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We calculate theT50 exchange energy and correlation energy leading term of a quasi-two-dimensional
electron gas localized in a doped semiconductor quantum well, taking into account the finite well width. Here
we consider electron densities low enough to have electrons in one subband only.@S0163-1829~96!06119-X#

The exchange and correlation energies of an exact two-
dimensional~2D! electron gas atT50 were calculated long
ago1–4 as an expansion in the 2D average distancer s defined
as

nsp~r sa0!
251, ~1!

wherea05\2/me2 is the Bohr radius,5 andns5N/S is the
two-dimensional electron density. Thisr s expansion is gen-
erated by a perturbative treatment of the Coulomb interaction
similar to the one done in the 3D case. The Coulomb first-
order term—also called the exchange energy—makes~as in
3D! an R0 (r s)

21 contribution, whereR05me4/2\2 is the
Rydberg. The Coulomb second-order term stays finite, and
makes a contribution inR0 (r s)

0. At third order only, we
start to find singular contributions generated by small
momentum-transfer excitations which are similar to those
appearing in the direct second-order term of the 3D case.
Indeed, these small-q processes, which give rise to a
R0 lnr s contribution in 3D, induce in 2D a logarithmic term
starting inR0r slnrs only.

2,3

In the case of a quasi-2D electron gas, the finite width of
the quantum well modifies the exact 2D results in two ways.

~i! First, the Coulomb matrix elements, associated with
finite momentum-transfer excitations, appear as the exact 2D
one (2pe2/q) multiplied by a form factor which depends on
the well width.6 This form factor modifies the contributions
of the intrasubband transitions. It also, and mostly, allows
intersubband transitions which generate additional contribu-
tions to the Coulomb energy: As the intersubband energy
difference tends to infinity in the zero-well-width limit, these
intersubband virtual excitations are negligible for very nar-
row wells and of course do not enter the exact 2D Coulomb
energy. They appear at finite width only, and their contribu-
tion increases with the well width.

~ii ! Second, the finite width induces Coulomb excitations
with zero-momentum transfers. If taken alone, theseq50
Coulomb excitations give rise to the Hartree energy7,8 al-
ready studied in a previous work.9 When included in addition
to qÞ0 processes, theseq50 excitations generate additional

mixed Hartree-exchange and Hartree-correlation terms to the
usual smallr s expansion of the Coulomb energy.

In this paper, we study the effect of theqÞ0 Coulomb
form factor on the quasi-2D exchange10–13 and
correlation12,14 energies. In addition to the usual direct and
exchange second-order terms, we show that intersubband ex-
citations generate an ‘‘anomalous’’ second-order term which
does not exist in theT50 exact 2D and 3D Coulomb energy.
We also calculate the contributions of the mixed Hartree-
exchange and Hartree-correlation terms to the Coulomb en-
ergy.

We will restrict ourselves here to densities large enough
to haver s,1 but low enough to have electrons in the lowest
n51 subband only. The existence of electrons in more than
one subband raises additional difficulties due to the subband
filling changes induced by the Coulomb interaction. These
difficulties are beyond the scope of this paper and will be
studied in a specific work.

For electrons in one subband only, we have

«11«K,«2 , ~2!

where«n is the free-electron localization energy, and«K is
the 2D Fermi energy,«K5\2K2/2m with K252pN/S. For
a well of widtha, with infinite barriers,«n5\2p2n2/2ma2,
so that Eq.~2! implies

l5~2p!21Ka,l05A3/2.0.866. ~3!

This dimensionless parameterl turns out to be the appropri-
ate one to measure the effect of a finite well width on the
Coulomb energy. With the (2p)21 prefactor in the definition
of l, the coefficients of thel expansion of this energy are
found to be of the order of 1. Moreover, asl remains smaller
than 1 over the whole one-subband filling domain, the ana-
lytical expansions inl of the various contributions to the
Coulomb energy stay rather close to their exact values ob-
tained numerically.

The paper is organized as follows. In Sec. I we recall the
formalism of Refs. 9 and 12, and give the explicit expression
of the form factor. In Sec. II we calculate the bare exchange
energy and the first mixed Hartree-exchange contribution.
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Section III is devoted to the correlation energy. We explicitly
calculate the direct, exchange, and anomalous terms of the
‘‘bare’’ second-order correlation energy, and evaluate the
mixed Hartree–second-order correlation terms.

I. COULOMB INTERACTION
IN A QUASI-2D ELECTRON GAS

We consider a system made ofN electrons localized in a
quantum well andN ions inside or outside the well. Let
wnk be the free electron wave functions in the well and
anks

1 the corresponding creation operators. In terms of these
anks

1 , the free-electron Hamiltonian is diagonal and reads

H05(
nks

~«n1«k!anks
1 anks . ~4!

In the case of an infinite well located at 0,z,a, wnk and
the corresponding energies«n and«k are simply

wnk~r,z!5
eik•r

AS
wn~z!, wn~z!5S 2aD

1/2

sin
npz

a
,

~5!

«k5
\2

2m
k2, «n5

\2

2m

n2p2

a2
.

In the following, explicit results will be given for infinite
well barriers only, for which most of the calculations can be
performed analytically. However, results for other types of
wells can be formally obtained in the same way, by using the
appropriatewn(z) and«n for finite barriers.

In order to get rid of spurious divergences arising from
the long-range character of the Coulomb forces, we consider
the total Coulomb interaction of theN electron-ion system,
i.e., the sum of the electron-electron, electron-ionand ion-
ion interactions. Moreover, we will assume here that the di-
electric constants are the same inside and outside the well.
The effects induced by a dielectric constant difference and
the image contributions it generates have been studied in
Ref. 15, and are rather small in most cases.

We can divide the total Coulomb interaction into two
parts corresponding to zero-momentum-transfer and finite-
momentum-transfer excitations, respectively.

For an ion densitynsr i(z), the first part is given by9

V ~q50!5
1

2

2pe2

Sa21(
n1n18

n2n28

(
k1k2
s1s2

Wn1n18 ;n2n28
an1k1s1

1 an2k2s2

1

3an
28k2s2

an
18k1s1

, ~6!

Wn1n18 ;n2n28
52E E dz1 dz2

uz12z2u
a

@wn1
* ~z1!wn

18
~z1!

2r i~z1!dn1n18#@wn2
* ~z2!wn

28
~z2!2r i~z2!dn2n28#.

~7!

Explicit analytical expressions of theWn1n18 ;n2n28
are given in

Ref. 9, for different ion configurations.
The Coulomb interaction with finite momentum transfers

reads12

V ~qÞ0!5
1

2(qÞ0

2pe2

Sq (
n1n18n2n28
k1k2s1s2

Vn1n18 ;n2n28
~aq/2p!an1k11qs1

1

3an2k22qs2

1 an
28k2s2

an
18k1s1

, ~8!

whereVn1n18 ;n2n28
is the form factor. It depends on the finite

well width throughwn(z) but is independent of the ion con-
figuration. It is precisely given by

Vn1n18 ;n2n28
~Q!5E E dz1 dz2 e

22pQuz12z2u/awn1
* ~z1!

3wn
18
~z1!wn2

* ~z2!wn
28
~z2!. ~9!

In the (Q50) limit, the form factor is diagonal and reduces
to Vn1n18 ;n2n28

(0)5dn1n18dn2n28; this corresponds to the exact

2D case,a50, for which the Coulomb matrix element is
simply 2pe2/Sq. For infinite well barriers, i.e., forwn(z)
given by Eq.~4!, from Eq. ~9! we obtain the following ana-
lytical expression of the form factor:

Vn1n18 ;n2n28
~Q!5G0~Q!dn1n18dn2n281Gn12n

18
~Q!@d un12n

18u,un22n
28u2d un12n

18u,n21n
28
#1Gn11n

18
~Q!@dn11n

18 ,n21n
28
2dn11n

18 ,un22n
28u#

2@11~21!n11n181n21n28#@12~21!n11n18e22pQ#@Gn12n
18
~Q!2Gn11n

18
~Q!#@Gn22n

28
~Q!2Gn21n

28
~Q!#, ~10!

Gn~Q!52Q/p~4Q21n2!. ~11!
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We can check that for smallQ the form factor diagonal
termsVn1n1;n2n2

(Q) tend to 1, while the nondiagonal terms

Vn1n1;n2n28
(Q) ~with n1Þn18 and/orn2Þn28) behave asQ.

The Coulomb energy of a quasi-2D electron gas is calcu-
lated as an expansion inV coul5V (q50)1V (qÞ0). The
V (q50) part of the Coulomb interaction, if take alone, gen-
erates the Hartree energy which has been calculated in Ref.
9. We have shown that the dimensionless parameter associ-
ated with theV (q50) expansion is

lH5K2a3/p4a05~4A2/p!r sl
3, ~12!

which stays smaller than 1 for electrons in one subband only
and for r s,1 ~in order to perform an expansion in
V (qÞ0)). This explains why the Hartree energy is quite ac-
curately given by the first plus possibly the second-order
term of theV (q50) expansion.

Here we study the other terms of the (V (q50)1V (qÞ0))
expansion of the energy, i.e., the terms with at least one
V (qÞ0).

II. EXCHANGE ENERGY

The exchange energy corresponds to all terms of the Cou-
lomb expansion with oneV (qÞ0), i.e., to terms inV (qÞ0))
(V (q50))p with p>0.

A. ‘‘Bare’’ exchange energy

The ‘‘bare’’ exchange energy (p50) corresponds to the
diagram of Fig. 1~a!. This term generates a contribution12,13

Ex0
5^0uV ~qÞ0!u0&52NR0r s

21Ax~l!. ~13!

We can transform the expression ofAx(l) given in Eq.~4!
of Ref. 12 into

Ax~l!5
1

A2p2E d2Q

Q
J~Q!V11;11~lQ!, ~14!

J~Q!5E Q8<1
uQ1Q8u<1

d2Q8

5H 2 cos21SQ2 D2QF12
Q2

4 G1/2 for 0<Q<2

0 for Q>2.

~15!

If l50, V11;1151 andAx(0)58A2/3p, which is the ex-
act 2D value of the exchange energy.1 For smalll, we can
expand V11;11 and deduce the following expansion of
Ax(l):

Ax~l!5A2F 83p
2
4p2215

12p
l1

64~p226!

135p
l2

2
4p4240p21105

60p
l3

1
1024~2p4230p21135!

23625p
l41O~l5!G

51.20020.918l10.826l220.749l3

10.658l41O~l5!. ~16!
We can also calculateAx(l) numerically by using the

exact value ofV11;11(Q). We find that the small-l expansion
of Ax(l) differs by less than 10% from its exact value at the
maximum expected discrepancy, i.e., at the (n51,n52)
subband crossoverl5l0 . Excellent agreement over the
whole 0<l<l0 range is obtained with the Pade´ approxi-
mant constructed from the first three terms of theAx(l)
expansion only, namely,

Ax~l!.
1.20010.361l

111.066l10.124l2 . ~17!

As shown in Fig. 2,Ax(l) is a decreasing function ofl
which varies from 1.200 to 0.750 for 0<l<l0 . This dimi-
nution, induced by the finite well width, is clearly significant.

B. Mixed Hartree-exchange energy

The first correction to this exchange energy, as induced by
q50 interactions, corresponds to the second-order mixed
Hartree-exchange term@cf. Fig. 1~b!#. It is given by Eq.~15!
of Ref. 12, and can be written as

Ex1
5NR0l

4Bx~l!, ~18!

where

Bx~l!5
32

p (
n.1

W11;1n

n221 E d2Q

lQ
J~Q!V11;1n~lQ! ~19!

stays finite whenl→0.
We find that the mixed Hartree-exchange energyEx1

is

r sl
4 smaller than the bare exchange energyEx0

. A factor

FIG. 1. Exchange diagrams:~a! ‘‘bare’’ term, i.e., without any
Hartree process.~b! First mixed Hartree-exchange term, i.e., with
one Hartree process.~c!–~i! Higher-order mixed Hartree-exchange
terms.@Note that in~e! n8 can be 1 as well.#
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(e2a)}(r sl) comes from theV (q50) interaction, another
factor (a)2}l2 comes from the energy difference between
statesw1k andwnk coupled by theV (q50) interaction, while
an additionall factor comes from theV11;1n(lQ) matrix
element which cancels asl whenl→0.

AsW11;1n depends on the ion densityr i(z), different ion
configurations are expected to give differentBx(l). How-
ever, as shown in Ref. 1, all configurations with ions outside
the electron layer give the sameW11;1n so that they give the
sameBx(l). Conversely, when ions are inside the well,
Bx(l) depends on the precise ion configuration.

Using the small-Q limit of V11;1n(Q), we can calculate
the small-l limit of Bx(l). For ions outside the electron
layer we find

Bx
~out!~0!5

20

3
2
54

p2 2
4p2

45
.0.318, ~20!

while for ionsevenly distributedinside the well, we find

Bx
~ in!~0!5

5

4p2 .0.127. ~21!

At the (n51,n52) subband crossover, numerical calcula-
tions show thatBx(l) is reduced by a factor of 3
@Bx

(out)(l0).0.107, whileBx
(in)(l0).0.043]. Excellent fits

of Bx(l) over the 0<l<l0 range are given by

Bx
~out!~l!.

0.31810.040l

111.838l10.929l2 , ~22!

Bx
~ in!~l!.

0.12710.016l

111.832l10.924l2 . ~23!

C. Higher-order terms

The exchange energy terms with twoV (q50) interactions
correspond to the diagrams shown on Figs. 1~c!–1~i!. The

dominant ones for smalll @Figs. 1~c! and 1~d!# contain a
diagonal matrix element (V11;11or V11;nn) and can be shown
to be inr sl

6 in the small-l limit. The other diagrams contain
a nondiagonal matrix elementV11;1n or V1n;1n8 and are thus
l smaller, i.e., inr sl

7.
As these second-order Hartree-exchange terms are all in

(r s)
1, they do not enter the second-orderr s expansion of the

exchange energy, which thus reads

Ex

NR0
5«x52

1

r s
Ax~l!1l4Bx~l!1O~r s!. ~24!

III. CORRELATION ENERGY

The correlation energy corresponds to all terms of the
Coulomb expansion of the energy with twoV (qÞ0) at least,
i.e., to terms in (V (qÞ0))m (V (q50))p with m>2 and
p>0. We concentrate here on the second-order term, i.e.,
m52.

A. ‘‘Bare’’ second-order correlation energy

The leading contribution to the correlation energy comes
from the term with twoV (qÞ0) only. The associated dia-
grams are shown in Figs. 3~a!–3~c!. The first two are the
usual direct and exchange diagrams analogous to those ap-
pearing in the second-order term of the 3D correlation en-
ergy. The third one does not appear in the usual diagram-
matic expansion of the 3D correlation energy since it cancels
atT50. However, this ‘‘anomalous’’ term does not cancel in
quasi-2D systems, due to the possibility of intersubband tran-
sitions.

1. Direct and exchange terms

For a u0& state with electrons in then51 subband only,
the usual direct and exchange terms@cf. Figs. 3~a! and 3~b!#
read12

Ec
~d1e!5S 2pe2

S
D 2(

qÞ0
(
n1n2
k1k2

F2V1n1 ;1n2
2 ~lq/K !

q2

2
V1n1 ;1n2

~lq/K !V1n1 ;1n2
~luq1k12k2u/K !

quq1k12k2u
G

3
f k1~12d1,n1f k11q! f k2~12d1,n2f k22q!

2«12«n12«n21«k11«k22«k11q2«k22q
, ~25!

FIG. 2. ‘‘Bare’’ exchange energy coefficientAx(l), defined in
Eq. ~13!, as a function of the density throughl defined in Eq.~3!.

FIG. 3. ‘‘Bare’’ second-order correlation diagrams. In~a! and
~b!, n can be equal to 1, while in~c! n must differ from 1 in order
to make a nonzero contribution.
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where f k5u(K2uku) is the T50 Fermi distribution. Be-
cause of the existence of intersubband transitions induced by
the finite well width, we have to consider intrasubband
(n15n251) as well as intersubband (n1Þ1,n2Þ1) and
intersubband-intrasubband (n1Þ15n2 or n2Þ15n1) pro-
cesses. Let us consider their contributions separately.

(i) (1→1,1→1) transitions. We first note that, since
V1n1 ;1n2

(0)5d1,n1d1,n2, these transitions are the only ones

appearing in the exact 2D limit (a50 or, equivalently,
l50). For a finite width they give

Ec
~ intra!~l!52NR0Bc

~ intra!~l!, ~26!

Bc
~ intra!~l!5

1

4p3EQ1<1<uQ11Qu
Q2<1<uQ22Qu

E E d2Q d2Q1 d
2Q2

Q•~Q1Q12Q2!

3F2V11;11
2 ~lQ!

Q2

2
V11;11~lQ!V11;11~luQ1Q12Q2u!

QuQ1Q12Q2u
G . ~27!

For l50, we recover the leading term of the exact 2D
correlation energy,2–4 as expected. For smalll, we can ex-
pandV11;11(lQ) and, from it, deduce the analytical expan-
sion of Bc

(intra)(l). Singular contributions, coming from
Q;l21, appear at second order, leading to a (l2lnl) term.
The first terms of theBc

(intra)(l) expansion are

Bc
~ intra!~l!52~12 ln2!20.2292

4~p22!~4p2215!

9p2 l

2
40p42264p21225

72p2 l2lnl1O~l2!

50.38521.258l22.133l2lnl1O~l2!. ~28!

We can also calculateBc
(intra)(l) numerically. The direct

term can be reduced to a first-order integral by using

E
Q1<1<uQ11Qu

d2Q1E
Q2<1<uQ22Qu

d2Q2

1

Q1•~Q1Q12Q2!

52pQcSQ2 D ,
c~0<x<1!5A12x21

1

x
sin21~x!2

2

3x2

3@~x211!E~x!1~x221!K ~x!#, ~29!

c~1<x!5
p

2x
2

2

3x F ~x211!ES 1xD1~12x2!K S 1xD G ,
whereK (x) andE(x) are the complete elliptic integrals of
the first and second kinds. The exchange term has been cal-
culated as a quintuple integral. The resultingBc

(intra)(l) can
be fitted over the whole density range 0<l<l0 by the fol-
lowing expression:

Bc
~ intra!~l!.

0.38512.185l

118.767l113.11l2 . ~30!

Bc
(intra)(l) decreases from 0.385 to 0.124 whenl increases

from 0 tol0 .
(ii) (1→1,1→nÞ1) transitions.The contribution to the

correlation energy coming from processes in which one elec-
tron is excited outside the lowest subband cancels with the
well width. Indeed, asV11;1n(lQ) behaves aslQ in the
small-l limit, this contribution must cancel asl2. Moreover,
asV11;1n50 for even values ofn, the electron excited out-
side then51 subband can only reach subbands with odd
parity. From Eq.~25!, we precisely find

Ec
~ inter1!~l!52NR0l

2bc
~1!~l!, ~31!

bc
~1!~l!5

4

p3(
n>3

E E d2Q d2Q8

n22118l2Q•Q8
I 1~Q,Q8!

3F2V11;1n
2 ~lQ!

Q2 2
V11;1n~lQ!V11;1n~lQ8!

QQ8
G ,
~32!

where

I 1~Q,Q8!5EQ9<1<uQ91Qu
uQ91Q2Q8u<1

d2Q95E P>1
uP2Qu,uP2Q8u<1

d2P

~33!

is the area inside two circles and outside a third one. The
analytical expression ofI 1(Q,Q8) is given in the Appendix.
From Eq.~32!, it is not obvious thatbc

(1)(0) is finite. Nev-
ertheless, by settinglQ5Q1 andQ85Q1Q2 , we find

bc
~1!~0!5

4

p (
n>3

E d2Q1

V11;1n
2 ~Q1!

Q1
2~n22118Q1

2!
.0.0115. ~34!

bc
(1)(l) can be calculated as a triple integral. For
0<l<l0 , it decreases from 0.0115 to 0.0052. Excellent
agreement with numerically obtained values ofbc

(1)(l) is
provided by

bc
~1!~l!.

0.011510.0909l2

1112.51l219.185l4 . ~35!

(iii) (1→n1Þ1,1→n2Þ1) transitions.Turning to processes
in which the two electrons are excited outside the lowest
subband, we first note that the corresponding contribution to
the correlation energy also cancels asl2 with the well width.
Moreover, sinceV1n1 ;1n2

50 for odd values of (n22n1), the
two electrons can only reach subbands of the same parity.
From Eq.~25! we precisely find

Ec
~ inter2!~l!52NR0l

2bc
~2!~l!, ~36!
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bc
~2!~l!5

2

p3 (
n1>2

(
n2>2

E E d2Q1 d
2Q2

n1
21n2

22218Q1•~Q11lQ2!

3J~Q2!F2V1n1 ;1n2
2 ~Q1!

Q1
2

2
V1n1 ;1n2

~Q1!V1n1 ;1n2
~ uQ11lQ2u!

Q1uQ11lQ2u
G , ~37!

whereJ(Q) is given by Eq.~15!. For 0<l<l0 , bc
(2) in-

creases from 0.0316 to 0.0397, and can be fitted by the fol-
lowing expression:

bc
~2!~l!.

0.031610.167l210.0445l4

114.798l2 . ~38!

(iv) Direct and exchange second-order correlation en-
ergy.Summing intrasubband and intersubband contributions,
we obtain

Ec
~d1e!52NR0@Bc

~ intra!~l!1l2Bc
~ inter!~l!#,

~39!

Bc
~ inter!~l!5bc

~1!~l!1bc
~2!~l!.

The intrasubband contributionBc
(intra)(l) decreases from

0.385 to 0.124 whenl increases from 0 tol0 , while the
intersubband contributionl2Bc

(inter)(l) increases from 0 to
0.0337 and thus remains small when compared to the intra-
subband term.

2. Anomalous exchange term

The ‘‘anomalous’’ exchange term, corresponding to the
diagram of Fig. 3~c!, does not cancel atT50 in quasi-2D
systems, because of the existence of intersubband processes
induced by the finite well width. This term, given by Eq.~18!
of Ref. 12, cancels with the well width asl4 @a l2 factor
comes from the small-l value of the twoV11;1n , and an
additional l2 comes from the energy denominator
(«12«n)]. We precisely find

Ec
~a!52NR0l

4Bc
~a!~l!, ~40!

Bc
~a!~l!5

4

p3l2(
n>3

1

n221E E d2Q d2Q8 I 2~Q,Q8!

3
V11;1n~lQ!V11;1n~lQ8!

QQ8
, ~41!

where

I 2~Q,Q8!5E
P,uP2Qu,uP2Q8u<1

d2P ~42!

is the area inside three circles. The analytical expression of
I 2(Q,Q8) is given in the Appendix.

Thel50 limit of Bc
(a) is easily obtained from the small-

q limit of V11;1n(q). We find

Bc
~a!~0!5

5

3
2

27

2p2 2
p2

45
.0.0795. ~43!

From Eq.~41!, Bc
(a)(l) is obtained as a sum of triple inte-

grals. For 0<l<l0 , it decreases from 0.0795 to 0.0092. A
fit of Bc

(a)(l) can be obtained by

Bc
~a!~l!.

0.079520.0249l

113.079l13.550l2 . ~44!

The anomalous contribution to the second-order correlation
energy l4Bc

(a)(l) increases withl from 0 to 0.005~for
l5l0), and is thus almost negligible with respect to the
direct and exchange terms.

3. ‘‘Bare’’ second-order correlation energy

The well-width dependence of the correlation term with
two V(qÞ0) only is given by

Ec
~2!52NR0@Bc

~ intra!~l!1l2Bc
~ inter!~l!1l4Bc

~a!~l!#

52NR0Bc~l!. ~45!

When l increases from 0 tol0 , Bc(l) decreases from its
exact 2D value 0.385 to 0.162. The ‘‘bare’’ correlation en-
ergy ~like the exchange energy! of a quasi-2D system is al-
ways smaller than the exact 2D one, the diminution being
significant for usual well widths.

In Fig. 4 we plotBc(l) and the intrasubband contribution
Bc
(intra)(l). These two curves are in fact rather close, thel

dependence of the ‘‘bare’’ second-order correlation energy
being dominated by direct and exchange intrasubband pro-
cesses. The intersubband contribution to the direct and ex-
change terms plus the anomalous term tend to compensate
for the decrease of the intrasubband term, but this compen-
sation is only partial.

B. Mixed Hartree–second-order correlation energy

If we now consider terms with twoV (qÞ0) and one
V (q50) at least, we generate the mixed Hartree–second-order
correlation energy terms. The leading ones containone

FIG. 4. ‘‘Bare’’ second-order correlation energy in Rydberg
units, as a function ofl. At small l, the dominant contribution
Bc
(intra)(l) comes from intrasubband processes, i.e., from

n15n251 in Figs. 3~a! and 3~b!.
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V (q50) only. A simple way to construct the corresponding
diagrams is to add one ‘‘tadpole’’ to the bare second-order
diagrams of Fig. 3. All these terms area priori
(e2a);(r sl) smaller than the bare correlation energy, due
to the additionalV (q50) matrix element, with possible extra
factorsl coming from intersubband processes. We do find
that the intrasubband diagrams of Figs. 5~a! and 5~b! are in
(r sl), while all other ones@Figs. 5~c!, 5~d!, and 5~e!# are of
higher order inl. If we consider the particular diagram of
Fig. 5~e!, we find that for smalll the corresponding term is
in r sl

7 @with l4 coming from the bare diagram of Fig. 3~c!,
(r sl) coming from theV (q50) matrix element, andl2 com-
ing from the energy denominator of the (1→n8) intersub-
band excitation#.

There are in fact other types of mixed Hartree-correlation
diagrams in which the additionalV (q50) are not associated
with ‘‘tadpoles.’’ One of them is shown in Fig. 5~f!: Here the
V (q50) interaction is used to link two exchange diagrams.
We can show that in the small-l limit, the corresponding
term behaves asr sl

7.
If we want to include all the terms in (V (qÞ0))2 V (q50) in

the correlation energy, it is necessary to compare them with
the ‘‘bare’’ third-order correlation terms in (V (qÞ0))3. Some
of them are shown in Fig. 6. All being in (e2)3, they area
priori of the same order inr s . Among them, the ring dia-
gram of Fig. 6~a! is in fact singular in the small-q limit. By
summing all ring diagrams with three or moreV (qÞ0) inter-

actions, we get rid of their singularities and generate a term
in (r slnrs) analogous to the one which appears in ther s ex-
pansion of the exact 2D correlation energy.

We thus conclude that, if we want to consider more terms
in the small-r s expansion of the quasi-2D correlation energy
than the one of Eq.~45!, we must first include the intrasub-
band ring diagrams which make a (r slnrs) contribution. Next,
we must add the other third-order intrasubband diagrams,
such as those in Figs. 6~b! and 6~c!, which are inr s ; only
then can we consider the intrasubband mixed Hartree–
second-order correlation terms@Figs. 5~a! and 5~b!# which
are in (r sl).

IV. COULOMB ENERGY TO SECOND ORDER IN r s

From the above results we can deduce the part of the
Coulomb energy of a quasi-2D electron gas which is induced
by finite-momentum-transfer excitations, up to second order
in r s . We find16

Ecoul
~qÞ0!5Ex1Ec

5NR0F 1r s @21.2001Ã~l!#

1@20.3851B̃~l!#1O~r slnr s!G , ~46!

where Ã(l) and B̃(l) are the corrections to the exact 2D
exchange and correlation energies. They are given by

Ã~l!5Ax~0!2Ax~l!, ~47!

B̃~l!5Bc
~ intra!~0!2@Bc

~ intra!~l!1l2Bc
~ inter!~l!

1l4Bc
~a!~l!#1l4Bx~l!, ~48!

whereAx(l) is given by Eq.~14! and shown in Fig. 2. Note
that B̃(l) contains the finite width effect on the dominant
term of the correlation energy as well as the contribution of
the first mixed Hartree-exchange term. The well-width de-
pendence ofB̃(l) is shown in Fig. 7.

It can be interesting and useful to compare the (qÞ0)
corrections to the exact 2D Coulomb energy with the Hartree
energy.9 The Hartree energy, as induced by theV (q50) part

FIG. 5. Mixed Hartree–second-order correlation diagrams. The
intersubband diagrams~c!–~f!, in which all n differ from 1, make
contributions of higher order inl than the intrasubband diagrams
~a! and~b!. Besides diagram~f!, they all come from adding a ‘‘tad-
pole’’ to the bare second-order diagrams.

FIG. 6. A few ‘‘bare’’ third-order correlation diagrams.

FIG. 7. CorrectionB̃(l) to the exact 2D correlation energy,
defined in Eq.~48!, as a function of the density.
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of the Coulomb interaction, comes from the charge separa-
tion between electrons and ions. This charge separation re-
duces to zero in the zero-well-width limit,17 so that the Har-
tree energy can also been seen as a well-width correction to
the exact 2D Coulomb energy. Using Ref. 9, we find that the
V (q50) expansion of this Hartree energy can be written in
the form

EH5NR0F 1r saHl2l4bH1O~r s!G , ~49!

so that the total Coulomb energy reads12

EH1Ecoul
~qÞ0!5NR0H 1r s @21.2001A~l!#

1@20.3851B~l!#1O~r slnr s!J . ~50!

A(l) andB(l) are shown in Ref. 12. The largest contribu-
tion to A(l) comes from the electrostatic energy necessary
to separate the electrons from the ions.A(l) is thus much
larger for ions outside the electron layer than for ions inside.
Besides this naive electrostatic term, the rest of the Hartree
part of A(l), coming from the deformation of the electron
wave functions in the well, is of the order of the effect of the
form factor on the exchange energy measured byÃ(l).

Turning to B(l), we find that its small-l behavior is
always dominated byintrasubbanddirect and exchange-
correlation energies, while at larger densities the result
strongly depends on the ion configuration. Indeed, for densi-
ties close to the two-subband filling thresholdand for ions on
one side of the electron layer, the Hartree part is large and
controlsB(l). Conversely, for ions inside the well, the in-
trasubband correlation term still dominates.

V. CONCLUSION

We have calculated the exchange energy and the second-
order correlation energy of aT50 quasi-2D electron gas,
taking into account the finite width of the well. This finite
width generates a form factor which modifies the (qÞ0)
Coulomb interaction and, in particular, allows intersubband
excitations. It also yields a (q50) Coulomb interaction and
thus generates mixed Hartree-exchange and Hartree-
correlation terms which come from mixed (q50,qÞ0) pro-
cesses.

We show that for electrons in the lowest subband only,
these exchange and correlation energies can be reduced by a
factor of the order of 2 when compared with their exact 2D
value.

APPENDIX: I 1 AND I 2 INTEGRALS

The integralI 1 (q,q8) defined in Eq.~33! represents the
area inside two circles centered atq and q8 and outside a
third circle centered at the origin 0, all circles having a radius
equal to 1. The integralI 2 (q,q8) defined in Eq.~42! repre-
sents the area inside the same three circles. These areas can
be expressed as functions ofq, q8, and the angleu between
q andq8(0<u<p).

Let us set

a15cos21S q8

2 D , a25cos21S q2D ,
a35cos21F ~q21q8222qq8cosu!1/2

2 G , ~A1!

u15cos21F q2q8cosu

~q21q8222qq8cosu!1/2G ,
u25cos21F q82q cosu

~q21q8222qq8cosu!1/2G , ~A2!

b5cos21Fq21q8224

2qq8 G ,
w~x!5 1

2 ~x2sinx!, ~A3!

f ~x,y,z!5 1
4 @2~x2y21y2z21z2x2!2~x41y41z4!#1/2,

~A4!

K~q,q8!5 f F2 sinS a11a22u

2 D ,2 sinS a11a32u2
2 D ,

2 sinS a21a32u1
2 D G1w~a11a22u!

1w~a11a32u2!1w~a21a32u1!. ~A5!

By considering the various geometrical configurations corre-
sponding to the possible relative positions of the three
circles, we find the following results:

I 252w~2a1! for q<q8<2 and 0<u<a22a1 ,
~A6!

I 252w~2a2! for q8<q<2 and 0<u<a12a2 ,
~A7!

I 25K~q,q8! for q,q8<2 and ua12a2u<u<a11a2 ,
~A8!

I 252w~2a3! for q1q8<2 and a11a2<u<p,
~A9!

I 252w~2a3! for 0<22q<q8<A42q2

and a11a2<u<b, ~A10!

I 250 for q,q8<2 with q21q82>4

and a11a2<u<b, ~A11!

I 250 for uq2q8u<2 and 0<u<b. ~A12!

For the configurations corresponding to Eqs.~A6! to ~A12!,
we have

I 152w~2a3!2I 2 . ~A13!

For all other values ofq, q8, andu, I 1 and I 2 are equal to
zero.
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