PHYSICAL REVIEW B VOLUME 53, NUMBER 19 15 MAY 1996-I

Quasi-two-dimensional electron gas: Exchange and correlation energies
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We calculate theT=0 exchange energy and correlation energy leading term of a quasi-two-dimensional
electron gas localized in a doped semiconductor quantum well, taking into account the finite well width. Here
we consider electron densities low enough to have electrons in one subbanfS@1§3-18206)06119-X]

The exchange and correlation energies of an exact twamixed Hartree-exchange and Hartree-correlation terms to the
dimensional(2D) electron gas at =0 were calculated long usual smallrg expansion of the Coulomb energy.

agd—*as an expansion in the 2D average distanagefined In this paper, we study the effect of tlgg#0 Coulomb
as form factor on the quasi-2D excharfe® and
correlatiot>!* energies. In addition to the usual direct and

exchange second-order terms, we show that intersubband ex-
citations generate an “anomalous” second-order term which
does not exist in th& =0 exact 2D and 3D Coulomb energy.
wherea,=7%2%/mé is the Bohr radius,andn=N/Sis the =~ We also calculate the contributions of the mixed Hartree-
two-dimensional electron density. This expansion is gen- exchange and Hartree-correlation terms to the Coulomb en-
erated by a perturbative treatment of the Coulomb interactioergy.

similar to the one done in the 3D case. The Coulomb first- We will restrict ourselves here to densities large enough
order term—also called the exchange energy—mahesn  to haver <1 but low enough to have electrons in the lowest
3D) an Ry (rg) ! contribution, whereR,=me*/242 is the  n=1 subband only. The existence of electrons in more than
Rydberg. The Coulomb second-order term stays finite, andne subband raises additional difficulties due to the subband
makes a contribution iR, (rs)°. At third order only, we filling changes induced by the Coulomb interaction. These
start to find singular contributions generated by smalldifficulties are beyond the scope of this paper and will be
momentum-transfer excitations which are similar to thosestudied in a specific work.

appearing in the direct second-order term of the 3D case. For electrons in one subband only, we have

Indeed, these smatj- processes, which give rise to a

Ry Inr contribution in 3D, induce in 2D a logarithmic term g1t ex<ey, 2

starting inRor ¢lnrs only > L wheree,, is the free-electron localization energy, asg is
In the case of a qua§|—2D electron gas, the flhlte width oo oD Fermi energysy = h2K2/2m with K2=27N/S. For

the quantum well modifies the exact 2D results in tWo WaySg el of width a, with infinite barriers,s, = #2w2n?/2ma?,
(i) First, the Coulomb matrix elements, associated W|thSO that Eq.(2) implies

finite momentum-transfer excitations, appear as the exact 2D

one (2mre?/q) multiplied by a form factor which depends on N=(2m) Ka<y= J3/2=0.866. 3)

the well width® This form factor modifies the contributions

of the intrasubband transitions. It also, and mostly, allowsThis dimensionless parameterturns out to be the appropri-

intersubband transitions which generate additional contribuate one to measure the effect of a finite well width on the

tions to the Coulomb energy: As the intersubband energgoulomb energy. With the (2) ! prefactor in the definition

difference tends to infinity in the zero-well-width limit, these of A, the coefficients of tha. expansion of this energy are

intersubband virtual excitations are negligible for very nar-found to be of the order of 1. Moreover, Rgemains smaller

row wells and of course do not enter the exact 2D Coulomkhan 1 over the whole one-subband filling domain, the ana-

energy. They appear at finite width only, and their contribu-lytical expansions in\ of the various contributions to the

nsﬂ'(rsao)zz 1, (1)

tion increases with the well width. Coulomb energy stay rather close to their exact values ob-
(ii) Second, the finite width induces Coulomb excitationstained numerically.
with zero-momentum transfers. If taken alone, thgse0 The paper is organized as follows. In Sec. | we recall the

Coulomb excitations give rise to the Hartree enéfggl-  formalism of Refs. 9 and 12, and give the explicit expression
ready studied in a previous wotkWhen included in addition of the form factor. In Sec. Il we calculate the bare exchange
to g#0 processes, thesg=0 excitations generate additional energy and the first mixed Hartree-exchange contribution.

0163-1829/96/539)/129299)/$10.00 53 12 929 © 1996 The American Physical Society



12 930 O. BETBEDER-MATIBET, M. COMBESCOT, AND C. TANGUY 53

Section 1l is devoted to the correlation energy. We explicitly ~ For an ion densityiep;(z), the first part is given by
calculate the direct, exchange, and anomalous terms of the
“bare” second-order correlation energy, and evaluate the

mixed Hartree—second-order correlation terms. _ 1 2me?
7= 0= 712 2 Wi nn n’ar:—k aer
2 Sa L KR 1Ny N2 =N ko noky oy
ning 0102
nony 172
I. COULOMB INTERACTION X sk, Bnticyry (6)

IN A QUASI-2D ELECTRON GAS

We consider a system made Nfelectrons localized in a
guantum well andN ions inside or outside the well. Let
¢nk be the free electron wave functions in the well and 21— 2|
+ ; ; nn’:nn.= le dZZ
an,, the corresponding creation operators. In terms of these """1:"2"; a

an.,» the free-electron Hamiltonian is diagonal and reads

[ ‘P:l(zl) <Pni(21)

—pi(2y) 5”1”11[(’0:2(22) <Pné(22) —pi(22) 5n2né]-

)
To= 2 (en+e1)8nk,Bnko - (4) N , , o
nke Explicit analytical expressions of ﬂwnln;;nzné are given in
Ref. 9, for different ion configurations.
In the case of an infinite well located ak<a, ¢, and The Coulomb interaction with finite momentum transfers
the corresponding energieg and e, are simply reads?
eik'P 2 172 nwz 1 27792
. g1q#0) = _ +
o pp2)=——0(2), ¢ (z)=(—> sin—, ZARESDS Y Vo (ad2man g,
n \/§ n n a a 2q=#0 Sq nlﬂiﬂzﬂé 171077272 1%1 1
kikoo10
42 42 p22 (5) 1K20107
_ 2 - +
Sk—%k ) Sn_ﬁ —az— Xanzszqazanékzvzaniklalv ®)

In the following, explicit results will be given for infinite  WhereVn nr:n,n; is the form factor. It depends on the finite
well barriers only, for which most of the calculations can bewell width throughe,(z) but is independent of the ion con-
performed analytically. However, results for other types offiguration. It is precisely given by
wells can be formally obtained in the same way, by using the
appropriatep,(z) ande,, for finite barriers.
In order to get rid of spurious divergences arising from 270z — *
the long-range character of the Coulomb forces, we consider anni?nz”é(Q):f j dz; dz e ol sza"onl(zl)
the total Coulomb interaction of thid electron-ion system, N
i.e., the sum of the electron-electron, electron-&md ion- X en1(21) ¢n,(Z2) 0y (22)- ©)
ion interactions. Moreover, we will assume here that the di-
electric constants are the same inside and outside the well. . o
The effects induced by a dielectric constant difference and? the (Q=0) limit, the form factor is diagonal and reduces
the image contributions it generates have been studied i#? Vnyn]in,ny(0)=8n n: 0n,n;; this corresponds to the exact
Ref. 15, and are rather small in most cases. 2D case,a=0, for which the Coulomb matrix element is
We can divide the total Coulomb interaction into two simply 2we?/Sq For infinite well barriers, i.e., fok,(z)
parts corresponding to zero-momentum-transfer and finitegiven by Eq.(4), from Eq.(9) we obtain the following ana-
momentum-transfer excitations, respectively. lytical expression of the form factor:

anni;nzné(Q) = GO(Q) 5nln15n2né+ Gnl—ni(Q)[ 5\nl—ni|,\n2—né| - 5\n1—n1|,n2+ né] + Gn1+ ni(Q)[ 5nl+ nj.np+n, = 5n1+ n; ,|n2—né|:|

—[1+ (=DM [ 1 (~ 1) e 2R [Gy, o (Q) = Gy ([ G, ng(Q) = Gy 4y ()], (10)

Gn(Q)=2Q/m(4Q%+n?). (11)
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@1 O 1Qea(On J(Q)=f oen dPQ

Q+Q'[=1
1 (a) LY YERY |Q+Q|
1 1 /Q Q2|12
O (b) (c) _ ] 2cos 1(5)—(3 for 0

1 p# QL On QO 0 for Q=2.
1 . n$l 1@;\*1 nl @:’#l (15
O

f) C
(e) ( If A=0, V11.1.=1 andA,(0)=82/3, which is the ex-
Q1 Q1 Q1 act 2D value of the exchange energlor small\, we can
' ' i expand V;;.;; and deduce the following expansion of
1 n$l ngl \1 1On‘¢1 AN):
N 1\ n#! 1@.1;1
' ' 8 4m*—-15 64 m*—6)
1 01 1 - _ 2
(CS)) e ) AN =N g M e
: , _ 47%— 402+ 105
FIG. 1. Exchange diagram&) “bare” term, i.e., without any — A3
Hartree procesgb) First mixed Hartree-exchange term, i.e., with 607
one Hartree procesgc)—(i) Higher-order mixed Hartree-exchange 10242774—30772+135)
terms.[Note that in(e) n’ can be 1 as wel). 4 5
[ (e) 0 53605 A+0(N)
We can check that for sma@ the form factor diagonal =1.200- 0.918\ + 0.826\2— 0.749\3
termsannl;nznz(Q) tend to 1, while the nondiagonal terms A .
annl;nzng(Q) (with n,#n; and/orn,#n3) behave af). +0.6587+0(X"). (16)

The Coulomb energy of a quasi-2D electron gas is calcu- We can also caIcuIatAx(_)\) numerically by using .the
lated as an expansion i =7 @=0+ 710 The exact value oV,,.1,(Q). We find that the smallk- expansion
713=9 part of the Coulomb interaction, if take alone, gen- of A,(\) differs by less than 10% from its exact value at the

erates the Hartree energy which has been calculated in Ref&Ximum expected discrepancy, i.e., at the=(,n=2)
Ubband crossovek =\,. Excellent agreement over the

;e\:jv?/vir:s\;ﬁe‘j;%vzg tfpt)atzgig:?fnsmnless parameter assoé/_hole O<\=<\, range is obtained with the Padgproxi-

mant constructed from the first three terms of thg\)

)\H=K2a3/7r4ao=(4\/§/7r)rs)\3, (12) expansion only, namely,
which stays smaller than 1 for electrons in one subband only 1.200+0.361\
and for re<1 (in order to perform an expansion in A (N\)= i i 5. (17
71970 This explains why the Hartree energy is quite ac- 1+1.066\+0.124
curately given by the first plus possibly the second-order o ) ) )
term of the7{9=9 expansion. As shown in Fig. 2,A,(\) is a decreasing function of

Here we study the other terms of the'{0=9+ 7(a#0) which varies from 1.200 to 0.750 for<OA<\. This dimi-

expansion of the energy, i.e., the terms with at least on&ution, induced by the finite well width, is clearly significant.
7Aa#0).

B. Mixed Hartree-exchange energy

Il. EXCHANGE ENERGY The first correction to this exchange energy, as induced by

The exchange energy corresponds to all terms of the Co#=0 interactions, corresponds to the second-order mixed
lomb expansion with one”(9*9| j.e., to terms in7(9#9) Hartree-exchange terfef. Fig. 1(b)]. It is given by Eq.(15)
(749=0P with p=0. of Ref. 12, and can be written as

A. “Bare” exchange energy Ex,= NRoA*By(N), (19

The “bare” exchange energyp=0) corresponds to the
diagram of Fig. 1a). This term generates a contributféi® ~ where
=(0|7(9#0| 0y = — -1
EXO—(O|77 479]0)= = NRyr g "A(N). (13 Wipn [ d2Q

32
BV="12 177 | 3 W QVus(A\Q) (19

We can transform the expression &Af(\) given in Eq.(4)
of Ref. 12 into
stays finite wher\ —0.

We find that the mixed Hartree-exchange enekgy is

ri\* smaller than the bare exchange enefgy. A factor

1 d?
AN = —=— f 9 V), 14
\/5772 Q '
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FIG. 3. “Bare” second-order correlation diagrams. (& and
0.9 (b), n can be equal to 1, while ifc) n must differ from 1 in order
) to make a nonzero contribution.

0.8 dominant ones for small [Figs. Xc) and Xd)] contain a
diagonal matrix element\y;.110r Vy1.4n) and can be shown
. . . . to be inrg\® in the smallx limit. The other diagrams contain
0.0 0.2 0.4 0.6 0.8 X, a nondiagonal matrix element;., or V.1, and are thus
A \ smaller, i.e., inr\”.
As these second-order Hartree-exchange terms are all in

o _ _ (ro)%, they do not enter the second-orderexpansion of the
FIG. 2. “Bare” exchange energy coefficiedt(\), defined in exchange energy, which thus reads
Eqg. (13), as a function of the density throughdefined in Eq(3). '

E, 1 .

NRO=8X=—r—AX()\)+)\ By(N)+O(ry). (29

S
(e?a)x(r\) comes from the7{9=9 interaction, another
factor (@)?«\? comes from the energy difference between
= . . ) lIl. CORRELATION ENERGY

statesey, and ¢, coupled by the?{9=9 interaction, while co © G
an additional\ factor comes from the/;;.,(AQ) matrix The correlation energy corresponds to all terms of the
element which cancels aswhen\ —0. Coulomb expansion of the energy with two(9*9 at least,

As Wy, .1, depends on the ion densipy(z), differention je., to terms in @@*N)™ (719=9)P with m=2 and
configurations are expected to give differdf(\). How-  p=0. We concentrate here on the second-order term, i.e.,
ever, as shown in Ref. 1, all configurations with ions outsidem=2.
the electron layer give the sarifé,;.,, so that they give the
same B,(\). Conversely, when ions are inside the well,

e ’ : A. “Bare” second-order correlation energy
B,(\) depends on the precise ion configuration.

Using the smal® limit of Vy;.1,(Q), we can calculate The leading cqntribution to the correlation energy comes
the smallx limit of B,(\). For ions outside the electron from the term with two7(9% only. The associated dia-
layer we find grams are shown in Figs.(&-3(c). The first two are the

usual direct and exchange diagrams analogous to those ap-
(ot s 20 54 A4x? pearing in the second-order term of the 3D correlation en-
By (0)=5—~ 2~ 5 =0318, (200 ergy. The third one does not appear in the usual diagram-
matic expansion of the 3D correlation energy since it cancels
while for ionsevenly distributednside the We”, we find atT=0. However, this “anomalous’” term does not cancel in
5 quasi-2D systems, due to the possibility of intersubband tran-
BY"(0)= 4 »=0.127. (27 ~ Sttions.

At the (n=1,n=2) subband crossover, numerical calcula- 1. Direct and exchange terms

tions show thatB,(\) is reduced by a factor of 3 For a|0>_ state with electrons in tha_=1 subband only,
[B{(\o)=0.107, whileB{™(\,)=0.043]. Excellent fits the usual direct and exchange terfos Figs. 3a) and 3b)]

of B,(\) over the G\ <)\, range are given by rea

0.318+0.040\ 2\ 2 2V2 . (NG/K)
CLRNAY. 2me 1n;;1n,\A D
B (N= 1 1838 +0.929.7" 2 E(cd”):( S ) —

a#0 nqny g
kikz
- 0.127+0.016\ 03
B (N=17T 83 10,9202 @3 Ving:1n,(ANI/K)Vin, 10, (M G+ Ky —ko|/K)
qla+ky—ky

C. Higher-order terms
fkl( 1- 5l,n1fk1+q) f k2( 1- 51,n2f szq)

1
281—8n1—8n2+ gk, T ek, " €k +q Ek,—q

The exchange energy terms with twd9=9 interactions
correspond to the diagrams shown on Fig&)41(i). The

(29
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where f, = 0(K—|k|) is the T=0 Fermi distribution. Be-

cause of the existence of intersubband transitions induced by
the finite well width, we have to consider intrasubband

(ny=n,=1) as well as intersubbandn{#1,n,#1) and
intersubband-intrasubbandh,(+#1=n, or n,#1=n;) pro-
cesses. Let us consider their contributions separately.

(i) (1—1,1-1) transitions. We first note that, since
V1n1;1n2(0)=51,n151,n2, these transitions are the only ones
appearing in the exact 2D limita=0 or, equivalently,
A=0). For a finite width they give

E(Cintra)()\) =—N ROBéintra)()\)’

[ e@rares

(26)

d’Q d’Q, d*Q,

(intra) _ 1
B NT g usmeee | ] Qo))

Q2=1<|Q-Ql
X{

2Vi11(NQ)
Q2

B V1114 AQ)V11.1( N [Q+ Q1 — Qo)

QIQ+Q;—Qy

}. (27)

For A=0, we recover the leading term of the exact 2D
correlation energy,” as expected. For small, we can ex-
pandV,;.1(AQ) and, from it, deduce the analytical expan-
sion of B{"™@(\). Singular contributions, coming from
Q~\"1, appear at second order, leading toAZl\) term.
The first terms of th&(""(\) expansion are

4(m—2)(47%—15)
972

BUN(\)=2(1-1In2)—0.229-

264424225
7272

=0.385-1.258 — 2.133\%In\ + O(\?).

407 — ) )
— AN\ +O(\?)

(28)

We can also calculat8™¥(\) numerically. The direct
term can be reduced to a first-order integral by using

J szj d?Q !
0=1=10+0l  tJau=1=0,-q “2Q:1(Q+Q1—Qy)

=2wa(§),

1
P(O0<x<1)=1-— x+—sm Yx)— 2

X[ (x?+1)E(x)+ (x*—1)K(x)],

]

whereK(x) and E(x) are the complete elliptic integrals of

(29

2
5% 3x (x*+1)E

W1=X)= o

the first and second kinds. The exchange term has been ¢

culated as a quintuple integral. The resultBZ"®(\) can
be fitted over the whole density range<@ <\ by the fol-
lowing expression:

QUASI-TWO-DIMENSIONAL ELECTRON GAS: EXCHANGE ...
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0.385+2.185:

(intra) ~
BT (M) 1+8.767\ +13.11\?"

(30)

BIN")(\) decreases from 0.385 to 0.124 wherincreases
from O to\g.

(i) (1—1,1—>n+1) transitions. The contribution to the
correlation energy coming from processes in which one elec-
tron is excited outside the lowest subband cancels with the
well width. Indeed, asv,;.1,(AQ) behaves as\Q in the
small limit, this contribution must cancel as. Moreover,
asVi1.1,=0 for even values of, the electron excited out-
side then=1 subband can only reach subbands with odd
parity. From Eq.(25), we precisely find

EC"P (M) = = NRA bV (M), (31)
d2
0= 53, [ [ o Q)
X[Zvil;ln()\Q) B Vll;ln()\Q)Vll;ln()\Q’)}
Q2 QQI ’
(32
where
Il(Q!Q,):f ”<1<\Q"+Q|d Q f pP=1 d2
Q"+Q-Q'[=1 [P-Ql,|P-Q'I<1
(33

is the area inside two circles and outside a third one. The
analytical expression dfy(Q,Q’) is given in the Appendix.
From Eq.(32), it is not obvious thabgl)(O) is finite. Nev-
ertheless, by settingQ=0Q; andQ’'=Q+Q,, we find

| ¢a,

b(A\) can be calculated as a triple integral. For
0<\=<)\,, it decreases from 0.0115 to 0.0052. Excellent
agreement with numerically obtained values P ()) is
provided by

VZ.1(Q1)

=(0.0115.
Qi(n?—1+8Q9)

‘s

n=3

bM(0)= (34)

0.0115+0.0909\2
T 1+12512+9.185.%"

bM(x (35

(i) (1 —n;#1,1—-n,#1) transitions.Turning to processes
in which the two electrons are excited outside the lowest
subband, we first note that the corresponding contribution to
the correlation energy also cancels\&swith the well width.
Moreover, sincellnl;lnf 0 for odd values ofif,—n;), the

two electrons can only reach subbands of the same parity.
rom Eq.(25) we precisely find

E0Me (5 )= — NRoA2DP (V) (36)
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2 d2Q1 d2Q2
(2) -
b= 2, X, f fn§+n§—2+8Q1-(Q1+>\Qz)

2V§nl ;1n2( Ql)

J
xJ(Q2) Q’
Vi, :1n,(Q1)Vin,11n,(|Q1+AQ2))
- , (37)
Q1|Q1+1Q,

where J(Q) is given by Eq.(15). For 0<\A<\g, b® in-
creases from 0.0316 to 0.0397, and can be fitted by the fol-
lowing expression:

@ 0.0316+0.167\2+0.0445.* B My T ~<
be™(N)= 2 : (38) ¢
1+4.798\ 0.1 . 1 \ ] . ] ; 1
0.0 0.2 0.4 0.6 0.8 A,
(iv) Direct and exchange second-order correlation en- A
ergy.Summing intrasubband and intersubband contributions,

we obtain FIG. 4. “Bare” second-order correlation energy in Rydberg

units, as a function oh. At small \, the dominant contribution
EUT®= — NRy[BI"™@(\)+A2BUMe (N )], BN (\) comes from intrasubband processes, i.e., from

(39) n;=n,=1 in Figs. 3a) and 3b).
B (\)=bP(\)+bP(\). From Eq.(41), B®()) is obtained as a sum of triple inte-

) o (nra) grals. For G=A<\,, it decreases from 0.0795 to 0.0092. A
The intrasubband contributio®;™"“(\) decreases from g of Bga)()\) can be obtained by

0.385 to 0.124 when increases from 0 ta.,, while the

intersubband contribution2B{™®)(\) increases from 0 to @ 0.0795-0.024%
0.0337 and thus remains small when compared to the intra- Be (M= 1+3.07QA+3550\2"
subband term.

(44)

The anomalous contribution to the second-order correlation
2. Anomalous exchange term energy \*B@ (M) increases withx from 0 to 0.005 (for

The “anomalous” exchange term, corresponding to the)‘:)‘(’)’ and is thus almost negligible with respect to the

diagram of Fig. &), does not cancel af=0 in quasi-2D direct and exchange terms.
systems, because of the existence of intersubband processes
induced by the finite well width. This term, given by E48)

of Ref. 12, cancels with the well width as* [a \? factor The well-width dependence of the correlation term with
comes from the small- value of the twoVy;.3,, and an  two V{379 only is given by

additional N2 comes from the energy denominator
(e1—€p)]. We precisely find

3. “Bare” second-order correlation energy

EE:Z): _NRO[BE:intra)()\)_'_)\ZBginter)()\)+)\4Bga)()\)]
= —NRoBc(N). (45

E@=—NR\*BP()), (40)
When\ increases from 0 ta o, B.(\) decreases from its
@~ 4 1 o o , exact 2D value 0.385 to 0.162. The “bare” correlation en-
Be (M= ans 52__1f f d“Q d°Q" 12(Q,Q") ergy (like the exchange energwf a quasi-2D system is al-
- ways smaller than the exact 2D one, the diminution being
Vi1 1n(AQ)V11:1n(AQ") significant for usual well widths.
QQ’ ; (41) In Fig. 4 we plotB(\) and the intrasubband contribution
BU"")(\). These two curves are in fact rather close, the
where dependence of the “bare” second-order correlation energy
being dominated by direct and exchange intrasubband pro-
1,(0,Q") = d2p (42)  cesses. The intersubband contribution to the direct and ex-
P.|P-QlIP-Q’|<1 change terms plus the anomalous term tend to compensate

is the area inside three circles. The analytical expression J]or.the.decrlease qflthe intrasubband term, but this compen-
1,(Q,Q’) is given in the Appendix. sation Is only partial.

TheA=0 limit of B is easily obtained from the small- _ _
q limit of Vy1.4,(q). We find B. Mixed Hartree —second-order correlation energy

If we now consider terms with two”(9%*9 and one

B(¥(0) = 5 27 77_220 0795 43 719=9) at least, we generate the mixed Hartree—second-order
¢ 3 27 45 ' correlation energy terms. The leading ones contaire
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Q1 Qw 101 0.3 I——

(=]
1
\

)

W o
W\ &
1

S5
\
1
1

1 1 2 By
(a) (b) (c)
01 N
Q1
1 11 1 _ 1
1@?}'01 1 @'ﬂ""ﬂj@ 1 0.0 A ] A ] A 1 , ]
" 0.0 0.2 0.4 0.6 A 0.8 7»0
o
(d) (e) (f) FIG. 7. Correctionﬁ()\) to the exact 2D correlation energy,

defined in Eq(48), as a function of the density.

FIG. 5. Mixed Hartree—second-order correlation diagrams. The ) o .
intersubband diagram®)—(f), in which all n differ from 1, make  actions, we get rid of their singularities and generate a term
contributions of higher order in than the intrasubband diagrams in (r¢Inrg analogous to the one which appears in thex-
(a) and(b). Besides diagrartf), they all come from adding a “tad- pansion of the exact 2D correlation energy.
pole” to the bare second-order diagrams. We thus conclude that, if we want to consider more terms
in the smallr expansion of the quasi-2D correlation energy
than the one of Eq45), we must first include the intrasub-

7479 only. A simple way to construct the corresponding band ring diagrams which make gjfprg) contribution. Next,

diagrams is to add one "tadpole” to the bare second-orde(Ne must add the other third-order intrasubband diagrams,

e e oD r, £ S 5 those in Figs(8 an o, which ae . oy
s (9-0) . : Nergy. then can we consider the intrasubband mixed Hartree—
to the additionalZ7'9=® matrix element, with possible extra

factorsh coming from intersubband processes. We do fin econd-order correlation temigigs. §a) and b)] which

that the intrasubband diagrams of Figéa)sand 5b) are in are in (sh).
(rg\), while all other one$Figs. 5c), 5(d), and Fe)] are of
higher order in\. If we consider the particular diagram of
Fig. 5(e), we find that for smalk the corresponding termis  From the above results we can deduce the part of the
in r A" [with \* coming from the bare diagram of Fig(@,  Coulomb energy of a quasi-2D electron gas which is induced
(rs\) coming from the?(9=9 matrix element, and? com- by finite-momentum-transfer excitations, up to second order
ing from the energy denominator of the-In’) intersub-  in rg. We find®

band excitatioh

IV. COULOMB ENERGY TO SECOND ORDER IN rg

There are in fact other types of mixed Hartree-correlation Eé‘(‘,ﬁm: Ex+Ec
diagrams in which the additiona?{9=9 are not associated 1
With_“tanoles.’.’ Or!e of them is. shown in Fig.(B: Here the =NRy| —[ — 1.200+ A(\)]
719=0 interaction is used to link two exchange diagrams. s

We can show that in the small-limit, the corresponding _
term behaves as\”. +[—0.385+B(\)]+O(rdnry)|,  (46)
If we want to include all the terms inx((9% )2 7a=0 jn
the correlation energy, it is necessary to compare them wittyhere A(\) and B(\) are the corrections to the exact 2D

the “bare” third-order correlation terms @n%(q¢o))3- Some  exchange and correlation energies. They are given by
of them are shown in Fig. 6. All being iref)®, they area

priori of the same order img. Among them, the ring dia- AN =A(0)—AN), (47

gram of Fig. 6a) is in fact singular in the smatflimit. By

summing all ring diagrams with three or more4*? inter- B(A\)=BUM¥(0)—[BM(\)+\2B{Me()\)
B (M) ]+ NBy(N), (48)

1 whereA,(\) is given by Eq.(14) and shown in Fig. 2. Note
v 1 1 that B(\) contains the finite width effect on the dominant
. ! term of the correlation energy as well as the contribution of
the first mixed Hartree-exchange term. The well-width de-
pendence oB(\) is shown in Fig. 7.
(a) - (b) (c) It can be interesting and useful to compare tloe:Q)
corrections to the exact 2D Coulomb energy with the Hartree
FIG. 6. A few “bare” third-order correlation diagrams. energy’ The Hartree energy, as induced by tAé1=% part

1
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2

!

of the Coulomb interaction, comes from the charge separa-

tion between electrons and ions. This charge separation re- a’lzcosl(?
duces to zero in the zero-well-width linif,so that the Har-
tree energy can also been seen as a well-width correction to

. a,=cos !

[ (A2 12 __ ’ 1/2]
the exact 2D Coulomb energy. Using Ref. 9, we find that the az=cos ! (a"+4q""~ 299’ cosh) ’ (A1)
719=9 expansion of this Hartree energy can be written in I 2 J
the form
) . g—q’cosd
1 1= COs 2 12 __ ’ 12|
En=NR, r—aHx—x4bH+0(rs)}, (49) (4°+q""—29q"cost) ™
S
'— 7
so that the total Coulomb energy re¥ds =cos ! 9-49¢o
)% 6,=cos (7 q'7—2qq cow) ™2 (A2)
1
2qq
+[—0.385+B(N)]+O(rglnrg) ;. (50
: ot S)] 0 P(0 =1 (x—simo), (A3

A(N\) andB(\) are shown in Ref. 12. The largest contribu-
tion to A(A) comes from the electrostatic energy necessary (Ad)
to separate the electrons from the i0Ag\) is thus much
larger for ions outside the electron layer than for ions inside. 2ot o O it e B
Besides this naive electrostatic term, the rest of the Hartree  (q,q")=1|2 sir(i) 2 Sir(l—H),
part of A(\), coming from the deformation of the electron 2 2
wave functions in the well, is of the order of the effect of the

2 sir(

f(xy,2)=3[2(x*y?+y?Z%+2°x%) = (x*+y*+ 241",

~ a2+ a3z3— 01

form factor on the exchange energy measurediby). _

Turning to B(\), we find that its smalk behavior is 2
always dominated byintrasubbanddirect and exchange- +o(ai+as—0,)+ o(ar+az—0;).  (A5)
correlation energies, while at larger densities the result
strongly depends on the ion configuration. Indeed, for densiBy considering the various geometrical configurations corre-
ties close to the two-subband filling threshaldd for ions on  sponding to the possible relative positions of the three
one side of the electron layer, the Hartree part is large andircles, we find the following results:
controlsB(\). Conversely, for ions inside the well, the in-

trasubband correlation term still dominates. l,=2¢(2a;) for g=gq’'s2 and Osd< a2_alé )
A6

+o(a+ay,—0)

V. CONCLUSION
1,=2¢(2a,) for g'sg<2 and C<fl<a;— a,,

We have calculated the exchange energy and the second- (A7)
order correlation energy of #=0 quasi-2D electron gas,
taking into account the finite width of the well. This finite 1,=K(q,q’) for q,q'<2 and|a;—ay|<f<a;+ay,

width generates a form factor which modifies thg+0) (A8)
Coulomb interaction and, in particular, allows intersubband

excitations. It also yields ag=0) Coulomb interaction and 12=2¢(2a3) for q+q'<2 anda;+ass<éd<m,
thus generates mixed Hartree-exchange and Hartree- (A9)
correlation terms which come from mixed+€0,q+#0) pro-

cesses. 1,=2¢(2a3) for 0<2—q=<q's<\4—q°

We show that for electrons in the lowest subband only,
these exchange and correlation energies can be reduced by a
factor of the order of 2 when compared with their exact 2D
value.

and aq+ a,<0<p, (Al10)

I,=0 for g,q’'<2 with g>+q'?=4

and aq+ a,<0<p, (A11)
APPENDIX: 1, AND I, INTEGRALS

The integrall; (q,q’) defined in Eq.33) represents the 1,=0 for [q—q'|<2 and 0<6<B. (A12)

area inside two circles centered qtandq’ and outside & o the configurations corresponding to E4s6) to (A12),
third circle centered at the origin 0, all circles having a radiusye pave

equal to 1. The integrdl, (q,q’) defined in Eq(42) repre-

sents the area inside the same three circles. These areas can 1,=2¢(2asz)—|,. (A13)
be expressed as functions@fq’, and the angle# between
g andq’'(0=6<m). For all other values of], q', and 6, 1, andl, are equal to

Let us set ZEro.
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