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We present an approximation to the total-energy tight-binding~TB! method based on use of the kernel
polynomial method within a truncated subspace. Chebyshev polynomial moments of the Hamiltonian matrix
are generated in a stable and efficient manner through recursive matrix-vector multiples. To compute the
energy, either the electronic density of states~DOS! or the zero-temperature Fermi function is smeared by
convolution with the kernel polynomial, with Jackson damping to minimize Gibbs oscillations while maintain-
ing the positivity of the DOS. These are shown to give approximate lower and upper bounds, respectively, on
the exact TB energy, and are averaged to obtain an improved energy estimate. The scaling of the computational
work is made linear in the number of atoms by truncating the moment computation at a certain range about
each atom. Energy derivatives necessary for molecular dynamics are obtained via a matrix-polynomial deriva-
tive relation. The method converges to exact TB as the number of moments and the truncation range are
increased. We demonstrate the convergence properties and viability of the method for materials simulations in
an examination of defects in silicon. We also discuss the relative importance of truncation range versus number
of moments.@S0163-1829~96!07719-3#

I. INTRODUCTION

The total-energy tight-binding~TB! method is increas-
ingly viewed as a possible route to obtaining accurate inter-
actions for atomistic simulation of materials. While TB is
much less computationally demanding than first-principles
calculations, it nonetheless suffers from a computational
bottleneck in the Hamiltonian diagonalization step, which
scales as the number of atoms~or number of basis functions,
N! to the third power. Recently, considerable attention has
been given to developing approximations that reduce this
scaling fromN3 to N.1–9 For example, this can be achieved
by iterative approximation to the eigenvectors1,4,5 or density
matrix,2,3 or via statistically based approximations.6 These
approaches offer substantial speed improvements as the
number of atoms increases beyond 103. Typical break-even
sizes, for which theN-scaling calculation becomes less ex-
pensive than the directN3 calculation, range from 50 to a
few hundred atoms. Because any approach of this type re-
quires a compromise, a givenN-scaling method can have
advantages over others, depending on the nature of the ap-
plication. In the present work, we develop a method that may
be suitable as a short-ranged, many-body interatomic poten-
tial. It is explicitly local in character, with a deterministic
energy and exact energy derivatives. TheN-scaling nature is
achieved by a local truncation of the environment around
each atom. If the truncation range is increased to infinity, the
method is equivalent to theN2-scaling form presented
previously.10,11 Although the present work deals exclusively
with orthogonal TB, it may be possible to extend this ap-
proach to treat the more general case of nonorthogonal TB.12

This approach is closely related to the one presented by
Goedecker and co-workers;9,13,14the main differences are in
the use of a logical~rather than physical! local truncation
procedure, the use of a Gibbs-damped kernel polynomial
method~KPM!, and the fact that exact energy derivatives are
obtained in the present work, which is crucial if charge neu-

trality is imposed on each atom. The Gibbs-damped KPM,
which has improved convergence with increasing number of
moments, yields a unique Fermi energy~due to the Jackson
form which gives a non-negative electronic density of
states!, and allows one to generate expressions for approxi-
mate upper and lower bounds to the TB energy which can be
averaged to obtain an improved energy estimate.

There is also a loose correspondence with the spatially
projected local-density-approximation method of Yang,15 al-
though the fundamentally different nature of the one-electron
TB Hamiltonian prevents a direct comparison. In the present
approach the Hamiltonian, and consequently the basis set,
are truncated to a subspace surrounding one atom. The TB
solution in this subspace is then projected onto one atom to
eliminate surface effects. In the Yang approach, the basis
truncation and projection are one and the same, while the
Hamiltonian is not altered.

The paper is organized as follows. After a brief review of
the total-energy TB method, we discuss the local-subspace
truncation procedure. This is first implemented as an exact
diagonalization within each subspace for the purpose of di-
rectly testing the local truncation approximation. We then
introduce the second approximation, the Gibbs-damped ker-
nel polynomial method~KPM!. This replaces the direct di-
agonalization, thus allowing the analytic computation of en-
ergy derivatives. The locally truncated KPM approach is
then tested on defects in silicon using the TB parameters of
Goodwin, Skinner, and Pettifor.16

II. DESCRIPTION OF THE METHOD

A. Total-energy tight-binding method

We first briefly review the orthogonal tight-binding
method17 as it is currently used in atomistic simulations.
Given a system ofNatom atoms at a specified geometry, one
constructs the one-electron Hamiltonian matrix~H! over the
N-dimensional basis consisting of a valence basis set on each
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atom. The off-site matrix elements ofH generally have a
simple, two-center form, with a parametrized radial shape for
each possible angular momentum combination@e.g.,hsss(r ),
hsps(r ), hpps(r ), and hppp(r ) for an sp3 basis#. Angular
dependencies are determined using Slater-Koster relations.18

ConstructingH is usually a fast step.
DiagonalizingH gives a set of eigenvalues$ei%, which

define the electronic density of states~DOS!

n~e!5(
i

N

d~e2e i !. ~1!

The electronic energy~Eelec! is defined as the energy integral
over the occupied states of this DOS,

Eelec52E
2`

`

eu~e2EF!n~e!de, ~2!

whereu~e! is a zero-temperature Fermi-Dirac distribution

u~e!5 H10 if e,0
if e.0, ~3!

and the factor of two accounts for the closed-shell spin state
~two electrons per orbital!. The Fermi level (EF) is either
prespecified or is determined by requiring that the system
have the correct number of valence electrons,

Nval52E
2`

`

u~e2EF!n~e!de. ~4!

The total energy of the system is then obtained by augment-
ing Eelec with a repulsive potential

Etot5Eelec1Erep ~5!

representing core-core interactions and neglected contribu-
tions to the true electronic energy, such as double-counting
terms. This usually takes the form of a simple pair potential

Erep5
1
2(
iÞ j

f~r i j !, ~6!

where f(r i j ) is a function of the internuclear distance
r i j5ur i j u. More recently, some parametrizations have em-
ployed a many-body term forErep, such as an embedded-
atom form,19 to improve the overall accuracy of the method
~with no significant increase in computational cost!.

B. Local truncation

There are two main parts to the method: the use of a
locally truncated subspace for each atom, and an approxima-
tion of the DOS using the kernel polynomial method. Local
subspace truncation, which is responsible for theN-scaling
computational dependence, is described and tested in this
section. For simplicity, we discuss a system with only one
basis function per atom, so that we can refer to basis func-
tions and atoms interchangeably. The generalization to more
complicated basis sets is straightforward. We also momen-
tarily ignore contributions to the energy fromErep.

For each atomi , a local subspace of the full Hamiltonian
is defined, containingNi basis functions. This can be accom-
plished by retaining only those atoms within a certain physi-

cal distance from atomi , the procedure used by Goedecker
and Teter,13 which we will refer to as ‘‘physical’’ truncation.
Alternatively, the truncation can be based on the atom con-
nectivity defined in the Hamiltonian. Defining two atoms as
‘‘ H linked’’ if they have a nonzero matrix element between
them, one can retain all atoms within a given number (L) of
Hamiltonian links from atomi . We refer to this as ‘‘logical’’
truncation. For example,L51 truncation retains all atoms
within r cut of atom i , where r cut is the cutoff distance for
h(r ), while L52 truncation retains allH-linked neighbors of
i and all theH-linked neighbors of those neighbors.

Within this subspace~e.g., withL links!, we solve the TB
electronic structure problem, projecting out the DOS belong-
ing to atomi [ni(e)]. From the eigenvalues~$ej %; j51,Ni!
and eigenvectors~$Cjk%; j ,k51,Ni! obtained from diagonal-
ization of the subspace Hamiltonian, the projected DOS is
given by

ni
~L !~e !5(

j

Ni

Ci j
2 d~e2e j !. ~7!

An L-link approximation to the total DOS for the system is
then obtained by summing over alli ,

n~L !~e !5(
i

N

ni
~L !~e !. ~8!

An important point is that the atom-projected DOS is a
well-defined quantity; the sum in~8! recovers the exact DOS
for the system if eachni~e! is projected out of the exact
electronic solution for the whole system, i.e.,n(L)(e)→n(e)
asL→` or Ni→N.

Note that once the Fermi level has been found from Eq.
~4!, one can compute the energy of each atom individually,
by replacingn~e! with ni~e! in Eq. ~2!. Also, if desired, one
can enforce charge neutrality@via Eq.~4!# atom by atom.21 A
feature of this ‘‘atom-neutral’’ approach is that it offers a
completely local definition of the energy of each atom,
which should be advantageous if the goal is to adapt this
method for a fast, short-ranged empirical potential.

Because the computational work required to compute
each atom DOS depends only on the size of the subspace for
that atom, the work required for the whole system scales as
N, whether or not charge neutrality is enforced atom by
atom. More specifically, if each of the diagonalized sub-
spaces are equal in size, the work will scale as (Ni)

3N. The
method as outlined so far meets most of our requirements; it
scales asN and converges to exact TB as the truncation
range is increased. However, it is not a viable approach for
many applications, because calculation of energy derivatives
would require differentiation of the eigenvector matrix ele-
ments, which is difficult to perform analytically.~In contrast,
derivatives of the eigenvalues can be obtained easily, by ex-
ploiting the Hellman-Feynman theorem.! As will be dis-
cussed in Sec. II C, this derivative problem can be side-
stepped by approximatingni~e! with a Chebyshev
polynomial moment expansion. However, it is useful first to
examine the direct-diagonalization approach, because it
gives the exactni~e! for a given subspace. We can compare
the physical versus logical truncation procedures, and di-
rectly study the convergence to exact TB asNi is increased,
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without any coupling to the approximations in the moment
description. Also, the diagonalization corresponds to the
infinite-moment limit of the Chebyshev moment approach,
simplifying the study of the convergence with respect to the
number of moments.

The calculations presented here employ the silicon tight-
binding parametrization of Goodwin, Skinner, and Pettifor,16

which has ansp3 basis set. In all calculations, the diamond
crystal lattice constant is set to 5.4291 Å, the result obtained
from a 1000-atom supercell calculation. An abrupt cutoff is
imposed at 3.6 Å~between first- and second-neighbor shells!
for compatibility with previous studies.20,21 The supercell
calculations employ only theG point in the Brillouin zone.

Figure 1 shows the convergence of the electronic energy
with subspace size, using both the logical truncation~up to
L56! and the physical truncation procedures. For this perfect
diamond lattice, the physical truncation procedure picks up
complete neighbor shells as the truncation radius is in-
creased. Because of the first-nearest-neighbor cutoff inh(r ),
the first two points~L51 and 2! in the logical truncation
curve correspond to exactly the same subspaces as for the
physical truncation procedure, so the energies coincide. For
larger subspaces, the logical truncation continues to con-
verge monotonically toward the 1000-atom periodic super-
cell value ~an approximation to the infinite-system result!,
passing very close to the energies from 64- and 216-atom
supercell calculations. In contrast, the physical truncation
shows less satisfactory, nonmonotonic behavior. We infer
that logical truncation is preferable to physical truncation,
although this assumption should be more thoroughly tested.

In tests of their local-orbital,N-scaling electronic struc-
ture method, Mauri and Galli7 also observed that logical
truncation was superior to physical truncation, judged by the
residual error for a given subspace size. They did not see the
nonmonotonic behavior observed here because of the varia-
tional nature of their solution.

In Fig. 2, the Si lattice constant is plotted versus the num-
ber of logical truncation shells,L. The convergence is very
rapid, with an error of less than 0.5% byL53. Even for
L51, the error~relative to the 1000-atom supercell! is no
larger than the error due to using a 216-atom supercell.

Figure 3 shows the convergence of the unrelaxed Si va-
cancy formation energy~Evac! using the atom-neutral ap-
proach. These values decrease slightly if atom neutrality is
not enforced. For comparison, the exact TB supercell results
are shown for 64, 216, and 1000 atoms~enforcing charge
neutrality has virtually no effect on the exact TB results!.
The subspace diagonalization values are in reasonable agree-
ment with the exact TB values forL53 and above. The
predictedEvac for a givenL is similar to the value from the
supercell whose size matches the size of the subspace.

FIG. 1. Eelec from subspace diagonalization for a bulk Si atom
using physical truncation~s!, or logical truncation~d! to define
the subspace. TheL51 point, which coincides with the first physi-
cal truncation point, is off the scale at211.205 eV. Comparison is
made to 64~23232 unit cells! and 216-atom~33333! TB super-
cell calculations~* !. The 1000-atom~53535! TB supercell result
is shown as a dotted line.

FIG. 2. Si lattice constant predicted using subspace diagonaliza-
tion vsL. The dotted~upper! and dashed lines~lower! are the 216-
and 1000-atom supercell results, respectively.

FIG. 3. Si unrelaxed vacancy formation energy using subspace
diagonalization vsL. The dashed lines are the exact TB results for
64-, 216-, and 1000-atom supercells.
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In a previous study using a low-order moment approxima-
tion to TB,21Evacwas found to be poorly described, converg-
ing slowly as the number of moments was increased. Both
that method and the present method represent explicitly local
approximations to TB. If one equates the number of mo-
ments in the low-order method to 2L in the present method,
the local subspaces are equivalent. In both cases the conver-
gence is from below, but the errors in the moment method
are much larger. For example,Evac is 2.6 eV lower with six
moments than theL53 subspace diagonalization result, and
the 14-momentEvac is 1.3 eV lower than theL57 subspace
diagonalization result.

C. Kernel polynomial method

The kernel polynomial method~KPM!, implemented with
Chebyshev polynomials, offers a controlled approximation to
the bond integral in~2!, while retaining facile differentiabil-
ity. This section provides an introduction to the KPM suit-
able for the task at hand; the method has been presented in
more formal detail elsewhere.22,10,11

Chebyshev polynomials of the first kind,Tm(x), are de-
fined byT0(x)51, T1(x)5x, and the recurrence relation

Tm~x!52xTm21~x!2Tm22~x!, ~9!

where the range ofx is limited to21<x<1. They obey the
orthogonality relation

E
21

1

w~x!Tm~x!Tn~x!dx5qmdm,n , ~10!

where the weight function is

w~x!5
1

A12x2
, ~11!

andqm5p whenm50, andp/2 otherwise.
We can express an arbitrary function on the interval

$21:1% as an expansion

f ~x!5 (
m50

`
am
qm

w~x!Tm~x!. ~12!

Multiplying Eq. ~12! by Tn(x), integrating, and comparing
with Eq. ~10! shows that the expansion coefficients are just
the Chebyshev moments of the function,

am5mm5E
21

1

f ~x!Tm~x!dx. ~13!

While ~12! is exact, we now consider truncating the ex-
pansion atM moments to obtain a usable approximation. We
first shift and scale the energy to obtainH̄, whose eigenval-
ues are in the range$21:1%

H̄5~H2b!/a, ~14a!

x5~e2b!/a. ~14b!

@This requires a determination of the range of the eigenval-
ues ofH, which can be accomplished inO(N) work using a

Lanczos approach23 to find the lowest and highest eigenval-
ues.# We can then express the projected DOS for thei th
basis function as

ni~e!. (
m50

M
mmi

qm
gmw~x!Tm~x!, ~15!

where$mmi% are the Chebyshev moments ofH̄,

mmi5^ i uTm~H̄!u i &. ~16!

The Gibbs factors$gm% in ~15! are designed to reduce the
Gibbs oscillations resulting from the finite-M truncation of
the series. We choose the form derived by Jackson,24,11

which maintains the desired positive-definite nature of the
DOS, while optimizing the energy resolution. For a DOS
with continuity properties, this choice minimizes the uniform
norm, which is defined as the maximum absolute error be-
tween the exact and approximate DOS.

The heart of the KPM is the relationship between the
approximate DOS in~15! and the exact DOS. This connec-
tion can be more clearly stated after transforming tof space,
wherex5cos~f! and themth Chebyshev polynomial is sim-
ply cos(mf). In f space, the approximate DOS is related to
the exact DOS by a convolution with thekernel polynomial,
an approximation to a Dirac delta function~normalized on
@0,2p#!

dK~f!5 (
m50

M
1

2qm
gmcos~mf!, ~17!

whose width is proportional to 1/M . Figure 4 showsdK~f!
for M5100, with and without Gibbs damping. Thus~15!
represents a smearing of the exact DOS with a known reso-
lution function.~In energy space, the width of the smearing
function is not constant, reaching a maximum ate50.! The
generality of the KPM allows, as an alternative, convolution

FIG. 4. The kernel polynomial forM5100 plotted vs the angu-
lar variablef5cos21(x). The raw polynomial~dotted line! exhibits
Gibbs oscillations. Application of the Jackson damping factors sub-
stantially reduces these oscillations and enforces positivity~solid
line!.
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of the zero-temperature Fermi function with~17!, giving a
smeared Fermi level instead of a smeared DOS. The result-
ing energy expressions, given below, can be averaged to ob-
tain an improved energy estimate due to the approximate
bounding properties presented in Sec. II E.

The Chebyshev moments in~16! are computed by defin-
ing the moment vector for a basis functioni ,

cm5Tm~H̄!u i &, ~18!

such that

^ i uTm~H̄!u i &5c0
†cm . ~19!

The time-consuming part of the calculation is then repeated
matrix-vector multiples using the matrix version of the recur-
rence relation in~9!,

cm52H̄cm212cm22 . ~20!

Due to the sparse nature ofH, each matrix-vector multiply
requires computational work proportional to the subspace
sizeNi . Because this is then repeated for each basis function
in the system, the overall work scales asMNiN, or MN2 if
there is no local truncation.

Once the Chebyshev moments have been computed, cal-
culation of Eelec is performed inf space. Thef-space
equivalent of Eq.~4! is

Nval52E
0

2p

ū~f,fF!n~f!df, ~21!

wheren~f! is thef-space DOS,fF is the Fermi angle@re-
lated to the Fermi energy byEF5a cos(fF)1b#, and
ū (f,fF) is a 2p-periodic function that equals12 for
2p2fF>f>fF and is zero elsewhere.~The 1

2 is a conse-
quence of continuingf onto the interval@0,2p#.! ū is related
to u in energy space@Eq. ~3!#. Smearing the DOS by apply-
ing the kernel approximation ton~f!,

nK~f!5E
0

2p

dK~f2f8!n~f8!df8. ~22!

and substitutingnK~f! for n~f! in Eq. ~21!, yields

Nval5m0g0S 12
fF

p D2 (
m51

M
2gmmmsin~mfF!

mp
. ~23!

Because the choice for the Gibbs damping factorsgm guar-
antees thatnK~f! is non-negative, Eq.~23! defines a unique
solution forfF ; this can be found, for example, by bisection.
Taking a similar approach to the energy expression,

Eelec52E
0

2p

ū~f,fF!cos~f!n~f!df, ~24!

yields the smeared-DOS~SD! approximation to the energy,

Eelec
SD52

m0g0sin~fF!

p
2m1g1S fF

p
211

sin~2fF!

2p D
2 (

m53

M11

mm21gm21S sin~mfF!

mp
1
sin@~m22!fF#

~m22!p D .
~25!

For the smeared-Fermi~SF! approximation, we convolute
ū (f,fF) with dK~f!,

ūK~f,fF!5E
0

2p

dK~f2f8!ūK~f8,fF!df8. ~26!

Substitution ofūK for ū in Eq. ~21! yields the same expres-
sion forNval as in~23!. ThusfF is the same for both the SF
and SD approximations. The SF energy expression is found
by substitutingūK(f,fF) for ū(f,fF) in Eq. ~24!,

Eelec
SF 5m1g0S 12

fF

p D2 (
m51

M

~mm211mm11!gm
sin~mfF!

mp
.

~27!

As discussed below, the average ofEelec
SF andEelec

SD offers a
better approximation to the true energy than either one alone.

As with the exact-diagonalization case, charge neutrality
can be imposed on each atom~atom-neutral method!; ni~e! is
found by summing the moments over the basis functions on
atom i . Alternatively, the DOS for the whole system can be
obtained by summing over allN basis functions. Note that
due to the linearity of the KPM, determiningni~e! for each
atom, and then summing to obtainn~e!, yields a total DOS
that is equivalent to that obtained by summing the moments
over all atoms before applying KPM once to determinen~e!.
This is in contrast to nonlinear methods such as maximum
entropy, where the total DOS contains more information if it
is obtained by summing the maximum-entropy DOS for each
atom ~or rotationally invariant subspace! rather than deter-
mining it directly from the total system moments.21

D. Energy derivatives

Differentiating the electronic energy with respect to an
atom coordinate (yj ) can be accomplished with the follow-
ing decomposition:

]E

]yj
5(

i50

N

(
m50

M
]E

]mmi

]mmi

]yj
. ~28!

The best route for evaluating]E/]mmi depends on
whether there is a fixed Fermi level~the easiest case!, a
floating Fermi level@solving Eq.~4!#, or an individual Fermi
level for each atom~atom-neutral method!. Analytical ex-
pressions can be derived for each case.

The more formidable task, differentiating the moments,
merits discussion. If no local truncation or charge neutrality
is applied, the total moment

mm5(
i

N

^ i uTm~H̄!u i & ~29!
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can be differentiated in a straightforward fashion. The trace
over individual moments allows cyclic permutation of the
matrices in each polynomial term, so that the scalar equiva-
lent can be employed:

]mm

]yj
5(

i
m^ i u

]H̄

]yj
Um21~H̄!u i &, ~30!

whereUm(x) is themth-order Chebyshev polynomial of the
second kind.

In the case of local truncation, which breaks the trace in
~29!, this approach is only approximate~contrary to the as-
sertion in Ref. 13!. To obtain the exact derivative requires a
full matrix treatment of the polynomial expansion, which can
be accomplished in a fashion that retains theN scaling. We
exploit the derivative recurrence relation

]Tm~H̄!

]yj
5

]Tm22~H̄!

]yj
1 (

a50

m21

~11ka!~11km212a!Ta~H̄!

3
]H̄

]yj
Tm212a~H̄!, ~31!

initialized with ]T0~H̄!/]yj50 and ]T1~H̄!/]yj5]H̄/]yj
~hereka50 if a<0, and 1 otherwise!. Equation~31!, which
is derived in the Appendix, allows the derivatives to be com-
puted using thecm vectors of Eq.~18!. Although the deriva-
tives can be approximated using Eq.~30! ~an approximation
that becomes very good for largeL!, Eq. ~31! is necessary
for the atom-neutral case, because the moment for each atom
must be differentiated.

Using either Eqs.~30! or ~31!, the energy range spanned
by the DOS, as specified bya and b in Eq. ~12!, must be
kept fixed, to avoid terms of the form (]E/]a)(]a/]mm).
For the Si calculations presented below, the end points of the
DOS energy range were fixed at216.0 and110.0 eV ~the
self-energies es and ep were set according to
es523ep526.221 25 eV, zeroing the first moment of the
DOS!.

E. Approximate energy bounds

Applying the KPM to smear the DOS leads to an approxi-
mate lower bound on the true TB energy, while smearing the
Fermi function gives an approximate upper lower bound.
These bounding relationships are derived in this section. For
simplicity, we first shift the energy scale by2EF

(0) to place
the Fermi level atE50. The electronic energy in the un-
shifted energy system~Eelec

~0! ! can be recovered from the elec-
tronic energy in the shifted system~Eelec! using

Eelec
~0! 5Eelec1EF

~0!Nval , ~32!

whereNval is given by Eq.~4!. The energy expression now
becomes

Eelec52E
2`

`

u~e!en~e!de. ~33!

The smeared-DOS~SD! approximation to~33! is

Eelec
SD52E

2`

`

u~e!e ns~e!de. ~34!

Here ans subscript will indicate energy smearing via convo-
lution with a symmetric, non-negative, normalized smearing
function:

f s~e!5E
2`

`

f ~e8!S~e82e!de,

S~2e!5S~e!, ~35!

E
2`

`

S~e!de51.

By swapping the convolution, Eq.~34! can be rewritten as an
integral over the exact DOS times a smearing ofeu~e!,

Eelec
SD52E

2`

` E
2`

`

eu~e!n~e8!S~e82e!de8de

52E
2`

`

@eu~e!#sn~e!de. ~36!

Convolution of the functioneu~e! with S yields a function
that equals or lies beloweu~e! at every point, as indicated in
Fig. 5. Recalling thatn~e! is non-negative, the bounding
property is easily shown:

Eelec
SD5Eelec12E

2`

`

$@eu~e!#s2@eu~e!#%n~e!de

<Eelec. ~37!

Within the KPM,Eelec
SD is only an approximate lower bound

to Eelec, because the smearing is in fact a true convolution
only in f variables, not ine ~as discussed in Sec. II C!, and
the Fermi level may not be exact.

Turning now to the smeared Fermi-level~SF! approxima-
tion, we have

Eelec
SF 52E

2`

`

us~e!e n~e!de, ~38!

which we rewrite as

FIG. 5. Illustration that the smeared product function@eu~e!#s is
a lower bound on the unsmeared form. A Gaussian withs50.5 was
used as the smearing function for this example.
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Eelec
SF 5Eelec12E

2`

0

@us~e!2u~e!#e n~e!de

12E
0

`

@us~e!2u~e!#e n~e!de

5Eelec12E
2`

0

@us~e!21#e n~e!de

12E
0

`

@us~e!#e n~e!de. ~39!

The first integral is non-negative, because over its range
us~e!<1, e<0, andn~e!>0. The second integral is also non-
negative, because over its rangeus~e!>0, e>0, andn~e!>0.
ThusEelec

SF is an upper bound onEelec. This proof does not
require thatus~e! be a true convolution, only that 0<us~e!<1
everywhere. In the KPM, the Jackson form of Gibbs damp-
ing ensures this property, but the overall bound is approxi-
mate because the position ofEF is not necessarily exact.

Because the errors inEelec
SD and Eelec

SF are caused by the
same smearing function, the absolute errors are expected to
be similar in magnitude. This raises the possibility that the
average of these two approximate bounds gives a less biased
estimate of the exact TB energy. Empirically, we have found
this to be true.

III. SILICON TEST CALCULATIONS

Figure 6 shows the moment convergence of the electronic
energy ~per atom! for the L53 truncated Si system. The
upper dashed curve results from applying the KPM to smear
the Fermi function, while the lower dashed curve results
from using the KPM to smear the DOS. Using the average of
the smeared DOS and smeared Fermi methods, convergence
to the exactL53 result is seen to be more rapid, deviating by
0.08% atM550 and 0.005%~2.431023 eV! atM5100. We
use this average energy form hereafter.

Figure 7 shows the moment convergence of the unrelaxed
~100! surface energy forL52, L53, L54, andL5`. These
calculations employed a 216-atom supercell with a global
Fermi level. While theL51 case gives a very poor descrip-
tion ~negative surface energy, not shown!, L52 through
L54 each appear well converged byM5100, and the se-
quence of their asymptotes converges toward the exact TB
result.

Figure 8 showsEvac for a 216-atom system. The upper
curve is the unrelaxed result, using the atom-neutral KPM,
showing rapid convergence to the exactL53 result of 5.02
eV ~dashed line!. Also shown isEvac after a full relaxation of
the atomic coordinates at each moment level. It appears con-

FIG. 6. SiEelec using KPM withL53 truncation vs the number
of moments,M ; smeared Fermi level~upper dashed line!; smeared
DOS ~lower dashed line!; and the average of the two~solid!. The
straight line is the exactL53 result~subspace diagonalization!.

FIG. 7. Si~100! unrelaxed surface energy vsM for the 216-atom
system, using KPM at various levels of logical truncation;L52~1!,
L53 ~triangle!, L54 ~square!, andL5` ~d!. The straight line is
the full TB diagonalization.

FIG. 8. Si vacancy formation energy for the 216-atom system
using KPM withL53 truncation; unrelaxed geometry~d! and re-
laxed geometry~s!. The upper dotted line is the exact, unrelaxed
L53 result~from subspace diagonalization!, while the lower dotted
line is the relaxed, untruncated, exact TB result.
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verged byM5100, offering a good approximation to the
untruncated, relaxed, exact TB result of 3.89 eV.~Note that
because energy derivatives are not easily determined for the
truncated-subspace diagonalization, the infinite-moment
limit for the relaxedL53 case is not available.!

First-principles calculations25 have shown the relaxed Si
vacancy exhibits aD2d Jahn-Teller distortion in which the
four neighbors of the vacancy site, initially second-nearest
neighbors to each other, pair up to form two shorter bonds.
This was also observed in TB studies by Wang, Chan, and
Ho,20 as well as in the present study. This behavior is prop-
erly predicted by theL-truncated KPM approximation if
enough moments are used. Figure 9 shows the relaxed dis-
tance between the two unique pairs of vacancy-neighbor at-
oms as a function ofM using the atom-neutral method. Up to
M;30, the two distances are equivalent (R15R2), but re-
duced from the unrelaxed bulk value~R15R253.84 Å!, in-
dicating a symmetric relaxation of the atoms toward the va-
cancy. AtM;50, there is a bifurcation as the Jahn-Teller
distortion occurs, withR1, the distance between the atoms
making the new bond, becoming shorter thanR2, the dis-
tance between the pairs of atoms not involved in a new bond.
~Note that this new ‘‘bond’’ is still much longer than the
bulk nearest-neighbor distance, 2.35 Å.! For M.100, there
is qualitative agreement with the exact, untruncated TB ge-
ometry ~dotted lines!. This transition atM;50 is a conse-
quence of theM -dependent energy resolution of the DOS.
Below a critical value ofM , the smearing obscures the in-
formation that there is a partially filled state at the Fermi
level.

If the atom-neutral restriction is eliminated without
changing the atomic geometry, the vacancy formation energy
atM5100 drops from 4.26 to 3.69 eV. Allowing the atomic
geometry to relax lowers this further, to 3.54 eV. Interest-
ingly, this relaxed global Fermi-level system loses nearly all
of the Jahn-Teller distortion, withR152.93 andR252.94.
The atom-neutral description thus appears to offer a more

accurate approximation to the true tight binding.
We have also studied the vacancy system forL52 KPM.

At M590, the unrelaxed vacancy formation energy of 2.96
eV is similar to the subspace diagonalization result plotted in
Fig. 3 ~about 3.2 eV!, but, upon relaxation, drops to 0.04 eV.
This nearly 3-eV relaxation is strikingly different from the
0.7-eV relaxation effect forL53. We conclude that artificial
behavior can result when the overall truncation range is too
short.

IV. CONCLUSIONS

The locally truncatedN-scaling approximation to TB pre-
sented here should be useful for atomistic simulation of ma-
terials. The kernel polynomial method gives a well-
controlled approximation to the exact TB energy. Applying
Gibbs damping in the Jackson form eliminates unphysical
behavior such as negative DOS values and multiple solutions
for the Fermi energy. Approximate upper and lower bounds
to the exact energy result from smearing either the DOS or
the Fermi function, respectively, and averaging these ap-
proximate bounds gives an energy estimate that converges
rapidly with the number of moments. The exact energy de-
rivatives derived here are crucial for short truncation lengths
or when the atom-neutral method is used. A logical trunca-
tion range ofL53–5, withM.100 moments, appears ad-
equate for investigating defect energetics and geometries.

In comparing the present method to an untruncated mo-
ment approach, we note that there is a significant disparity
between the necessary number of moments~M;50–100!
and the necessary subspace size~L;3–5!. The use of 50
moments without truncation would define a very large sub-
space corresponding toL525, which is about six lattice con-
stants in radius for the silicon system with a nearest-neighbor
cutoff. Conversely, limiting the calculation to a subspace
size ofL55 with untruncated moments would set the num-
ber of moments atM510, which has been shown here and
elsewhere21 to be inadequate for Si~although it appears to be
adequate for metals21,26–28!.

For use as a short-ranged interatomic potential form with
exact energy derivatives, improved accuracy could be ob-
tained by refitting the tight-binding parameters specifically
for the desired values ofM andL. However, use of a trun-
cation range that is too short may cause unphysical behavior
that cannot by mitigated by adjusting the TB parameters.
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APPENDIX

Here we derive Eq.~31!, the derivative of a Chebyshev
polynomial of a matrix. We write the Chebyshev recurrence
relation as

Tm115~11km!XTm2Tm21 . ~A1!

HereTa is understood to meanTa~X!, whereX is a matrix,
and

FIG. 9. Distances between atoms adjacent to relaxed vacancy,
using atom-neutral,L53 KPM. Jahn-Teller distortion breaks
R15R2 symmetry, leading to short ‘‘bonds’’@R1~d!# and long
‘‘bonds’’ @R2~s!#. Dotted lines showR1 andR2 for untruncated,
exact TB.
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ka5 H10 if a>1
if a<0. ~A2!

Differentiating ~A1! gives

Tm118 5~11km!X8Tm1~11km!XTm8 2Tm218 . ~A3!

Replacing indexm with m2a, multiplying by (11ka)Ta ,
summing overa from zero tom, and reordering terms leads
to

(
a50

m

~11ka!~11km2a!TaX8Tm2a

5 (
a50

m

~11ka!TaTm112a8 1 (
a50

m

~11ka!TaTm212a8

2 (
a50

m

~11ka!~11km2a!TaXTm2a8 . ~A4!

Using the recurrence relation in the form
(11ka)TaX5Ta111Ta21 to modify the terms in the nega-
tive sum, the right-hand side of~A4! becomes

xRHS~A4!5 (
a50

m

~11ka!TaTm112a8 1 (
a50

m

~11ka!TaTm212a8

2 (
a50

m

~11km2a!Ta11Tm2a8

2 (
a50

m

~11km2a!Ta21Tm2a8 . ~A5!

Shifting the indices on the negative terms~so thatT always
appears with ana subscript!,

xRHS~A4!5 (
a50

m

~11ka!TaTm112a8 1 (
a50

m

~11ka!TaTm212a8

2 (
a51

m11

~11km112a!TaTm112a8

2 (
a521

m21

~11km212a!TaTm212a8 , ~A6!

and noting thatT051, k050, T0850 andT2150, and insert-
ing ~A2!,

xRHS~A4!5Tm118 1 (
a51

m

2TaTm112a8 1Tm218

1 (
a51

m22

2TaTm212a8 2 (
a51

m

2TaTm112a8 22Tm218

2 (
a51

m22

2TaTm212a8

5Tm118 2Tm218 . ~A7!

Thus, from~A7! and ~A4!,

Tm118 5Tm218 1 (
a50

m

~11ka!~11km2a!TaX8Tm2a ,

~A8!

which matches Eq.~31! if the indexm is replaced withm21.
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