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Analytical forms are obtained for energy-loss rates due to optical-phonon and plasmon annihilation and
creation, and due to quasiparticle scattering. These contain the explicit dependence upon all system parameters
and temperature. Screening was obtained through a self-consistent classical calculation, made quantum me-
chanical by adding the effects of recoil and a quantum treatment of the modes. It is found that if the plasmon
and phonon frequencids, and wy, respectively are much different, the interaction between the hot carrier
and optical phonons in compound semiconductors is to a good approximation screened by
e(0,wg)=1— wf,/w%. If the two frequencies are comparable, the usual case, the total rate is well givarowith
screeningof either interaction. The interaction produciqggasiparticleexcitations is found to be screened to a
good approximation by the quantum dielectric functﬁm,ﬁs/ﬁ)%lJr(ﬁwp)z/(258)2 with Je the energy
exchanged in the collision, quite different from the statie 22/ frequently assumed. Losses to plasmons
and quasiparticle excitations are seen to be usually comparable and to dominate the phonon rate if the number
of carriers per atom exceeds the ratio of the carrier effective mass to the reduced mass of the atoms. This ratio
is understandable in terms of classical collisions between carriers and between carriers anfiSib6%s.
182996)02619-1

I. INTRODUCTION He gave the fulle(g,w), which screens a classical potential
of wave numberg and frequencyw in the random phase
We are concerned with the energy loss by hot carriers in approximation(RPA), first evaluated by LindhardUse of

polar semiconductor, seeking analytic expressions that incothis form, £(q,»), with the corresponding Fourier compo-
porate the dependence upon all of the system parameters sents of the potential from the fast electron would constitute
they can be conveniently used in device modeling. We alsa classical treatment of that fast electron, and the neglect of
address the pragmatic question of how screening is to bits recoil. This point has been made and discussed by Alm-
included in the calculation. We were unable to extract resultgladh and Hediff,who also note that this recoil is included
such as those given in the abstract from the analysis of enn the full RPA dielectric function reproduced by Pines. Thus
ergy loss given by Jalabert and Das Sarmar the more in principle it must contain the parts of the electron-electron
recent analysis by Sanbofnyhich addressed transport prop- problem that we discuss here in conjunction with the optical
erties. Our analysis would seem to be closer to that givelhonons. References 1, 2, and 3, sought numerical solution

even more recently by Woemner and ElsaeSggto consid-  for the energy loss incorporating these same terms, which we
ered exactly the same processes we do, for germanium a8ck to include analytically.

well as gallium grsenide. Their analysi_s was directed at In the treatment of the energy loss of a fast particle by
holes, and was aimed at numerical solution rather than aNd, sorf. an interactione®e—</r between electrons was
lytic for_ms _for the result. Obtaining analytic forms requires used at 'the outset, which corresponds to a static dielectric
approximations andor us they can best be Qvaluated on afunctions(q 0)=1+ «?/g?. For a degenerate Fermi distribu-
physical basis by working from the full classical calculation, ' )

rather than from a diagrammatic expansion. We make eXt_|on this is the Fermi-Thomas approximation; for a Maxwell-

plicit comparisons with the results obtained by Jalabert andpCltzmann distribution this is th‘;‘ Debye-tkel approxima-
Das Sarma, Sanborr? and Woerner and ElsaesSewhere tion W|_th a different form for«°. So also_was the static
they overlap, at the end of Sec. IlI. approximation used py Fetter and Wale’?;lna treating en-
Energy loss arises from three distinguishable mecha€fdy loss and by Preisel, Mark, and Halig, the more re-
nisms: excitation of optical-mode vibrations, emission ofcent analysis of carrier capture. We find here that the static
plasmons, and excitation of quasiparticles. The basic diffiapproximation is qualitatively correct for quasiparticle scat-
culty is that each of these mechanisms also produces &ring, but shows the wrong dependence upon the parameters
screening of the potential due to the hot carrier, making angf the system. For plasmon or phonon excitations a qualita-
kind of exact solution impossible. We seek here at least dively different form is needed. A related treatment of the
good approximation. electron gas has been given by Rojas, Godby, and N@éds.
The principal approach to this many-body problem hasprovided self-energies but did not answer the specific screen-
been a quantum-mechanical perturbation-theory expansion ing questions addressed here. A major computational treat-
e?, summing selected terms—or diagrams—to all ordersment of these problems in silicon has been made by Fischetti
Such a diagrammatic formulation of screening was giverand Lauxt! which details earlier analyses and focuses on the
many years ago by Pinéswho discussed also the classic quantitative accuracy of predicted transport properties.
problem of energy loss by a fast electron in an electron gasiVhere our questions overlap, we agree with their results.
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Sotirelis and Hes$ addressed more specifically the energy  Il. CLASSICAL ENERGY LOSS WITH SCREENING

loss producing quantum-well capture. . . The first step is a classical, self-consistent account of the
There have been numerous calculations that included ex-

) : L .)E)ptical—phonon modes and their interaction with the gas of
change and correlation correcuqns to the static d'elecm(&arriers, and the interaction of both with the field arising
function, £(q,0), generally by adding an exchange and cor4om g high-energy classical carrier. This defines the param-
relation term to Poisson’s equation. See Kleinfidar one eters of the problem and gives us an energy loss that can be
of the earliest such efforts and Glasédor one of the most  igentified with a quantum-mechanical form for this loss. The
recent. At small these terms are completely dominated byrelative motion of the positive and negative atofesy., Ga
the Coulomb term, and at largg the dielectric function is  and A3 in each atomic cell is expanded in normal coordi-
near one in either case so these do not seem essential to thgtes representing the longitudinal optical vibrational modes
problems motivating this study. We do not include suchgg 5r,—=2quqeiq"i/mc with N, the number of primitive
terms. cells in the system. This produces a local dipole in each
It has long been recognized that in semiconductors thgrimitive cell of e% esr; with e} the transverse charge, equal
plasma frequency and the optical phonon frequencies can ke 2.16 for GaAs=® Similarly, for this part of the problem the
similar and since they are strongly coupled the modes arkcal displacement of the carriers is expanded in terms of
mixed. The resulting phonon-plasmon modes have beenormal coordinates, or plasma coordinates. We further add
treated by Mooradian and McWhartermore recently by an “applied” potential from the energetic electron of veloc-
Kuznetsov and Stantof}, Jalabert and Das Sarmaand ity v,
Sanborr?, and this coupling is included here. 5
It is possible to proceed, as an approximation, by treating € :2 4me
the field from the hot carrier as a classical potential, ex-r—vit| <5 £,.00°
panded in plane waves ﬁ'wvo(q,w)eprq- r—ot). Then 1)

if on n obtain the linear r nse to thi tential, classi- . . . . .
one can obta € inear response fo this potentia’, Classy. s the optical dielectric constant of the material dds

cally or quantum mechanically, one can obtain a dielectrictﬁ’e total volume. Einall .

. ) . . y, we add a small damping term and,
function &(q,w)=e1(q,) +ie,(q,w) and write the work done iy poisson’s equation, obtain the classical equations of
by the classical potential as the energy loss. The loss is thenion for the normal coordinates in terms of the applied
proportional to the imaginary part ofell,), orez/(e1+¢2).  figld and the fields arising from the phonofeetails again
There are contributions ta, for each of the three 10ss 416 given in Ref. 17 or in the original treatment by Moorad-
mechanisms. We treat loss due to phonons and plasmongy and McWhorte).
first., apd return at the end to a treatment of quasiparticle |t js helpful to extract some quantities from these equa-
excitation. tions before proceeding. If there is no applied field, no

As mentioned above, the assumption of a classical poterplasma term, and no damping we obtainas the optical-
tial neglects recoil, even for a quantum treatment@f, ). mode frequencyy, and
The true quantum energy loss depends upon an enérgy
function, the argument of which is missing AAg%/2m term , o, Ame’e}? )
for the hot electron when it is treated as the source of a wo= 0T+ meT+ dwy. (3]
classical potential in the derivation &f. We shall rectify e
this by matching our classical calculation with a quantumM, is the reduced magd .M _/(M .+ M) of the two atoms
treatment of the same system, and by using a frequency coin the cell, of volumeQ) .= Q/N, . w is the transverse opti-
rected by the quantum term. This presumably leaves us witbal frequency, equal to the longitudinal frequency in the ab-
an error in thes3 term in the denominator. Since there are asence of electric fields, andéw3 is the familiar
number of terms in this denominator and thg term is Lyddane-Sachs-Telltt difference between the longitudinal
small, this is probably not so serious in any of the casegptical-mode frequency and the transverse optical-mode fre-
treated. quency. Similarly we obtainw, as the plasma frequency
We calculate the linear response to the potential from thejiven by
hot electron of(dispersionlegsoptical modes and plasma
modes classically, without other approximations. This yields ) 47Ne?
a classical absorption remarkably close to a quantum treat- Wp= e.m* ©)
ment of spontaneous phonon and plasmon emission. We then
rectify classical errors in the numerator and in the classicaim® is of course the effective mass of the carriers making up
screening represented by the denominator. When we treétie plasma. We treat the plasma frequency as independent of
also quasiparticle excitation, we proceed in an analogoug in order to simplify the discussion and to obtain analytic
fashion. results. We also proceeded numerically, following Jalabert
The analysis seems quite intricate and inclusion of theand Das Sarmaand SanborA,to include the wave-number
details seems to confuse the central questions. We hawéependence in the plasma-pole approximation, replaeing
therefore tried to trim it to its essential results in this papereverywhere by}%wp\/lﬂqu/K? [Sanborn’s Eq(50)], and
A detailed account of the analy$isis available from the shall indicate the resulting modification of the results in Sec.
author upon request and the specific evaluation of the dieledH.
tric function for quasiparticle scattering, for degenerate and The coupling terms in the classical equations of motion
nondegenerate carriers, is included here as an Appendix. mix the two modes, producing composite phonon-plasma

2

ei(Q'r*Q'Vlt)Ei 2 Voei(q-rfq-vlt).
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modes, of the type treated by Mooradian and McWhdrter. dielectric function by calculating the work done by the field
They are obtained from the two equations of motion, agairof the incident electron on the induced charge density. The

dropping the applied potential and damping terms, as rate of energy loss 1§
2 2 2 2\ 2 1/2
w,tow 0w~ w *
wi: p2 0+ ( p2 0 +w55wé (4) I £,8) E qusz(w)Vg| Vg )
4me’N, G eites

Now we may return to the full equations of motion for the

atomic coordinates and plasma coordinates, using Poissorvehich is the classical loss rate in termsagfv). The imagi-
equation to relate the potentials to the normal coordinaterary parte,(w) is obtained by writingw=q-v; and changing
and evaluate the ratio of the net potential present to the aghe sum over allq to an integral. There are contributions
plied potential  [Eq. @]. This ratio is from the poles in this integration that can be written as
e(w)=¢4(w) tie,y(w), the dielectric function for this clas- & functions. Then returning to the form as a sum owger
sical system. The energy loss can be written in terms of thishe result can be written as

20 2 2 2 2 2 2 2 2 2
We e ) wp(0°— 07) + dwjw S w,)+ wp(0°— 07) + dogw
+

pl'ph_47Tech 3 wZ_w% 02— wi

Slw—w_) g2V VO, (6)

where the subscript indicates that we have included the efs(n%k,-q/m* +42q2/2m* —fw.)=8v,-q+Aq%12m* —w. )/

fects of both plasma and phonon coordinates. This classicdl. In the classical treatment we can see from Eg.that

loss is closely related to the quantum result, H4®) and ©=v-k; but now there is an additional term, which we

(16) of Jalabert and Das Sarmancluding the denominator should include, replacing by v;-q+#%g%/2m*. In addition

and the matrix elements, but the remaining factors were lefive may treat the plasmon-phonon modes quantum mechani-

in terms of an IMy(q,w+). cally by writing thevgS andV§ in terms of the correspond-
We wish to retain our classical screening, but modifying normal coordinates and write these in terms of annihila-

other aspects to match the quantum result. In the quartion and creation operatora, and a’.. We obtain the

tum development, theS functions are energy functions quantum loss rate,

bph= WSDCQC 2 w’%(wi_w%—)—i_&w%wi Z h 2 47762 i a aT ﬁ2k1q+h2q2+hw
pl.ph 47Te2NC + wzt—w?_‘_ q q QZSWQC TG+ m* 2m* +
h%k g h%g?

A major simplification has been accomplished by taking theplex interplay between the frequency shifts, screening, and
plasma and optical-mode frequencies independeny sb  absorption that is included in our classical calculation would
that one complicated factor could be taken out from undef€em to be more essential. Equatidh does not depend

the sum. The classical calculation contained no dependend#on taking the electron under consideration to be of high or
upon the excitation of the mode, so it corresponds only tdow energy with respect to thermal electrons nor with respect
spontaneous emission, the first term in E) with  © 75")0 O{ﬁ“()?)' wed it on of th

a,qafq replaced by 1. Equatiof¥) should be more closely quation/), VIEwed as an approximaze expression ot the

: olden rule for plasmon-phonon scattering of electrons, can
related to the corresponding result, Efj5) of Jalabert and g b b 9

L ; 7 ) . be directly modified to treat a number of questions beyond
Das Sarma depending upon what is included in their e simple energy-loss rate. We may simply divide inside the
Im x(q,®-). Our form incorporates the screening explicitly, g;m by the energiw. , which is the energy gained or lost,

which was indeed our goal. It is not easy to match up thgg gptain the transition rate. It is not obvious, but is true, that
algebraic expressions with Jalabert and Das Sarma,ours  the factor preceding the square brackets is positive definite,
will lead to appropriate known limits, as must theirs. so this will always give a positive rate. We may also obtain
This now includes the full classical screening of thethe distribution of the wave numbers of final states from such
modes as well as the formation of composite modes. Thersums over final states, proceeding as we shall in the follow-
will be some error in the use of classical screening, as wéng section.
shall see in Sec. IV. However, we shall see that the differ- The sum over wave number will of course be re-
ences are not important in the limits we need and the complaced by an integral overg in the form
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= 6w 5/£(0,00)?, where the dielectric function

|8
NT N

e(0w)=1— 9

S

is the long-wavelength dielectric function for a free-carrier
gas, with Boltzmann or Fermi distribution®btained, for
example, from the second of E() and Poisson’s equation,

. ¢ _ . .
FIG. 1. The initial electron wave numbés, is shown and the With Vg dropped or from theg=0 limit of the quantum
change in electron wave numbey making an angle of with k,;.  dielectric function in the random phase approximation as we

Circles, in order of increasing size, are states of enefgyhiw,,  Shall see in the Appendix The same result applies for

e1—ho_, ertho_, and s;+hw, . For each case the minimum ®§> w5 and forw §<w 5. Note that in the first case it is a

wave numberq,,, is the wave-number distance froky to the small antiscreenindjl/s(o,w)zz1] and in the second case it

corresponding circle andys, the distance to the far side of that is a strong screening [4(0,0)*~ w ¢/ y<<1]. [Similarly,

circle. we can obtain the screening of thlasma likemode by the
phonons when the two frequencies are much different. When

2q=[Nch/(27-r)3]f27rq2 dqf sin6d# using the cylindri- the wg<w%, the frequency-dependent factor in E§) be-

cal symmetry of the problem around the initial wave numbercomesw 5/ with the dielectric functione~1+ dw§w§ and

kq; @is the angle betweeq andk,. We perform the integral whenw§>wé there is a weak antiscreening.

over @ first, holding the magnitude off fixed. What this We may look at the other factors in E(B) for phonon

means is seen in Fig. 1. ¢f crosses a circle representing an emission and absorption. From Fig. 1 we may see that for

energy-conserving state with the emission or absorption ofarge k; the lower limit g,,;~#% wom*/%%k, obtained from

one of the composite modéi$ crosses all four in Fig. 1 the  qnde/ dk~hwy, and the upper limit i99ma=2K1 £ qmin

é function contribute$n*/(h2k1q) to the integral. We obtain with the plus for absorption and the minus for emission. The

for the energy loss terms inn.., which we write here as, and which could be
a thermal occupatiokz T/% wq, cancel except over the range
,  m* e? s w;z)(wzz—w-er Swiw 2gmin Nnearq=2k, . The remaining term contributes over the
PPN ¢ fik, < w2 — w2 entire range. This leads to
x * 4, %2 %
x| (n.+1)In q"lﬂ —n.n qTﬂ G Wy ey e T m _foftwo |y 2o
Umin emit Amin abs pLp 8308(0,000) QCM,ﬁkl 281 ﬁwo

(10
Here nt:aiai is the number of quanta in the corre-

sponding modeksT/#w.. at high temperatures for thermal fqr wy, very different fromwO.IThe first term comes fr'om the
equilibrium. g, andg, . are the minimum and maximum difference between absorption and stimulated emission and

values for which the crossing occurs for emission or absorpt® Sécond term arises from spontaneous emission of

tion of the corresponding mode, obtained by inspection fronPhonons, with the screening of each matrix element by

Fig. 1. We have dropped the “quantum” designation sincel’#Qwo). _
we no longer need the classical result. The conditions leading to E¢10) apply for a hot electron

Equation(8) provides an explicit formula for the energy- IN @ Metaliwg<e;—ep<hw,, but they will ordinarily not

loss rate due to the phonon-plasmon system. The most inPPly in semiconductor devices. In GaAs wititype doping

7 .
portant approximation has been the neglect of any deper®f 8x10"" electrons/crfy the optical-phonon frequency, the

dence of w. on g, which allowed us to take the plasma frequency, ankzT/A at room temperature are all
.-dependent factor out of the integral and evaluate the incomparable. , ,
tegral explicitly. Such formulas allow insight into the nature 't Will be informative therefore to make an approximate

of the absorption by making explicit the dependence upc)I»;-,\valuation when again the incident energy is high compared

parameters such as incident energy, carrier density, temperi 7=, but o, and »_ are similar. The determination of

ture, and effective mass. We illustrate this now by consider!iMits on g for each case is the same as above. Also, the
ing particular limits. integrals themselves are similar enough &r and w_ that

we take them to be equ@ht a common value, which we
IIl. THE EVALUATION FOR SPECIFIC LIMITS write as(w.)=y(wo+wp)/2, suggested by Eq4)] and
combine the terms that precede them in B].to obtain
We make the evaluation first for optical-phonon emission

whenw, andw, are very different and the incident energy m* e? ) ) N,hw,+N_ho_
is much larger than the phonon enertyy,. When w3 and Wpl,phzsocﬁkl (wp+ dwyp)| — de,
wg are very different we may expand E&) around the root
2 2 2 2 2 2 ; H
near wp as o ~wj—w ;0w gl (ws5— , to first order in 4e
Sw zww/(wzoiwza))oTflwl)epw(gE (E)a; "in (ic)r?e)z numerator of the Hn e, (12)
0®@Wp p 0/- T h<wi>

factor preceding the integral in EQq.8) becomes
w2 —wi=dwi—widwll(w;—wi)=—dwiwil(wi—wf) tolowest order iNw,—w_)(w.). In thermal equilibrium at
and the entire factor becomesswgw/(w5—w§)*  high temperatures).fiw,=n_fiw_~kgT.
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FIG. 2. The total absorption rat#® as a function of incident energy for two concentration®N of electrons in GaAs. The dotted line

is the corresponding calculation from Ref. 1.

Equation(11) is remarkable. The final factor is a gener- dences correctly, with too small a numerical factor, partly
because of the assumed head-on collision.

alization of Eq.(10), but otherwise the term ifiwg is exactly
the result we obtained in Eq10) for spontaneous emission
of phonons, butwithout the screening factofl/s(0,wg)?.
is that corresponding to spontane-

2

Similarly the term inw

IV. COMPARISON WITH MORE COMPLETE
CALCULATIONS

ous emission of plasmons without screening, or other effects,

from the phonons. We find that the total energy loss is cor-

For comparison with numerical calculations we must sub-

rectly computed by treating the phonons and plasmons indestitute numbers for a particular system. We do thisrfdype
gallium arsenide. The carrier effective massnis=0.067m.

The experimental transverse-optical-mode frequendy is
0.509<10* rad/sec and with a transverse chargé® af:
similar, but in that case the mixing of the two levels and the=2.16 for GaAs,sw3=0.028<10?seé , and from Eq.(2)
mutual screening of each other cancel out completelywy=0.536x 10"sec. Thus we havkw,=0.035 eV, in com-
Though in detail there is screening, or antiscreening, of thgarison to the plasmon energy i ,=0.014 eV forn-type
phonon field by the plasmons, the modification in the inten-doping ofN=10""/cm® or 0.039 eV for &10"/cn?®, two of
sity of phonon emission is compensated by a change in théhe cases treated by Jalabert and Das Sarini quite in-
loss rate to plasmons. The actual energy-loss events occur farmative to make a direct comparison with their calcula-
o+, NOtwy and w, , which would lead to some modification tions by returning to Eq(8) and calculating the energy loss
of the dependence upon temperature and incident energgs a function of incident energy; for these two concentra-
tions. This clarifies the weaknesses and strengths of our
rately as in Eq(11) if one so chooses, and we shall do that inanalysis. The two terms in E¢8) are given by

pendently and without screeningther than the %/, fac-

tors).

This depended upon our approximation that were

There is no difficulty in keeping the two terms,., sepa-

Sec. V.

An additional interesting conclusion can be drawn. The
ratio of spontaneous loss rate due to plasmon creation to lo
rate due to optical phonons is estimated from @d) to be

simply
Wy _ @y _ NOM,
Won  Swg  m*er?’

atom,NQ /2 for two atoms per cell, hence the factéf) .

cell have about the same masme loses only ;m*/(2M,)

(12

m* e? w%(wi—w%)-i—éwgwi n 1+Vl-thow.le,g

+

€

2
whkl Wi~ W

E 1-V1-fho. le,|

(13

The comparison is given in Fig. 2, where we have added the
two termsW.., and included also quasiparticle excitations,
discussed in the following section.

Jalabert and Das Sarmeonsidered the zero-temperature
This ratio may be rationalized by thinking of the emission ofcase, so that the electron gas was degenerate with a Fermi
a plasmon as a collision with a carrier and emission of anergy shown in the figure. This affected the results by ex-
phonon as a collision with an atom. One is less likely tocluding events for which the final electron energy would be
collide with a carrier by a factor of the number of carriers perpelow that Fermi energy. It also sets the equal to zero in
Eq. (8). The basic assumptions are the same in both calcula-
However, in a direct collision with a stationary carrier, the tions, but we have made additional simplifying approxima-
incident carrier loses all of its energy. In a direct collision tions in order to obtain analytic forms so it may be reason-
with a stationary atonfof mass M, if the two atoms in the able to assume that the differences are deficiencies in our

approx

imations.

of the initial energy. Finally, the atoms behave as if having a The small initial absorption, at energies, just abeye is
chargee} times the carrier charge and the scattering crosfrom quasiparticle excitations, to which we return. We see
section goes as the square of the charge. This crude arguméwbo additional abrupt rises, atg+%w_ and eg+fow, ,
which are identifiable with shoulders in the curves given by

suggests a ratiblQ M, /(4m* e 2), giving all of the depen-
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Jalabert and Das Sarma)so shown. They are abrupt in our 2 Ae? \2 hw
calculation because we did not include dispersion in the pho- Wep=—3- % fo(sk)( qumQ> (. 0) 5 (q0)
non or plasmon modes; emission became possible at all wave
numbers at the same energy We redid this including plas-
mon dispersion, which indeed rounded the rises, but not to X
the extent indicated by Jalabert and Das Sarma, and it re-
quired numerical integration rather than the explicit formWith 2w found to be the energy exchanged between the col-
given in Eq.(13). liding electrons,

The coupling between phonon and plasmon, represented £2(2ky-q—q?)
by &ué, is weak enough that we can associate the rises with ho= 1—*
the uncoupled mode to which it is closest, and we have so 2m
labeled the optical phonon mode in the figure. We see thathis plausible, but not completely obvious, identification fol-
the total rise associated with that mode is given rather wellows from the classical analysis. With this identification, Eq.
relative to Ref. 1, and is quite similar at both densities, ag14) could be written down immediately from the golden
expected, and it occurs at the same energy abgvier both  rule. Equation15) was contained in Sanborn’s E@6). The
densities. The rise in absorption due to plasmons of coursenscreened matrix element for transfer of momentigns
shifts with electron density, as we find, but our calculation47€®/(g%e..Q).
gives considerably less growth with energy than does the full For a high-energy incoming electron we might neglect
calculation. Perhaps the finite lifetime of the plasmons,n the §function of Eq.(14) relative tok,. Thenfiw becomes
which would enter somewhat like a broadening of the mode/t°q*/2m* and with no remaining dependence ugom the
might account for some of the difference. The figure mayintegral so we may perform thE,fq(e,)=N{ with N the
well be a fair representation of the validity of our approxi- Carrier density. Then writing(g,)* e(q,w)=e1+¢5 Eq. (14)
mate calculation. reduces to

It is not quite so simple to make the comparison with the 2

. . . ko

numerical results given by Woerner and Elsae3sehp in- Wep=—5- 2 (
cluded only contributions due to phonons. We evaluate the h “q
second term in Eq(ll), that due to optical phonons, taking
w-. equal to the longitudinal optical-mode frequency and ><5(
evaluate it for heavy holes of mass of 0.@6weighted av-
erage over directionusing parameters that they listed. We again fork,>k, the wave number of the struck electron.
note that the ¥, factor is related ta:; =%k 2/(2my,) and We write the sum over g as an integral

obtain a rateWo=0.93 Inde, /fiwg)|/\4e 1 /hwy in €V per [Q/2(27-2r)3]f27-rq2dqf sin 6 dg and thed function becomes
picosecond. This form rises from zero to a peak of 0.7 eV (4" —kyq cosé)/m™). We perform the angular integral
picosecond ats;=0.065 eV. The corresponding curve in first, in analogy with Fig. 1, o?talnmg a contribution as long
their Fig. 5 rises to a peak of 0.45 eV/picosecond at perhap@Sd iS less thark,. We have'” again for largek,
0.1 eV. Woerner and Elsaesser have included a more com-
plete description of the heavy-hole states and anisotropies, =5 I q dqg
but we suspect that the differences arising from such refine- 27Ky Jok,
ments are quite small. Our result is higher, presumably 477Ne4f dg 1
0

2

h
— (2k-g+0%) —tw

S , (14

(15

4me? \2 NQ #%g°
qzst si—}—s% 2m*
2

(—ki-q+9%) |, (16)

m*

2 1 thZ 1
fh 2m* 8%4‘8%

N m* 47e?
9.,

largely because separating out the phonon term in(Ed. =
leaves out any screening of the interaction, since the effects eshky
of that screening are then part of the plasma term. It is dif- ) S
ficult to make a comparison of the exact values from the two It Will turn out that e7+¢5 is near one over most of the

theories, but there is no reason to believe that they are if@nge of integration, bug if itzwere_equal to one at snogthe
serious disagreement. integral would diverges{+&5 provides the cutoff at smat|

and is thus essential. One might ask if our takindafeg-
ligible compared tok, in obtaining Eq.(16) might have
caused the divergence, but that is not the case. Even if we
keep the distributiorf 5(¢,) there remains a |k,/q| term in
Equation(8), or the more approximate E@l1), can be the integral at smalg.
used to obtain the energy loss for hot carriers due to optical In this case the quantum derivation of the dielectric func-
phonons and plasmons. There are also quasiparticle excittion in terms of a density matrix and the random phase ap-
tions that take energy from the incident hot electron. Thes@roximation is essentially as easy as a classical treatment
require the introduction of a much larger class of coordi-based, for example, upon the Boltzmann equation. We there-
nates, those of the individual electrons rather than the locdbre obtain the quanture(q,). This will include plasma
center of gravity utilized above. contributions to this screening, but we drop any smaller ef-
We again matched a classical self-consistent solution witliects of screening by optical phonons. SanBdras in fact
a Born-approximation expression for electron-electron scatargued that these phonon corrections vanish, a point that may
tering to obtain an energy loss rate due to quasiparticlevell be similar to our finding that when both plasmons and
excitation!’ optical phonons contribute, the screening of one compen-

7. (17)

—
k 0 e1te

V. LOSS TO QUASIPARTICLE EXCITATIONS
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0.6 i | ' | tegrand is plotted for the full form, as well as using
and the Debye-Fekel form. We may use Eq(18) for
05 L screening of quasiparticle scattering quite generally and with
some confidence.
o 04 © Substitutinge,(q)* from Eq. (18) for &3+ in Eq. (17)
§ and integrating gives the loss rate as
% 03
g Debye-Hiickel mNet 4¢3 \ 4¢3
0.2 _ qu—m In|1+ (ﬁwp)2| 48§+(ﬁwp)2 . (19)
0.1 . It is applicable independent of the degeneracy of the electron
o 1 | | gas, but applies te, large compared to the energy of the

carriers of densit\N. If &, is also large compared fow, Eq.
(19) could be approximated by

281
fiwy

1

- E) . (20)

FIG. 3. The integrand of Eq17), (k/q)(1/?) with & the full
dielectric  function, e.[q,A0%(2m*)]?>+£,[q,Aq%/(2m*)]?
[from Egs.(A7) and(A8)]. The heavy line is based upon a Boltz-
mann distribution withN=8x 10""/cm?, kgT=0.025 eV, e,,=11,
m* = 0.066m, for which x3;;=1.2&2. Also shown is the integrand
based upon the Debye-kkel (low-q) approximation to the dielec-
tric function, Eq.(A5), and the highg approximation, Eq(A9), for
the same parameters.

2aNe?
qp% 82hk1 n

We may correct Eq(19) for one aspect of treating, as
large compared to the Fermi energy of the carriers for the
degenerate Fermi distribution that becomes serious at lower
energies. We should exclude any scattering events in which
the final electron state lies below the Fermi energy, as we did
for phonons and plasmons for Fig. 2. We approximate this

sates the antiscreening of the other. The losses due to tlpé( noting that we in_cluded scattering by all electrons, I_ead-
optical modes have already been included in the precedinﬁ'g| to the factorN in E_q. (16). If_ the electror_1 energy 1s
sections without screening by the quasiparticles and here wgt. ©F above the Fermi energy, It cannot gxmte an electron
should treat the quasiparticle loss without screening by thgelow a CUFOff energy. for Wh'(.:h ‘SF_ng',‘Z‘ greater than
phonons. The.. that we have used throughout is the optical#1~ ¢F - This eliminates a fractions(/eg)™ of the elec-
dielectric constant, arising from polarization of the bonds,trons' reducing the loss rate by a factor

and this will not be changed to the static dielectric constant f—0 if s<e
&0, Which includes the effect of atomic displacements. eff 1eEE
In the Appendix we evaluate the quantum dielectric func- 2ep—g,)| 32
tion £(q,w) both for a Boltzmann distribution and a degen- feii= 1—(8—> if ep<e <2ep, (21
F

erate Fermi distribution. Evaluating it for a high-energy in-
cident electron, which we saw in the derivation of Eg6) .
corresponded td w=%2g%/(2m*)= e and a proportional- fer=1 if 2ep<en,
ity of the response to the density of carriers, we find what wep, ejther Eq.(19) or (20).
call the “dynamic dielectric function for quasiparticle scat- Equation(19) with the correction Eq(21), is the form
tering” given by that was used in Fig. 2. This only partly compensated for the
error of the highe,; approximation, which may account for
(18) our predicted rate at low energies, in the curve of Fig. 2 for
N=8x10'® carriers, being significantly higher than that
o given by Jalabert and Das Sarhat large k, Eq. (19), or
for both the E_Soltzmann and degeperate dlstr|but|on_s. _ more clearly Eq.(20), drops with energy because thek,l/
We find this result remarkable in several ways. First, writ-factor dominates the logarithmic term. ThikLfactor arose
ten in this form it is identical for a Boltzmann and a degen-from a factor 1/¢e/3k), which converted the integration
erate Fermi distribution, and therefore for intermediate degyer wave number to an integration over energy for use with
generacy. Second we see that it has similarity to thene energysfunction in deriving Eq(17). It arose also in the
dielectric function £0f2I0h0ann scattering, H§), which may  |oss to phonons and plasmons, causing the rates to saturate
be written as +(%“w )/ 6e°. However, the sign of the final  anq drop at large energy in Fig. 2. We do not understand the
term is changed, and there is a new factorzofThird, the  grigin of the continued increase shown by the Jalabert and
second term in either form of EGA9) is one-quarter ofand  pas Sarma result though, as we indicated in our discussion
the same sign ashe corresponding term in the largelimit o Fig. 2, it might be related to a broadening of the plasma
of the quantume;(q,0), so the inclusion of the frequency modes from interaction with quasiparticle excitations.
dependence throughiw=3&s was of some importance.  Finally, we may compare the energy loss due to quasipar-
Fourth, the energy-loss rate for a carrier of wave nunker ticle excitations with that due to plasma emission. We esti-
the integralf oy, d q/(qe5,) from Eq.(17), even for a “warm  mate the latter from the 5 term in Eq.(11), and substituting
electron” with k;~1.2%, is within 3% of the value ob- from Egq. (3) for w% we see that the factor preceding the
tained with the full dielectric function and beyond that is square brackets becomesrMe?/ (e 2%k,), the same as the
quite accurately given. This is seen in Fig. 3, where the inleading factor in Eqs(19) and (20) except for a factor,

(fiwp)?
4682

gqp(q)~1+
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which came from the form we chose for the integral in thosecient to outweigh the extra accuracy, which can and has been
equations. For the parameters we have discussed the remaabtained by detailed numerical calculation for individual sys-
ing factors are of order one and the two rates are comparableems.

From the detailed forms, we could see what conditions

would make one dominate the other. Kleinrffhalso found

the two mechanisms gave comparable contributions for hot ACKNOWLEDGMENT
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Indeed it has been possible to obtain analytic forms fodation-
each contribution to the energy loss by an energetic carrier,
Eq. (8) for loss to the phonon-plasmon system and E#S) APPENDIX
and(20) for excitation of quasiparticles. We have determined
the form of the screening that entered these expressions, and The quantum dielectric function(q,) can be obtained
have evaluated them for some interesting cases. The advansing a density-matrix formulation to determine the electron
tages of such expressions, which contain explicitly the defresponse, and solving together with Poisson’s equation, as,
pendence upon system parameters, may be sometimes suffir example, in Ref. 21, p. 290, to obtain

4 4me? S 1 1 Al
e(q,w)= +m - o(ek) gk+q—8k+ﬁw+iﬁa+8k+q_8k_hw_iﬁa ' (A1)

This was first evaluated for a degenerate electron gas by Lintaadithe real and imaginary parts are given for that case
by Pines for example. It is less familiar for a Boltzmann distribution so we treat that case in detail here. In either case the sum
over wave numbers is replaced by an integral. The angular integral can be performed analytically to obtain both the real and
imaginary parts as integrals over the magnitikd&he real part with a Boltzmann distribution is given by

2
KpH 1

2 \/;Qsjdx x exp( —x?)

£1(q,w)=1+ +In

(A2)

L [1r2uB.
N 1=2wB.

1+2x/B_
1-2x/B_) |’

Here we have introduced the renormalized frequencyBoth forms are valid both for the degenerate electron gas or
w=rhw/(kgT) and renormalized wave numbersxask/k;y  for the Boltzmann distribution. However, for the degenerate
and Q=gqg/k; with again #%%k2/(2m*)=kgT. Also electron gascy is replaced by the Fermi-Thomas screening

B.=Q=w/Q. The Debye-Hukel screening parameta,, parametergr given by

is given b
? d , 67Ne (A6)
, _ATNE (A3) T e
MOH™ ¢ KT with e the Fermi energy.
The dielectric function we need for this casesk, is
The imaginary part can be obtained analytically as e(q,) for hw=%12g%/2m*. Thenw=Q? so B, =2Q and
B_=0. Thus Eq(A2) for a Boltzmann distribution becomes
(q,0) Kon '{ 1w 0 ? 5q2 2 4
g2(q0)= =S |exp — 7 |5~ q K
2 4|Q ( _) _p e
V7k3Q 1| U5 1 K2 RN O'wdx X
p( LW, o } (Ad) Q+
—exp — - |= . X
4|Q ><exp(—x2)ln(—>, (AT)
Q—x
We might note two interesting limits that we have mentioned, 4 Eq.(A4) becomes
before, in both of whicl, vanishes. First is(0,w) =£,(0,w),
which we gave already in Eq9) and second is the static 2 1 ,
dielectric constant at long wavelengths, e,[q,h0%(2m*)]= %), (A8)

N

We have evaluated the integrand of HG7) for the
energy-loss rate due to quasiparticle excitatiimesk; so

2
s(q,O)zsl(q,O)ler% (small q). (A5)
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that it is dimensionlegsnumerically using Eqs(A7) and The Lindhard form fore(q,w) for a degenerate Fermi

(A8) with the result plotted as the heavy line in Fig. 3. distribution, with zw=7%2g%/(2m*), is, analogous to Eq.
£,(q) itself is small and makes only a small contribution (A7),

to ef+e3. (Note that, at small, 3 grows as 142 but &2

contains a term in f*.) The dominant term at smai is the hg? B kEke (1—(alke)?  |q+ kF| q
Hickel approximation, Eq(A5), which gives an integrand ~ €1{ 5 | = 2q° 2 q— kel ke
labeled as Debye-Hikel in Fig. 3. At largeq the imaginary (A10)

part &, drops as K°, while &7 is equal to one plus a term _ , _ _ _
proportional to 14*. The combination approaches the high- The highg form is obtained directly by expanding the loga-

expression fok(q,%q%/2m*), which is given by rithm as
2 2 2 2 k2 h 2
Kpnks (hop) L keKe o (hwp)
el @~1+ S =1+ 157 (A9) eq =1+ 7 =1+ 757 (A11)

the dynamic dielectric function for quasiparticle scattering where in the final step we used E@8) and(A6). As in Eq.

by a Boltzmann distribution at largg. In the final form we  (A9), the final term is one-fourth the highform for a de-

have written the energy transfée =#%2g%/2m* . In obtaining  generate electron gas ofq,0)~1+4xZk £/(3g*). We have

the final form we used Eq¥3) and (A3). Equation(A9)  again dropped the small contribution ©§[q,%q%/(2m*)].

leads to the integrand labeled “higii-in Fig. 3. These forms enter the energy-loss calculation through the
This result is interesting in a number of ways that weintegrand shown in Fig. 3, the integration being carried up to

discussed following Eq(18). In particular, in the final form g equal to the wave numbég of the incident particle. That

it has no dependence upon the parametgfsandk; asso- integral, and therefore the loss, can be seen to be roughly

ciated with the Boltzmann distribution and we may confirmequal for the full result and the higi-result if the upper

that the final form is valid also for a degenerate distributionlimit k, is around Xy or larger.
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