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Impurity center in a single quantum well in the presence of a strong magnetic field
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The states and energies of an impurity electron confined within a single quanturf@wéllin the presence
of a strong magnetic field directed perpendicular to the layers are derived. An analytical model in which the
impurity may be positioned anywhere between the midpoint and edge of the QW is developed. The depen-
dencies of the electron energies upon the magnitude of the magnetic field, the width of the QW, and the
position of the impurity within the well are derived explicitly. Expressions for the levels of lowest energy are
obtained, and have a quasi-Coulomb character, while the expressions for levels of higher energy are of the
form of the size quantization levels, which form the excited subbands. Both types of levels are derived from the
same original equations. The results obtained are compared with those of existing numerical calculations and
specifically for the quantum numbeks= m=0. The relation between the states and the labels derived here and
those obtained by others is also givg80163-18206)04320-3

[. INTRODUCTION have been involved in a matrix diagonalization procedure
(MDP) developed originally by Dunn and Péadnd ex-
During the last decade, the subject of shallow-donor imtended in Barmbyet al.>=® in the case of magnetic fields
purities in quasi-two-dimensional systems has been studiepointing at different angles relative to the layers in a MQW
extensively both experimentally and theoretically. Thesystem. They have also been involved in calculations of im-
wealth of data obtained experimentally has been possible opurity transition energies involving the metastable stétes;
account of the advances made in growth techniques and coone nonvariational approach to such calculations is to inte-
trol by the development of molecular-beam epitaxy andgrate directly the Schobnger equation using an iterative
metal-organic chemical vapor deposition methods of manutechnique for the whole range of magnetic field val(es.
facturing specific structures. Also, improvements in the tech- Monozon has been involved in analytical calculations of
niques frequently used in the experiments, such as farshallow-donor impurity states and energy levels in cases of a
infrared and intersubband spectroscopy, have resulted in thgrge magnetic fie® acting perpendicular to the layers by
availability of more accurate and reliable data. Much of thisgxtending the approach used originally by Hasegawa and
work has concentrated on the GaAs{Bl_,As system. poward9 for confined systems. This thedrgloes not con-
The study of impurities in such systems is very importantqin any free parameters but was limited because it did not

because the optic_al and transport properties of devices ma ow for the possibility that the impurity may be positioned
from these materials are greatly affected by the presence ery close to the boundary of the QW.

shallow impurities. References to a selection of the results In this paper, we extend and improve the analytical

that have been obtained experimentally may be found in th?node? 10 the case when the imourity can be positioned any-
recent paper by Shi, Peeters, and Devrésse. purtty P Y

where between the midpoint and edge of the QW. This ana-

In parallel with the experiments, a considerable Iiteraturti ical hi q f hich b
of theoretical work has developed in order to provide accu-Ytical approach introduces a free parameter, which may be
fined from a comparison with either the previous re8ults

rate explanations of these data. This is summarized also . ) ) X
Shi, Peeters, and Devress#luch of this theoretical work O With experiment. Both the low-energy quasi-Coulomb im-
has involved variational-type calculations of the energies an@Urity States and the high-energy size quantization states in
wave functions of the isolated impurity particularly in an the QW are found as different solutions to the same equation.
isolated single quantum we(SQW) and also in multiple-
guantum-wellMQW) systems. Various additional contribu-
tions to the energies of the impurity states have also been 1. BACKGROUND
included in many of these analyses, particularly the effects
due to band nonparabolicity and resonant and nonresonant Let us consider a single QW of width bounded by infi-
polaron corrections arising from the vibronic coupling of the nite barriers at the planes= * 3d containing an impurity at
impurity electron to the longitudinal optical phonons. a positionb such that—3d<b=1d. In the effective mass

In addition to the many variational-type calculations thatapproximation and using cylindrical coordinates, the equa-
have been cited in Shi, Peeters, and Devréssber alterna- tion describing the electron of magsat positionr (p,z) in a
tive theoretical approaches have been used. Dunn and Batemgnetic fieldB parallel to thez axis in a medium with
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relative permittivity « has the form

_i 1 2
5, (T1AV+ie(Bxr])

e2

- Arregr\p?+(z—b)?

By solving this equation, the ener@yof this electron and its
wave functionW(p,z) can be found in principle, which sat-
isfy the boundary conditions

V(p,z2)=EV(p,2). (2.1

¥(p,+1d)=0. (2.2

The characteristic dimensional parameters of the problem are

the impurity radius ay=(47h%eyx/ne?), the magnetic
lengtha,,[ = (%/eB)*3, and the width of the QWd.
In the strong magnetic field limit for whichy/ay<1, the

effect of the magnetic field is much greater than that of the

Coulomb field of the impurity. Under these conditions, the
solution to(2.1) may be written in the form

P m(D =X 0 m(p) fN™(2),

where the functionX, \ (p) describes the motion of the
electron in the magnetic field in the-y plane. Its corre-
sponding Landau enerd¥, \ . including the spin term, is
given by

2.3

- heB
Eqt —

ot 2, (2N+|m|+m+ 1)+ ugB.

Einm= (2.9
“q is the QW energy gapug is the effective Bohr magneton
for the electron, and the quantum numbers Idren, where
N=0,1,2,... andn=0,+1,+2,.....

The functionf™™(z) describes the motion in the di-
rection and satisfies the equation

£2 d2f(Nm (5
—()-FVNYm(Z)f(N’m)(Z):Z(N'm>f(N’m)(Z),

2 dZ
(2.9
with the boundary conditions
fNM(x3d)=0, (2.6)
with
e’ Xinm(P)|?
VN,m(Z)_ - 47T60K f [p2+(Z—b)2]1/2 dp!
ENM=E—E_ ym- (2.7

The potentiaV ,(z) has the following characteristic prop-
erties:
(i) Its depth is given by

e2
Vum(b)~— m. (2.8
(i) If |z—b|>ay, it reduces to the Coulomb form
e — 2.9

 Ameg|z—b|’
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__________________________ o __ J| A 551' (u)
g(o)(g)
I pr=—alill I
R R IA5;(9)
t
-d/2 0 b +d/2 z

FIG. 1. The schematic form of the potential functig , given
by (2.7 and(2.11). The solid lines refer to the grourld=0) and
first two excited Coulomb levelén=1,2) of energy#, given by
(3.2) and also the two lowest size quantization levé&lsgiven by
(5.10 for even-[Eqgs.(5.1) and(5.12] and odd-parityEgs.(5.19
and(5.20] states. The dashed lines are the unperturbed Ief@s
of the even<5.11) and odd-parity(5.19 states.

Unfortunately? it is impossible to use the above form for the
potential function2.7) when the impurity is positioned close
to the boundaries of the QW at positions for which

(2.10

Consequently, our approach here is based on the replacement
of the exact potential2.7) by the model potential

|b+3d|<ay.

eZ

B 4megk(ay may+|z—b|)’

Vm(2)= (2.11
where ay , is the free parameter of the theory. It can be
determined by comparison of either the solutions to(dp)
with the potentialg2.7) and (2.11) or from the comparison
with the experimental data. The form of the potential func-
tion given in(2.11) has been used previoushfor an analy-
sis of excitons in bulk semiconductors. It is important to note
that the latter expression for the potential has properties simi-
lar to those contained in the earlier expressi¢2$8) and
(2.9 but it avoids the limitation given by Eq2.10. This is
because the solution 1@.5) with the potentia2.11) can be
obtained in analytical form for any values bf The sche-
matic form of the potential&.7) and(2.11) is shown in Fig.

1.

lll. THE SPECTRUM IN THE REGION OF NEGATIVE
ENERGIES: THE QUASI-COULOMB SPECTRUM

The mathematical problem is to obtain solutions to Eq.
(2.5 with the potential function(2.11), which satisfy the
boundary conditions given b§2.6). At z=b, the solutions
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and their first derivatives are continuous. It is convenient towith the labels 1 and 2 corresponding to the signand +,

attach a parametex to the functionf™™, which then be-
comesf (N'™ such that\ is defined by the expression

ﬁZ
;;/((N,m):;g =—— 3.1
A 2,u,a0)\2 @1

for the energy. Writing, for f (\'™ the differential equation
(2.5 becomes

f\(u) + fa(u)—zfy(u)=0 3.2

lul+g
in which the new variables are defined by

23,

2(z—h) H
u= v 9T anm a,

agh

where g<1 (3.3

and where the primes denote the appropriate differentiation.

The boundary conditiof2.6) becomes

d 2b
f)\(ulyz):O, Whel’eul’z:ao—)\ __'_1_? . (34)

For u>0 and writingu for |u|, the general solution to Eq.

(3.2 can be written in the form

fFn(X) =AW, 1A X) + B1M 1/AX), (3.5

wherex=u+g>0 and whereW, ;,(x) and M, ;,o(x) are
Whittaker functions?*3

In the regionu<O (i.e., |u|=—u), the general solution to
(3.2is

fon(Y) =AWy 1Y)+ BaMy 1Y), (3.6

wherey(=—u+g)>0. The two boundary conditions.4),
the continuity condition for the two functions

fin(u)=fy(u) for u=0 (that is, z=b), (3.7
and for their first derivatives
dfy(u df,(u
1 )_ a(u) for u=0 3.9

du  du

lead to the following set of four homogeneous algebraic

equations for the coefficiens;, A,, B;, andB,:
A1W1+ BlM 120,
A2W2+ BzM 220,

A1W+ BlM :A2W+ BzM y

AlW,‘FBlM,:_AZw’_BzM,, (39)
where
Wi =W, 1AX12), M1=M, 1)AX12),
W(Q)=W, 1149), M(9)=M, 1x9) (3.10
and where
d ag\g _2b
Xl’z_ﬁ d +F) (311)

respectively.

The coefficientsA; , andB; , may be determined by solv-
ing Eqgs.(3.9). After a considerable amount of algebraic ma-
nipulation, the condition that these equations are solvable
may be expressed by the equation

We g Wi W | e Wi W gl

M, M; "M’ M, M; “M | 7
(3.12

where
o -1 1 2
" T(—x+1)MM’ || T(=x+1)MM’
W2 Wl 211/2

| iy (313

In deriving the above, use has been made of the Wronskian
of the functionsw(g) andM(g) from which we have

Wi W 1
M'(g) M(g) F(=A+1)M(g)M'(9)’

whererl is theT function!?

The roots\,,, with n=0,1,2,..., of Eq.(3.12 give the
required energies?,, of the problem and the coefficients
A1 (n) andB, (n) give the required wave functiorig], (u)
andf 5, (u). Equation(3.12 is an exact equation that is valid
for any values of the variables, andx, for the case when
g<<1. However, special considerations are needed in their
evaluation for the two particular cases when the impurity is
close to the center of the welk>1) and when the impurity
is close to the barriefx<1). It is thus necessary to look at
these special cases in more detail and this is discussed in the
next section. In this connection, the Appendix contains ap-
proximate expressions for the Whittaker functions appropri-
ate to these two limits.

(3.19

IV. ANALYSIS OF SPECIAL CASES

A. Impurity close to the midpoint of the QW (b=0)

In this case, the approximation for smallgiven in the
Appendix may be used so that we rewrite the expressions for
X1 o given in(3.10 in the form

lez: Xo(ll S),

where
d aghg 2b
Tan |TTa ) Tdvang Y
with
Xo>1, S<1
so that
W, W,

Then, Eq.(3.12 simplifies to



53 IMPURITY CENTER IN A SINGLE QUANTUM WELL IN THE . .. 12 941

W, W1> W'(Q)H(Wz W1> W(g)}
— 4+ —|-2———||| —+—|—-2—+|=0
[(Mz M, M'(g)|[\ Mz My M(g)

4.3
If the impurity is at the exact center of the QWe., b=0)
we have

X1 =Xr=X %:%:M (44)

LT M, My My 1/2AXo) '
On equating the left-hand square bracket of @) to zero,
the solutions are found to satisfy the relationships=A,

and B,=B,. The functionsf,(z) are thenevensuch that
f\(2)=f,(—2). Thus the energy levels described by the left-
hand brackets of Eqg4.3 and (3.12 can be classified as
quasi-ever(g) levels. Similarly, under the same conditions,
on equating the right hand d#.3) to zero, the solutions

satisfy the relationships,=—A, andB,= —B,. The func-
tionsf, (z) then becomeddsuch thatf, (z)=—f,(—2z) and

thus the energy levels described by the right-hand brackets of

Egs.(4.3) and(3.12 can be classified aguasi-odd(u) lev-
els. We discuss now these two solutions in turn.

anm= /1/26(1/2)¢(N+|m|+1)_

In order to further simplify the analysis, we use the asymp-
totic expansiongA.3) and (A.4) given in the Appendix for
W, 1o and M, ;» for xo>1 and the logarithmic approxima-
tion g<l1. This implies that|ing|>1. On substituting
A=n+49 into (4.5 and using Eq(A.5) for ¥ andT, we
obtain for then=0 ground state, the result

%= 99(0) (1-BoSH, (4.9
where
1 _
59(0) =—2(In g)(1—2e ),
where
g =g(\=1), Bo=xge . (4.10

For then=1,2,3,... excited states we obtain similarly

1 1
- -~ (1-8S
1. Quasi-even levels 89(s)  89(0) (1= 5nS), (4.1D
The condition for the quasi-even energy levels is obtaineqynere
by using Eqgs(4.1) and(4.2) to obtainW’(g) andM’(g) for
g<%1. Thus we find 1 220 —x
6(9)—(0)=—In g— )2 (Ing)°xg'e ™ (412
N g+ W(L-N) 420+ 2 T(— )| 24 Y| ’ |
ng+ ( - )+ +ﬁ_§ (— )M—2+M—l— . and
(4.5 N
This equation can be used to obtain a definition for the pa- Bﬁm |In g|x§"e *o(xo—2n)2. (4.13

rametera. It will be shown that the effect of the parameter

on the energies of the quasi-even levels is of ofedn g)*
and on the quasi-odd levels it has a magnitude ) (as
found previously*'° However, agy<1, then[(ng)In g]<1.

Therefore, it is advantageous to use E45 for the quasi-

2. Quasi-odd levels

On equating the right-hand brackets in E4.3) to zero,
and using Eq(A.1) for W(g) and(A.2) for M(g) with g<1

even levels rather than the corresponding equation for th#om the Appendix, we obtain

quasi-odd solutions. In particular, from the theory of Mono-

zon and Zhilictf the potentiaV, (z) given in(2.7) leads to
the equation

|‘/2a”+\1r1 N+2CH ——Le

Naon TYA=M N 2
L[ We Wil i
E ( )M2+M1_1 ()

which describes the quasi-even levels. Thus from E4$)
and(4.6) we obtain the expression

_ ay
g=\/2e (e ﬁ (47)

Using Eq.(3.3 for g, we can define the unknown parameter

ag o Of the theory by
e (12C

V2

aoyoz :05 (48)

In the case of a general potentig, .,(z), the corresponding

unknown parametet ., is given by

1 1
- Eﬂn g+‘l’(1—7\)+2C—1+5

Wo W
Mz M,
Following the same procedure as above, by substituting
A=n+5\Y (n=1,2,3,.) into (4.14), we obtain the expres-
sion

—0. (4.14

1
_EF(_)\)

1

1
= = [1— 7 S? 4.1
where

1 B 1 n
sW(0) ng (n)*(ng)

5 X3t e X0 (4.16

and

— 2n,—X
’yn—m xo”e 0(x0—2n)2. (4.1

The formal solution to Eq(4.14) is given by
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; the QW, the positive shifts of the extended excited states
exceed that of the localized ground state. As a result, the
transition energy from the ground state increases as the width
of the QW decreases. All these conclusions are confirmed by
numerical calculation$*

p+3

p+2 .
B. Impurity at the edge of the QW

p+1 In this case, we have=1d, x;=g<1, and

size quantization levels

— 2 aghg
XS—>X2_aO_)\ + W

The right-hand brackets i(8.12), which gave the quasi-odd
solutions previously, are equal to zero under the condition

Wy1d9) WA,l/Z(E) _
My 1A9) My 1AX2)

In contrast, the left-hand bracket i{8.12, which corre-
sponded previously to the quasi-even solutions, cannot be
equated to zero for any values »fso that this equation has
no roots and should be dropped.

Equation(4.20 can be formally obtained frort¢.14) by
n=0 the substitution

0 1 (2b/d) _
1(W2 Wl) W), 1/AX2)

=2X,. (4.19

3 33
Il

N wh

0. (4.20

quasi-Coulomb

|t ] (4.2)
o . 2\My; M/ My 1AdXz)
FIG. 2. The correlation diagram of the quasi-Coulomb levels
(3.1) %), \=n+5{"9 and the size quantization leveB.1) #;for ~ The roots of (4.20 have the form A=n+4, where
s[ =d/(magp] <1 vs the displacement of the centerelative tothe n=1,2,3,.... The expression fa$, can be obtained from

QW boundarysd for N=m=0. (4.16 by the substitution ok, for x,. Therefore, if the im-
purity is at the edge of the QW, all energy levels are very
2\ ay clearly nondegenerate as shown in the lower part of Fig. 2

A= 502(@) ~ a_o for those states for whichhl=m=0. (This was pointed out

originally by Green and Lan¥) These ground and the first
for n=0 but, as it does not satisfy the conditi¢B.3), it  excited states are defined by the quantum numbers+ &,

should be dropped. and\=2+6,, respectively.
The transition energyZ, ,(b) is readily deduced and is
3. The energy-level pattern given by

If the.center is close to the midpoint of the QW, the apove A% o (B)=]£(b)— £ (b)| (4.22)
calculations have shown that the energy spectrum consists of .
a singlet ground leveln=0, §,<1). In contrast, all excited SO that, if 6, ,<1, then
levels form pairs of states that are ver}/ close in energy. They o _ _
consist of quasi-even M(¥=n+6{) and quasi-odd AZ1A3d)=AC0(0) — A%01(0). (4.23

(W) — (u) ithn — i . . o .
(\*=n+5;") components witm=1,2,3,.... Itis als0 €asy These calculations are in good qualitative agreement with the
to see from Eqs(4.9), (4.11), and(4.19 that the final result  qits obtained using other numerical methtds.
for the energies’,(S), as defined originally in Eq3.1), are

given by the approximate relation: V. THE SPECTRUM IN THE REGION OF POSITIVE

@ —_ ENERGY: THE SIZE QUANTIZATION SPECTRUM
ZN(S)~ [N+ 8,(S)] 2 (4.18 Q

In the above, we have considered the solution&tb) in
which the energy?, given by(3.1) is negative. We consider
now the region for which this energy is posititeee Fig. L

We have also found that the binding energje§| de- b1 semiconductors, for which is effectively infinite, a
crease with the dlsplacemer)t of the impurity from the centeg iy ous spectrum results but in a quantum well of finite
of the QW. Forx>2, the shift of the ground state exceedswidth the spectrum is quantised.

that of the excited states. As a consequence, the transition
energy from the ground state decreases with the displace-
ment of the impurity from the midpoint of the QW. It fol-
lows from Eqgs(4.9), (4.11), and(4.15 that the reciprocal of In order to consider this region, we introduce a new set of
the derivative of the transition energy with respect to theparametersx, vy, ands, which replaceu, g, and\, respec-
central positiorb is proportionab . With the narrowing of  tively used previously in Sec. lll. They are defined by

and that they increase witB. This result is indicated sche-
matically in the lower part of Fig. 2.

A. Definitions
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i 7S 2umap8%’ iags
ZaaH )
where y= - . aym=a with |y|<1l. (5.0
iags :
Thus Eq.(2.5 may be written in the form
d?f4(X) N
—axz T x X —af(X)=0 (5.2
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b=0, ylz)’Z:yo:ﬁ

B. The quasi-even states

On setting the left-hand bracket (8.5 to zero, the equa-
tion describing the quasi-even states becomes

Wis 1/2Yo) N Wis 1A 7) _
W_isyd =Yo) Wiy —7)

0. (5.6

for the functionf4(X). On choosing the two linear indepen- Let us consider the excited energy levels w8ta1, [yo[>1.

dent solutions td5.2) in the form

Wis 1A X),

the general solution t(.2) for z=b is given by

W_is 1/ —X)

fs(X) =€ "Wig 1 X) + € PW_ig 1 — X) (5.3
and forzs<b, we have

fs(X)=D[e"Wig 1 X) +e *W_is 1 —=X)]. (5.4

Much of what follows is similar to Sec. lll as the boundary r

conditions(2.6) on the functionfy(X) are as before. These

On substituting the asymptotic expansion fréA8) for the
functionsW..;s 12( £ Yo) and from(Al1) for W.is 1= ), we
obtain, for the real part, the result

Re{exd%yo—is IN(=Yyo)] gy [Ny +¢(1=is)

+2c:—§is—1]}:o. (5.7
Using the limiting values

(—is)=is"! and ¥(1—is)=¥(1)=—C for s<1

conditions and the requirements of the continuity of the func£q. (5.7) becomes

tion f4(X) and its first derivative foz= + 3d lead again to a

set of four homogeneous algebraic equations for the coeffi-

cients involvingDe*'¢ and e*'? similar to those given by

(3.9. Thus by requiring that the equations are solvable we

obtain the equation

W, »
W,

W, »
W_,

W, ,
W,

w
—2"—F|=0,

W, W,
! W_
(5.9

+2—~
W, W

+F

where

W =Wais 1AY12),

+

d d

iagsy 2b
where y1,2=@

and where

Wo=W_isyd y), WL=W.ig(*7y)

and

esT 1/2

F=
W_W"

e2$77 . W+'2 W+,l 2
(W_W.)2 {W_, W_,

In obtaining Eq.(5.5), we have taken into account that the

Wronskian of the function®Vig ,5(X) andW_jg 1o(—X) is
equal to—exp(sm). As |y|<1, the expressioriAl) for W
and for its derivative are used. The rosfswith n=1,2,3,...
of (5.5 define the energy levels. This equation is exact
and it is valid for any values of, ,. Analogous to our pre-
vious treatment of Eq(3.12), the left- and right-hand brack-

d iagsy iagsy
CO‘{?OS d +sin T) ( 1 d
ZaaH 2
=s|In +2C|. (5.8
apgs

This equation can be solved by the method of iteration. In
the zeroth approximation setting=0, we find that
so 1= (may/d)(2p—1)] with p=1,2,3,... so that

|n[(2aaH i aOSOJ +2CH.
aos
(5.9

d
From the latter equatiofb.9), the energies?, of the quasi-
even states can be written in the form

Zaosg
d

1 1

S S

Zs=Zp(0)+AZ,, (5.10
where
277_2
Zp(0)= 5z (2p—1)? (5.11)
and
AZ=ALY
2 2aay 2
2% In[w(Zp—l)( q | [T2C|
(5.12

The expression&.10—(5.12) are valid under the conditions

ets separately give rise to quasi-even and quasi-odd states,

respectively. The expressions simplify if we assume that the d

impurity is situated near the midpoint of the QW for which

(2p—1)may
aoq-rz(Zp—l)< : d <l
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The energies? ,(0) given by (5.11) are the unperturbed size equating this right hand part to zero, and also by putting
quantized energy levels of the even-parity states. The enes=0, we find that, by takingsyt=2paym/d with
gies Aff;”p‘g)<0 from (5.12 are caused by the one- p=1,23,..., we have

dimensional Coulomb impurity potentia¥/(z) given in

(2.17).

The condition €/a,)/[(2p— 1)7?] <1 means that impu-

1 1

s S

d

A0S

2a,S5
d

. (5.18

rity potential V(z) can be regarded as a perturbation to the o . )
size quantized states. In first-order perturbation theory, thd e energies’s of the quasi-odd states are given (510
additional energyA#,® has been defined by the diagonal where

matrix element of the potentidl(z), namely,

) +(1/2d
M;W:f_(md Wi (2)V(2) ¢y(2) dz, (513
where
2\12 2p—1)wz
lﬁp(z)=(a cos(%) (5.14

are the unperturbed even-parity wave functions.

Under the other conditiona(,/d) 7w(2p—1)<1, the inte-
gral in (5.13 can be calculated explicitly. The energy,(¥
obtained differs from the energy given .12 by the Euler

constantC, which is considerably less than the logarithmic
term. This difference is likely to be a consequence of th
different approximations useghamely, that of iteration ver-

sus perturbation theoyry

C. The quasi-odd states

The quasi-odd states can be considered in much the sal
way as the quasi-even states. Equating the right-hand brac
of (5.5 to zero, the equation describing the quasi-odd level

can be written in the form

Wis 12 Yo) Wisiy)
Woosd—Yo) Wogud—y O &9

On substituting for the asymptotic expansions froh3) for
the functionsW.. i 1= Yyo) and from(Al) for W. s 1,5(* )
into (5.15 under the conditions<1, lyo[>1, and|y<1, we
obtain from the imaginary part the result

1
Im| exf 3yo—is In(—yo)] T(=is)

X[is™ 1+ y{lny+\1f(1—is)+2C—l—%is1}]) =0

(5.19
and then
d iagsy d iagsy aay
taf{—Zaos 1+ d +sIn a_()S)(1+ d _aosG’
(5.19
where
2aa 2aa
G=1-|225H ( s +c—1}.
ag ags

As (aay)/(ags)~y<1, the right-hand part a/5.17) is much

€

, #2572
g(po):m (2p)? (5.19
and
W * .8
7z = ALY = _ —_
AZy=A%, 2 4 aoln(Zﬂ'p). (5.20

The conditions of validity of Eq(5.19 and (5.20 are the
same as those of Eq&.10 to (5.12.

The energies?,(0) are the unperturbed energies due to
the size quantization of the odd-parity states. The energy
changes&é{'p(“) are caused by the impurity potenté(z) as
given in (2.11). On treating the potential as a perturbation,
this change in energy is given by the right-hand part of
(5.13 where

1/2

sin(2pwz/d) (5.21)

‘/’p(z) = (a)

RLe the unperturbed odd-parity wave functions. Under the
ggndition Pmray/d<l, A?lf'p“) can be obtained front.20

y replacingIn(27p)] by [In(27p) + C)]. We note that, for
he excited states considered above for whipbk-1,
C<iIn(2mp).

The above results are equivalent to those obtained in Sec.
IV and reflect their complementary characteristics. Thus it is
possible to describe any impurity states in the QW with both
a Coulomb form(#, <0) and also the form of the size quan-
tized states for whicl#s>0. The correlation diagram of the
energy levels versus the impurity center displacenieid
given in the upper part of Fig. 2, which is also simplified to
show states belonging to the lowest Landau level oMy (
=m=0). It is based on the general properties of the eigen-
values of the differential equatid2.5) and(2.11). It is clear
that, as the impurity moves from a position whik=0 to the
position whereb=1d, the energy increases.

VI. FINAL RESULTS AND CONCLUSIONS

The previous sections have concentrated on the Coulomb
and size quantization parts of the energy-level spectra of the
impurity electron in a QW in the presence of a strong mag-
netic field associated with a given Landau level. The results
are shown schematically in Fig. 2 fof=m=0 to illustrate
the basic physics involved. It has been found that the levels
of lowest energy have a quasi-Coulomb character while the
levels of high energy are size quantization levels. It should
be noted that all energies have been derived analytically us-
ing a common approach.

The results derived above have been used to obtain the
explicit dependence of the lowest-energy levels as a function

smaller than unity. In the zeroth approximation, obtained byof the displacement of the impurity. The results are displayed
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0.0 01 02 0.3 04 05 06 07 0.8 09 1.0
T T T T T T T T T Y 2b/d

1u FIG. 3. The calculated energi€s [given by
Ay Egs. (3.2 and (3.12] where £=—R/(2\?) and
where R(=#%2/pad) is the impurity Rydberg
constant, of the ground state=\.), the first ex-
2} cited quasi-even stald =\,g4), and of the quasi-
odd (A=\,,) states as a function of the displace-
mentb of the impurity from the center of the well
for N=m=0.[The other parameters are given by
d/ag=11.0,a,/a,=0.30.

2gA/R

in Fig. 3; as expected, this dependence is in agreement witls given by—2#/R=1/\?=3.2 withd/a,=2 anda,/a,=0.3.

the schematic diagrarfFig. 2). The curves are similar to This value is in reasonable agreement with that obtained for

each other in that their slopes are initially shallow leg b, ay/a,=0.7 by a variational-type numerical methtfwhich

but then they have relatively steep slopes in the rebiot, gives —2#/R=3.0. The small difference between the two

whereb, is a critical center position defined by the bound-values can be attributed to the differences between the mag-

ary. As can be seen from Fig. B;;<<b,,<b,. This means netic fields used in the two calculations and the replacement

that the QW boundary has a relatively large effect on the firsbf barriers of finite size as used in Ref. 16 with the infinite

excited quasi-even state, a medium effect on the first excitetarriers used here.

guasi-odd state and little effect on the ground state. Further direct comparisons are difficult to make as our
These results can be explained by the dependencies of tlwalculations are applicable for wider quantum wells and

guantum numbek upon the width of the welll, which are larger magnetic fields than those commonly used by other

shown in Fig. 4 forN=0. These in turn are defined by the authors(see, e.g., Refs. 15, L6However, Fig. 6 shows the

forms of the wave functions of the relevant statey. 5. It  variation of the energy of the ground state with the scaled

follows from Fig. 5 that the ground state is localized at themagnetic field, which has been calculated from our model

center of the wellz=0), the first excited quasi-odd state has above for a very wide wellof thickness-20a,) and the data

its maximum probability atz=1.5a,=0.15d and at from Makado and McGif® appropriate to bulk GaAs. It is

z=2.58,=0.25 for the quasi-even state. The greater theseen that there is very good agreement between the two sets

distance by which the maxima of the wave packets are reef data, which goes a long way towards justifying the accu-

moved from the center of the well, the larger is the effect ofracy of the analytical model proposed.

the boundary. This is consistent with the dependencies of the It follows from Egs. (4.10, (4.12, and (4.16) that the

guantum numbers upon the width of the weltl. The first  effect of the QW boundary on the impurity states is consid-

excited quasi-even state is affected by the boundary of arable under the condition

sufficiently wide well, the first excited quasi-odd state by the

medium wide well, and the ground state by the boundary of d

a relatively narrow well. From the values of the quantum a_0< Vn,

numberA given in Fig. 4, the binding energy of the ground

state, measured in terms of the impurity Rydberg constant wherew, are the critical values defined by the inequalities

kn ground state

S 5 odd stat )
,,,,,,,, w uasroddsae FIG. 4. The dependencies of the quantum
v lm quasi-even state]

\ numbers of the ground staf®y) and of the first

excited ever(\,g) and odd(\,) states upon the
< o2r Nl width of the welld for the case when the impu-
e e rity is positioned at the center of the w¢kqgs.
___________ (3.2 and (3.12] for N=m=0 and with
e a,./25—0.30.
o : : : . : . : s : s dfa
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07 FIG. 5. The wave functions of the groufit})

and the first excited evenf{;) and odd €;,)

os T states for the case when impurity center is posi-

(z/a )

03 | e ' S tioned at the center of the well obtained from
S s solving Eq. (3.2 numerically for the case when

04 o “u ,,  N=m=0,a,/a,=0.30 andd/a,=10.0.

01B 4 4.7 s 0

03 [

-05

1 2\ 1ug - (or subbang splittings. As the magnetic field used in an ex-

Zoo - (@) exp ‘wg/Mu9=1 (1)  Periment increases, the probability of the resonance effect
o d1u,g \ Mug described above increases.

The final set of results includes both hydrogentilead

— — i the so-called metastailéstates. However, it is usual to la-
where,=n-+ o and whereénlls the quantum defect of the_ bel the metastable states by an additional quantum number
relevant state in the bulk semiconductor. As is seen from F'gas well adN andm wherev gives the number of nodes in the
4, Ag=0.5, 8,,=0.2, and,4=0.6 such that the calculated | o nction in thez direction (apart from at=e for bulk
values arey,>0.5, v1,=7.0, andv;4=10.4. These results are ¢ d at the edges of the well in MOW systems
consistent with the graphs drawn in Fig(#=1, v;,=7.5, systems and a ges « welll Q y
vy=11.0. Obviously,vis relateq to\ but it also includesn. Both types

In order to obtain the complete energy-level pattern, the®’ States (hydrogenlike and metastablean thus be ex-
results derived above for each Landau level, labeled by thBressed explicitly in terms of the set of quantum numbers
quantum numbeN, with each magnetic component, labeled (N, ») even though the notatidfihas been developed spe-
by the quantum numbem are superposed. Together, they cifically for high fields. _
reconvert the problem to one in three dimensions. Resonance It is clear from the definitions and Fig. 5 that the ground
effects can arise therefore if the energy of one of the sizétate shown in Fig. 2 is the hydrogenlike statg &nd the
quantization levels associated with the Landau state fometastable stat€)00). The first excited “quasi-even” state
which N=N’ has exactly the same energy as a state of thés 2s, and (002 and the first excited “quasi-odd” state is
Coulomb spectrum associated witi=(N'+1) Landau 2pg and (001 in the two notations. Work is currently in
state particularly when theim values are the same. How- progress to correlate all the remaining states derived from
ever, this is unlikely to be important for QW’s of the usual our analysis with others existing in the literature and full
size(for which d is typically 150 A where the magnetic and details of these results will be published later. However, this
Landau splittings are much smaller than the size quantizatiois not straightforward because of the need to obtain the cor-

FIG. 6. The calculated values for the energy
of the ground statén units of R) as a function of
the scaled magnetic fielg =0.14™B, whereB is
given in Tesla The corresponding values calcu-
lated by Makado and McGil[Ref. 23 are de-
noted byHl.

E (units of R)
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rect relationships between the lahehtroduced here and the (B.S.M.) thanks the Royal Society for support in making this
guantum numbersl, m, and » used in these other publica- collaborative program possible.
tions.
There have been a few attemit£°to calculate analyti- APPENDIX: SOME LIMITING VALUES
cally the energy spectrum for bulk systems but even less OF THE SPECIAL FUNCTIONS

work has been done on QW systems before that described The special functions used above have relatively simple

here. It is interesting to note that the empirical relation forforms in the limiting cases that are applicable here. For ex-
energy-level splittings quoted by von Klarenbosehal,”*  ample, for small values of(<1), we havé®
from an earlier papé? on shallow-donor impurities in bulk

GaAs, has a very similar form to that derived here. Thus the

effects of the confining barriers in cases of large magnetic Wi 1 X) = T(—\) [_ X+X Inx
fields are not thought to be large though they do play a very
important role in determining the fine structure in the spec-
trum in such cases. It is also clear from previous VdHat

the approximation of modeling a MQW system by a single
QW is valid in most cases and thus the theory described My 1A X) = X(1—=1/2Ax) (A2)
above can be applied with only minor modifications to 54 for large values of(>1), we find

MQW systems. In conclusion, it should be stated that the

1
+x{ W(1-N)+2C—1+ —

approach developed above for a large magnetic field is not Wy 1A Xx) =x e ™2, (A3)
particularly sensitive to the actual magnitude of the magnetic 1

field. As sh iously th i i -

ield. As shown previousl$? the maximum error incurred by M A X) = NEEN X~ NeX2. (A4)

reducing the magnitude of the magnetic field, such that the

parameterg remains~1, does not exceed approximately |, yhe apovew(x)=d[In I'(x) J/dx is the logarithmic deriva-

20%.' . . . tive of thelI” functionI'(x). In particular,¥(1)=—C, where
Finally, it is worth noting that the results obtained abovec(:O 577 is the Euler constant. We note also that, if the

for the Coulomb states of an impurity electrofi, <0) can argument ofl'(x) or W(x) has a value close to a negative

be readily extended to an exciton formed by an electen ( integer, the following approximations may be used:
s

and a hole ) with very different effective masse
(mg<<my). In this case, the adiabatic approximation can be (=" 1
used. F(_n_1_5):—(n+1)!5' W(—n-9)==,
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