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Landau levels and persistent currents in nonuniform magnetic fields
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The single-particle energy spectra are calculated for a two-dimensional electron gas under perpendicularly
applied nonuniform magnetic fields. It is found that the spatial modulation of magnetic fields in an annular
geometry can lift the degeneracy of bulk Landau levels, and accordingly results in current-carrying states that
are distinguished from the edge states. The prominent features of the calculated energy spectrum are anticross-
ing and the repulsion of levels. The net current does not vanish in the ground state due to the presence of the
lower-lying current-carrying states below the Fermi energy. Quantum structures confined by electrostatic
potential barriers are also investigated within an independent electron approximation. Consequently, a rich
structure of persistent currents is obtained at zero temperature as a function of the electron number and
magnetic field variation.

[. INTRODUCTION hard wall boundaries enabled the nonvanishing curfett.
Also, a magnetically confined electron in a nonuniform mag-

When a uniform magnetic field is applied perpendicularlynetic field has been studied in inverse Aharonov-Bohm ar-
to an unbounded two-dimensional ideal electron gas, theangements, where attention was paid mainly to the energy
Landau levels emerge with infinite degenerd@n the other  eigenvalues compared to the Landau levels, not including the
hand, in a realistic situation a system is typically boundedassociated currents.
and so the density of each Landau level becomes finite. It Since the degeneracy of Landau levels can be lifted by a
can be estimated that the density of states is proportional tspatial modulation of applied magnetic fields it seems to be a
the magnetic field, which results in such interesting physicsvorthwhile endeavor to investigate a simple theoretical
as the Shubnikov—de Haas effédt.has been shown that the model that may generate current-carrying levels inside bulk.
degeneracy of the Landau levels is lifted near a barrier thdin this work we propose a simple quantum structure that
may represent a conduction band discontinuity, where thenables us to study in detail the lift of the degeneracy of bulk
magnetic field is applied in the plane of inter&tThis lift Landau levels and consequently to understand its effect on
of degeneracy gives rise to the interesting anticrossing anthe persistent currents in a quantum disk. We will present an
repulsion of levels in the energy spectrum that have recentlgxact numerical solution for the single-particle energy spec-
been extensively investigatéd:® The pronounced features trum by solving the relevant Schiimger equation and the
of the anticrossing and level repulsion can also be achieverksulting persistent current within an effective-mass approxi-
by perturbing the applied magnetic fields. By applying spa-mation. We hope that our model calculation may bring in-
tially modulated magnetic fields perpendicular to the inter-sight to the comprehension of magnetotransport on a smaller
face, interesting electronic and transport properties such dength scale than the average electron mean free path.
the oscillatory magnetoresistivity have been predicted The model we consider is described here briefly. We first
theoretically'~° and observed experimentall§;2° take an electron gas confined in one direction and assume

The Landau levels can be labeled by the radial quantunthat an external magnetic field is applied perpendicular to the
numbern and the magnetic indem in the direction of the interface, not uniformly but in a spatially modulated way.
applied fields when a cylindrical geometry is considered. FoiThe plane polar geometry is taken so that the magnetic fields
m=0 all levels are degenerate for a givan and thusm  are perturbed in an annulus shape. Our results show that this
plays a role similar to the guiding center of magnetic oscil-simple geometrical perturbation of applied magnetic fields
lation in Cartesian geometry. What is important is that nondnduces rich structures in the energy spectrum, such as anti-
of these levels carries current except the=0 level. The crossing and the repulsion of levels. Also, it is seen that the
levels with positivem for a givenn carry current. However, degeneracy of Landau levels is lifted in the bulk, which re-
they can be reinterpreted as belonging to a higher level witlsults in current-carrying states. Subsequently, the net equilib-
n—n+i, wherei=1. Thus, the equilibrium current vanishes rium currents are evaluated at zero temperature for a wide
for such a system, which may exclude time=0 orbital be- range of the applied magnetic fields as a function of the
cause there are infinitely many non-current-carrying orbits teelectron number. Although the Fermi energy is locked on the
be filled by electrons in the ground state, which all possesground orbit ofn=0, the total current does not vanish, and
the same lowest energy. In other words, the Fermi energy igistead, manifests an interesting structure. Next, quantum
locked on the lowest energy level. On the other hand, thelisk problems are considered by introducing an outer barrier
current-carrying levels can be lifted by imposing rigid wall (both a soft wall and a hard walat the distanc® from the
boundary conditions. Recently, persistent currents have beearigin in the limit of high magnetic fieldD>rg whererg is
calculated and analyzed for an annulus quantum ring, as wellhe magnetic length. In this case, the edge states emerge and
as a quantum disk where essentially the edge states near tpiy a crucial role in determining the Fermi energy, which
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wheree is the absolute value of the charge of an electron,

Y m} is the effective mass of the electro, is the energy

eigenvalue, and is the relevant vector potential to be speci-
fied. In the plane polar coordinaté;(p,<p) the vector po-
tential can be specified by choosing the symmetric gauge

( 1
EBp, pP<p1
A, (p)= 1Bp—i P1SP<p ©)
olp)= 2° 5 1 2
1 p%-#ﬁ)
=B (1—— ., P=p2.
\2 p pz

After substituting the vector potential into ER) with an
ansatz for the wave function of the form

1
Y(p,p)=—=—=R(p)expime), (4)

V27

. . . wherem is an integer, one can separate out the equations for
FIG. 1. Quantum structure considered: spatially modulated non,Ehe radial wave function. Here one should notice i
uniform magnetic fields are applied perpendicularly to a quantum : !

disk of radiusD where a field-free annulus with inner radipgand not the e!genyalue of the angular ”?0”?6”“4”‘ operator |n.the
outer radiusp, is introduced. current situation where the magnetic field is present. It sim-
ply labels the angular momentum states and hereafter it will

can be locked at a higher Landau levet0. The resulting P€ called the magnetic index. o

persistent current becomes more intriguing. Finally, it is em- | he solutions to the radial part of the Hamiltonian can be

phasized that our results have been obtained by exactly sol¢Ptained in terms of Bessel functiods(x) andY,(x) in the

ing the relevant Schitinger equation instead of expanding field-free region, and cqnfluent hy_pergeometrlc functhns

wave functions in the plane-wave basis as is dor in. M(a,b,x) and U(a,b,x) in the regions where magnetic
In Sec. Il the model we consider is described and thdi€lds are _preser(see Ref. 24 for_notatlomsFor instance, in

necessary theoretical formulation is also given. The result1® domainp,<p=<D, the result is given as

are presented in Sec. Ill with discussions. Finally, conclud- 102\ (1 02\ 7 E 1 2
ing remarks are provided in Sec. IV. We have included the R(p)zexr{ P )(5 22_) [A4U( a—— B> 32_)
B

transcendental equation that determines the energy spectrum 4 r_g 's 's
in the Appendix. E 1,2
+AsM a=3—.B52| ©)
Il. MODEL AND FORMULATION wB s

We consider a two-dimensional spinless electron gas it he a?o_ve rg=(h/eB)"? is the magnetic radius,
the presence of magnetic fields applied perpendicular to thee=€B/m; is the cyclotron frequency, and the following
system. Instead of applying the fields uniformly over all definitions have been made:
space we modulate them spatially such that a field-free an-

2 2 2 2

nulus with an inner radiug, and an outer radiug, is sur- —loiom- P2 P1 4 lom— P2 P1 6
rounded by an otherwise uniform magnetic field “T 2 r_g r_g r_g r_g - ©®

I§=(0,0,B). In addition, we introduce into our model a po- .

tential barrier of the form 1 P2 P
,8=1+§k2m—(r—2——r—2 s (7)

0, p=<D B B

V(p)= 1
)7 vo, p=D, W 1“2 (ps pi)] o
Y=7 Tz 2|
in order to incorporate the problem of a quantum disk, where 4 s Is

D is the radius of disk. Our model structure is depicted SCheThroughout this paper we will use the dimensionless energy

matiqal!y in F_ig. L L . E* and barrier heighV} , expressed in units dfwg as
Within an independent electron approximation the single-
p_article energy spectrum is determined by solving the Schro - E Vi Vo o
dinger equation of the formc&1) = ﬁ_wB’ 0= h_wB' 9
i(ﬁ+e,&)2+V(p) V(p,0)=EV¥(p,p), (2) The coefficientsA; that appear in radial equations are

2mg specified by the continuity of the wave functions and their
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derivatives at each boundary, and the normalization condi-
tion [3R?(p) pdp= 1. These matching conditions give rise to
a set of linear homogeneous algebraic equations. The re-
guirement of vanishing for the determinant of this linear sys-
tem for a nontrivial solution results in the transcendental

12919
0, m<0
. 1
Jnmz — E' m:O (17)
-1, m>0,

equation, which is given in the Appendix. The obtained tran-

scendental equation determines the energy eigenvalu

E* . with n being the radial quantum number.

Once the wave functions are determined, one can calc
late the associated currents. The current density carried

the state¥,,, can be obtained frofi

eﬁ| (U*VW)+ ¢ AV* P
—Im — .
my my

e

Jom(p.@)=— (10)

In the present investigation only the azimuthal component of

the current density is relevant and the result is given as

1 eh

]nm(P):_zm_aec

m e
;+—A¢(P)

7 R%(p). (11

By integrating this expression over the whole radial axis, on
can calculate the curredy,,, carried by the state with definite

guantum numbera,m. The result is given as

Jnm= fo Jnm(p)dp

= 1eﬁFereA )RZ d 12
" 2amilo\p TR #(p) |R%(p)dp. (12

Utilizing the Hellman-Feynman theorem, one can prove tha

Eq. (12) is equivalent to

e JE, .
Jom="F T

13

When the limit of the uniform magnetic field is taken,
namely, whenp;=p, and D—o, the energy eigenvalues

become
Efn,=n+3(m/+m+1), (14
and the radial wave function reduces to
1 n! 1/2 1 pz 1 pz [m|/2
R = o i Tmit p( ‘Z%)(EE)
2
L[ %f—é , (15)

whereLff)(x) is a generalized Laguerre polynomfAlhich
are the well-known Landau leveldt is worthwhile to note
here that the corresponding currdiit,, which is in units of
ewp/2m, becomes

n! 0
e L T R R
(19

Explicit evaluation yield€®

dhich is independent of the radial quantum numbeiThe

vanishing current for negativen and a constant value for

r motion is fixed for a chosen static magnetic field. And the
onvanishing current for the magnetic index=0 results
from a contribution from the vector potential: the
angular momentum quantum number is not but m
+(1/2)(eB/#) p2.

;fositivem indicate that the direction of the electron’s circu-

[ll. RESULTS AND DISCUSSIONS

In this section results are presented and analyzed for the
calculated energy spectra and the persistent currents for the
quantum structures described in Sec. Il. In doing this, we
have used the dimensionless variapte and lengthsp;* ,

é=1,2, andD*, which are normalized by the magnetic ra-

dius accordingly:

(18

A. Magnetically confined electrons

First, an unbounded two-dimensional electron gas is con-
sidered under nonuniform magnetic fields with the field-free
region at the center, namely, wh®t —«,p} —0 in Fig. 1.
The resulting energy specteg;,,, are plotted in Fig. 2 as a
function of the normalized radiug} for variousm with a
fixed n=0. It is seen tha€},, deviate from the results of
uniform magnetic fieldsg> =0). They decrease monotoni-
cally asp5 increases. At largp; the energies tend to those
of the situation where the electron is confined in a field-free
circular disk of radiusp,, and consequently levels with the
same|m| have the same energy. This tendency is clearly
seen here so that energies with the samg get closer to
each other ag3 increases, and at largg these levels be-
come almost degenerate. As we mentioned in the Introduc-
tion, the magnetic quantum numberin cylindrical coordi-
nates plays a similar role to the guiding center of magnetic
oscillations in Cartesian geomettgee Ref. 2¥. This means
that the largetm| is, the further the wave function is located
from the origin. Accordingly, energy levels with smaller
|m| deviate more from the values of the uniform magnetic
field case for a givem and a fixedp3 .

In order to demonstrate the change of energy spectrum
due to the presence of nonuniform magnetic fields further,
E} ., are shown in Fig. 3 as a function of the magnetic quan-
tum numbem for a fixedp3 =8. What is seen is that such a
simple geometrical perturbation of uniform magnetic fields
can lead to the partial lift of the degeneracy of the bulk
Landau levels. The result for the uniform field case has been
given in Eq.(14). The lifted states near the origin should be
distinguished from the edge states that are typically caused
by an electrical potential or a confining barrier. We have also
seen that this lift of degeneracy becomes more prominent for
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FIG. 2. Energy eigenvalues of an electron in
magnetic fields with a field-free circular cavity at
the center in an unbounded two-dimensional
plane =0, p,#0, andD* =« in Fig. 1) as a
function of the radiup} = p, /r g where the mag-
netic length rg=(#/eB)Y% a radial quantum
numbern=0 is chosen and the numbers near the
curves denote the magnetic indices.

[
T

P

larger p5 , meaning that more levels deviate from the uni- Although the structure considered is simple, we find it
form field results of half-integer values. However, there al-interesting to calculate the net equilibrium currents for the
ways exist infinitely many degenerate levels for an un-present configuration as a function of the electron numbers
bounded system. Furthermore, an additional degeneradat are to be added into the structure by varying the gate
emerges at large; as already discussed in Fig. 2, i.e., levelsVvoltage in experiments. The total curréfitat zero tempera-
with the samém| have almost the same energy in the strongture is constructed according to
field limit for a chosen radius of field-free disk cavity. Note
that the state ofn=0 always has the least energy among the
states for a given. In other words, we have generated a true
ground orbit by introducing a field-free region at the center:
all levels withm=0 were degenerate for the uniform field where E"lé is the Fermi energy an® is the Heaviside step
case. function. Before analyzing our data we notice that the results
Change of energy witm implies, according to Eq13),  for the uniform magnetic fields are intriguing. All levels with
that these states carry current. In particular, some of the levonpositivem are degenerate; however, their contribution to
els with negativen become current-carrying states. We havecyrrents is differentd*, is —1/2 form=0 and 0 form<0
used Eq(12) in order to evaluatdy,, which is the current  [see Eq(17)]. Therefore, there appears an ambiguity in de-
carried by the definite quantum state with radial quantumermining which state is to be filled first among infinitely
numbern and magnetic quantum number. Our calcula-  degenerate levels witm=<0 in which them=0 state is the
tions show that for non-negative, the absolute value of the only current-carrying state. By introducing a field-free cavity
current decreases monotonically a$ increases. On the this ambiguity is removed in our model, and it turns out that
other hand, for negativen, currents vanish identically in a statem=0 is the lowest energy level as discussed earlier.
uniform magnetic field, but whep3 increases from zero, The total current versus number of electrdwss plotted in
currents increase up to certain points and then decreasdg. 4 for a chosen value gf; =8. It shows that the struc-
gradually. For fixecp3 andn, the deviations of the currents ture of the resulting current as a function of the number of
J}., from the uniform field results of Eq17) are smaller for  electrons in the system is not trivial even for the present

|* :% J* O(E:—EX), (19

larger|m|. simple model. Hereafter, the Dirac notatipnm) is used to
5.5} o )
3 5heeslis. ] ,. * ,. . FIG. 3. Energy spectrunk},, for the same
5 . Vo quantum structure as considered in Fig. 2 as a
& =2 . . function of the magnetic indem for n=0, 1, 2,
., . . and 3;p3 =8 has been chosen and energies are in
. . units of i wg Wherewg=eB/mj .
1‘5"-.?:1....--...,.... . ., .0 -
n=0 'o:..:':‘:- ‘
0 2l

=20

~10
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o.1f .
. 0 ! : . . L - FIG. 4. Current* for the same structure con-
~ ; Ce . 1 sidered in Fig. 2 as a function of the number of
1 . . electrons for a fixeghs =8 [see Eq(19)] in units
‘ : of ewg/27r.
-0.1
0.2 10 20 30 40

denote a particular state with radial quantum numbend  p3 =10 has been used. Singd has been normalized with
magnetic indexn. The first electron occupid®,0) in Fig. 3,  respect to the magnetic radiug, a large p> may be
which gives a negligible contribution to the current. The secachieved either by increasing, for a fixedB or by increas-
ond electron occupies the next lowest leve|@f- 1), which ing the magnitude oB for a choserp,.
results inJ5_,=0.05, and accordingly the net curreit In Fig. 6 the energy spectig},, are plotted as a function
equalsJgy+Jg5-1~J5-1. The next electron occupid®,1),  of the magnetic indexm for a chosenp} =10 for several
which gives rise to a contribution to the current by yajyes of the rati, /p,. The prominent feature is the lift of
0= —0.06, which is close tdg_, apart from the sign, and  gegeneracy of levels, which results from the influence of
thus the magnitude of the persistent current reduces taonuniform magnetic fields. It is observed that the dispersion
*=-0.01. This procedure is repeated until all availablejy {he energy spectrum diminishes to the usual Landau levels
electrons are used up and_the resulting vaI_ue is the net CUs the field-free region is filled out by magnetic fields,
rent. Here, one should notice that levels witk 1 partici-  (a)_,(b). Compared with the results of Fig. 3 where a field-
pate also in determining the net currents since some of thefiee circular cavity was introduced in a system with other-
lie below the Fermi energy depending on the number of elecyise uniform fields, the present result shows that an addi-
trons, as is seen in Fig. 3. Consequently, the values of curregbnaj introduction of inner magnetic fields causes a shift of
look randomly distributed untiN~22 in Fig. 4. After a cer-  the minimum of each level to a bigger negatiwe The
tain stage adding more electrons does not affect the net CUfreaterp, /p,, the larger the shift.
rent since the Fermi energy is eventually locked on the un- Tpe net current is depicted in Fig. 7 as a function of the
perturbed degenerate energy levels with no contribution tQactron numbers at zero temperature, whete=10 and
currents. For a chosep}; this saturation value of the total p1/p,=0.6 have been used. This result is the outcome of
current is uniquely determined, arld =0.017 in Fig. 4. 4qding the currents carried by the single electron orbitals up
More levels deviate from the unperturbed half-integer values, the Fermi energy in the corresponding energy spectrum. In
for a largerp’ . Accordingly this saturation value is achieved Fig. 6(b) the lowest level i$0,— 18), which will be occupied
at a greateN. by the first electron. This state contributes a negligible
Now, let us consider an unbounded two-dimensional elecamount of 0.001 to the total current. The next electron will
tron gas under nonuniform magnetic fields with a field-freegccupy the state|0,—17), which carries a current of
annulus region, i.e., wheD*—ce, 0<py<pj in Fig. 1.  j* _—_0013. Then, the sum of the two contributions
This different spatial modulation of applying magnetic fieldsgi\,eS rise to the total current in Fig. 7 fof=2. When an-
brings new features to the energy spectrum and, accordinglyther electron is in the system, it will occupy the next level
to the be*hawor of the persistent current. In Fig. 5 the energyf |0,—19), which carries a current of}_,;=0.014. This
spectraEy,, are drawn as a function @, /p, for a particular  gitemating occupation of levels aroumd= — 18 continues
magnetic indexn=0, wherep; =4 and 10 were considered. as one adds more electrons to the system. In Fig. 7 the net
What is seen is that as the ratio approaches the value 1, th@rrent remains unchanged Ht=—0.06 whenN~40 is
energy levels restore the usual Landau leysée Eq(14)].  reached. This is because levels wit= — 10 orm= — 30 do
On the other hand, the results of Fig. 2 are recovered in thRot carry currents. Accordingly, adding more electrons does
opposite limit of vanishing? . In the intermediate regime not affect the net current. The scattered feature of the current
where 0<p7/p3 <1 the energy spectra manifest a great deafor electron numberd<40 is due to the contribution from
of structure. It is seen in Fig.(8 that the energy levels higher levels with n=1 for magnetic indices
increase gradually to half-integer values, where a relatively-17<m=—13, in which energies are less than those of
small p5 is used. However, ag5 gets bigger, the adjacent levels with n=0 for m=—9 or m=—26. What is more
levels interact with each other and the level repulsion occurdnteresting is the appearance of a sudden jump in the magni-
The anticrossing of levels is evident in Fig(bp where tude of the net current when the electron number becomes
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(a)

FIG. 5. Energy dispersion as a function of the
8§05 0.2 0.4 0.6 0.8 1 ratio p, /p, for the structures with field-free an-
nulus (p;#0, p,#0, andD* = in Fig. 1) oth-

B

‘-5 erwise under uniform fields(a) p3 =4 and (b)
(b} p3> =10, where only one magnetic index=0 is
n=3 used.
3.5
n=2
2.5}
/ n=1
1.5}
n=0
0.5
[ d N
0 0.2 0.4 0.6 0.8 1
P1/P2

N=69 and the value remains there. This jump results frontesian geometfsuggests that the magnetic quantum number
the occupation of the levé0,0) by the 69th electron, which m plays a similar role as the center of magnetic oscillations
carries the current value df;=—0.5. Then, additional elec- does in rectangular coordinates. The levels nearO re-

trons will occupy the levels witm=0 for m=<—61, all of  main in the bulk Landau levels. This is due to the fact that
which do not carry currents. They are the usual bulk Landawave functions are mostly localized near the origin of the

levels with energy of one-half. quantum dot, so that they do not feel the influence of the
outer boundary. The flat dispersion in the energy spectrum
B. Quantum disk in nonuniform magnetic fields for large negativan regardless oh reflects the fact that the

corresponding wave packets of those levels are mainly lo-

Lift of the degeneracy of Landau levels may be also . ) .
achieved when an external electrostatic potential is superimq""te‘j outside the quantum dot. Accordingly the energy ei-

posed on uniform magnetic fields. The problem of a quantun@envalues appear as(n+3)+Vg . The levels located in
disk of radiusD* in the uniform magnetic field can be in- the dispersed parts of the energy curves are edge states,
corporated in our formulation by setting =p3=0 in Fig.  which represent electron wave functions strongly influenced
1. Landau levels of a quantum disk with an infinitely high by the electrostatic boundary. These edge states carry cur-
potential barrier ofV§— have been treated in Ref. 22. rents.
First, we report the result for the soft wall boundary condi- Now, let us consider quantum dot problen; = «) un-
tion. When the height of the potential barrier becomes finiteder nonuniform magnetic fields. We first take the configura-
new features of the energy spectrum appear. The energy dien such thap; =0 andD* =14 in Fig. 1. The superposi-
persion relation in the magnetic index is shown in Fig. 8 fortion of two influences, one from the hard wall confinement
*=7 with barrier heightV§ =6, where energies with and the other one due to the nonuniformity of the applied
m>0 are not drawn because there is no appreciable differmagnetic fields, leads to the energy spectrum demonstrated
ence compared to the results of uniform magnetic fields, i.ein Fig. 9. The hard wall boundary condition gives rise to the
Eq. (14). The anticrossing and repulsion of the levels with edge states for large negatiie And the effect of the field-
different quantum numben are clearly seen. Comparison free cavity causes the lift of the degeneracy of the bulk Lan-
with the energy spectrum for a similar configuration in Car-dau levels neam=0. This lift of degeneracy becomes more
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evident asp3 increases. For instance, whed=4 in Fig.  ported that for the quantum dot in uniform magnetic fields
9(a), many levels in the bulk remain dispersionless with re-this dependence of the equilibrium current on the electron
spect to changes of the magnetic index. Howeverpas number has the characteristic behavior of possessing flat
increases to 10, a great deal of dispersion appears in Figarts that alternate with regions of sudden jumps in
9(b). The limit of p5—D* corresponds to the situation Magnitude’” The same structure is seen in Fig(d0where
where free particles are confined in a circular disk. p>=0 was used in order to represent the quantum disk of
In Fig. 10 the persistent currents are drawn for the presemadiusD* under uniform perpendicular magnetic fields. The
structure as a function of electron numbers. It has been rggronounced current plateaus that are seen are consequences

. "0.2r 1 FIG. 7. Total current for the same structure
considered in Fig. 5 as a function of the number
-0.31 ] of electronsN for p3 =10 andpj/p3 =0.6.

0 20 40 60 8.0
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10.5f « : .
8.5} ':oo-oo.... .'Ooooo..
6.5} o ::""". ~, .
i . '.. IO '... FIG. 8. Energy spectrum of a quantum disk
sl . R with D* =7 andVg =6 as a function of the mag-
‘. oo T T, netic indexm.
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of electrons occupying non-current-carrying bulk LandauFor instance, the transit from Fig. {# to Fig. 12d) clearly
levels. Accordingly, the difference in the value of currentshows how the plateaus in thke—N characteristic are
between two adjacent plateaus is observed to be one-hafbrmed. It is evident that introducing an annulus-field free
The shooting branch of the current curve as electron numbersvity inside a quantum dot washes out the current plateaus.
increase is due to the contribution from the edge states. Sudks the degree of nonuniformity increases the current quanti-
den drops take place whenever an electron occupies a Lamation as a function oN disappears. One of the noticeable
dau level with the magnetic inder=0. The results in Figs. differences in the obtained persistent currents between a
10(b) — 10(d) are obtained after introducing the field-free quantum dot in a uniform magnetic figldee Fig. 1(a)] and
cavity: p5 =4, 6, and 8 are used respectively. For a relativelyone under nonuniform magnetic fielpsigs. 12c)-12d)] is
smallp’é‘, i.e., Fig. 1@b), the current quantization as a func- the fact that the value of the current on the first plateau
tion of electron number is still seen. However, the values ofduals negative one-half for the former case but is nearly
the current at each plateau are different from the unifornzero for the latter. This is due to the fact that for the case of
field result. This is because of the contribution from the lifteduniform magnetic fields the quantum state witk=0 has the
Landau levels to the current in the bulk. Also, it is worth least energy compared to other levels with negativeAc-
noticing that the value of current at a plateau might be posicordingly, it will be occupied by the first electron, which
tive, while for a quantum disk in a uniform magnetic field contributes a value of-1/2 to the current. However, in the
the quantized values are always negative as is obvious in Figase of a quantum dot under nonuniform magnetic fields the
10(a). As the perturbation of uniform magnetic field in- energy of states with negativea can be less than that with
creases, the characteristic behavior of current quantization ihe level ofm=0 (see Fig. 11 Therefore, electrons will first
uniform magnetic fields will be destroyed. This is seen inoccupy those states that make negligible contributions to the
Figs. 1@b)-10d), where the length of the plateau decreasesurrent before filling in then=0 orbital, which will be oc-
with increasingp} , and at largep} the irregular structure of cupied only at sufficiently largél.
the persistent current is observed.

Finally, the most general form that is depicted in Fig. 1 is IV. CONCLUDING REMARKS

considered. The chosen parametersiste- 14, p; = 10, and We have considered an independent electron gas confined
inner radiuspy is varied. In Fig. 11 a typical single-particle in one direction under the influence of spatially modulated
energy spectrum is shown for the rajie/p,=0.6. Similar  magnetic fields applied perpendicular to the system within an
features to Fig. 9 are seen: edge states are apparent for largffective-mass approximation. Consequently, single-particle
negativem and degenerate Landau levels are lifted in theenergy spectra were obtained and used to determine the rel-
bulk due to the perturbation of uniform magnetic fields by evant azimuthal currents carried by definite quantum states.
imposing an annulus field-free region. It is interesting to noteAnticrossing and the repulsion of Landau levels were ob-
again the shift of the lowest energy level toward a largerserved when an annulus perturbation was introduced in oth-
negativem. Compared to the results from an unboundederwise uniform magnetic fields as a function of the ratio of
structure under the same magnetic modulatieig. 6), the  the inner and outer radii of the field-free annula. One promi-
difference is in the lift of degenerate levels with large neganent feature of our results is that the degeneracy of the bulk
tive m due to the effect of the infinite potential barrier. Landau levels can be lifted by this simple geometrical per-

The persistent currents associated with the present quaturbation of the applied magnetic fields. These lifted states
tum structure are also evaluated at zero temperature. Thearry currents that are to be distinguished from edge states
results are given in Fig. 12 where several valueg,djp, are  that typically result from a potential barrier. Accordingly, we
used to demonstrate a variety of features. It is seen that &tave demonstrated that the net equilibrium azimuthal current
small values ofp, /p, the resulting currents look random in may not vanish even for an unbounded two-dimensional
electron numbefFig. 12a)]. However, increasing the ratio electron gas, but rather saturates to a finite value unlike the
p1/p, [Figs. 1Zb) — 12d)] leads to a more regular structure. uniform magnetic field case.
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In addition, quantum dot problems have been treated by Recently, theoretical analyses of the quantum structures
imposing an electrostatic potential wall on the two- created by nonhomogeneous magnetic fields in Cartesian ge-
dimensional electron gas in the strong magnetic field limitometry have been made° It has been demonstrated that
In this case, the pronounced edge states near the boundangreasing the number of magnetic strips and alternating
played an important role in determining the Fermi energy ofthem with field-free regions yields a variety of rich electronic
the system and thus in obtaining the persistent currents. Wand transport properties. We expect that similar physical ef-
have shown that a simple spatial modulation of the appliedects will be obtained in the configuration discussed in this
magnetic fields in quantum dots gives rise to noticeablgaper by forming cylindrical lateral magnetic superlattices.
changes in the energy spectrum and consequently in persis- Finally, we want to mention that the Aharonov-Bohm flux
tent currents. This subject is of particular interest now sinceb (Ref. 31 pierced at the origin can be included in our
it has become possible to fabricate magnetic quantum disk®iodel. By a straightforward calculation it can be shown that
using nanolithographic techniqués. one has only to replace the magnetic quantum numbby

An experimental realization of our model structure maym+ ®/®, in the formulas derived in Sec. Il for this goal,
be achieved by depositing an annular area of magnetic awhere®,=h/e is the magnetic flux quantum. Also, it can be
superconducting material on top of a two-dimensional elecproved that the following equation holds because of the
tron gas, say on the surface of GaAs/Bk,_,As hetero- gauge invariance:
structures. Periodic spatial modulation of magnetic fields has
already been realized in strip geometry by several experi-
mental groups®1&1°

In our calculation neither electron-electron scattering nor
disorder was considered. However it has been reported in A thorough discussion of the role of this flux in regard to
recent work that the effect of the Coulomb interaction ondetecting currents},, can be found in Ref. 21. The same
persistent currents is negligible in clean mesoscopic fiigs. arguments can be applied to our case as well. Since the spe-
It has also been argued that the plateau structure of persistetific value of ® is immaterial in the evaluation of the cur-
current[see Fig. 1(a)] survives against weak disorder for a rent, only the results fod=0 have been presented in our

ERm(P/Po+1)=EF 111 (P/Do). (20

similar simply connected system of quantum di&ks. work.
1.5}, ‘e, (a) *
3 5 .... 00..'... . . . . o
25 -... °'0.... v, .. o .
1s o.ooooo-- . o o ° o
0.5 F  mesess v, ‘. |
. . ) '-" FIG. 9. Energy spectr&},,, of a quantum dot
i -60 -40 -20 0 with a field-free circular cavity at center other-
—s - > , . wise under perpendicular uniform magnetic fields
. i % . (p1=0, p,#0, andD* =14): (a) p5 =4 and(b)
4.5F -. . . o (b) 1 P; =10.
3.5 ‘. .°. .'.. ‘.
2.5F .. .... ... .'. 4
1.5}F .'.. .°'ooo.. ., * .. o.
o5t 'onuno.ouoo.oou..,....o:.c:o:o:...o. 4

-60 -40 -20 0



12 926 CHANG SUB KIM AND OLEG OLENDSKI 53

1.5 0.5 7

1 : R byl
0.5 ; i -0.5 ! X

i H H W

-0.2 _-/ II, > ,; 1-; :;———-:l!

1 J— ; - f
-1.5 — 2 o

L@ ] -z.5f @ —

5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 FIG. 10. Persistent currents* associated
o5 ; o4 ; _ with the same structure considered in Fig. 9 as a
o ; ; ) L function of the number of electrons whefe)

O o L p3=0, (b) p3=4, (c) p5 =6, and(d) p3 =8.

-0.5 ) '_,' /
A B
-1 .r_/
(c) : -0.
-1.5 >
0 50 100 150 200 250 300
N
ACKNOWLEDGMENTS 1+m+|m| 1 1

. - Gu= ( —E*,[m|[+15p72 eXF{“PIZ)

This work has been supported by the Ministry of Educa- 2 2 4
tion of Korea through the Basic Sciences Research Institute 1 ml/2
at CNU (Grant No. BSRI-95-2431 X —P’IZ) (A2)

2 L
APPENDIX G1o= — Jjm+(1/2)% 2 (2B Y57, (A3)

The transcendental equation that we have used in deter- Gia=—Y 2% 102 %

L . L =— 2(27E , A4
mining the energy spectrum for the structure depicted in Fig. 13 Im+(1/2)p « P1) (A4)
1 is given as
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, . 1 2 1 2 1 2 Y where the primes appearing on top d_t,(x),_YV(x),
+M'| a—E ,ﬂ,§p2 exp —zp2" || 5P27 M(a,b,x), andU(a,b,x) denote the derivative with respect

to x. Note that all physical variables are written in terms of
(A15) the dimensionless forms introduced in E¢®). and (18).
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