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The single-particle energy spectra are calculated for a two-dimensional electron gas under perpendicularly
applied nonuniform magnetic fields. It is found that the spatial modulation of magnetic fields in an annular
geometry can lift the degeneracy of bulk Landau levels, and accordingly results in current-carrying states that
are distinguished from the edge states. The prominent features of the calculated energy spectrum are anticross-
ing and the repulsion of levels. The net current does not vanish in the ground state due to the presence of the
lower-lying current-carrying states below the Fermi energy. Quantum structures confined by electrostatic
potential barriers are also investigated within an independent electron approximation. Consequently, a rich
structure of persistent currents is obtained at zero temperature as a function of the electron number and
magnetic field variation.

I. INTRODUCTION

When a uniform magnetic field is applied perpendicularly
to an unbounded two-dimensional ideal electron gas, the
Landau levels emerge with infinite degeneracy.1 On the other
hand, in a realistic situation a system is typically bounded,
and so the density of each Landau level becomes finite. It
can be estimated that the density of states is proportional to
the magnetic field, which results in such interesting physics
as the Shubnikov–de Haas effect.2 It has been shown that the
degeneracy of the Landau levels is lifted near a barrier that
may represent a conduction band discontinuity, where the
magnetic field is applied in the plane of interest.3,4 This lift
of degeneracy gives rise to the interesting anticrossing and
repulsion of levels in the energy spectrum that have recently
been extensively investigated.5–10 The pronounced features
of the anticrossing and level repulsion can also be achieved
by perturbing the applied magnetic fields. By applying spa-
tially modulated magnetic fields perpendicular to the inter-
face, interesting electronic and transport properties such as
the oscillatory magnetoresistivity have been predicted
theoretically11–15and observed experimentally.16–20

The Landau levels can be labeled by the radial quantum
numbern and the magnetic indexm in the direction of the
applied fields when a cylindrical geometry is considered. For
m<0 all levels are degenerate for a givenn, and thusm
plays a role similar to the guiding center of magnetic oscil-
lation in Cartesian geometry. What is important is that none
of these levels carries current except them50 level. The
levels with positivem for a givenn carry current. However,
they can be reinterpreted as belonging to a higher level with
n→n1 i , wherei>1. Thus, the equilibrium current vanishes
for such a system, which may exclude them50 orbital be-
cause there are infinitely many non-current-carrying orbits to
be filled by electrons in the ground state, which all possess
the same lowest energy. In other words, the Fermi energy is
locked on the lowest energy level. On the other hand, the
current-carrying levels can be lifted by imposing rigid wall
boundary conditions. Recently, persistent currents have been
calculated and analyzed for an annulus quantum ring, as well
as a quantum disk where essentially the edge states near the

hard wall boundaries enabled the nonvanishing current.21,22

Also, a magnetically confined electron in a nonuniform mag-
netic field has been studied in inverse Aharonov-Bohm ar-
rangements, where attention was paid mainly to the energy
eigenvalues compared to the Landau levels, not including the
associated currents.23

Since the degeneracy of Landau levels can be lifted by a
spatial modulation of applied magnetic fields it seems to be a
worthwhile endeavor to investigate a simple theoretical
model that may generate current-carrying levels inside bulk.
In this work we propose a simple quantum structure that
enables us to study in detail the lift of the degeneracy of bulk
Landau levels and consequently to understand its effect on
the persistent currents in a quantum disk. We will present an
exact numerical solution for the single-particle energy spec-
trum by solving the relevant Schro¨dinger equation and the
resulting persistent current within an effective-mass approxi-
mation. We hope that our model calculation may bring in-
sight to the comprehension of magnetotransport on a smaller
length scale than the average electron mean free path.

The model we consider is described here briefly. We first
take an electron gas confined in one direction and assume
that an external magnetic field is applied perpendicular to the
interface, not uniformly but in a spatially modulated way.
The plane polar geometry is taken so that the magnetic fields
are perturbed in an annulus shape. Our results show that this
simple geometrical perturbation of applied magnetic fields
induces rich structures in the energy spectrum, such as anti-
crossing and the repulsion of levels. Also, it is seen that the
degeneracy of Landau levels is lifted in the bulk, which re-
sults in current-carrying states. Subsequently, the net equilib-
rium currents are evaluated at zero temperature for a wide
range of the applied magnetic fields as a function of the
electron number. Although the Fermi energy is locked on the
ground orbit ofn50, the total current does not vanish, and
instead, manifests an interesting structure. Next, quantum
disk problems are considered by introducing an outer barrier
~both a soft wall and a hard wall! at the distanceD from the
origin in the limit of high magnetic field,D@r B wherer B is
the magnetic length. In this case, the edge states emerge and
play a crucial role in determining the Fermi energy, which
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can be locked at a higher Landau leveln.0. The resulting
persistent current becomes more intriguing. Finally, it is em-
phasized that our results have been obtained by exactly solv-
ing the relevant Schro¨dinger equation instead of expanding
wave functions in the plane-wave basis as is done in.21

In Sec. II the model we consider is described and the
necessary theoretical formulation is also given. The results
are presented in Sec. III with discussions. Finally, conclud-
ing remarks are provided in Sec. IV. We have included the
transcendental equation that determines the energy spectrum
in the Appendix.

II. MODEL AND FORMULATION

We consider a two-dimensional spinless electron gas in
the presence of magnetic fields applied perpendicular to the
system. Instead of applying the fields uniformly over all
space we modulate them spatially such that a field-free an-
nulus with an inner radiusr1 and an outer radiusr2 is sur-
rounded by an otherwise uniform magnetic field
BW 5(0,0,B). In addition, we introduce into our model a po-
tential barrier of the form

V~r!5H 0, r<D

V0 , r>D,
~1!

in order to incorporate the problem of a quantum disk, where
D is the radius of disk. Our model structure is depicted sche-
matically in Fig. 1.

Within an independent electron approximation the single-
particle energy spectrum is determined by solving the Schro¨-
dinger equation of the form (c[1)

H 1

2me*
~pW 1eAW !21V~r!J C~r,w!5EC~r,w!, ~2!

wheree is the absolute value of the charge of an electron,
me* is the effective mass of the electron,E is the energy

eigenvalue, andAW is the relevant vector potential to be speci-
fied. In the plane polar coordinatesrW5(r,w) the vector po-
tential can be specified by choosing the symmetric gauge

Aw~r!55
1

2
Br, r<r1

1

2
B

r1
2

r
, r1<r<r2
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2
BrS 12
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22r1

2

r2 D , r>r2 .

~3!

After substituting the vector potential into Eq.~2! with an
ansatz for the wave function of the form

C~r,w!5
1

A2p
R~r!exp~ imw!, ~4!

wherem is an integer, one can separate out the equations for
the radial wave function. Here, one should notice thatm is
not the eigenvalue of the angular momentum operator in the
current situation where the magnetic field is present. It sim-
ply labels the angular momentum states and hereafter it will
be called the magnetic index.

The solutions to the radial part of the Hamiltonian can be
obtained in terms of Bessel functionsJn(x) andYn(x) in the
field-free region, and confluent hypergeometric functions
M (a,b,x) and U(a,b,x) in the regions where magnetic
fields are present~see Ref. 24 for notations!. For instance, in
the domainr2<r<D, the result is given as

R~r!5expS 2
1

4

r2

r B
2 D S 12 r2

r B
2 D gHA4US a2
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\vB
,b,

1

2

r2
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,b,

1

2

r2

r B
2 D J . ~5!

In the above r B5(\/eB)1/2 is the magnetic radius,
vB5eB/me* is the cyclotron frequency, and the following
definitions have been made:

a5
1

4 H 212m2S r2
2

r B
2 2

r1
2

r B
2 D 1U2m2S r2

2

r B
2 2

r1
2

r B
2 D UJ , ~6!

b511
1

2 H U2m2S r2
2

r B
2 2

r1
2

r B
2 D UJ , ~7!

g5
1

4 H U2m2S r2
2

r B
2 2

r1
2

r B
2 D UJ . ~8!

Throughout this paper we will use the dimensionless energy
E* and barrier heightV0* , expressed in units of\vB as

E*[
E

\vB
, V0*[

V0

\vB
. ~9!

The coefficientsAi that appear in radial equations are
specified by the continuity of the wave functions and their

FIG. 1. Quantum structure considered: spatially modulated non-
uniform magnetic fields are applied perpendicularly to a quantum
disk of radiusD where a field-free annulus with inner radiusr1 and
outer radiusr2 is introduced.
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derivatives at each boundary, and the normalization condi-
tion *0

`R2(r)rdr51. These matching conditions give rise to
a set of linear homogeneous algebraic equations. The re-
quirement of vanishing for the determinant of this linear sys-
tem for a nontrivial solution results in the transcendental
equation, which is given in the Appendix. The obtained tran-
scendental equation determines the energy eigenvalues
Enm* , with n being the radial quantum number.

Once the wave functions are determined, one can calcu-
late the associated currents. The current density carried by
the stateCnm can be obtained from25

jWnm~r,w!52F e\

me*
Im~C*¹C!1

e2

me*
AW C*CG . ~10!

In the present investigation only the azimuthal component of
the current density is relevant and the result is given as

j nm~r!52
1

2p

e\

me*
Fmr 1

e

\
Aw~r!GR2~r!. ~11!

By integrating this expression over the whole radial axis, one
can calculate the currentJnm carried by the state with definite
quantum numbersn,m. The result is given as

Jnm5E
0

`

j nm~r!dr

52
1

2p

e\

me*
E
0

`Smr 1
e

\
Aw~r! DR2~r!dr. ~12!

Utilizing the Hellman-Feynman theorem, one can prove that
Eq. ~12! is equivalent to

Jnm52
e

h

]Enm

]m
. ~13!

When the limit of the uniform magnetic field is taken,
namely, whenr1[r2 and D→`, the energy eigenvalues
become

Enm* 5n1 1
2 ~ umu1m11!, ~14!

and the radial wave function reduces to

R~r!5
1

r B
F n!

~n1umu!! G1/2expS 2
1

4

r2

r B
2 D S 12 r2

r B
2 D umu/2

3Ln
umuS 12 r2

r B
2 D , ~15!

whereLn
(a)(x) is a generalized Laguerre polynomial,24 which

are the well-known Landau levels.1 It is worthwhile to note
here that the corresponding currentJnm* , which is in units of
evB/2p, becomes

Jnm* 52
1

2 Sm n!

~n1umu!! E0
`

e2xxumu21@Ln
umu~x!#2dx11D .

~16!

Explicit evaluation yields26

Jnm* 5H 0, m,0

2
1

2
, m50

21, m.0,

~17!

which is independent of the radial quantum numbern. The
vanishing current for negativem and a constant value for
positivem indicate that the direction of the electron’s circu-
lar motion is fixed for a chosen static magnetic field. And the
nonvanishing current for the magnetic indexm50 results
from a contribution from the vector potential: the
angular momentum quantum number is notm but m
1(1/2)(eB/\)r2.

III. RESULTS AND DISCUSSIONS

In this section results are presented and analyzed for the
calculated energy spectra and the persistent currents for the
quantum structures described in Sec. II. In doing this, we
have used the dimensionless variabler* and lengthsr i* ,
i51,2, andD* , which are normalized by the magnetic ra-
dius accordingly:

r*[
r

r B
, r i*[

r i
r B
, D*[

D

rB
. ~18!

A. Magnetically confined electrons

First, an unbounded two-dimensional electron gas is con-
sidered under nonuniform magnetic fields with the field-free
region at the center, namely, whenD*→`,r1*→0 in Fig. 1.
The resulting energy spectraEnm* are plotted in Fig. 2 as a
function of the normalized radiusr2* for variousm with a
fixed n50. It is seen thatEnm* deviate from the results of
uniform magnetic fields (r2*50). They decrease monotoni-
cally asr2* increases. At larger2* the energies tend to those
of the situation where the electron is confined in a field-free
circular disk of radiusr2 , and consequently levels with the
sameumu have the same energy. This tendency is clearly
seen here so that energies with the sameumu get closer to
each other asr2* increases, and at larger2* these levels be-
come almost degenerate. As we mentioned in the Introduc-
tion, the magnetic quantum numberm in cylindrical coordi-
nates plays a similar role to the guiding center of magnetic
oscillations in Cartesian geometry~see Ref. 27!. This means
that the largerumu is, the further the wave function is located
from the origin. Accordingly, energy levels with smaller
umu deviate more from the values of the uniform magnetic
field case for a givenn and a fixedr2* .

In order to demonstrate the change of energy spectrum
due to the presence of nonuniform magnetic fields further,
Enm* are shown in Fig. 3 as a function of the magnetic quan-
tum numberm for a fixedr2*58. What is seen is that such a
simple geometrical perturbation of uniform magnetic fields
can lead to the partial lift of the degeneracy of the bulk
Landau levels. The result for the uniform field case has been
given in Eq.~14!. The lifted states near the origin should be
distinguished from the edge states that are typically caused
by an electrical potential or a confining barrier. We have also
seen that this lift of degeneracy becomes more prominent for
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larger r2* , meaning that more levels deviate from the uni-
form field results of half-integer values. However, there al-
ways exist infinitely many degenerate levels for an un-
bounded system. Furthermore, an additional degeneracy
emerges at larger2* as already discussed in Fig. 2, i.e., levels
with the sameumu have almost the same energy in the strong
field limit for a chosen radius of field-free disk cavity. Note
that the state ofm50 always has the least energy among the
states for a givenn. In other words, we have generated a true
ground orbit by introducing a field-free region at the center:
all levels withm<0 were degenerate for the uniform field
case.

Change of energy withm implies, according to Eq.~13!,
that these states carry current. In particular, some of the lev-
els with negativem become current-carrying states. We have
used Eq.~12! in order to evaluateJnm* , which is the current
carried by the definite quantum state with radial quantum
numbern and magnetic quantum numberm. Our calcula-
tions show that for non-negativem, the absolute value of the
current decreases monotonically asr2* increases. On the
other hand, for negativem, currents vanish identically in a
uniform magnetic field, but whenr2* increases from zero,
currents increase up to certain points and then decrease
gradually. For fixedr2* andn, the deviations of the currents
Jnm* from the uniform field results of Eq.~17! are smaller for
larger umu.

Although the structure considered is simple, we find it
interesting to calculate the net equilibrium currents for the
present configuration as a function of the electron numbers
that are to be added into the structure by varying the gate
voltage in experiments. The total currentI * at zero tempera-
ture is constructed according to

I *5(
n,m

Jnm* Q~EF*2Enm* !, ~19!

whereEF* is the Fermi energy andQ is the Heaviside step
function. Before analyzing our data we notice that the results
for the uniform magnetic fields are intriguing. All levels with
nonpositivem are degenerate; however, their contribution to
currents is different:Jnm* is 21/2 form50 and 0 form,0
@see Eq.~17!#. Therefore, there appears an ambiguity in de-
termining which state is to be filled first among infinitely
degenerate levels withm<0 in which them50 state is the
only current-carrying state. By introducing a field-free cavity
this ambiguity is removed in our model, and it turns out that
statem50 is the lowest energy level as discussed earlier.
The total current versus number of electronsN is plotted in
Fig. 4 for a chosen value ofr2*58. It shows that the struc-
ture of the resulting current as a function of the number of
electrons in the system is not trivial even for the present
simple model. Hereafter, the Dirac notationun,m& is used to

FIG. 2. Energy eigenvalues of an electron in
magnetic fields with a field-free circular cavity at
the center in an unbounded two-dimensional
plane (r150, r2Þ0, andD*5` in Fig. 1! as a
function of the radiusr2*5r2 /r B where the mag-
netic length r B5(\/eB)1/2; a radial quantum
numbern50 is chosen and the numbers near the
curves denote the magnetic indices.

FIG. 3. Energy spectrumEnm* for the same
quantum structure as considered in Fig. 2 as a
function of the magnetic indexm for n50, 1, 2,
and 3;r2*58 has been chosen and energies are in
units of\vB wherevB5eB/me* .
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denote a particular state with radial quantum numbern and
magnetic indexm. The first electron occupiesu0,0& in Fig. 3,
which gives a negligible contribution to the current. The sec-
ond electron occupies the next lowest level ofu0,21&, which
results inJ021* 80.05, and accordingly the net currentI *
equalsJ00* 1J021* 'J021* . The next electron occupiesu0,1&,
which gives rise to a contribution to the current by
J01* 820.06, which is close toJ021* apart from the sign, and
thus the magnitude of the persistent current reduces to
I *820.01. This procedure is repeated until all available
electrons are used up and the resulting value is the net cur-
rent. Here, one should notice that levels withn51 partici-
pate also in determining the net currents since some of them
lie below the Fermi energy depending on the number of elec-
trons, as is seen in Fig. 3. Consequently, the values of current
look randomly distributed untilN;22 in Fig. 4. After a cer-
tain stage adding more electrons does not affect the net cur-
rent since the Fermi energy is eventually locked on the un-
perturbed degenerate energy levels with no contribution to
currents. For a chosenr2* this saturation value of the total
current is uniquely determined, andI *80.017 in Fig. 4.
More levels deviate from the unperturbed half-integer values
for a largerr2* . Accordingly this saturation value is achieved
at a greaterN.

Now, let us consider an unbounded two-dimensional elec-
tron gas under nonuniform magnetic fields with a field-free
annulus region, i.e., whenD*→`, 0,r1*,r2* in Fig. 1.
This different spatial modulation of applying magnetic fields
brings new features to the energy spectrum and, accordingly,
to the behavior of the persistent current. In Fig. 5 the energy
spectraEnm* are drawn as a function ofr1 /r2 for a particular
magnetic indexm50, wherer2*54 and 10 were considered.
What is seen is that as the ratio approaches the value 1, the
energy levels restore the usual Landau levels@see Eq.~14!#.
On the other hand, the results of Fig. 2 are recovered in the
opposite limit of vanishingr1* . In the intermediate regime
where 0,r1* /r2*,1 the energy spectra manifest a great deal
of structure. It is seen in Fig. 5~a! that the energy levels
increase gradually to half-integer values, where a relatively
small r2* is used. However, asr2* gets bigger, the adjacent
levels interact with each other and the level repulsion occurs.
The anticrossing of levels is evident in Fig. 5~b! where

r2*510 has been used. Sincer2* has been normalized with
respect to the magnetic radiusr B , a large r2* may be
achieved either by increasingr2 for a fixedB or by increas-
ing the magnitude ofB for a chosenr2 .

In Fig. 6 the energy spectraEnm* are plotted as a function
of the magnetic indexm for a chosenr2*510 for several
values of the ratior1 /r2 . The prominent feature is the lift of
degeneracy of levels, which results from the influence of
nonuniform magnetic fields. It is observed that the dispersion
in the energy spectrum diminishes to the usual Landau levels
as the field-free region is filled out by magnetic fields,
~a!→~b!. Compared with the results of Fig. 3 where a field-
free circular cavity was introduced in a system with other-
wise uniform fields, the present result shows that an addi-
tional introduction of inner magnetic fields causes a shift of
the minimum of each level to a bigger negativem. The
greaterr1 /r2 , the larger the shift.

The net current is depicted in Fig. 7 as a function of the
electron numbers at zero temperature, wherer2*510 and
r1 /r250.6 have been used. This result is the outcome of
adding the currents carried by the single electron orbitals up
to the Fermi energy in the corresponding energy spectrum. In
Fig. 6~b! the lowest level isu0,218&, which will be occupied
by the first electron. This state contributes a negligible
amount of 0.001 to the total current. The next electron will
occupy the stateu0,217&, which carries a current of
J0217* 820.013. Then, the sum of the two contributions
gives rise to the total current in Fig. 7 forN52. When an-
other electron is in the system, it will occupy the next level
of u0,219&, which carries a current ofJ0219* 80.014. This
alternating occupation of levels aroundm5218 continues
as one adds more electrons to the system. In Fig. 7 the net
current remains unchanged atI *820.06 whenN'40 is
reached. This is because levels withm>210 orm<230 do
not carry currents. Accordingly, adding more electrons does
not affect the net current. The scattered feature of the current
for electron numbersN<40 is due to the contribution from
higher levels with n51 for magnetic indices
217<m<213, in which energies are less than those of
levels with n50 for m>29 or m<226. What is more
interesting is the appearance of a sudden jump in the magni-
tude of the net current when the electron number becomes

FIG. 4. CurrentI * for the same structure con-
sidered in Fig. 2 as a function of the number of
electrons for a fixedr2*58 @see Eq.~19!# in units
of evB/2p.
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N569 and the value remains there. This jump results from
the occupation of the levelu0,0& by the 69th electron, which
carries the current value ofJ00* 820.5. Then, additional elec-
trons will occupy the levels withn50 for m<261, all of
which do not carry currents. They are the usual bulk Landau
levels with energy of one-half.

B. Quantum disk in nonuniform magnetic fields

Lift of the degeneracy of Landau levels may be also
achieved when an external electrostatic potential is superim-
posed on uniform magnetic fields. The problem of a quantum
disk of radiusD* in the uniform magnetic field can be in-
corporated in our formulation by settingr1*5r2*[0 in Fig.
1. Landau levels of a quantum disk with an infinitely high
potential barrier ofV0*→` have been treated in Ref. 22.
First, we report the result for the soft wall boundary condi-
tion. When the height of the potential barrier becomes finite,
new features of the energy spectrum appear. The energy dis-
persion relation in the magnetic index is shown in Fig. 8 for
D*57 with barrier heightV0*56, where energies with
m.0 are not drawn because there is no appreciable differ-
ence compared to the results of uniform magnetic fields, i.e.,
Eq. ~14!. The anticrossing and repulsion of the levels with
different quantum numbern are clearly seen. Comparison
with the energy spectrum for a similar configuration in Car-

tesian geometry4 suggests that the magnetic quantum number
m plays a similar role as the center of magnetic oscillations
does in rectangular coordinates. The levels nearm50 re-
main in the bulk Landau levels. This is due to the fact that
wave functions are mostly localized near the origin of the
quantum dot, so that they do not feel the influence of the
outer boundary. The flat dispersion in the energy spectrum
for large negativem regardless ofn reflects the fact that the
corresponding wave packets of those levels are mainly lo-
cated outside the quantum dot. Accordingly the energy ei-

genvalues appear as;(n1 1
2 )1V0* . The levels located in

the dispersed parts of the energy curves are edge states,
which represent electron wave functions strongly influenced
by the electrostatic boundary. These edge states carry cur-
rents.

Now, let us consider quantum dot problems (V0*5`) un-
der nonuniform magnetic fields. We first take the configura-
tion such thatr1*50 andD*514 in Fig. 1. The superposi-
tion of two influences, one from the hard wall confinement
and the other one due to the nonuniformity of the applied
magnetic fields, leads to the energy spectrum demonstrated
in Fig. 9. The hard wall boundary condition gives rise to the
edge states for large negativem. And the effect of the field-
free cavity causes the lift of the degeneracy of the bulk Lan-
dau levels nearm50. This lift of degeneracy becomes more

FIG. 5. Energy dispersion as a function of the
ratio r1 /r2 for the structures with field-free an-
nulus (r1Þ0, r2Þ0, andD*5` in Fig. 1! oth-
erwise under uniform fields;~a! r2*54 and ~b!
r2*510, where only one magnetic indexm50 is
used.
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evident asr2* increases. For instance, whenr2*54 in Fig.
9~a!, many levels in the bulk remain dispersionless with re-
spect to changes of the magnetic index. However, asr2*
increases to 10, a great deal of dispersion appears in Fig.
9~b!. The limit of r2*→D* corresponds to the situation
where free particles are confined in a circular disk.

In Fig. 10 the persistent currents are drawn for the present
structure as a function of electron numbers. It has been re-

ported that for the quantum dot in uniform magnetic fields
this dependence of the equilibrium current on the electron
number has the characteristic behavior of possessing flat
parts that alternate with regions of sudden jumps in
magnitude.22 The same structure is seen in Fig. 10~a!, where
r2*50 was used in order to represent the quantum disk of
radiusD* under uniform perpendicular magnetic fields. The
pronounced current plateaus that are seen are consequences

FIG. 6. Energy spectraEnm* as a function of
the magnetic indexm for structures described in
Fig. 5 wherer2*510 is used:~a! r1 /r250.2; ~b!
r1 /r250.6.

FIG. 7. Total current for the same structure
considered in Fig. 5 as a function of the number
of electronsN for r2*510 andr1* /r2*50.6.
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of electrons occupying non-current-carrying bulk Landau
levels. Accordingly, the difference in the value of current
between two adjacent plateaus is observed to be one-half.
The shooting branch of the current curve as electron numbers
increase is due to the contribution from the edge states. Sud-
den drops take place whenever an electron occupies a Lan-
dau level with the magnetic indexm>0. The results in Figs.
10~b! – 10~d! are obtained after introducing the field-free
cavity: r2*54, 6, and 8 are used respectively. For a relatively
smallr2* , i.e., Fig. 10~b!, the current quantization as a func-
tion of electron number is still seen. However, the values of
the current at each plateau are different from the uniform
field result. This is because of the contribution from the lifted
Landau levels to the current in the bulk. Also, it is worth
noticing that the value of current at a plateau might be posi-
tive, while for a quantum disk in a uniform magnetic field
the quantized values are always negative as is obvious in Fig.
10~a!. As the perturbation of uniform magnetic field in-
creases, the characteristic behavior of current quantization in
uniform magnetic fields will be destroyed. This is seen in
Figs. 10~b!–10~d!, where the length of the plateau decreases
with increasingr2* , and at larger2* the irregular structure of
the persistent current is observed.

Finally, the most general form that is depicted in Fig. 1 is
considered. The chosen parameters areD*514,r2*510, and
inner radiusr1* is varied. In Fig. 11 a typical single-particle
energy spectrum is shown for the ratior1 /r250.6. Similar
features to Fig. 9 are seen: edge states are apparent for large
negativem and degenerate Landau levels are lifted in the
bulk due to the perturbation of uniform magnetic fields by
imposing an annulus field-free region. It is interesting to note
again the shift of the lowest energy level toward a larger
negativem. Compared to the results from an unbounded
structure under the same magnetic modulation~Fig. 6!, the
difference is in the lift of degenerate levels with large nega-
tive m due to the effect of the infinite potential barrier.

The persistent currents associated with the present quan-
tum structure are also evaluated at zero temperature. The
results are given in Fig. 12 where several values ofr1 /r2 are
used to demonstrate a variety of features. It is seen that at
small values ofr1 /r2 the resulting currents look random in
electron number@Fig. 12~a!#. However, increasing the ratio
r1 /r2 @Figs. 12~b! – 12~d!# leads to a more regular structure.

For instance, the transit from Fig. 12~b! to Fig. 12~d! clearly
shows how the plateaus in theI2N characteristic are
formed. It is evident that introducing an annulus-field free
cavity inside a quantum dot washes out the current plateaus.
As the degree of nonuniformity increases the current quanti-
zation as a function ofN disappears. One of the noticeable
differences in the obtained persistent currents between a
quantum dot in a uniform magnetic field@see Fig. 10~a!# and
one under nonuniform magnetic fields@Figs. 12~c!–12~d!# is
the fact that the value of the current on the first plateau
equals negative one-half for the former case but is nearly
zero for the latter. This is due to the fact that for the case of
uniform magnetic fields the quantum state withm50 has the
least energy compared to other levels with negativem. Ac-
cordingly, it will be occupied by the first electron, which
contributes a value of21/2 to the current. However, in the
case of a quantum dot under nonuniform magnetic fields the
energy of states with negativem can be less than that with
the level ofm50 ~see Fig. 11!. Therefore, electrons will first
occupy those states that make negligible contributions to the
current before filling in them50 orbital, which will be oc-
cupied only at sufficiently largeN.

IV. CONCLUDING REMARKS

We have considered an independent electron gas confined
in one direction under the influence of spatially modulated
magnetic fields applied perpendicular to the system within an
effective-mass approximation. Consequently, single-particle
energy spectra were obtained and used to determine the rel-
evant azimuthal currents carried by definite quantum states.
Anticrossing and the repulsion of Landau levels were ob-
served when an annulus perturbation was introduced in oth-
erwise uniform magnetic fields as a function of the ratio of
the inner and outer radii of the field-free annula. One promi-
nent feature of our results is that the degeneracy of the bulk
Landau levels can be lifted by this simple geometrical per-
turbation of the applied magnetic fields. These lifted states
carry currents that are to be distinguished from edge states
that typically result from a potential barrier. Accordingly, we
have demonstrated that the net equilibrium azimuthal current
may not vanish even for an unbounded two-dimensional
electron gas, but rather saturates to a finite value unlike the
uniform magnetic field case.

FIG. 8. Energy spectrum of a quantum disk
with D*57 andV0*56 as a function of the mag-
netic indexm.
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In addition, quantum dot problems have been treated by
imposing an electrostatic potential wall on the two-
dimensional electron gas in the strong magnetic field limit.
In this case, the pronounced edge states near the boundary
played an important role in determining the Fermi energy of
the system and thus in obtaining the persistent currents. We
have shown that a simple spatial modulation of the applied
magnetic fields in quantum dots gives rise to noticeable
changes in the energy spectrum and consequently in persis-
tent currents. This subject is of particular interest now since
it has become possible to fabricate magnetic quantum disks
using nanolithographic techniques.20

An experimental realization of our model structure may
be achieved by depositing an annular area of magnetic or
superconducting material on top of a two-dimensional elec-
tron gas, say on the surface of GaAs/AlxGa12xAs hetero-
structures. Periodic spatial modulation of magnetic fields has
already been realized in strip geometry by several experi-
mental groups.16,18,19

In our calculation neither electron-electron scattering nor
disorder was considered. However it has been reported in a
recent work that the effect of the Coulomb interaction on
persistent currents is negligible in clean mesoscopic rings.28

It has also been argued that the plateau structure of persistent
current@see Fig. 10~a!# survives against weak disorder for a
similar simply connected system of quantum disks.22

Recently, theoretical analyses of the quantum structures
created by nonhomogeneous magnetic fields in Cartesian ge-
ometry have been made.29,30 It has been demonstrated that
increasing the number of magnetic strips and alternating
them with field-free regions yields a variety of rich electronic
and transport properties. We expect that similar physical ef-
fects will be obtained in the configuration discussed in this
paper by forming cylindrical lateral magnetic superlattices.

Finally, we want to mention that the Aharonov-Bohm flux
F ~Ref. 31! pierced at the origin can be included in our
model. By a straightforward calculation it can be shown that
one has only to replace the magnetic quantum numberm by
m1F/F0 in the formulas derived in Sec. II for this goal,
whereF05h/e is the magnetic flux quantum. Also, it can be
proved that the following equation holds because of the
gauge invariance:

En,m* ~F/F011!5En,m11* ~F/F0!. ~20!

A thorough discussion of the role of this flux in regard to
detecting currentsJnm* can be found in Ref. 21. The same
arguments can be applied to our case as well. Since the spe-
cific value ofF is immaterial in the evaluation of the cur-
rent, only the results forF50 have been presented in our
work.

FIG. 9. Energy spectraEnm* of a quantum dot
with a field-free circular cavity at center other-
wise under perpendicular uniform magnetic fields
(r150, r2Þ0, andD*514): ~a! r2*54 and~b!
r2*510.
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APPENDIX

The transcendental equation that we have used in deter-
mining the energy spectrum for the structure depicted in Fig.
1 is given as

detS G11 G12 G13 0 0 0

G21 G22 G23 0 0 0

0 G32 G33 G34 G35 0

0 G42 G43 G44 G45 0

0 0 0 G54 G55 G56

0 0 0 G64 G65 G66

D 50, ~A1!

where the nonzero matrix elements are specified to be

G115M S 11m1umu
2

2E* ,umu11,
1

2
r1*

2DexpS 2
1

4
r1*

2D
3S 12 r1*

2D umu/2

, ~A2!

G1252Jum1~1/2!r1*
2u~2

1/2E* 1/2r1* !, ~A3!

G1352Yum1~1/2!r1*
2u~2

1/2E* 1/2r1* !, ~A4!

G215r1* F S 2
1

2
1

umu
r1*

2DM S 11m1umu
2

2E* ,umu11,
1

2
r1*

2D
1M 8S 11m1umu

2
2E* ,umu11,

1

2
r1*

2D G
3expS 2

1

4
r1*

2D S 12 r1*
2D umu/2

, ~A5!

G225221/2E* 1/2Jum1~1/2!r1*
2u

8 ~21/2E* 1/2r1* !, ~A6!

G235221/2E* 1/2Yum1~1/2!r1*
2u

8 ~21/2E* 1/2r1* !, ~A7!

FIG. 10. Persistent currentsI * associated
with the same structure considered in Fig. 9 as a
function of the number of electrons where~a!
r2*50, ~b! r2*54, ~c! r2*56, and~d! r2*58.

FIG. 11. Single-particle energy spectrum
Enm* for the quantum dots described in Fig. 1 with
D*514; r2*510 andr1 /r250.6 are chosen.
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G325Jum1~1/2!r1*
2u~2

1/2E* 1/2r2* !, ~A8!

G335Yum1~1/2!r1*
2u~2

1/2E* 1/2r2* !, ~A9!

G3452US a2E* ,b,
1

2
r2*

2DexpS 2
1

4
r2*

2D S 12 r2*
2D g

,

~A10!

G3552M S a2E* ,b,
1

2
r2*

2DexpS 2
1

4
r2*

2D S 12 r2*
2D g

,

~A11!

G42521/2E* 1/2Jum1~1/2! r1*
2u

8 ~21/2E* 1/2r2* !, ~A12!

G43521/2E* 1/2Yum1~1/2! r1*
2u

8 ~21/2E* 1/2r2* !, ~A13!

G4452r2* F S 2
1

2
1

2g

r2*
2DUS a2E* ,b,

1

2
r2*

2D
1U8S a2E* ,b,

1

2
r2*

2D GexpS 2
1

4
r2*

2D S 12 r2*
2D g

,

~A14!

G4552r2* F S 2
1

2
1

2g

r2*
2DM S a2E* ,b,

1

2
r2*

2D
1M 8S a2E* ,b,

1

2
r2*

2D GexpS 2
1

4
r2*

2D S 12 r2*
2D g

,

~A15!

G545US a2E* ,b,
1

2
D* 2D , ~A16!

G555M S a2E* ,b,
1

2
D* 2D , ~A17!

G5652US a2~E*2V0* !,b,
1

2
D* 2D , ~A18!

G645S 2
1

2
1

2g

D* 2DUS a2E* ,b,
1

2
D* 2D

1U8S a2E* ,b,
1

2
D* 2D , ~A19!

G655S 2
1

2
1

2g

D* 2DM S a2E* ,b,
1

2
D* 2D

1M 8S a2E* ,b,
1

2
D* 2D , ~A20!

G6652F S 2
1

2
1

2g

D* 2DUS a2~E*2V0* !,b,
1

2
D* 2D

1U8S a2~E*2V0* !,b,
1

2
D* 2D G , ~A21!

where the primes appearing on top ofJn(x), Yn(x),
M (a,b,x), andU(a,b,x) denote the derivative with respect
to x. Note that all physical variables are written in terms of
the dimensionless forms introduced in Eqs.~9! and ~18!.
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