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Analytical forms are obtained for energy-loss rates due to optical-phonon and plasmon annihilation and
creation, and due to quasiparticle scattering. These contain the explicit dependence upon all system parameters
and temperature. Screening was obtained through a self-consistent classical calculation, made quantum me-
chanical by adding the effects of recoil and a quantum treatment of the modes. It is found that if the plasmon
and phonon frequencies~vp andv0, respectively! are much different, the interaction between the hot carrier
and optical phonons in compound semiconductors is to a good approximation screened by
«(0,v0)512v p

2/v 0
2. If the two frequencies are comparable, the usual case, the total rate is well given withno

screeningof either interaction. The interaction producingquasiparticleexcitations is found to be screened to a
good approximation by the quantum dielectric function«(q,d«/\)'11(\vp)

2/(2d«)2 with d« the energy
exchanged in the collision, quite different from the static 11k2/q2 frequently assumed. Losses to plasmons
and quasiparticle excitations are seen to be usually comparable and to dominate the phonon rate if the number
of carriers per atom exceeds the ratio of the carrier effective mass to the reduced mass of the atoms. This ratio
is understandable in terms of classical collisions between carriers and between carriers and atoms.@S0163-
1829~96!02619-7#

I. INTRODUCTION

We are concerned with the energy loss by hot carriers in a
polar semiconductor, seeking analytic expressions that incor-
porate the dependence upon all of the system parameters so
they can be conveniently used in device modeling. We also
address the pragmatic question of how screening is to be
included in the calculation. We were unable to extract results
such as those given in the abstract from the analysis of en-
ergy loss given by Jalabert and Das Sarma1 nor the more
recent analysis by Sanborn,2 which addressed transport prop-
erties. Our analysis would seem to be closer to that given
even more recently by Woerner and Elsaesser3 who consid-
ered exactly the same processes we do, for germanium as
well as gallium arsenide. Their analysis was directed at
holes, and was aimed at numerical solution rather than ana-
lytic forms for the result. Obtaining analytic forms requires
approximations andfor us they can best be evaluated on a
physical basis by working from the full classical calculation,
rather than from a diagrammatic expansion. We make ex-
plicit comparisons with the results obtained by Jalabert and
Das Sarma,1 Sanborn,2 and Woerner and Elsaesser,3 where
they overlap, at the end of Sec. III.

Energy loss arises from three distinguishable mecha-
nisms: excitation of optical-mode vibrations, emission of
plasmons, and excitation of quasiparticles. The basic diffi-
culty is that each of these mechanisms also produces a
screening of the potential due to the hot carrier, making any
kind of exact solution impossible. We seek here at least a
good approximation.

The principal approach to this many-body problem has
been a quantum-mechanical perturbation-theory expansion in
e2, summing selected terms—or diagrams—to all orders.
Such a diagrammatic formulation of screening was given
many years ago by Pines,4 who discussed also the classic
problem of energy loss by a fast electron in an electron gas.

He gave the full«(q,v), which screens a classical potential
of wave numberq and frequencyv in the random phase
approximation~RPA!, first evaluated by Lindhard.5 Use of
this form, «(q,v), with the corresponding Fourier compo-
nents of the potential from the fast electron would constitute
a classical treatment of that fast electron, and the neglect of
its recoil. This point has been made and discussed by Alm-
bladh and Hedin,6 who also note that this recoil is included
in the full RPA dielectric function reproduced by Pines. Thus
in principle it must contain the parts of the electron-electron
problem that we discuss here in conjunction with the optical
phonons. References 1, 2, and 3, sought numerical solution
for the energy loss incorporating these same terms, which we
seek to include analytically.

In the treatment of the energy loss of a fast particle by
Jackson,7 an interactione2e2kr /r between electrons was
used at the outset, which corresponds to a static dielectric
function«(q,0)511k2/q2. For a degenerate Fermi distribu-
tion this is the Fermi-Thomas approximation; for a Maxwell-
Boltzmann distribution this is the Debye-Hu¨ckel approxima-
tion with a different form fork2. So also was the static
approximation used by Fetter and Walecka8 in treating en-
ergy loss and by Preisel, Mørk, and Haug,9 in the more re-
cent analysis of carrier capture. We find here that the static
approximation is qualitatively correct for quasiparticle scat-
tering, but shows the wrong dependence upon the parameters
of the system. For plasmon or phonon excitations a qualita-
tively different form is needed. A related treatment of the
electron gas has been given by Rojas, Godby, and Needs.10 It
provided self-energies but did not answer the specific screen-
ing questions addressed here. A major computational treat-
ment of these problems in silicon has been made by Fischetti
and Laux,11 which details earlier analyses and focuses on the
quantitative accuracy of predicted transport properties.
Where our questions overlap, we agree with their results.
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Sotirelis and Hess12 addressed more specifically the energy
loss producing quantum-well capture.

There have been numerous calculations that included ex-
change and correlation corrections to the static dielectric
function, «(q,0), generally by adding an exchange and cor-
relation term to Poisson’s equation. See Kleinman13 for one
of the earliest such efforts and Glasser14 for one of the most
recent. At smallq these terms are completely dominated by
the Coulomb term, and at largeq the dielectric function is
near one in either case so these do not seem essential to the
problems motivating this study. We do not include such
terms.

It has long been recognized that in semiconductors the
plasma frequency and the optical phonon frequencies can be
similar and since they are strongly coupled the modes are
mixed. The resulting phonon-plasmon modes have been
treated by Mooradian and McWharter,15 more recently by
Kuznetsov and Stanton,16 Jalabert and Das Sarma,1 and
Sanborn,2 and this coupling is included here.

It is possible to proceed, as an approximation, by treating
the field from the hot carrier as a classical potential, ex-
panded in plane waves as(q,vV

0(q,v)exp(iq•r2vt). Then
if one can obtain the linear response to this potential, classi-
cally or quantum mechanically, one can obtain a dielectric
function«~q,v!5«1~q,v!1i«2~q,v! and write the work done
by the classical potential as the energy loss. The loss is then
proportional to the imaginary part of 1/«~q,v!, or «2/~«1

21«2
2!.

There are contributions to«2 for each of the three loss
mechanisms. We treat loss due to phonons and plasmons
first, and return at the end to a treatment of quasiparticle
excitation.

As mentioned above, the assumption of a classical poten-
tial neglects recoil, even for a quantum treatment of«~q,v!.
The true quantum energy loss depends upon an energyd
function, the argument of which is missing an\2q2/2m term
for the hot electron when it is treated as the source of a
classical potential in the derivation of«2. We shall rectify
this by matching our classical calculation with a quantum
treatment of the same system, and by using a frequency cor-
rected by the quantum term. This presumably leaves us with
an error in the«2

2 term in the denominator. Since there are a
number of terms in this denominator and the«2

2 term is
small, this is probably not so serious in any of the cases
treated.

We calculate the linear response to the potential from the
hot electron of~dispersionless! optical modes and plasma
modes classically, without other approximations. This yields
a classical absorption remarkably close to a quantum treat-
ment of spontaneous phonon and plasmon emission. We then
rectify classical errors in the numerator and in the classical
screening represented by the denominator. When we treat
also quasiparticle excitation, we proceed in an analogous
fashion.

The analysis seems quite intricate and inclusion of the
details seems to confuse the central questions. We have
therefore tried to trim it to its essential results in this paper.
A detailed account of the analysis17 is available from the
author upon request and the specific evaluation of the dielec-
tric function for quasiparticle scattering, for degenerate and
nondegenerate carriers, is included here as an Appendix.

II. CLASSICAL ENERGY LOSS WITH SCREENING

The first step is a classical, self-consistent account of the
optical-phonon modes and their interaction with the gas of
carriers, and the interaction of both with the field arising
from a high-energy classical carrier. This defines the param-
eters of the problem and gives us an energy loss that can be
identified with a quantum-mechanical form for this loss. The
relative motion of the positive and negative atoms~e.g., Ga
and As! in each atomic cell is expanded in normal coordi-
nates representing the longitudinal optical vibrational modes
as dr j5(quqe

iq•r j /ANc with Nc the number of primitive
cells in the system. This produces a local dipole in each
primitive cell of eT* edr j with eT* the transverse charge, equal
to 2.16 for GaAs.18 Similarly, for this part of the problem the
local displacement of the carriers is expanded in terms of
normal coordinates, or plasma coordinates. We further add
an ‘‘applied’’ potential from the energetic electron of veloc-
ity v1,

e2

ur2v1tu
5(

q

4pe2

«`Vq2
ei ~q•r2q•v1t ![

1

Nc
(
q
Vq
0ei ~q•r2q•v1t !.

~1!

«` is the optical dielectric constant of the material andV is
the total volume. Finally, we add a small damping term and,
using Poisson’s equation, obtain the classical equations of
motion for the normal coordinates in terms of the applied
field and the fields arising from the phonons~details again
are given in Ref. 17 or in the original treatment by Moorad-
ian and McWhorter15!.

It is helpful to extract some quantities from these equa-
tions before proceeding. If there is no applied field, no
plasma term, and no damping we obtainv as the optical-
mode frequencyv0 and

v0
25vT

21
4pe2eT*

2

«`MrVc
[vT

21dv0
2. ~2!

Mr is the reduced massM1M2/(M11M ) of the two atoms
in the cell, of volumeVc5V/Nc . vT is the transverse opti-
cal frequency, equal to the longitudinal frequency in the ab-
sence of electric fields, anddv0

2 is the familiar
Lyddane-Sachs-Teller19 difference between the longitudinal
optical-mode frequency and the transverse optical-mode fre-
quency. Similarly we obtainvp as the plasma frequency
given by

vp
25

4pNe2

«`m*
. ~3!

m* is of course the effective mass of the carriers making up
the plasma. We treat the plasma frequency as independent of
q in order to simplify the discussion and to obtain analytic
results. We also proceeded numerically, following Jalabert
and Das Sarma,1 and Sanborn,2 to include the wave-number
dependence in the plasma-pole approximation, replacingvp

everywhere byṽ'vpA11q2/k2 @Sanborn’s Eq.~50!#, and
shall indicate the resulting modification of the results in Sec.
III.

The coupling terms in the classical equations of motion
mix the two modes, producing composite phonon-plasma
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modes, of the type treated by Mooradian and McWhorter.15

They are obtained from the two equations of motion, again
dropping the applied potential and damping terms, as

v6
2 5

vp
21v0

2

2
6F S vp

22v0
2

2 D 21vp
2dv0

2G1/2. ~4!

Now we may return to the full equations of motion for the
atomic coordinates and plasma coordinates, using Poisson’s
equation to relate the potentials to the normal coordinates
and evaluate the ratio of the net potential present to the ap-
plied potential @Eq. ~1!#. This ratio is
«(v)5«1(v)1 i«2(v), the dielectric function for this clas-
sical system. The energy loss can be written in terms of this

dielectric function by calculating the work done by the field
of the incident electron on the induced charge density. The
rate of energy loss is17

Wcl5
«`Vc

4pe2Nc
(
q

vq2«2~v!Vq
0*Vq

0

«1
21«2

2 , ~5!

which is the classical loss rate in terms of«~v!. The imagi-
nary part«2~v! is obtained by writingv5q•v1 and changing
the sum over allq to an integral. There are contributions
from the poles in this integration that can be written as
d functions. Then returning to the form as a sum overq
the result can be written as

Wpl,ph
cl 5

p«`Vc

4pe2Nc
(
q

Fvp
2~v22vT

2!1dv0
2v2

v22v2
2 d~v2v1!1

vp
2~v22vT

2!1dv0
2v2

v22v1
2 d~v2v2!Gq2Vq

0*Vq
0, ~6!

where the subscript indicates that we have included the ef-
fects of both plasma and phonon coordinates. This classical
loss is closely related to the quantum result, Eqs.~15! and
~16! of Jalabert and Das Sarma,1 including the denominator
and the matrix elements, but the remaining factors were left
in terms of an Imx(q,v6).

We wish to retain our classical screening, but modify
other aspects to match the quantum result. In the quan-
tum development, thed functions are energyd functions

d~\2k1•q/m*1\2q2/2m*2\v6)5d~v1•q1\q2/2m*2v6)/
\. In the classical treatment we can see from Eq.~1! that
v5v•k1 but now there is an additional term, which we
should include, replacingv by v1•q1\q2/2m* . In addition
we may treat the plasmon-phonon modes quantum mechani-
cally by writing theVq

f andVq
p in terms of the correspond-

ing normal coordinates and write these in terms of annihila-
tion and creation operatorsa6 and a6

† . We obtain the
quantum loss rate,

Wpl,ph
qu 5

p«`Vc

4pe2Nc
(
6

vp
2~v6

2 2vT
2!1dv0

2v6
2

v6
2 2v7

2 (
q

\q2S 4pe2

q2«`Vc
D 2Fa6a6

† dS \2k1•q

m*
1

\2q2

2m*
1\v6D

2a6
† a6dS \2k1•q

m*
1

\2q2

2m*
2\v6D G . ~7!

A major simplification has been accomplished by taking the
plasma and optical-mode frequencies independent ofq so
that one complicated factor could be taken out from under
the sum. The classical calculation contained no dependence
upon the excitation of the mode, so it corresponds only to
spontaneous emission, the first term in Eq.~7! with
a2qa2q

1 replaced by 1. Equation~7! should be more closely
related to the corresponding result, Eq.~15! of Jalabert and
Das Sarma1 depending upon what is included in their
Im x(q,v6). Our form incorporates the screening explicitly,
which was indeed our goal. It is not easy to match up the
algebraic expressions with Jalabert and Das Sarma,1 but ours
will lead to appropriate known limits, as must theirs.

This now includes the full classical screening of the
modes as well as the formation of composite modes. There
will be some error in the use of classical screening, as we
shall see in Sec. IV. However, we shall see that the differ-
ences are not important in the limits we need and the com-

plex interplay between the frequency shifts, screening, and
absorption that is included in our classical calculation would
seem to be more essential. Equation~7! does not depend
upon taking the electron under consideration to be of high or
low energy with respect to thermal electrons nor with respect
to \v0 or \vp .

Equation~7!, viewed as an approximate expression of the
golden rule for plasmon-phonon scattering of electrons, can
be directly modified to treat a number of questions beyond
the simple energy-loss rate. We may simply divide inside the
sum by the energy\v6 , which is the energy gained or lost,
to obtain the transition rate. It is not obvious, but is true, that
the factor preceding the square brackets is positive definite,
so this will always give a positive rate. We may also obtain
the distribution of the wave numbers of final states from such
sums over final states, proceeding as we shall in the follow-
ing section.

The sum over wave number will of course be re-
placed by an integral over q in the form
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(q5[NcVc/(2p)3]*2pq2 dq* sinu du using the cylindri-
cal symmetry of the problem around the initial wave number
k1; u is the angle betweenq andk1. We perform the integral
over u first, holding the magnitude ofq fixed. What this
means is seen in Fig. 1. Ifq crosses a circle representing an
energy-conserving state with the emission or absorption of
one of the composite modes~it crosses all four in Fig. 1!, the
d function contributesm* /(\2k1q) to the integral. We obtain
for the energy loss

Wpl,ph
qu 5

m* e2

«`\k1
(
6

vp
2~v6

2 2vT
2!1dv0

2v6
2

v6
2 2v7

2

3S ~n611!lnUqmax6

qmin
6 U

emit

2n6 lnUqmax6

qmin
6 U

abs.
D . ~8!

Here n65a6
† a6 is the number of quanta in the corre-

sponding modekBT/\v6 at high temperatures for thermal
equilibrium.qmin andqmax are the minimum and maximumq
values for which the crossing occurs for emission or absorp-
tion of the corresponding mode, obtained by inspection from
Fig. 1. We have dropped the ‘‘quantum’’ designation since
we no longer need the classical result.

Equation~8! provides an explicit formula for the energy-
loss rate due to the phonon-plasmon system. The most im-
portant approximation has been the neglect of any depen-
dence of v6 on q, which allowed us to take the
v6-dependent factor out of the integral and evaluate the in-
tegral explicitly. Such formulas allow insight into the nature
of the absorption by making explicit the dependence upon
parameters such as incident energy, carrier density, tempera-
ture, and effective mass. We illustrate this now by consider-
ing particular limits.

III. THE EVALUATION FOR SPECIFIC LIMITS

We make the evaluation first for optical-phonon emission
whenv0 andvp are very different and the incident energy«1
is much larger than the phonon energy\v0. Whenv0

2 and
v p

2 are very different we may expand Eq.~5! around the root
near v0 as v2'v 0

22v p
2dv 0

2/(v p
22v 0

2), to first order in
dv 0

2v p
2/(v p

22v 0
2). The v22v T

2 in the numerator of the
factor preceding the integral in Eq.~8! becomes
v 2

2 2v T
25dv 0

22v p
2dv 0

2/(v p
22v 0

2)52dv 0
2v 0

2/(v p
22v 0

2)
and the entire factor becomesdv 0

2v 0
4/(v p

22v 0
2)2

5dv 0
2/«(0,v0)

2, where the dielectric function

«~0,v!512
vp
2

v2 ~9!

is the long-wavelength dielectric function for a free-carrier
gas, with Boltzmann or Fermi distributions~obtained, for
example, from the second of Eq.~2! and Poisson’s equation,
with Vq

f dropped or from theq50 limit of the quantum
dielectric function in the random phase approximation as we
shall see in the Appendix!. The same result applies for
v 0

2@v p
2 and forv 0

2!v p
2. Note that in the first case it is a

small antiscreening@1/«~0,v!2*1# and in the second case it
is a strong screening [1/«(0,v)2'v 0

4/v p
4!1]. @Similarly,

we can obtain the screening of theplasma likemode by the
phonons when the two frequencies are much different. When
the v p

2!v 0
2, the frequency-dependent factor in Eq.~8! be-

comesv p
2/«2 with the dielectric function«'11dv0

2/v0
2 and

whenv p
2@v 0

2 there is a weak antiscreening.#
We may look at the other factors in Eq.~8! for phonon

emission and absorption. From Fig. 1 we may see that for
large k1 the lower limit qmin'\v0m* /\

2k1 obtained from
qmin]«k/]k'\v0 , and the upper limit isqmax52k16qmin
with the plus for absorption and the minus for emission. The
terms inn6 , which we write here asn0 and which could be
a thermal occupationkBT/\v0 , cancel except over the range
2qmin nearq52k1 . The remaining term contributes over the
entire range. This leads to

Wpl,ph5
4pe4eT*

2m*

«`
2«~0,v0!

2VcMr\k1
F2

n0\v0

2«1
1 ln

4«1
\v0

G
~10!

for vp very different fromv0. The first term comes from the
difference between absorption and stimulated emission and
the second term arises from spontaneous emission of
phonons, with the screening of each matrix element by
1/«~0,v0!.

The conditions leading to Eq.~10! apply for a hot electron
in a metal,\v0,«12«F!\vp , but they will ordinarily not
apply in semiconductor devices. In GaAs withn-type doping
of 831017 electrons/cm3, the optical-phonon frequency, the
plasma frequency, andkBT/\ at room temperature are all
comparable.

It will be informative therefore to make an approximate
evaluation when again the incident energy is high compared
to \v6 , but v1 andv2 are similar. The determination of
limits on q for each case is the same as above. Also, the
integrals themselves are similar enough forv1 andv2 that
we take them to be equal@at a common value, which we
write as ^v6&5A(v0

21vp
2)/2, suggested by Eq.~4!# and

combine the terms that precede them in Eq.~8! to obtain

Wpl,ph5
m* e2

«`\k1
~vp

21dv0
2!F2

n1\v11n2\v2

4«1

1 lnU 4«1
\^v6&

UG , ~11!

to lowest order in~v12v2!/^v6&. In thermal equilibrium at
high temperatures,n1\v15n2\v2'kBT.

FIG. 1. The initial electron wave numberk1 is shown and the
change in electron wave numberq, making an angle ofu with k1.
Circles, in order of increasing size, are states of energy«12\v1 ,
«12\v2 , «11\v2 , and «11\v1 . For each case the minimum
wave numberqmin is the wave-number distance fromk1 to the
corresponding circle andqmax the distance to the far side of that
circle.
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Equation~11! is remarkable. The final factor is a gener-
alization of Eq.~10!, but otherwise the term indv0

2 is exactly
the result we obtained in Eq.~10! for spontaneous emission
of phonons, butwithout the screening factor1/«~0,v0!

2.
Similarly the term inv p

2 is that corresponding to spontane-
ous emission of plasmons without screening, or other effects,
from the phonons. We find that the total energy loss is cor-
rectly computed by treating the phonons and plasmons inde-
pendently and without screening~other than the 1/«` fac-
tors!.

This depended upon our approximation thatv6 were
similar, but in that case the mixing of the two levels and the
mutual screening of each other cancel out completely.
Though in detail there is screening, or antiscreening, of the
phonon field by the plasmons, the modification in the inten-
sity of phonon emission is compensated by a change in the
loss rate to plasmons. The actual energy-loss events occur at
v6 , notv0 andvp , which would lead to some modification
of the dependence upon temperature and incident energy.
There is no difficulty in keeping the two terms,v6 , sepa-
rately as in Eq.~11! if one so chooses, and we shall do that in
Sec. V.

An additional interesting conclusion can be drawn. The
ratio of spontaneous loss rate due to plasmon creation to loss
rate due to optical phonons is estimated from Eq.~11! to be
simply

Wpl

Wph
5

vp
2

dv0
2 5

NVcMr

m* eT*
2 . ~12!

This ratio may be rationalized by thinking of the emission of
a plasmon as a collision with a carrier and emission of a
phonon as a collision with an atom. One is less likely to
collide with a carrier by a factor of the number of carriers per
atom,NVc/2 for two atoms per cell, hence the factorNVc .
However, in a direct collision with a stationary carrier, the
incident carrier loses all of its energy. In a direct collision
with a stationary atom~of mass 2Mr if the two atoms in the
cell have about the same mass! one loses only 4m* /(2Mr)
of the initial energy. Finally, the atoms behave as if having a
chargeeT* times the carrier charge and the scattering cross
section goes as the square of the charge. This crude argument
suggests a ratioNVcMr /(4m* eT*

2), giving all of the depen-

dences correctly, with too small a numerical factor, partly
because of the assumed head-on collision.

IV. COMPARISON WITH MORE COMPLETE
CALCULATIONS

For comparison with numerical calculations we must sub-
stitute numbers for a particular system. We do this forn-type
gallium arsenide. The carrier effective mass ism*50.067m.
The experimental transverse-optical-mode frequency is18

0.50931014 rad/sec and with a transverse charge of18 eT*
52.16 for GaAs,dv0

250.02831028/sec2 , and from Eq.~2!
v050.53631014/sec. Thus we have\v050.035 eV, in com-
parison to the plasmon energy of\vp50.014 eV forn-type
doping ofN51017/cm3 or 0.039 eV for 831017/cm3, two of
the cases treated by Jalabert and Das Sarma.1 It is quite in-
formative to make a direct comparison with their calcula-
tions by returning to Eq.~8! and calculating the energy loss
as a function of incident energy«1 for these two concentra-
tions. This clarifies the weaknesses and strengths of our
analysis. The two terms in Eq.~8! are given by

W65
m* e2

«`\k1

vp
2~v6

2 2vT
2!1dv0

2v6
2

v6
2 2v7

2 lnU11A12\v6 /«1

12A12\v6 /«1
U .

~13!

The comparison is given in Fig. 2, where we have added the
two termsW6 , and included also quasiparticle excitations,
discussed in the following section.

Jalabert and Das Sarma1 considered the zero-temperature
case, so that the electron gas was degenerate with a Fermi
energy shown in the figure. This affected the results by ex-
cluding events for which the final electron energy would be
below that Fermi energy. It also sets then6 equal to zero in
Eq. ~8!. The basic assumptions are the same in both calcula-
tions, but we have made additional simplifying approxima-
tions in order to obtain analytic forms so it may be reason-
able to assume that the differences are deficiencies in our
approximations.

The small initial absorption, at energies, just above«F , is
from quasiparticle excitations, to which we return. We see
two additional abrupt rises, at«F1\v2 and «F1\v1 ,
which are identifiable with shoulders in the curves given by

FIG. 2. The total absorption rateW as a function of incident energy«1 for two concentrationsN of electrons in GaAs. The dotted line
is the corresponding calculation from Ref. 1.

53 12 873SCREENING AND ENERGY LOSS BY HOT CARRIERS IN . . .



Jalabert and Das Sarma,1 also shown. They are abrupt in our
calculation because we did not include dispersion in the pho-
non or plasmon modes; emission became possible at all wave
numbers at the same energy«1. We redid this including plas-
mon dispersion, which indeed rounded the rises, but not to
the extent indicated by Jalabert and Das Sarma, and it re-
quired numerical integration rather than the explicit form
given in Eq.~13!.

The coupling between phonon and plasmon, represented
by dv0

2, is weak enough that we can associate the rises with
the uncoupled mode to which it is closest, and we have so
labeled the optical phonon mode in the figure. We see that
the total rise associated with that mode is given rather well
relative to Ref. 1, and is quite similar at both densities, as
expected, and it occurs at the same energy above«F for both
densities. The rise in absorption due to plasmons of course
shifts with electron density, as we find, but our calculation
gives considerably less growth with energy than does the full
calculation. Perhaps the finite lifetime of the plasmons,
which would enter somewhat like a broadening of the mode,
might account for some of the difference. The figure may
well be a fair representation of the validity of our approxi-
mate calculation.

It is not quite so simple to make the comparison with the
numerical results given by Woerner and Elsaesser,3 who in-
cluded only contributions due to phonons. We evaluate the
second term in Eq.~11!, that due to optical phonons, taking
v6 equal to the longitudinal optical-mode frequency and
evaluate it for heavy holes of mass of 0.66~a weighted av-
erage over direction! using parameters that they listed. We
note that the 1/k1 factor is related to«15\2k 1

2/(2mHH! and

obtain a rateWQ50.93 lnu4«1 /\v0)u/A4«1 /\v0 in eV per
picosecond. This form rises from zero to a peak of 0.7 eV/
picosecond at«150.065 eV. The corresponding curve in
their Fig. 5 rises to a peak of 0.45 eV/picosecond at perhaps
0.1 eV. Woerner and Elsaesser have included a more com-
plete description of the heavy-hole states and anisotropies,
but we suspect that the differences arising from such refine-
ments are quite small. Our result is higher, presumably
largely because separating out the phonon term in Eq.~11!
leaves out any screening of the interaction, since the effects
of that screening are then part of the plasma term. It is dif-
ficult to make a comparison of the exact values from the two
theories, but there is no reason to believe that they are in
serious disagreement.

V. LOSS TO QUASIPARTICLE EXCITATIONS

Equation~8!, or the more approximate Eq.~11!, can be
used to obtain the energy loss for hot carriers due to optical
phonons and plasmons. There are also quasiparticle excita-
tions that take energy from the incident hot electron. These
require the introduction of a much larger class of coordi-
nates, those of the individual electrons rather than the local
center of gravity utilized above.

We again matched a classical self-consistent solution with
a Born-approximation expression for electron-electron scat-
tering to obtain an energy loss rate due to quasiparticle
excitation,17

Wqp5
2p

\ (
q,k

f 0~«k!S 4pe2

q2«`V D 2 \v

«~q,v!* «~q,v!

3dS \2

2m*
~2k•q1q2!2\v D , ~14!

with \v found to be the energy exchanged between the col-
liding electrons,

\v5
\2~2k1•q2q2!

2m*
. ~15!

This plausible, but not completely obvious, identification fol-
lows from the classical analysis. With this identification, Eq.
~14! could be written down immediately from the golden
rule. Equation~15! was contained in Sanborn’s Eq.~46!. The
unscreened matrix element for transfer of momentum\q is
4pe2/(q2«`V).

For a high-energy incoming electron we might neglectk
in thed function of Eq.~14! relative tok1. Then\v becomes
\2q2/2m* and with no remaining dependence uponk in the
integral so we may perform the(kf0~«k!5NV with N the
carrier density. Then writing«~q,v!*«~q,v!5«1

21«2
2 Eq. ~14!

reduces to

Wqp5
2p

\ (
q

S 4pe2

q2«`V D 2 NV

«1
21«2

2

\2q2

2m*

3dS \2

m*
~2k1•q1q2! D , ~16!

again fork1@k, the wave number of the struck electron.
We write the sum over q as an integral

[V/(2p)3]*2pq2dq* sinu du and thed function becomes
d„\2(q22k1q cosu!/m* …. We perform the angular integral
first, in analogy with Fig. 1, obtaining a contribution as long
asq is less thank1 . We have,17 again for largek1 ,

Wqp5
Nm*

2p\2k1
E
0,k1

q dqS 4pe2

q2«`
D 2 1\ \2q2

2m*
1

«1
21«2

2

5
4pNe4

«`
2\k1

E
0,k1

dq

q

1

«1
21«2

2 . ~17!

It will turn out that «1
21«2

2 is near one over most of the
range of integration, but if it were equal to one at smallq the
integral would diverge.«1

21«2
2 provides the cutoff at smallq

and is thus essential. One might ask if our taking ofk neg-
ligible compared tok1 in obtaining Eq.~16! might have
caused the divergence, but that is not the case. Even if we
keep the distributionf 0~«k! there remains a lnuk1/qu term in
the integral at smallq.

In this case the quantum derivation of the dielectric func-
tion in terms of a density matrix and the random phase ap-
proximation is essentially as easy as a classical treatment
based, for example, upon the Boltzmann equation. We there-
fore obtain the quantum«(q,v). This will include plasma
contributions to this screening, but we drop any smaller ef-
fects of screening by optical phonons. Sanborn2 has in fact
argued that these phonon corrections vanish, a point that may
well be similar to our finding that when both plasmons and
optical phonons contribute, the screening of one compen-
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sates the antiscreening of the other. The losses due to the
optical modes have already been included in the preceding
sections without screening by the quasiparticles and here we
should treat the quasiparticle loss without screening by the
phonons. The«` that we have used throughout is the optical
dielectric constant, arising from polarization of the bonds,
and this will not be changed to the static dielectric constant
«0, which includes the effect of atomic displacements.

In the Appendix we evaluate the quantum dielectric func-
tion «(q,v) both for a Boltzmann distribution and a degen-
erate Fermi distribution. Evaluating it for a high-energy in-
cident electron, which we saw in the derivation of Eq.~16!
corresponded to\v5\2q2/(2m* )[d« and a proportional-
ity of the response to the density of carriers, we find what we
call the ‘‘dynamic dielectric function for quasiparticle scat-
tering’’ given by

«qp~q!'11
~\vp!

2

4d«2
~18!

for both the Boltzmann and degenerate distributions.
We find this result remarkable in several ways. First, writ-

ten in this form it is identical for a Boltzmann and a degen-
erate Fermi distribution, and therefore for intermediate de-
generacy. Second we see that it has similarity to the
dielectric function for phonon scattering, Eq.~9!, which may
be written as 12(\2v p

2)/d«2. However, the sign of the final
term is changed, and there is a new factor of1

4. Third, the
second term in either form of Eq.~A9! is one-quarter of~and
the same sign as! the corresponding term in the large-q limit
of the quantum«1(q,0), so the inclusion of the frequency
dependence through\v5d« was of some importance.
Fourth, the energy-loss rate for a carrier of wave numberk1 ,
the integral*0,k1dq/(q«qp

2 ) from Eq.~17!, even for a ‘‘warm
electron’’ with k1'1.25kT , is within 3% of the value ob-
tained with the full dielectric function and beyond that is
quite accurately given. This is seen in Fig. 3, where the in-

tegrand is plotted for the full form, as well as using the«qp
and the Debye-Hu¨ckel form. We may use Eq.~18! for
screening of quasiparticle scattering quite generally and with
some confidence.

Substituting«qp(q)
2 from Eq. ~18! for «1

21«2
2 in Eq. ~17!

and integrating gives the loss rate as

Wqp5
pNe4

«`
2\k1

S lnU11
4«1

2

~\vp!
2U2 4«1

2

4«1
21~\vp!

2D . ~19!

It is applicable independent of the degeneracy of the electron
gas, but applies to«1 large compared to the energy of the
carriers of densityN. If «1 is also large compared to\vp Eq.
~19! could be approximated by

Wqp'
2pNe4

«`
2\k1

S lnU 2«1
\vp

U2 1

2D . ~20!

We may correct Eq.~19! for one aspect of treating«1 as
large compared to the Fermi energy of the carriers for the
degenerate Fermi distribution that becomes serious at lower
energies. We should exclude any scattering events in which
the final electron state lies below the Fermi energy, as we did
for phonons and plasmons for Fig. 2. We approximate this
by noting that we included scattering by all electrons, lead-
ing to the factorN in Eq. ~16!. If the electron energy is
«12«F above the Fermi energy, it cannot excite an electron
below a cutoff energy«c for which «F2«c is greater than
«12«F . This eliminates a fraction («c/«F)

3/2 of the elec-
trons, reducing the loss rate by a factor

f eff50 if «1,«F ,

f eff512S 2«F2«1
«F

D 3/2 if «F,«1,2«F , ~21!

f eff51 if 2«F,«1 ,

in either Eq.~19! or ~20!.
Equation ~19! with the correction Eq.~21!, is the form

that was used in Fig. 2. This only partly compensated for the
error of the high-«1 approximation, which may account for
our predicted rate at low energies, in the curve of Fig. 2 for
N5831018 carriers, being significantly higher than that
given by Jalabert and Das Sarma.1 At large k1 Eq. ~19!, or
more clearly Eq.~20!, drops with energy because the 1/k1
factor dominates the logarithmic term. This 1/k1 factor arose
from a factor 1/(]«/]k), which converted the integration
over wave number to an integration over energy for use with
the energyd function in deriving Eq.~17!. It arose also in the
loss to phonons and plasmons, causing the rates to saturate
and drop at large energy in Fig. 2. We do not understand the
origin of the continued increase shown by the Jalabert and
Das Sarma result though, as we indicated in our discussion
of Fig. 2, it might be related to a broadening of the plasma
modes from interaction with quasiparticle excitations.

Finally, we may compare the energy loss due to quasipar-
ticle excitations with that due to plasma emission. We esti-
mate the latter from thev p

2 term in Eq.~11!, and substituting
from Eq. ~3! for v p

2 we see that the factor preceding the
square brackets becomes 4pNe2/(« `

2\k1), the same as the
leading factor in Eqs.~19! and ~20! except for a factor14,

FIG. 3. The integrand of Eq.~17!, (kT/q)(1/«
2) with « the full

dielectric function, A«1@q,\q
2/(2m* )#21«2@q,\q

2/(2m* )#2

@from Eqs.~A7! and ~A8!#. The heavy line is based upon a Boltz-
mann distribution withN5831017/cm3, kBT50.025 eV,«`511,
m*50.066m, for whichkDH

2 51.20kT
2. Also shown is the integrand

based upon the Debye-Hu¨ckel ~low-q! approximation to the dielec-
tric function, Eq.~A5!, and the high-q approximation, Eq.~A9!, for
the same parameters.
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which came from the form we chose for the integral in those
equations. For the parameters we have discussed the remain-
ing factors are of order one and the two rates are comparable.
From the detailed forms, we could see what conditions
would make one dominate the other. Kleinman20 also found
the two mechanisms gave comparable contributions for hot
carriers in aluminum, assuming the electron energy was large
enough to allow plasmon emission.

VI. CONCLUSION

Indeed it has been possible to obtain analytic forms for
each contribution to the energy loss by an energetic carrier,
Eq. ~8! for loss to the phonon-plasmon system and Eqs.~19!
and~20! for excitation of quasiparticles. We have determined
the form of the screening that entered these expressions, and
have evaluated them for some interesting cases. The advan-
tages of such expressions, which contain explicitly the de-
pendence upon system parameters, may be sometimes suffi-

cient to outweigh the extra accuracy, which can and has been
obtained by detailed numerical calculation for individual sys-
tems.
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APPENDIX

The quantum dielectric function«(q,v) can be obtained
using a density-matrix formulation to determine the electron
response, and solving together with Poisson’s equation, as,
for example, in Ref. 21, p. 290, to obtain

«~q,v!511
4pe2

«`q
2V (

k
f 0~«k!S 1

«k1q2«k1\v1 i\a
1

1

«k1q2«k2\v2 i\a D . ~A1!

This was first evaluated for a degenerate electron gas by Lindhard5 and the real and imaginary parts are given for that case
by Pines,4 for example. It is less familiar for a Boltzmann distribution so we treat that case in detail here. In either case the sum
over wave numbers is replaced by an integral. The angular integral can be performed analytically to obtain both the real and
imaginary parts as integrals over the magnitudek. The real part with a Boltzmann distribution is given by

«1~q,v!511
kDH
2

kT
2

1

ApQ3 E dx x exp~2x2!F lnS 112x/B1

122x/B1
D1 lnS 112x/B2

122x/B2
D G . ~A2!

Here we have introduced the renormalized frequency
w5\v/(kBT) and renormalized wave numbers asx5k/kT
and Q5q/kT with again \2k T

2/(2m* )[kBT. Also
B65Q6w/Q. The Debye-Hu¨ckel screening parameterkDH
is given by

kDH
2 5

4pNe2

«`kBT
. ~A3!

The imaginary part can be obtained analytically as

«2~q,v!5
kDH
2

ApkT
2Q3 FexpS 2

1

4 UwQ2QU2D
2expS 2

1

4 UwQ1QU2D G . ~A4!

We might note two interesting limits that we have mentioned
before, in both of which«2 vanishes. First is«~0,v!5«1~0,v!,
which we gave already in Eq.~9! and second is the static
dielectric constant at long wavelengths,

«~q,0!5«1~q,0!'11
kDH
2

q2
~small q!. ~A5!

Both forms are valid both for the degenerate electron gas or
for the Boltzmann distribution. However, for the degenerate
electron gaskDH is replaced by the Fermi-Thomas screening
parameterkFT given by

kFT
2 5

6pNe2

«`«F
, ~A6!

with «F the Fermi energy.
The dielectric function we need for this case,k!k1 , is

«(q,v) for \v5\2q2/2m* . Thenw5Q2 so B152Q and
B250. Thus Eq.~A2! for a Boltzmann distribution becomes

«1S q, \q2

2m* D511
k2

kT
2

1

Q3Ap
E
0,̀
dx x

3exp~2x2!lnSQ1x

Q2xD , ~A7!

and Eq.~A4! becomes

«2@q,\q
2/~2m* !#5

k2

kT
2

1

ApQ3
~12e2Q2

!. ~A8!

We have evaluated the integrand of Eq.~17! for the
energy-loss rate due to quasiparticle excitations~timeskT so
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that it is dimensionless! numerically using Eqs.~A7! and
~A8! with the result plotted as the heavy line in Fig. 3.

«2(q) itself is small and makes only a small contribution
to «1

21«2
2. ~Note that, at smallq, «2

2 grows as 1/q2 but «1
2

contains a term in 1/q4.! The dominant term at smallq is the
Hückel approximation, Eq.~A5!, which gives an integrand
labeled as Debye-Hu¨ckel in Fig. 3. At largeq the imaginary
part «2 drops as 1/q6, while «1

2 is equal to one plus a term
proportional to 1/q4. The combination approaches the high-q
expression for«1(q,\q

2/2m* ), which is given by

«qp~q!'11
kDH
2 kT

2

2q4
511

~\vp!
2

4d«2
, ~A9!

the dynamic dielectric function for quasiparticle scattering
by a Boltzmann distribution at largeq. In the final form we
have written the energy transferd«5\2q2/2m* . In obtaining
the final form we used Eqs.~3! and ~A3!. Equation ~A9!
leads to the integrand labeled ‘‘high-q’’ in Fig. 3.

This result is interesting in a number of ways that we
discussed following Eq.~18!. In particular, in the final form
it has no dependence upon the parameterskDH andkT asso-
ciated with the Boltzmann distribution and we may confirm
that the final form is valid also for a degenerate distribution.

The Lindhard form for«(q,v) for a degenerate Fermi
distribution, with \v5\2q2/(2m* ), is, analogous to Eq.
~A7!,

«1S q, \q2

2m* D511
kFT
2 kF
2q3 S 12~q/kF!2

2
lnUq1kF
q2kF

U1 q

kF
D .

~A10!

The high-q form is obtained directly by expanding the loga-
rithm as

«qp~q!'11
kFT
2 kF

2

3q4
511

~\vp!
2

4d«2
, ~A11!

where in the final step we used Eqs.~3! and~A6!. As in Eq.
~A9!, the final term is one-fourth the high-q form for a de-
generate electron gas of«(q,0)'114kFT

2 k F
2/(3q4). We have

again dropped the small contribution of«2[q,\q
2/(2m* )].

These forms enter the energy-loss calculation through the
integrand shown in Fig. 3, the integration being carried up to
q equal to the wave numberk1 of the incident particle. That
integral, and therefore the loss, can be seen to be roughly
equal for the full result and the high-q result if the upper
limit k1 is around 2kT or larger.
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