W2,2
2
W1,1

W2,1
D 2G1/2.

In obtaining Eq.~5.5!, we have taken into account that the
Wronskian of the functionsWis,1/2(X) andW2 is,1/2(2X) is
equal to2exp(sp). As ugu!1, the expression~A1! for W
and for its derivative are used. The rootssn with n51,2,3,...
of ~5.5! define the energy levelsEs . This equation is exact
and it is valid for any values ofy1,2. Analogous to our pre-
vious treatment of Eq.~3.12!, the left- and right-hand brack-
ets separately give rise to quasi-even and quasi-odd states,
respectively. The expressions simplify if we assume that the
impurity is situated near the midpoint of the QW for which

b.0, y1.y2.y05
d

ia0s
S 11

iga0s

d D , F50.

B. The quasi-even states

On setting the left-hand bracket of~5.5! to zero, the equa-
tion describing the quasi-even states becomes

Wis,1/2~y0!

W2 is,1/2~2y0!
1

Wis,1/28 ~g!

W2 is,1/28 ~2g!
50. ~5.6!

Let us consider the excited energy levels withs!1, uy0u@1.
On substituting the asymptotic expansion from~A3! for the
functionsW6 is,1/2(6y0) and from~A1! forW6 is,1/2~6g!, we
obtain, for the real part, the result

ReH exp@ 1
2 y02 is ln~2y0!#

1

G~2 is!
@ lng1c~12 is!

12C2 1
2 is

21#J 50. ~5.7!

Using the limiting values

G~2 is!. is21 and C~12 is!.C~1!52C for s!1

Eq. ~5.7! becomes

2cotF d

2a0s
S 11

ia0sg

d D1s lnS d

a0s
D S 11

ia0sg

d D G
5sF lnS 2aaH

a0s
D 212CG . ~5.8!

This equation can be solved by the method of iteration. In
the zeroth approximation settings50, we find that
s0

215(pa0/d)(2p21)] with p51,2,3,... so that

1

s
5

1

s0
F11

2a0s0
2

d F lnH S 2aaH
a0s

D 2 a0s0d J 12CG G .
~5.9!

From the latter equation~5.9!, the energiesEs of the quasi-
even states can be written in the form

Es5Ep~0!1DEp , ~5.10!

where

Ep~0!5
\2p2

2md2
~2p21!2 ~5.11!

and

DEp5DEp
~g!

5
\2

2md2
4
d

a0
F lnH p~2p21! S 2aaH

d D 2J 12CG .
~5.12!

The expressions~5.10!–~5.12! are valid under the conditions

d

a0p
2~2p21!

!1,
~2p21!paH

d
!1.
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The energiesEp~0! given by ~5.11! are the unperturbed size
quantized energy levels of the even-parity states. The ener-
gies DEp

(g),0 from ~5.12! are caused by the one-
dimensional Coulomb impurity potentialV(z) given in
~2.11!.

The condition (d/a0)/[(2p21)p2]!1 means that impu-
rity potentialV(z) can be regarded as a perturbation to the
size quantized states. In first-order perturbation theory, the
additional energyDEp

(g) has been defined by the diagonal
matrix element of the potentialV(z), namely,

DEp
~g!5E

2~1/2!d

1~1/2!d
cp* ~z!V~z! cp~z! dz, ~5.13!

where

cp~z!5S 2dD
1/2

cosS ~2p21!pz

d D ~5.14!

are the unperturbed even-parity wave functions.
Under the other condition (aH/d)p(2p21)!1, the inte-

gral in ~5.13! can be calculated explicitly. The energyDEp
(g)

obtained differs from the energy given by~5.12! by the Euler
constantC, which is considerably less than the logarithmic
term. This difference is likely to be a consequence of the
different approximations used~namely, that of iteration ver-
sus perturbation theory!.

C. The quasi-odd states

The quasi-odd states can be considered in much the same
way as the quasi-even states. Equating the right-hand bracket
of ~5.5! to zero, the equation describing the quasi-odd levels
can be written in the form

Wis,1/2~y0!

W2 is,1/2~2y0!
2

Wis,1/2~g!

W2 is,1/2~2g!
50. ~5.15!

On substituting for the asymptotic expansions from~A3! for
the functionsW6 is,1/2(6y0) and from~A1! for W6 is,1/2~6g!
into ~5.15! under the conditionss!1, uy0u@1, andugu!1, we
obtain from the imaginary part the result

ImS exp@ 1
2 y02 is ln~2y0!#

1

G~2 is!

3@ is211g$ lng1C~12 is!12C212 1
2 is

21%# D50

~5.16!

and then

tanF d

2a0s
S 11

ia0sg

d D1s lnS d

a0s
D S 11

ia0sg

d D G5
aaH
a0sG

,

~5.17!

where

G512S 2aaH
a0

D F lnS 2aaH
a0s

D1C21G .
As (aaH)/(a0s);g!1, the right-hand part of~5.17! is much
smaller than unity. In the zeroth approximation, obtained by

equating this right hand part to zero, and also by putting
s50, we find that, by taking s0

2152pa0p/d with
p51,2,3,..., we have

1

s
5

1

s0
F12

2a0s0
2

d
lnS d

a0s0
D G . ~5.18!

The energiesEs of the quasi-odd states are given by~5.10!
where

Ep
~0!5

\2p2

2md2
~2p!2 ~5.19!

and

DEp5DEp
~u!52

\2

2md2
4
d

a0
ln~2pp!. ~5.20!

The conditions of validity of Eq.~5.19! and ~5.20! are the
same as those of Eqs.~5.10! to ~5.12!.

The energiesEp~0! are the unperturbed energies due to
the size quantization of the odd-parity states. The energy
changesDEp

(u) are caused by the impurity potentialV(z) as
given in ~2.11!. On treating the potential as a perturbation,
this change in energy is given by the right-hand part of
~5.13! where

cp~z!5S 2dD
1/2

sin~2ppz/d! ~5.21!

are the unperturbed odd-parity wave functions. Under the
condition 2ppaH/d!1, DE p

(u) can be obtained from~5.20!
by replacing@ln(2pp)# by @ln(2pp)1C)#. We note that, for
the excited states considered above for whichp.1,
C!ln(2pp).

The above results are equivalent to those obtained in Sec.
IV and reflect their complementary characteristics. Thus it is
possible to describe any impurity states in the QW with both
a Coulomb form~El,0! and also the form of the size quan-
tized states for whichEs.0. The correlation diagram of the
energy levels versus the impurity center displacementb is
given in the upper part of Fig. 2, which is also simplified to
show states belonging to the lowest Landau level only (N
5m50). It is based on the general properties of the eigen-
values of the differential equation~2.5! and~2.11!. It is clear
that, as the impurity moves from a position withb50 to the
position whereb5 1

2d, the energy increases.

VI. FINAL RESULTS AND CONCLUSIONS

The previous sections have concentrated on the Coulomb
and size quantization parts of the energy-level spectra of the
impurity electron in a QW in the presence of a strong mag-
netic field associated with a given Landau level. The results
are shown schematically in Fig. 2 forN5m50 to illustrate
the basic physics involved. It has been found that the levels
of lowest energy have a quasi-Coulomb character while the
levels of high energy are size quantization levels. It should
be noted that all energies have been derived analytically us-
ing a common approach.

The results derived above have been used to obtain the
explicit dependence of the lowest-energy levels as a function
of the displacement of the impurity. The results are displayed
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in Fig. 3; as expected, this dependence is in agreement with
the schematic diagram~Fig. 2!. The curves are similar to
each other in that their slopes are initially shallow forb<bl

but then they have relatively steep slopes in the regionb.bl

wherebl is a critical center position defined by the bound-
ary. As can be seen from Fig. 3,b1g,b1u,b0 . This means
that the QW boundary has a relatively large effect on the first
excited quasi-even state, a medium effect on the first excited
quasi-odd state and little effect on the ground state.

These results can be explained by the dependencies of the
quantum numberl upon the width of the welld, which are
shown in Fig. 4 forN50. These in turn are defined by the
forms of the wave functions of the relevant states~Fig. 5!. It
follows from Fig. 5 that the ground state is localized at the
center of the well~z50!, the first excited quasi-odd state has
its maximum probability at z51.5a050.15d and at
z52.5a050.25d for the quasi-even state. The greater the
distance by which the maxima of the wave packets are re-
moved from the center of the well, the larger is the effect of
the boundary. This is consistent with the dependencies of the
quantum numbersl upon the width of the welld. The first
excited quasi-even state is affected by the boundary of a
sufficiently wide well, the first excited quasi-odd state by the
medium wide well, and the ground state by the boundary of
a relatively narrow well. From the values of the quantum
numberl given in Fig. 4, the binding energyE of the ground
state, measured in terms of the impurity Rydberg constantR,

is given by22E /R51/l253.2 withd/a052 andaH/a050.3.
This value is in reasonable agreement with that obtained for
aH/a050.7 by a variational-type numerical method,16 which
gives 22E /R53.0. The small difference between the two
values can be attributed to the differences between the mag-
netic fields used in the two calculations and the replacement
of barriers of finite size as used in Ref. 16 with the infinite
barriers used here.

Further direct comparisons are difficult to make as our
calculations are applicable for wider quantum wells and
larger magnetic fields than those commonly used by other
authors~see, e.g., Refs. 15, 16!. However, Fig. 6 shows the
variation of the energy of the ground state with the scaled
magnetic field, which has been calculated from our model
above for a very wide well~of thickness;20a0! and the data
from Makado and McGill23 appropriate to bulk GaAs. It is
seen that there is very good agreement between the two sets
of data, which goes a long way towards justifying the accu-
racy of the analytical model proposed.

It follows from Eqs. ~4.10!, ~4.12!, and ~4.16! that the
effect of the QW boundary on the impurity states is consid-
erable under the condition

d

a0
,nn ,

wherenn are the critical values defined by the inequalities

FIG. 3. The calculated energiesE @given by
Eqs. ~3.2! and ~3.12!# where E52R/~2l2! and
where R(5\2/ma 0

2) is the impurity Rydberg
constant, of the ground state~l5l0!, the first ex-
cited quasi-even state~l5l1g!, and of the quasi-
odd ~l5l1u! states as a function of the displace-
mentb of the impurity from the center of the well
for N5m50. @The other parameters are given by
d/a0511.0,aH/a050.30#.

FIG. 4. The dependencies of the quantum
numbers of the ground state~l0! and of the first
excited even~l1g! and odd~l1u! states upon the
width of the welld for the case when the impu-
rity is positioned at the center of the well@Eqs.
~3.2! and ~3.12!# for N5m50 and with
aH/a050.30.
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n0

l̄0

.1,
1

d̄1u,g
S n1u,g

l̄1u,g
D 2l̄1u,g

exp2n1u,g / l̄1u,g.1, ~6.1!

wherel̄n5n1 d̄n and wheredn is the quantum defect of the
relevant state in the bulk semiconductor. As is seen from Fig.
4, l̄0.0.5, d̄1u.0.2, andd̄1g.0.6 such that the calculated
values aren0.0.5,n1u.7.0, andn1g.10.4. These results are
consistent with the graphs drawn in Fig. 4~n0.1, n1u.7.5,
n1g.11.0!.

In order to obtain the complete energy-level pattern, the
results derived above for each Landau level, labeled by the
quantum numberN, with each magnetic component, labeled
by the quantum numberm are superposed. Together, they
reconvert the problem to one in three dimensions. Resonance
effects can arise therefore if the energy of one of the size
quantization levels associated with the Landau state for
which N5N8 has exactly the same energy as a state of the
Coulomb spectrum associated withN5(N811) Landau
state particularly when theirm values are the same. How-
ever, this is unlikely to be important for QW’s of the usual
size~for whichd is typically 150 Å! where the magnetic and
Landau splittings are much smaller than the size quantization

~or subband! splittings. As the magnetic field used in an ex-
periment increases, the probability of the resonance effect
described above increases.

The final set of results includes both hydrogenlike1 and
the so-called metastable6,7 states. However, it is usual to la-
bel the metastable states by an additional quantum numbern
as well asN andm wheren gives the number of nodes in the
wave function in thez direction ~apart from at6` for bulk
systems and at the edges of the well in MQW systems!.
Obviously,n is related tol but it also includesm. Both types
of states ~hydrogenlike and metastable! can thus be ex-
pressed explicitly in terms of the set of quantum numbers
(N,m,n) even though the notation17 has been developed spe-
cifically for high fields.

It is clear from the definitions and Fig. 5 that the ground
state shown in Fig. 2 is the hydrogenlike state 1s0 and the
metastable state~000!. The first excited ‘‘quasi-even’’ state
is 2s0 and ~002! and the first excited ‘‘quasi-odd’’ state is
2p0 and ~001! in the two notations. Work is currently in
progress to correlate all the remaining states derived from
our analysis with others existing in the literature and full
details of these results will be published later. However, this
is not straightforward because of the need to obtain the cor-

FIG. 5. The wave functions of the ground~f 0!
and the first excited even (f 1g) and odd (f 1u)
states for the case when impurity center is posi-
tioned at the center of the well obtained from
solving Eq.~3.2! numerically for the case when
N5m50, aH/a050.30 andd/a0510.0.

FIG. 6. The calculated values for the energy
of the ground state~in units ofR! as a function of
the scaled magnetic fieldg~50.147B, whereB is
given in Tesla!. The corresponding values calcu-
lated by Makado and McGill~Ref. 23! are de-
noted byj.

12 946 53B. S. MONOZON, C. A. BATES, J. L. DUNN, AND M. J. PYE



rect relationships between the labell introduced here and the
quantum numbersN, m, andn used in these other publica-
tions.

There have been a few attempts17–20 to calculate analyti-
cally the energy spectrum for bulk systems but even less
work has been done on QW systems before that described
here. It is interesting to note that the empirical relation for
energy-level splittings quoted by von Klarenboschet al.,21

from an earlier paper19 on shallow-donor impurities in bulk
GaAs, has a very similar form to that derived here. Thus the
effects of the confining barriers in cases of large magnetic
fields are not thought to be large though they do play a very
important role in determining the fine structure in the spec-
trum in such cases. It is also clear from previous work7 that
the approximation of modeling a MQW system by a single
QW is valid in most cases and thus the theory described
above can be applied with only minor modifications to
MQW systems. In conclusion, it should be stated that the
approach developed above for a large magnetic field is not
particularly sensitive to the actual magnitude of the magnetic
field. As shown previously,22 the maximum error incurred by
reducing the magnitude of the magnetic field, such that the
parameterg remains;1, does not exceed approximately
20%.

Finally, it is worth noting that the results obtained above
for the Coulomb states of an impurity electron~El,0! can
be readily extended to an exciton formed by an electron (e)
and a hole (h) with very different effective masses
(me!mh). In this case, the adiabatic approximation can be
used.
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APPENDIX: SOME LIMITING VALUES
OF THE SPECIAL FUNCTIONS

The special functions used above have relatively simple
forms in the limiting cases that are applicable here. For ex-
ample, for small values ofx~!1!, we have13

Wl,1/2~x!5
1

G~2l! F2
1

l
1x lnx

1xH C~12l!12C211
1

2l J G , ~A1!

Ml,1/2~x!5x~121/2lx! ~A2!

and for large values ofx~@1!, we find

Wl,1/2~x!5xle2x/2, ~A3!

Ml,1/2~x!5
1

G~12l!
x2lex/2. ~A4!

In the above,C(x)5d@ln G(x)#/dx is the logarithmic deriva-
tive of theG functionG(x). In particular,C~1!52C, where
C~50.577! is the Euler constant. We note also that, if the
argument ofG(x) or C(x) has a value close to a negative
integer, the following approximations may be used:

G~2n212d!5
~21!n

~n11!!d
, C~2n2d!5

1

d
,

G~2d!52
1

d
for d!1 and n50,1,2,... . ~A5!

Between the two limits, no simplification is possible.

1J. M. Shi, F. M. Peeters, and J. T. Devresse, Phys. Rev. B50,
15 182~1994!.

2J. L. Dunn and E. P. Pearl, J. Phys. Condens. Matter3, 8605
~1991!.

3P. W. Barmby, J. L. Dunn, C. A. Bates, R. T. Grimes, and J. M.
Chamberlain, Semicond. Sci. Technol.8, 1711~1993!.

4P. W. Barmby, J. L. Dunn, and C. A. Bates, J. Phys. Condens.
Matter6, 751 ~1994!.

5P. W. Barmby, J. L. Dunn, and C. A. Bates, J. Phys. Condens.
Matter7, 2473~1995!.

6P. W. Barmby, J. L. Dunn, C. A. Bates, E. P. Pearl, C. T. Foxon,
A. J. van der Sluijs, K. K. Geerinck, T. O. Klaassen, A. van
Klarenbosch, and C. J. G. M. Langerak, J. Phys. Condens. Mat-
ter 6, 7867~1994!

7T. Kuhn, G. Mahler, J. L. Dunn, and C. A. Bates, J. Phys. Con-
dens. Matter6, 757 ~1994!.

8B. S. Monozon and A. G. Zhilich, Zh. Eksp. Teor. Fiz.100, 1928
~1991! @Sov. Phys. JETP73, 1066~1991!#.

9B. S. Monozon, Solid State Phys.35, 1510 ~1993! @Fiz. Tverd.
Tela.35, 3068~1993!#.

10H. Hasegawa and R. E. Howard, J. Phys. Chem. Solids21, 173
~1961!.

11R. J. Elliott and R. Loudon, J. Phys. Chem. Solids15, 196~1959!.
12M. Abramowitz and I. Stegun,Handbook of Mathematical Func-

tions ~Dover, New York, 1975!.
13I. S. Gradshteyn and I. M. Ryzhik,Tables of Integrals, Series and

Products~Academic, New York, 1986!, pp. 1059–1069.
14R. L. Green and K. Bajaj, Phys. Rev. B34, 951 ~1986!.
15R. L. Green and P. Lane, Phys. Rev. B34, 8639~1986!.
16R. L. Green and K. K. Bajaj, Phys. Rev. B31, 913 ~1985!.
17J. Simola and J. Virtamo, J. Phys. B11, 3309~1978!.
18H. P. Wagner and W. Prettl, Solid State Commun.66, 367~1988!.
19V. Canuto and D. C. Kelly, Astrophys. Space Sci.17, 277~1972!.
20V. G. Golubev, V. I. Ivanov-Omskii, A. V. Osutin, R. P. Seisyan,

Al. L. Efros, and T. V. Yazeva, Sov. Phys. Semicond.22, 896
~1988! @Fiz. Tekh. Poluprovodn.22, 1416~1988!#.

21A. von Klarenbosch, T. O. Klaassen, W. Th. Wenckebach, and C.
T. Foxon, J. Appl. Phys.67, 6323~1990!.

22B. S. Monozon, A. G. Zhilich, and E. F. Khartung, Sov. Phys.
Semicond.10, 1080 ~1976! @Fiz. Tekh. Poluprovodn.10, 1809
~1976!#.

23P. C. Makado and N. C. McGill, J. Phys. C19, 873 ~1986!.

53 12 947IMPURITY CENTER IN A SINGLE QUANTUM WELL IN THE . . .


