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A generalized Monte Carlo method for the solution of the coupled set of kinetic equations for the distribu-
tion functions and the interband polarization is presented. The aim of this method is to combine the advantages
of the description within a fully quantum mechanical picture with the power of the Monte Carlo technique for
the treatment of stochastic processes. It is based on a decomposition of the kinetic equations in a coherent and
an incoherent part. The former is integrated directly while the latter is sampled by means of a Monte Carlo
simulation. This allows us to treat on the same kinetic level carrier thermalization and relaxation as well as
dephasing processes. In particular, the problem of photogeneration and its theoretical description is discussed.
The equations of motion including the relevant scattering contributions are derived and presented in a way that
emphasizes the symmetry between distribution functions and polarization. The scattering terms for the polar-
ization are discussed in detail. We show that some of the approaches commonly used fail in describing
correctly the effect of carrier-carrier interaction in the low-density limit. By including terms that have the
structure of ‘‘in-scattering’’ terms for the interband polarization, the experimentally observed features in the
carrier dynamics are well described in the whole density range.

I. INTRODUCTION

The Monte Carlo method, which has been applied for
more than 25 years to the analysis of semiclassical transport
and relaxation processes in semiconductors,1–9 has been rec-
ognized to be the most powerful numerical tool for micro-
electronic device simulation based on microscopic scattering
rates.10–12On the other hand, the present-day technology al-
lows the investigation of relaxation phenomena in semicon-
ductors with a time resolution that has now reached a few
femtoseconds.5,13–17On such a time scale, coherent aspects
play an important role even for experiments that mainly
probe the dynamics of carrier distributions.16,18,19In this case
the carrier dynamics cannot be treated in terms of the tradi-
tional semiclassical transport theory where the carrier system
is completely specified by the respective distribution func-
tions. Instead, the interband polarization has to be included
as an independent variable.20–23 In order to study this par-
tially coherent dynamics, a generalization of the conven-
tional Monte Carlo method is required.

The aim of the present paper is to present both the theo-
retical background and the technical aspects of a method
recently proposed by the authors18,23,24as well as to discuss
its application to the analysis of ultrafast carrier dynamics in
photoexcited semiconductors.16,18 The main peculiarity of
the proposed approach is to retain the big advantages of the
Monte Carlo method in treating scattering processes and, at
the same time, to take into account on the same kinetic level
also coherent phenomena. Compared to the conventional
Monte Carlo technique, which simply provides a solution of
the semiclassical Boltzmann transport equation~BTE!, this
generalized Monte Carlo approach provides a solution of the
semiconductor Bloch equations~SBE!. In addition to a simu-

lation of the various distribution functions, this will result in
a Monte Carlo simulation of the scattering dynamics of the
interband polarization induced by the coherent light field.

Such an approach allows a self-consistent description of
the carrier photogeneration process.16,18The energy broaden-
ing due to the finite pulse duration and due to the decay of
the interband polarization has not to be introduced as a phe-
nomenological parameter as in any conventional Monte
Carlo simulation5,25 but it comes out self-consistently with
its full time dependence. However, in a recent paper18 we
have shown that a dephasing rate approximation~given by
the total scattering rate!, which is often performed to sim-
plify the dynamics of the polarization,22,23completely fails in
the case of carrier-carrier scattering at low densities by
strongly overestimating the dephasing of the interband polar-
ization. Including additional contributions with the structure
of ‘‘in-scattering terms’’ in the equations of motion of the
polarization, on the other hand, resulted in a physically rea-
sonable density dependence of the carrier dynamics. Using
this model, a very good agreement between calculated and
measured band-to-acceptor luminescence spectra in
p-doped GaAs has been found that demonstrates the impor-
tance of a correct treatment of the dynamics of the interband
polarization.16

The strong symmetry between the equations of motion for
the distribution functions and for the polarization motivates
the use of a Monte Carlo technique also for the solution of
the latter equation. The main objective of this paper is to
discuss in detail this extension of the conventional Monte
Carlo method to the simulation of a complex quantity, e.g.,
the interband polarization, and to present new results where
we particularly emphasize the scattering dynamics of the in-
terband polarization; this allows us to gain insight into the
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details of the dephasing process, which is the result of the
interplay between three different contributions: coherent ro-
tation, in-scattering, and out-scattering terms.

The paper is organized as follows: In Sec. II we derive the
equations of motion by extending the density matrix ap-
proach given in Ref. 23 to the case of carrier-carrier scatter-
ing in a two-band model. The scattering contributions are
written in a way that emphasizes the symmetry between dis-
tribution functions and polarization. In Sec. III we discuss
the numerical approach that has been applied for the solution
of the equations of motion. Section IV is devoted to the
results of the simulations. In particular, a detailed analysis of
the scattering dynamics of the polarization at various densi-
ties is given that shows the big reduction of the dephasing at
low densities due to cancellation effects. Finally, in Sec. V
some conclusions are drawn.

II. THEORETICAL APPROACH

In this paper we study the carrier dynamics in a direct-gap
semiconductor during and after an ultrashort laser excitation.
We consider a bulk semiconductor with two isotropic, para-
bolic bands, the conduction band and the heavy-hole band.
The carriers interact via the Coulomb potential. Furthermore
they interact with phonons. For reasons of simplicity we dis-
cuss only the case of Fro¨hlich interaction with LO phonons,
which is typically the most important carrier-phonon interac-
tion for the ultrafast carrier dynamics.

The system is described by a Hamiltonian that can be
decomposed into partsH0 andH1 . In H0 we consider those
parts that can be treated exactly within a single-particle pic-
ture. The remaining contributions that have to be treated
within some approximation scheme are considered inH1 .
For reasons of simplicity we neglect the spin index in the
calculations; in the numerical results, however, it has been
taken into account.

We describe the dynamics of our physical system in terms
of the density-matrix approach. The basic variables for the
kinetics of the system are the distribution functions~intra-
band density matrices! of electrons, holes, and phonons,

f k
e5^ck

†ck&, f k
h5^dk

†dk&, and nq5^bq
†bq&, ~1!

with ck
† ,dk

† ,bq
† (ck ,dk ,bq) denoting creation~annihilation!

operators of electrons, holes, phonons, respectively. To take
into account the coherence induced by the external laser
field, we have to consider explicitly the interband polariza-
tion ~interband density matrix!

pk5^d2kck& and pk*5^ck
†d2k

† &. ~2!

A. Single-particle Hamiltonian

The single-particle Hamiltonian describing the free carri-
ers interacting with a classical light field as well as the free
phonons is given by26

H05(
k

ek
eck

†ck1(
k

ek
hdk

†dk1(
q

\vqbq
†bq

1(
k

@M kE0~ t !e
2 ivLtck

†d2k
† 1M k*E0* ~ t !eivLtd2kck#,

~3!

whereek
e5Eg1\2k2/(2me) andek

h5\2k2/(2mh) denote the
energies of electron and hole states,me andmh the respec-
tive effective masses,Eg the band gap,vq the dispersion
relation of the phonons,M k the dipole matrix element, and
E0(t) the amplitude of the external light field with frequency
vL . The interaction is treated in dipole and rotating-wave
approximation and we do not include any polarization effects
of the laser light.

Using the Heisenberg equations of motion one obtains

d

dt
f k
eU~0!

5
d

dt
f2k
h U~0!

5gk
~0!~ t !, ~4!

d

dt
pkU~0!

5
1

i\
@~ek

e1e2k
h !pk1M kE0~ t !e

2 ivLt~12 f k
e2 f2k

h !#

~5!

with the generation rate

gk
~0!~ t !5

1

i\
@M kE0~ t !e

2 ivLtpk*2M k*E0* ~ t !eivLtpk#.

~6!

This system of equations describes an ensemble of two-level
systems coherently driven by the external light field. The
semiclassical generation rate is obtained by an adiabatic
elimination of the polarization as discussed in Ref. 23.

B. Carrier-phonon interaction

In the absence of an external light field the electron states
are eigenstates of an ideal periodic lattice. Deviations from
this idealized periodicity due to lattice vibrations lead to a
coupling of the different electron states. This interaction is
described by the carrier-phonon~cp! Hamiltonian:26,27

H1
cp5(

q,k
@gq

eck1q
† bqck1gq

e* ck
†bq

†ck1q1gq
hdk1q

† bqdk

1gq
h* dk

†bq
†dk1q#. ~7!

Here, gq
e,h are the coupling matrix elements for polar or

deformation-potential interaction for electrons or holes. In
the case of a polar interaction, due to the opposite charge of
electrons and holes, the coupling constants are related by
gq
e52gq

h5gq .
Starting from this Hamiltonian, the cp contribution to the

equation of motion, e.g., of the electron distribution function,
is given by

d

dt
f k
eUcp5 1

i\(
q

$gq@^ck
†bqck2q&2^ck1q

† bqck&#

1gq* @^ck
†bq

†ck1q&2^ck2q
† bq

†ck&#% ~8!
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involving phonon-assisted density matrices.28 The derivation
of the contributions up to second order in the coupling ma-
trix element in the Markov approximation is discussed in
detail in Ref. 23. There, however, terms involving simulta-
neously electron-phonon and hole-phonon interaction have

been neglected, which resulted in a dephasing rateGk . If

they are included, the total second-order cp contributions to

the equations of motion of distribution functions and polar-

ization are given by

d

dt
f k
eU~cp,2!

52(
q

@Wk2q,k
e~cp! f k

e2Wk,k2q
e~cp! f k2q

e #1
1

i\
@Dk

e~cp!pk*2Dk
e~cp!* pk#, ~9!

d

dt
f k
hU~cp,2!

52(
q

@Wk2q,k
h~cp! f k

h2Wk,k2q
h~cp! f k2q

h #1
1

i\
@D2k

h~cp!p2k* 2D2k
h~cp!* p2k#, ~10!

d

dt
pkU~cp,2!

52(
q

@W k2q,k
p~cp! pk2W k,k2q

p~cp! pk2q#, ~11!

with

Wk2q,k
e,h~cp!5

2p

\ (
6

ugqu2d~ek2q
e,h 2ek

e,h6\vq!~nq1
1
26 1

2 !~12 f k2q
e,h !, ~12!

W k2q,k
p~cp! 5

p

\ (
n5e,h

(
6

ugqu2$D~ek2q
n 2ek

n6\vq!@~nq1
1
27 1

2 ! f k2q
n 1~nq1

1
26 1

2 !~12 f k2q
n !#, ~13!

Dk
e,h~cp!5 ip(

q
ugqu2(

6
~6pk2q!D~ek

h,e2ek2q
h,e 6\vq!. ~14!

Here, the functionD(e) is defined as

D~e!5d~e!1
1

ip

P

e
~15!

with P denoting the principal value. The quantitiesDk
e,h(cp)

appear in the same way as the laser field in the equations of
motion for the distribution functions. Therefore, they can be
interpreted as internal fields that, however, are different for
electrons and holes. In the polarization equation the field is
not renormalized. The structure of Eqs.~9!–~11! clearly
shows a symmetry between distribution functions and polar-
ization: In both cases we may identify terms with the struc-
ture of ‘‘out-scattering’’ processes (} f k ,pk) and terms with
the structure of ‘‘in-scattering’’ processes (} f k2q ,pk2q).
The main difference is the fact that, in contrast to the distri-
bution functions, the polarization and the respective matrices
in Eq. ~11! are complex quantities. We will come back to this
point later.

C. Carrier-carrier interaction

The charged carriers interact via the Coulomb potential
Vq . We consider in our two-band model only processes con-
serving the number of particles per band. Thus Auger recom-
bination and impact ionization are neglected. These pro-
cesses are usually considered to become important at very
high densities or at energies high up in the band.

The Hamiltonian describing carrier-carrier~cc! interaction
is given by

H1
cc5 (

k,k8,q
Vq@

1
2ck

†ck8
† ck81qck2q1

1
2dk

†dk8
† dk81qdk2q

2ck
†d2k8

† d2k81qck2q#. ~16!

The first two parts are the repulsive electron-electron and
hole-hole interaction terms, the third one describes the attrac-
tive interaction between electrons and holes. The presence of
free carriers leads to a screening of the Coulomb potential. It
is not the aim of the present paper to discuss the derivation
of the screened potential, instead we simply use a Lindhard-
like static screening26 ~see Appendix A!.

The cc contribution to the equation of motion, e.g., of the
electron distribution function, is given by

d

dt
f k
eUcc5 1

i\(
k8,q

Vq@^ck
†ck8

† ck81q8ck2q&2^ck2q
† ck81q

† ck8ck&

2^ck
†d2k82q

† d2k8ck2q&1^ck2q
† d2k8

† d2k82qck&#

~17!

involving two-particle density matrices and leading to an in-
finite hierarchy of equations of motion.29 The first-order con-
tributions~Hartree-Fock terms! are obtained by factorization
according to

d

dt
f k
eU~cc,1!

5
d

dt
f2k
h U~cc,1!

5
1

i\
@Dkpk*2Dk* pk#, ~18!
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d

dt
pkU~cc,1!

5
1

i\
@~\Vk

e1\V2k
h !pk1Dk~12 f k

e2 f2k
h !#

~19!

with the self-energy of electrons and holes
\Vk

e,h52(k8Vk2k8f k8
e,h and the internal field

Dk52(k8Vk2k8pk8 .
As for the case of cp interaction, scattering processes ap-

pear for the first time in the second-order contributions. For
cc interaction they are obtained from the two-particle corre-
lations, i.e., the deviations of the two-particle density matri-
ces from their respective factorizations, e.g.,

d^ck
†ck8

† ck81qck2q&5^ck
†ck8

† ck81qck2q&1 f k
ef k8

e dk8,k2q .
~20!

In the equations of motion for these two-particle correlations
a factorization and a Markov approximation are performed as
in the case of cp interaction. Details and a discussion of the
approximations are given in Appendix B. This leads to the
second-order cc contributions in the equations of motion for
distribution functions and polarization,

d

dt
f k
eU~cc,2!

52(
q

@Wk2q,k
e~cc! f k

e2Wk,k2q
e~cc! f k2q

e #

1
1

i\
@Dk

e~cc,2!pk*2Dk
e~cc,2!* pk#, ~21!

d

dt
f k
hU~cc,2!

52(
q

@Wk2q,k
h~cc! f k

h2Wk,k2q
h~cc! f k2q

h #

1
1

i\
@D2k

h~cc,2!p2k* 2D2k
h~cc,2!* p2k#, ~22!

d

dt
pkU~cc,2!

52(
q

@W k2q,k
p~cc! pk2W k,k2q

p~cc! pk2q#, ~23!

with

Wk2q,k
e,h~cc!5

p

\
uVqu2 (

n85e,h
(
k8
D~ek2q

e,h 1ek81q
n8 2ek8

n82ek
e,h!

3@ f k8
n8~12 f k81q

n8 !2pk81q
* pk8#~12 f k2q

e,h !1c.c.,

~24!

W k2q,k
p~cc! 5

p

\
uVqu2 (

n,n85e,h
(
k8
D~ek2q

n 1ek81q
n8 2ek8

n82ek
n!

3@2pk81q
* pk81 f k8

n8~12 f k81q
n8 !~12 f k2q

n !

1 f k2q
n f k81q

n8 ~12 f k8
n8!#, ~25!

Dk
e,h~cc,2!5 ip(

k8,q
(

n85e,h

uVqu2D~ek
h,e1ek8

n82ek81q
n8 2ek2q

h,e !

3@ f k81q
n8 2 f k8

n8#pk2q . ~26!

The structure of the second-order cc contributions is exactly
the same as for cp interaction and again shows ‘‘in-
scattering’’ and ‘‘out-scattering’’ terms both for distribution
functions and polarization.

D. Equations of motion
Including the various types of interactions up to the sec-

ond order, the equations of motion for distribution functions
and interband polarization can be summarized as

d

dt
f k
e5gk

e~ t !2(
q

@Wk2q,k
e f k

e2Wk,k2q
e f k2q

e #, ~27!

d

dt
f k
h5g2k

h ~ t !2(
q

@Wk2q,k
h f k

h2Wk,k2q
h f k2q

h #, ~28!

d

dt
pk5

1

i\
~Ek

e1E2k
h !pk1

1

i\
Uk

p~ t !~12 f k
e2 f2k

h !

2(
q

@W k2q,k
p pk2W k,k2q

p pk2q#, ~29!

with the generation rates

gk
e,h~ t !5

1

i\
@Uk

e,hpk*2Uk
e,h* pk#, ~30!

the renormalized energies of electrons and holes due do the
Hartree-Fock terms

Ek
e,h5ek

e,h1\Vk
e,h , ~31!

the renormalized fields for electrons, holes, and polarization
due to second-order cp and first- and second-order cc inter-
action

Uk
e,h,p5M kE0~ t !e

2 ivLt1Dk
e,h,p , ~32!

and the transition matricesWk2q,k
e,h andW k2q,k

p as defined
for cp and cc scattering in the previous sections.

It should be noted that the way of collecting the terms in
the equations of motion is not unique. Instead of using ma-
tricesWk2q,k

e,h andW k2q,k
p , in- and out-scattering rates might

be used.22 The present way makes the symmetries between
in- and out-scattering both for distribution functions and po-
larization directly obvious, which will be the starting point
for the numerical technique described below. A direct con-
sequence of this symmetry is a conservation law for the total
polarization(kpk due to the scattering processes in complete
analogy with the particle conservation due to scattering pro-
cesses in the BTE. A decay of the polarization, i.e., a dephas-
ing, is only related to the interplay between coherent rotation
and the scattering processes.

The transition matricesWk2q,k
e,h for the distribution func-

tions are real quantities, however, they are not necessarily
positive definite if the polarization scattering due to cc inter-
action (}pk81q

* pk8) is included. The matrixW k2q,k
p is a

complex quantity. The real part

Wk2q,k
p 5ReW k2q,k

p ~33!

describes scattering processes leading to a dephasing of the
polarization and the imaginary part describes second-order
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contributions to the band-gap renormalization. In the numeri-
cal investigations presented here these energy shifts have
been neglected since typically first-order~Hartree-Fock!
renormalizations are more important. We have neglected fur-
thermore all contributions in the transition matrices involv-
ing polarizations as well as the second-order contributions to
the effective field. This is expected to be a good approxima-
tion for the case of excitation far from the gap where exci-
tonic effects play a minor role.30

In contrast to the distribution functions, the polarization
pk(t) is a complex quantity with a phase depending onk and
t. Therefore, it is often argued that when performing theq
summation in the last term of Eq.~29!, a cancellation occurs
due to random phases and this term is negligible. Then a
k-dependent dephasing rate can be introduced according to

Gk5(
q
Wk2q,k

p . ~34!

Physically, this approximation means that each scattering
process completely destroys the pair coherence between
electrons and holes, and the total scattering rateGk plays the
role of a k-dependent dephasing rate. We will refer to this
case as the dephasing-rate approximation.

Within the approximations discussed above, all transition
matrices are positive-definite quantities and the incoherent
parts for both distribution functions and polarization have the
structure of rate equations with transition matricesWk2q,k

e,h,p ,
the only difference being the complex nature of the polariza-
tion. This is the basis for the generalized Monte Carlo tech-
nique for the solution of the coupled set of equations of
motion that will be discussed in the next section.

III. NUMERICAL PROCEDURE

As discussed above, the aim of this paper is to extend the
traditional Monte Carlo method for the solution of the Bolt-
zmann equation1,12 to the analysis of coherent phenomena,
which are found to play a dominant role in the dynamic
evolution of photoexcited semiconductors on short time
scales. The main features that are not included in the tradi-
tional Monte Carlo method and that we want to take into
account are the phase relations between different types of
carriers~polarization phenomena!, their interaction with an
external coherent electromagnetic field~generation-
recombination processes!, and the correlation and renormal-
ization effects associated with cc interaction~Hartree-Fock
terms!. As shown in Sec. II, in order to describe such coher-
ent phenomena we need to solve the system of equations of
motion ~27!–~29! for the distribution functions and for the
corresponding interband polarization, according to the inter-
actions taken into account.

In order to see the limitations of a ‘‘conventional’’ Monte
Carlo simulation and to discuss the problems arising when
trying to generalize it, let us recall briefly the basic ideas of
the traditional approach to semiclassical transport.

A. The semiclassical limit and the conventional Monte Carlo
simulation

The semiclassical limit is obtained by eliminating the po-
larization within the adiabatic and Markov approximations as

described in Ref. 23 resulting in a semiclassical generation
rate in Eqs.~27! and~28!. Since the internal field is directly
related to the polarization, it has to be neglected. Excitonic
effects cannot be described in this limit. Apart from the gen-
eration terms~which in this limit can be regarded as an ad-
ditional scattering mechanism from the valence to the con-
duction band!, these semiclassical Boltzmann equations are
of the general form

d

dt
f k5(

k8
@Wk,k8f k82Wk8,kf k#, ~35!

where eachk denotes a certain region of the phase space and
f k its average occupation number. The explicit form of the
scattering ratesWk,k8 depends on the interaction mechanisms
considered as discussed in Sec. II. In general, they depend on
the distribution function itself. Therefore, the scattering rates
become time dependent via the time dependence of the dis-
tribution functions and we deal with a system of nonlinear
equations. In order to treat these nonlinearities, a fixed time
step is usually introduced, at the end of which the new dis-
tribution functions are evaluated so that the new scattering
rates can be determined. In this way, within each time step,
we deal with a system of linear equations: The scattering
rates are fixed quantities and the individual carriers can
evolve asynchronously.

Let us consider the semiclassical Boltzmann equation~35!
over a single time step, i.e., from timet0 to time t01Dt. Due
to the local linearity of the transport equation, the distribu-
tion function f k at time t (t0,t,t01Dt) can be written as

f k~ t !5(
k8

Gk,k8~ t,t0! f k8~ t0!, ~36!

where the Green’s functionG, called Boltzmann propagator,
has a direct physical interpretation: It describes the probabil-
ity that a particle in statek8 at time t0 will be found in state
k at time t. From its definition, the Boltzmann propagator
must be also a solution of the Boltzmann equation~35! and it
must satisfy the initial condition

Gk,k8~ t0 ,t0!5dk,k8 . ~37!

It is therefore clear that all the information concerning the
system dynamics is contained in the above Boltzmann propa-
gator. The state of the system at timet is the result of the
independent evolution of the initial conditionf k8(t0) ~i.e.,
the initial set of carriers! through the propagatorG. The sum
overk space can be replaced by a direct sum over an appro-
priate ensemble of simulative carriers:

f k~ t !5(
k8

Gk,k8~ t,t0! f k8~ t0!'(
k8

(
i51

Nk8

Gk,k8~ t,t0!w

5(
i51

N

Gk,ki
~ t,t0!w, ~38!

whereNk8 denotes the number of simulative carriers repre-
senting f k8 , w is the weight of each simulative carrier,k i
denotes the state of thei th carrier at time t0 , and
N5(k8Nk8 is the total number of simulative carriers. From
the above equation we see that the distribution function at
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time t can be simply written as the sum of the Boltzmann
propagators corresponding to each carrier in the system and,
in particular, we see that the weight of all the propagators in
the sum is the same. In addition, we want to stress that the
Boltzmann propagator is a real and positive-definite quantity.
We will come back to this crucial point later.

Equation~38! can be regarded as the starting point of the
traditional ensemble Monte Carlo~EMC! technique,12 which
simply provides a Monte Carlo sampling of the sum. Such
sampling is performed by means of a stochastic simulation of
a suitable ensemble ofN carriers. However, they do not cor-
respond to the real physical particles of the system. For each
simulative carrier, a sequence of random ‘‘free flights,’’ in-
terrupted by random ‘‘scattering events,’’ is generated. Such
a ‘‘random walk’’ in k space is just a Monte Carlo sampling
of the Boltzmann propagatorGk f ,ki

(t,t0), wherek i and k f
denote, respectively, the initial and the final state of the ge-
neric random walk.31

From the above considerations we see that the EMC tech-
nique, usually considered as a ‘‘real’’ direct simulation of the
carrier dynamics, can be regarded from a more general point
of view as a formal Monte Carlo sampling of the solution of
the Boltzmann transport equation. As discussed in detail in
Ref. 31, the conventional EMC technique is only a particular
case of a more general approach, the weighted ensemble
Monte Carlo method. This more general way of looking at
the Monte Carlo simulation does not at all require the exist-
ence of ‘‘real particles.’’ The fictitious particles within the
Monte Carlo simulation can be simply regarded as a math-
ematical instrument used in performing the statistical sam-
pling of the physical quantity of interest. This result opens
the way to extend the application of the Monte Carlo method
to the evaluation of physical quantities different from the
usual distribution functionf k of semiclassical particles.

B. General structure of the kinetic equations
Let us now come back to the system of kinetic equations

~27!–~29! discussed in Sec. II. As already discussed, the
various kinetic equations exhibit a strong formal similarity:
The contributions to the dynamics can be always split into a
coherent and an incoherent contribution. Denoting byF k

a the
generic kinetic variable (a5e,h,p) with F k

e,h[ f k
e,h and

F k
p[pk , the system of equations~27!–~29! can be schemati-

cally written as

d

dt
F k

a5
d

dt
F k

aU
co

1
d

dt
F k

aU
inco

, a5e,h,p ~39!

with

d

dt
F k

aU
co

5C k
a,0~$F a%!1(

j
C k

a, j~$F a%!, ~40!

d

dt
F k

aU
inco

5(
j

(
k8

@Wk,k8
a, j
F k8

a
2Wk8,k

a, j
F k

a#, ~41!

whereWk,k8
a, j denotes the scattering rate associated with the

kinetic variablea for a transitionk8→k induced by thej th

interaction mechanism andC k
a, j is some functional of the

kinetic variables whose explicit form has been discussed in
Sec. II.

Equation~39! is again a system of nonlinear equations.
Therefore, as in the semiclassical case, we introduce a time
discretization in terms of a fixed time stepDt. By integrating
Eq. ~39! overDt, we obtain

F k
a~ t01Dt !5F k

a~ t0!1DF k
auco1DF k

au inco, a5e,h,p.
~42!

Therefore, the time variation of the generic kinetic variable
F over the time step results in the sum of two independent
contributions: the coherent and the incoherent one. In the
numerical procedure, for each time step, the coherent contri-
butions are evaluated by means of a direct numerical integra-
tion while the incoherent contributions are ‘‘sampled’’ by
means of a generalized Monte Carlo simulation.

C. Generalized Monte Carlo simulation

Let us focus our attention on the explicit form of the
incoherent contributions given in Eq.~41!. Within the ap-
proximations discussed in Sec. II D they have exactly the
structure of the ‘‘Boltzmann collision term.’’ Denoting with

Wk,k8
a

5(
j
Wk,k8

a, j ~43!

the total scattering rate associated to the kinetic variablea
for a transition from statek8 to statek, Eq. ~41! can be
written as

d

dt
F k

aU
inco

5(
k8

@Wk,k8
a
F k8

a
2Wk8,k

a
F k

a#. ~44!

We want to stress that in the present approximation for all
kinetic variables~including the polarization, i.e.,a5p) the
variousWk,k8

a are positive-definite quantities, i.e., they can be
regarded as ‘‘true’’ scattering probabilities from statek8 to
statek.

Thus, the ‘‘generalized Boltzmann equation’’~44! for the
kinetic variablesF a has exactly the same structure as the
semiclassical Boltzmann equation~35!, apart from the fact
that the kinetic variableF a, in general, is a complex quan-
tity. This fact, however, does not limit the application of the
Monte Carlo method in its general formulation. Due to the
local linearity of our transport equation within one time step,
the kinetic variableF k

a at time t (t0,t,t01Dt) can be
written as

F k
a~ t !5(

k8
Gk,k8

a
~ t,t0!F k8

a
~ t0!, ~45!

whereGa is now a generalized Boltzmann propagator corre-
sponding to the kinetic variablea. As in the semiclassical
case, the propagatorGa must be a solution of the generalized
Boltzmann equation~44! and it must verify the initial condi-
tion ~37!. Again, all the information concerning the dynam-
ics is contained in the real quantityGa. The state of the
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system at timet is the result of the independent evolution of
the initial condition F k8

a (t0) through the corresponding
propagator.

Equation~45! constitutes the starting point of our gener-
alized Monte Carlo approach, which, by itself, simply pro-
vides a Monte Carlo sampling of the sum in Eq.~45!. As in
the semiclassical case, such a sampling is performed by
means of a stochastic simulation of a suitable ensemble of
N carriers, which, in general, have nothing to do with real
physical particles. At the initial timet0 the ensemble ofN
particles is assumed to be distributed ink space according to
the absolute value of the kinetic variableF k

a :

Nk
a~ t0!5CauF k

a~ t0!u, ~46!

whereCa is a normalization coefficient.
The sum overk space in Eq.~45! can then be translated

into a sum over this ensemble of simulative carriers:

F k
a~ t !5(

k8
Gk,k8

a
~ t,t0!wk8

a Nk8
a

~ t0!5(
j51

N

Gk,k j
a ~ t,t0!wj

a ,

~47!

where

wj
a5

1

Ca

F k j
a ~ t0!

uF k j
a ~ t0!u

5Waeif j
a

~48!

can be regarded as a ‘‘weight’’ of thej th simulative particle
in the sum. As in the semiclassical case, its absolute value
Wa is the same for all the particles but its phasef j

a is that of
the kinetic variableF k j

a from which the simulative carrier

originates. Therefore, the functionF k
a at time t is given by

the sum of the Boltzmann propagators related to the various
simulative carriers, each one multiplied by its weightwj

a . In
order to evaluate the Boltzmann propagatorGa, the conven-
tional EMC simulation discussed in Sec. III A can be em-
ployed.

Our generalized Monte Carlo sampling proceeds as fol-
lows: Given the initial conditionF k

a , an ensemble ofN
simulative carriers is randomly generated ink space accord-
ing to the absolute value ofF k

a and to each carrier we attach
a phasef j

a defined in Eq.~48!. For each simulative carrier, a
sequence of random ‘‘free flights,’’ interrupted by random
‘‘scattering events,’’ is then generated according to the scat-
tering ratesWk,k8

a . As for the semiclassical case, it can be
shown31 that such ‘‘random walk’’ ink space is just a Monte
Carlo sampling of the Boltzmann propagatorGk f ,ki

a (t,t0).

The desired kinetic variableF k
a at time t is finally obtained

by summing the phase factorswj
a5Waeif j

a
of all the simu-

lative carriers that at timet are in statek. When the kinetic
variable is a distribution function~i.e., a5e or a5h), all
the phasesf j

a are equal to zero. Therefore, the above sum-
mation simply reduces to the usual ‘‘counting’’ of the par-
ticles in statek and the conventional EMC technique is re-
covered.

Finally, we want to stress that the random generation of
the initial distribution of simulative carriers according to the
absolute value ofF k

a is only one of very many possibilities.

However, this is the only one for which all carriers have the
same weightWa apart from the phasef j

a . This provides, in
general, a strong reduction of the statistical fluctuations. This
particular choice can then be regarded, to some extent, as a
sort of ‘‘generalized importance sampling.’’32

The structure of the numerical procedure can then be
summarized as follows: The total time is divided into time
steps. The simulation starts at the initial timet i before the
laser has been switched on. The system is chosen to be in its
fundamental state, i.e., the vacuum of electron-hole pairs.
The simulation then results in a loop over the various time
steps and for each time step:~i! we evaluate the coherent
contributions by means of a direct numerical integration;~ii !
for each kinetic variableF a, we introduce an ensemble of
N ‘‘simulative particles’’ according touF k

au where we attach
to each ‘‘particle’’ a phase factorwj

a according to the phase
of F k j

a ; ~iii ! for each of these ‘‘particles’’ we perform a

traditional Monte Carlo simulation, i.e., a random sequence
of ‘‘free flights’’ and ‘‘scattering events’’ originated by the
scattering ratesWk,k8

a in Eq. ~44!.
The generalized Monte Carlo approach described above

has also been recently applied to the analysis of four-wave-
mixing experiments.33,34 In this case, a Monte Carlo simula-
tion of the various, in general complex, Fourier components
of the distribution functions is required.

IV. APPLICATIONS

By applying the numerical procedure described in the pre-
vious section, we now analyze the generation and relaxation
dynamics of laser-pulse excited carriers. First, we study the
dynamics of the carrier distribution functions as obtained
from the three different models: BTE, SBE in dephasing rate
approximation, and SBE including the full scattering dynam-
ics of the polarization. In order to get more insight into the
failure of the dephasing-rate approximation, in particular at
low densities, we then investigate thek space dynamics of
the polarization. If not stated explicitly, all simulations refer
to a Gaussian laser pulse with amplitude
E0(t)5ELexp(2t2/tL

2), a width tL585 fs ~corresponding to
a full width at half maximum of the intensity of 100 fs! and
an excess energy of 180 meV. The GaAs material parameters
used for all simulations can be found in Ref. 23.

In Fig. 1 the electron energy distributionAek
ef k

e at time
t5100 fs, i.e., towards the end of the pulse, is plotted as a
function of the electron energy for the three models at three
different densities. In the BTE case@Fig. 1~a!# at the lowest
density we see the peak of the generated carriers at 160 meV
and, at lower energies, replicas due to the emission of an
integer number of optical phonons. The width of the peaks is
given by the width of the laser pulse, cc scattering plays
essentially no role at this low density. With increasing den-
sity cc scattering becomes more efficient, resulting in an in-
creased broadening of the peaks. Due to band-gap renormal-
ization, at a density of 1018 cm23 the generated peak is
shifted towards higher energies. In the SBE case in the
dephasing rate approximation@Fig. 1~b!# the behavior is
completely different. It turns out that here the broadening is
determined by the scattering terms in the polarization equa-
tion. We observe distribution functions with nearly the same
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shape when varying the density over four orders of magni-
tude. This behavior, which is clearly unphysical, is related to
the fact that the total cc scattering rate is nearly density in-
dependent. The increase in the number of partner carriers for
a scattering process is almost exactly compensated by the
increase in the screening wave vector. However, the charac-
teristic features of a scattering process change: At low den-
sities scattering processes occur mainly in the forward direc-
tion. With increasing density the momentum exchange
increases. In the equation for the distribution functions this
leads to the strong density dependence as observed in Fig.
1~a!. However, in the equation of motion for the polarization
this phenomenon is completely neglected if the dephasing is
described only in terms of the total scattering rate. Including
the in-scattering terms in the SBE model@Fig. 1~c!#, we re-
cover the correct low-density limit where, as observed
experimentally,16,35,36phonon replicas are present. Compared
with the BTE case, at 1014 cm23 the peaks are slightly
broader, which is due mainly to cp scattering in the polariza-
tion equation. With increasing density the SBE results ex-
hibit a much more pronounced broadening than the BTE case
because of the increased efficiency of cc scattering processes
both in the equations for the distribution functions and in the
equation for the polarization. It turns out that the latter one
gives the dominant contribution due to the fact that while in
the BTE case the electron distribution is influenced only by
scattering processes of the electrons, the dynamics of the
polarization involves scattering processes of electrons and
holes, the latter ones being more important due to their larger
density of states. At the highest density no more phonon-

related structure is observable, in contrast to the BTE case.
However, it is noteworthy that even at the density of 1018

cm23 there is still a remarkable difference between the SBE
cases~b! and~c!, in particular on the high-energy tail, show-
ing that the dephasing rate approximation still overestimates
the scattering efficiency.

The increasing difference between BTE and SBE when
increasing the density can be understood by looking at the
generation rate at different times as plotted in Fig. 2. In the
BTE case the generation rate is completely determined by
the spectral profile of the laser pulse. Therefore the shape of
the generation rate is constant in time, only its amplitude
follows the intensity of the laser pulse. In contrast, in the
SBE case carrier generation is determined by the dynamics
of the polarization, which is strongly influenced by scattering
processes and therefore it becomes density dependent. As
discussed in detail in Ref. 23 for the case without cc scatter-
ing, as a consequence of the energy-time uncertainty the
width of the generation rate decreases with increasing time,
exhibiting negative parts off-resonance due to stimulated re-
combination processes. These recombination processes,
however, require a coherence to be still present in the carrier
system. An increasing density leads to an increased effi-
ciency of cc scattering and, therefore, to a loss of coherence.
Thus, stimulated recombination processes are inhibited and
the generation rate remains broad, resulting in a much
broader generation of the carriers than in the semiclassical
case. Figure 2~c! clearly shows the shift of the generation
rate towards higher energies during the buildup of the carrier
distribution due to the increase in the band-gap renormaliza-
tion.

FIG. 1. Electron energy distribution at different densities for the
case of excitation with an 85-fs pulse att5100 fs obtained from~a!
the Boltzmann model,~b! the Bloch model without in-scattering
terms in the polarization equation, and~c! the full Bloch model.

FIG. 2. Generation rates for the case of excitation with an 85-fs
laser pulse at different times and densities obtained from the full
Bloch model.
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Figure 3 summarizes the generation and relaxation dy-
namics of the electron distribution function as a function of
energy and time for the three densities discussed above as
obtained from the full SBE model. At the lowest density the

subsequent buildup of the phonon replicas is clearly visible.
At the intermediate density the first replica is still visible,
however, due to cc scattering it is already strongly broad-
ened. At the highest density no more phonon-related struc-
tures are observable; the electron distribution relaxes conti-
nously towards the band edge. Looking at the contour plots
one can see in particular in the low-density case the succes-
sive buildup of the electron energy distribution. The width of
the carrier distribution is reduced due to the stimulated re-
combination discussed above. Comparing the insets for the
three different densities, we clearly see an increase of the
linewidth with increasing density.

The differences between the BTE and the SBE ap-
proaches depend also on the pulse duration. To analyze this
dependence, in Figs. 4 and 5 we compare the electron energy
distributions at three different times obtained by a 85-fs
pulse with those obtained by a 170-fs pulse. Figure 4 shows
the results for low density (1014 cm23). At t50 fs we find
pronounced differences between BTE and SBE results for
both pulse widths due to the fact that, as discussed above, in
the SBE approach at the center of the pulse energy-time un-
certainty leads to a broadening that is twice as big as that
obtained from the total pulse duration. In the absence of
efficient dephasing processes, with increasing time the
broadening in the SBE case decreases, resulting in much
more similar distributions after the pulse@Fig. 4~c!#. It is
interesting to notice that the agreement is better for the gen-
erated peak than for the phonon replicas due to the fact that
carriers in the phonon replicas have been generated at earlier
times. Furthermore, we find a slightly better agreement for
the short pulse than for the long pulse mainly related to a

FIG. 3. Evolution of the electron energy distribution after exci-
tation with an 85-fs laser pulse obtained from the full Bloch model
showing relaxation due to~a! mainly cp interaction~final density
n51014 cm23), ~b! cc and cp interaction~final densityn51016

cm23, and~c! mainly cc interaction~final densityn51018 cm23).

FIG. 4. Electron energy distribution at low density for two dif-
ferent pulse durations obtained from the BTE and the SBE model.
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small broadening due to the dephasing by cp scattering pro-
cesses, which is observable only if the pulse width becomes
of the order of the cp scattering time.

At the higher density (1016 cm23, Fig. 5! the influence of
the pulse width becomes much more pronounced. In the BTE
case the energetic width of the generation rate is determined
by the laser pulse. Thus, for the longer pulse we find much
narrower peaks than for the shorter pulse. Due to the narrow
generation rate we still find pronounced phonon replicas at
t5300 fs. The broadening of the distribution function occurs
mainly by a growing background, while the width of the
generated peak and its replicas increases only slightly. In the
SBE case, on the other hand, at this density the energetic
width of the generation rate is determined by dephasing pro-
cesses and therefore it is essentially the same for both pulses.
At all times there is nearly no dependence of the distribution
functions on the pulse duration. Here it is clearly evident that
the main origin of the broadening of the distribution function
is not related to scattering processes of the generated carriers
but to the broadening of the generation process itself. In
particular, the phonon replicas that are present in the BTE
case for the longer pulse are strongly washed out.

The results discussed above have demonstrated the impor-
tance of the dynamics of the interband polarization on the
shape of the carrier distributions. Therefore, now we concen-
trate on the density dependence of the dynamics of the po-
larization. In Fig. 6 the real and imaginary parts are plotted
as functions of wave vector and time. Here, the fast oscilla-
tion related to the laser frequency has been taken out; i.e., we
have plotted the real and imaginary parts ofpk exp(ivLt).
The real parts exhibit a dispersive behavior with zero at reso-
nance and the imaginary parts exhibit a mainly absorptive
behavior characterized by negative values centered around

resonance. At low densities the imaginary part has positive
values off-resonance that are responsible for the stimulated
recombination resulting finally in the narrow generation rate.
With increasing density these positive parts are reduced in
agreement with the reduction of negative parts in the genera-
tion rate as discussed above~see Fig. 2!. Furthermore, by
looking at the time decay of the polarization, we observe a
strong increase in the dephasing with increasing density as is
expected due to the increased efficiency of cc scattering. It
should be mentioned that, again, from a dephasing-rate ap-
proximation we would find a very fast decay of the polariza-
tion that is nearly density independent.

The dynamics of the polarization allows us to obtain a
deeper insight into the question of why the dephasing rate
approximation leads to completely unphysical results, in par-
ticular at low densities. For this purpose the scattering part of
the equation of motion for the polarization may be written as

d

dt
pk5Rkpk5(

q
S 2Wk2q,k

p 1Wk,k2q
p pk2q

pk
D pk . ~49!

In this notation, the quantityRk5uRkuexp(iDwk) can be in-
terpreted as a generalized rate, which, however, is a complex
variable with modulus and phase. In the dephasing rate ap-
proximation the second term in the brackets is neglected and
the modulus coincides with the total scattering rateGk . The
phase is independent ofk and equal top. Due to the struc-

FIG. 5. Same as Fig. 4 but at an intermediate density.

FIG. 6. Real and imaginary parts of the interband polarization as
functions of wave vector and time for three different densities.
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ture of the equation, we will refer to this case as to the out
rate. In the full model, on the other hand, depending on the
relative phases ofpk and pk2q , both modulus and phase
becomek dependent. The modulus indicates the scattering
efficiency and the phase determines whether the polarization
at a given wave vector is reduced~for Dwk'p) or increased
~for Dwk'0 or 2p). The latter case describes polarization
transfer between different regions ink space. In Figs. 7–9
we analyze the details of the scattering dynamics of the po-
larization by plotting modulus and phase ofRk at different
times for the same three densities as above. In addition, we
have included the modulus of the polarization including a
density-of-states factoruk2pku in order to indicate thek re-
gion that is relevant for the dynamics.37

In the case of the lowest density (1014 cm23, Fig. 7! we
notice a big difference between the out rate and the total rate
in the region of the generated polarization aroundk50.51
nm21. This difference is clearly the reason for the failure of
the dephasing rate approximation at low densities as seen in
Fig. 1. The out rate~dotted line! is dominated by cc scatter-
ing. However, due to the weak screening the scattering ma-
trix Wk,k2q is strongly peaked around smallq values. There-

fore, the fractionpk2q /pk in Eq. ~49! is approximately unity
in the region of interest and the two contributions nearly
cancel. The phase is always close top in this region, show-
ing that, as expected, there is still dephasing, mainly due to
cp scattering. It is interesting to notice that aroundk50.43
nm21 the total rate is much larger than in the generated re-
gion and the phase differs significantly fromp. This phe-
nomenon is related to cp scattering: Like in the case of the
electron distribution, where phonon replicas are created by
the transfer of carriers ink space, the in-scattering term in
Eq. ~49! transfers polarization from the generation region to
the k region of the first phonon replica. Due to the phase
difference between initial and final polarization and the ad-
ditional dephasing, however, this effect is much weaker than
in the case of the distribution function. Nevertheless, it is
responsible for a weak phonon-assisted generation at the first
phonon replica.

With increasing density (1016 cm23, Fig. 8! the screening
wave vector increases, resulting in a less pronounced peaked
shape of the scattering matrix. Theq summation then ex-
tends over a larger range and the varying phase of the polar-
ization results in a reduction of the in-scattering term. At the
highest density (1018 cm23, Fig. 9! the assumption of ran-
dom phases in the in-scattering term is well satisfied, in par-
ticular at later times, where the total rate agrees practically

FIG. 7. Complex ‘‘scattering rates’’ for the polarization~see
text! for a final density ofn51014 cm23 at different times. At each
time the figure shows thek dependence of the polarizationuk2pku,
the absolute value of the rate of changeuRku, and the phase differ-
enceDwk between in- and out-scattering terms.

FIG. 8. Same as Fig. 7 but for a final density ofn51016

cm23.
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exactly with the out rate in the region of nonzero polariza-
tion. The big fluctuations at later times outside this region are
due to numerical noise created by the very small denomina-
tor in Eq. ~49! and is irrelevant for the dynamics. At early
times, however, on the high-energy side there is still a strong
cancellation between in- and out-scattering terms, which is
responsible for the difference between full model and
dephasing rate approximation in this region as found in Fig.
1.

V. CONCLUSIONS

We have presented both the theoretical background and
the technical aspects of a generalized Monte Carlo method
recently proposed by the authors for the analysis of the mu-
tually coupled coherent and incoherent phenomena charac-
terizing the ultrafast carrier dynamics in photoexcited semi-
conductors. This approach combines on the same kinetic
level the direct-integration method for the analysis of coher-
ent dynamics with the Monte Carlo simulation for the study
of the incoherent scattering regime.

This method has been applied to the study of the ultrafast
carrier dynamics in pulse excited semiconductors based on a
SBE approach including cc and cp interactions. It turned out
that a dephasing rate approximation, where each scattering

process completely destroys the phase coherence, strongly
overestimates the dephasing at low and intermediate densi-
ties by producing very broad carrier distributions which are
in clear contrast to experimental findings. Including contri-
butions with the structure of in-scattering terms also in the
polarization equation removes this unphysical behavior.

From thek-space dynamics of the polarization we have
extracted a generalized complex ‘‘dephasing rate,’’ which
clearly showed the cancelation between in- and out-
scattering contributions at low densities and the existence of
polarization transfer due to cp interaction. Thus, the scatter-
ing dynamics of the polarization exhibits a strong similarity
with the scattering dynamics of the distribution functions.
The difference, which eventually results in a decay of the
polarization in contrast to the carrier conservation in the
equation for the distribution function, is related to the com-
plex nature of the polarization and the interplay between co-
herent rotation and scattering processes.

The present calculations have been performed with a stati-
cally screened Coulomb potential. On the time scale of a few
tens of femtoseconds this might lead to an overestimation of
the screening efficiency since the time required to build up
the screening is neglected. As a consequence, the total scat-
tering rateGk at very short times might be larger. However,
in the present case we do not expect strong changes when
taking an improved~retarded! screening model for the fol-
lowing reasons: First, the calculations are performed for
85-fs pulses and thus the density is still very low at these
very early times. Second, and more important, the increase in
the matrix element due to a reduced screening occurs mainly
at small wave vectors. In contrast to a dephasing rate ap-
proximation, where all scattering processes give the same
contribution to the dephasing, here we have seen that scat-
tering processes with small momentum exchange are ineffi-
cient for the dynamics of both distribution functions and po-
larization and therefore we do not expect a strongly
enhanced dephasing.

The proposed Monte Carlo procedure can be regarded as
a generalization of the more conventional EMC technique to
the case of physical quantities with complex value such as
the interband polarization or any other physical quantity,
which reflects some phase information~e.g., Fourier compo-
nents of distribution functions in the analysis of four-wave-
mixing experiments34!. This clearly shows that the Monte
Carlo method in this more general formulation is not limited
to incoherent dynamics of classical particles. On the con-
trary, it can be applied to simulate any complex~classical or
quantum! variable.31

As generally accepted, the Monte Carlo method, based on
the so-called ‘‘importance sampling,’’32 is the most efficient
approach for the analysis of incoherentlike dynamics with
complicated scattering processes. This high efficiency is due
to a ‘‘natural’’ distribution of statistical sampling, i.e., the
computer time~proportional to the statistical sampling! spent
for a givenk-space region is always proportional to the mag-
nitude of the physical quantity of interest in this region as
well as to the scattering rates determining its time evolution.
As a consequence, while the computer time required for a
direct integration of a rate equation is only determined by the
particular choice of thek space and time discretizations, the
Monte Carlo solution automatically evolves according to the

FIG. 9. Same as Fig. 7 but for a final density ofn51018

cm23.
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natural time scale, i.e., that one given by the scattering
rates,38 and devotes computer time only to the energy regions
of physical interest.

As a result, the computer time spent in a Monte Carlo
simulation reflects the role played by incoherent processes,
e.g., cc and cp scattering events. Therefore, the combination
of direct and Monte Carlo solutions on which our approach
is based constitutes a natural way of splitting coherent and
incoherent dynamics: When the phenomenon under investi-
gation is a typically coherent one, i.e., the typical time scale
of the dynamics is determined by the coherent terms, most of
the computer time will be devoted to the direct integration
while only a negligible fraction will be spent for the Monte
Carlo simulation of the rare scattering processes. On the con-
trary, when the dynamics is dominated by incoherent phe-
nomena, i.e., scattering rates determine the typical time scale
as in the case of energy relaxation and dephasing, most of
the computer time will be devoted to the Monte Carlo simu-
lation. From these considerations, we see that the question
whether one should prefer a Monte Carlo technique or a
direct integration in general is ill defined, the answer depend-
ing on the nature~mainly coherent or mainly incoherent! of
the phenomenon under investigation. As discussed above,
the present approach combines the advantages of both tech-
niques by automatically splitting the computer time accord-
ing to the relevance of the particular regime.
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APPENDIX A

For the sake of completeness, here we summarize the for-
mulas related to the statically screened Coulomb potential as
has been used in the calculations. The matrix element is
given by26

Vq
s5

4pe2

«sV

11aq2

k21q21aq4
, ~A1!

with

a5
«s\

2k2

16pmrne
2 , ~A2!

the screening wave vector

k252
4pe2

«sV
(
k,n

S ]ek
n

]k D 21S ] f k
n

]k D , ~A3!

the crystal volumeV , the reduced massmr , and the static
dielectric constant«s .

When using a screened Coulomb potential the exchange
self-energy has to be supplemented by the Coulomb hole
term.26 The total self-energy of electrons and holes in
Hartree-Fock approximation is then given by

\Vk
e,h~cc,1!52(

k8
Vk2k8
s f k8

e,h
1
1

2 (
k8

@Vk8
s

2Vk8#. ~A4!

APPENDIX B

By using the Heisenberg equations of motion, the equa-
tion of motion for the two-particle correlation in Eq.~20! is
given by

i\
d

dt
d^ck

†ck8
† ck81qck2q&5~2ek

e2ek8
e

1ek81q
e

1ek2q
e !d^ck

†ck8
† ck81qck2q&1 (

k9,q8
Vq8$@2^ck2q8

† ck91q8
† ck9ck8

† ck81qck2q&

2^ck
†ck82q8

† ck91q8
† ck9ck81qck2q&1^ck

†ck8
† ck9

† ck91q8ck81q2q8ck2q&

1^ck
†ck8

† ck81qck9
† ck91q8ck2q2q8&1^ck2q8

† d2k9
† d2k92q8ck8

† ck81qck2q&

1^ck
†ck82q8

† d2k9
† d2k92q8ck81qck2q&2^ck

†ck8
† d2k92q8

† d2k9ck81q2q8ck2q&

2^ck
†ck8

† ck81qd2k92q8
† d2k9ck2q2q8&#1dk8,k2qf k8

e
@^ck

†ck9
† ck91q8ck2q8&2^ck2q8

† ck91q8
† ck9ck&

2^ck
†d2k92q8

† d2k9ck2q8&1^ck2q8
† d2k9

† d2k92q8ck&#1dk8,k2qf k
e@^ck8

† ck9
† ck91q8ck82q8&

2^ck82q8
† ck91q8

† ck9ck8&2^ck8
† d2k92q8

† d2k9ck82q8&1^ck82q8
† d2k9

† d2k92q8ck8&#%. ~B1!

In order to truncate the hierarchy of equations on this level, the expectation values of six operators~three-particle density
matrices! have to be factorized into distribution functions and polarizations. Renormalization and correlation effects can be
taken into account if additional contributions obtained by a factorization into single-particle density matrices and two-particle
correlations are included. Here, however, we will neglect these terms. Correlation effects are partially taken into account by
using the screened Coulomb potential. Energy renormalizations are of minor importance since typically the dominant term is
a rigid shift of the bands, which cancels in the energy differences relevant for intraband scattering processes. With these
approximations, the first term reads

^ck2q8
† ck91q8

† ck9ck8
† ck81qck2q&5 f k2q8

e f k
ef k8

e dk9,k2q8dk8,k2q1 f k2q
e f k81q

e
~12 f k8

e
!dk9,k8~dq8,q2dq8,k2k82q!. ~B2!

Collecting all contributions, the equation of motion is then given by
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i\
d

dt
d^ck

†ck8
† ck81qck2q&5~2ek

e2ek8
e

1ek81q
e

1ek2q
e !d^ck

†ck8
† ck81qck2q&1~Vq2Vk2k82q!@ f k

ef k8
e

~12 f k81q
e

!~12 f k2q
e !

2 f k2q
e f k81q

e
~12 f k8

e
!~12 f k

e!#1Vq@pk2qpk* ~ f k81q
e

2 f k8
e

!1pk81qpk8
* ~ f k2q

e 2 f k
e!#

2Vk2k82q@pk2qpk8
* ~ f k81q

e
2 f k

e!1pk81qpk* ~ f k2q
e 2 f k8

e
!#. ~B3!

Formally integrating Eq.~B3! and performing a Markov approximation as in the case of cp interaction results in the second-
order contributions given by Eqs.~21!–~26!. In these equations exchange contributions, i.e., terms proportional to
VqVk2k82q , have been neglected with respect to the direct terms proportional touVqu2, which, except for very high densities,
is usually a good approximation due to the strongly peaked shape of the matrix element.
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