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We present an approximation to the total-energy tight-bindifg) method based on use of the kernel
polynomial method within a truncated subspace. Chebyshev polynomial moments of the Hamiltonian matrix
are generated in a stable and efficient manner through recursive matrix-vector multiples. To compute the
energy, either the electronic density of sta(B©OS) or the zero-temperature Fermi function is smeared by
convolution with the kernel polynomial, with Jackson damping to minimize Gibbs oscillations while maintain-
ing the positivity of the DOS. These are shown to give approximate lower and upper bounds, respectively, on
the exact TB energy, and are averaged to obtain an improved energy estimate. The scaling of the computational
work is made linear in the number of atoms by truncating the moment computation at a certain range about
each atom. Energy derivatives necessary for molecular dynamics are obtained via a matrix-polynomial deriva-
tive relation. The method converges to exact TB as the number of moments and the truncation range are
increased. We demonstrate the convergence properties and viability of the method for materials simulations in
an examination of defects in silicon. We also discuss the relative importance of truncation range versus number
of moments[S0163-18206)07719-3

[. INTRODUCTION trality is imposed on each atom. The Gibbs-damped KPM,
which has improved convergence with increasing number of
The total-energy tight-bindingTB) method is increas- moments, yields a unique Fermi ener@lue to the Jackson
ingly viewed as a possible route to obtaining accurate interform which gives a non-negative electronic density of
actions for atomistic simulation of materials. While TB is state$, and allows one to generate expressions for approxi-
much less computationally demanding than first-principlegnate upper and lower bounds to the TB energy which can be
calculations, it nonetheless suffers from a computationafveraged to obtain an improved energy estimate.
bottleneck in the Hamiltonian diagonalization step, which There is also a loose correspondence with the spatially
scales as the number of atofas number of basis functions, Projected local-density-approximation method of Yangl-
N) to the third power. Recently, considerable attention haghough the fundamentally different nature of the one-electron
been given to deve|0ping approximations that reduce th|§—B Hamiltonian pl’events a direct Comparison. In the present
scaling fromN® to N.>~° For example, this can be achieved approach the Hamiltonian, and consequently the basis set,
by iterative approximation to the eigenvecfotSor density ~ are truncated to a subspace surrounding one atom. The TB
matrix?° or via statistically based approximatichghese solution in this subspace is then projected onto one atom to
approaches offer substantial speed improvements as tidiminate surface effects. In the Yang approach, the basis
number of atoms increases beyond.IDypical break-even truncation and projection are one and the same, while the
sizes, for which theN-scaling calculation becomes less ex- Hamiltonian is not altered.
pensive than the diredt® calculation, range from 50 to a The paper is organized as follows. After a brief review of
few hundred atoms. Because any approach of this type rébe total-energy TB method, we discuss the local-subspace
quires a Compromise, a givdﬁ_sca"ng method can have tr.uncatloln p.roced_ur(?. ThIS is first Imp|emented as an exa(.:t
advantages over others, depending on the nature of the afiagonalization within each subspace for the purpose of di-
plication. In the present work, we develop a method that mayectly testing the local truncation approximation. We then
be suitable as a short-ranged, many-body interatomic poteftroduce the second approximation, the Gibbs-damped ker-
tial. It is explicitly local in character, with a deterministic nel polynomial methodKPM). This replaces the direct di-
energy and exact energy derivatives. Thecaling nature is @gonalization, thus allowing the analytic computation of en-
achieved by a local truncation of the environment arouncerdy derivatives. The locally truncated KPM approach is
each atom. If the truncation range is increased to infinity, théhen tested on defects in silicon using the TB parameters of
method is equivalent to th\’-scaling form presented Goodwin, Skinner, and Pettifdf.
previously'®*! Although the present work deals exclusively
with orthogonal TB, it may be possible to extend this ap- Il. DESCRIPTION OF THE METHOD
proach to treat the more general case of nonorthogonafTB.
This approach is closely related to the one presented by
Goedecker and co-worke?s>!4the main differences are in ~~ We first briefly review the orthogonal tight-binding
the use of a logicalrather than physicallocal truncation method’ as it is currently used in atomistic simulations.
procedure, the use of a Gibbs-damped kernel polynomiabiven a system oN,,,atoms at a specified geometry, one
method(KPM), and the fact that exact energy derivatives areconstructs the one-electron Hamiltonian matfitk) over the
obtained in the present work, which is crucial if charge neuN-dimensional basis consisting of a valence basis set on each

A. Total-energy tight-binding method
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atom. The off-site matrix elements ¢f generally have a cal distance from atom, the procedure used by Goedecker
simple, two-center form, with a parametrized radial shape foand Teter:> which we will refer to as “physical” truncation.
each possible angular momentum combinafieg.,h...(r), Alternatively, the truncation can be based on the atom con-
Nspo(r), Nppo(r), and hy,,.(r) for an sp® basig. Angular  nectivity defined in the Hamiltonian. Defining two atoms as
dependencies are determined using Slater-Koster reldfions H linked” if they have a nonzero matrix element between

ConstructingH is usually a fast step. them, one can retain all atoms within a given numter ¢f
DiagonalizingH gives a set of eigenvaludg;}, which  Hamiltonian links from atom. We refer to this as “logical”
define the electronic density of stat€30S) truncation. For example,. =1 truncation retains all atoms

N within r, of atomi, wherer ., is the cutoff distance for
h(r), while L =2 truncation retains al-linked neighbors of
n(f):Z S(e—ei). (1) i and all theH-linked neighbors of those neighbors.
Within this subspace¢e.g., withL links), we solve the TB
The electronic energiE.ed is defined as the energy integral electronic structure problem, projecting out the DOS belong-

over the occupied states of this DOS, ing to atomi [n;(e)]. From the eigenvaluee}; j=1N;)
. and eigenvector§ C,}; j,k=1,N;) obtained from diagonal-
Ee|ec=2f €0(e—Ep)n(e)de, (2) ization of the subspace Hamiltonian, the projected DOS is
— given by
where 6(e) is a zero-temperature Fermi-Dirac distribution N;
(L) = 2 5(e— e
(1 i e<0 n~(e=2 Célee). 7
9€)=10 it >0, ©

An L-link approximation to the total DOS for the system is
and the factor of two accounts for the closed-shell spin statéhen obtained by summing over all
(two electrons per orbital The Fermi level Eg) is either

prespecified or is determined by requiring that the system L N L
have the correct number of valence electrons, n (6)=2i ni—(e). (8)
Nva,zzfx 6(e—Eg)n(e)de. (4 An important point is that the atom-projected DOS is a

well-defined quantity; the sum i{8) recovers the exact DOS
The total energy of the system is then obtained by augmenf©r the system if eacn;(e) is projected _ou(tL)of the exact
ing E.. With a repulsive potential electronic solution for the whole system, i.8%;’(€)—n(e)
asL—o or N;—N.
Etor= Eelect Erep (5) Note that once the Fermi level has been found from Eq.

. . ) _ (4), one can compute the energy of each atom individually,
representing core-core interactions and neglected contnbtb—y replacingn(e) with ni(e) in Eq. (2). Also, if desired, one
tions to the true electronic energy, such as double-countinggy enforce charge neutralftyia Eq. (4)] atom by aton®® A
terms. This usually takes the form of a simple pair potentiakeature of this “atom-neutral” approach is that it offers a

completely local definition of the energy of each atom,
Erep:%Z o(ri)), (6)  Which should be advantageous if the goal is to adapt this
i#] method for a fast, short-ranged empirical potential.

Because the computational work required to compute
each atom DOS depends only on the size of the subspace for
that atom, the work required for the whole system scales as
N, whether or not charge neutrality is enforced atom by
atom. More specifically, if each of the diagonalized sub-
spaces are equal in size, the work will scale g IN. The
method as outlined so far meets most of our requirements; it
scales asN and converges to exact TB as the truncation

There are two main parts to the method: the use of aange is increased. However, it is not a viable approach for
locally truncated subspace for each atom, and an approximanany applications, because calculation of energy derivatives
tion of the DOS using the kernel polynomial method. Localwould require differentiation of the eigenvector matrix ele-
subspace truncation, which is responsible for thecaling  ments, which is difficult to perform analyticall{in contrast,
computational dependence, is described and tested in thiferivatives of the eigenvalues can be obtained easily, by ex-
section. For simplicity, we discuss a system with only oneploiting the Hellman-Feynman theoremAs will be dis-
basis function per atom, so that we can refer to basis funcsussed in Sec. Il C, this derivative problem can be side-
tions and atoms interchangeably. The generalization to morstepped by approximatingn;(e) with a Chebyshev
complicated basis sets is straightforward. We also momerpolynomial moment expansion. However, it is useful first to
tarily ignore contributions to the energy froB),,,. examine the direct-diagonalization approach, because it

For each atoni, a local subspace of the full Hamiltonian gives the exach;(e) for a given subspace. We can compare
is defined, containind); basis functions. This can be accom- the physical versus logical truncation procedures, and di-
plished by retaining only those atoms within a certain physi+ectly study the convergence to exact TBNysis increased,

where ¢(rj;) is a function of the internuclear distance
rij=Ir;|. More recently, some parametrizations have em
ployed a many-body term foE,, such as an embedded-
atom form?° to improve the overall accuracy of the method
(with no significant increase in computational gost

B. Local truncation
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FIG. 1. Egec from subspace diagonalization for a bulk Si atom
using physical truncatiofO), or logical truncation(®) to define
the subspace. The=1 point, which coincides with the first physi-
cal truncation point, is off the scale at11.205 eV. Comparison is
made to 64(2X2X2 unit cell§ and 216-atom3x3x3) TB super-
cell calculationg*). The 1000-aton{5x5x5) TB supercell result
is shown as a dotted line.

FIG. 2. Si lattice constant predicted using subspace diagonaliza-
tion vsL. The dotteduppe) and dashed line§ower) are the 216-
and 1000-atom supercell results, respectively.

In Fig. 2, the Si lattice constant is plotted versus the num-
ber of logical truncation shelld,. The convergence is very

. . ) . ) rapid, with an error of less than 0.5% hy=3. Even for
without any coupling to the approximations in the moment) —1 ' the error(relative to the 1000-atom superdels no
description. Also, the diagonalization corresponds 10 thgarger than the error due to using a 216-atom supercell.
infinite-moment limit of the Chebyshev moment approach, - g re 3 shows the convergence of the unrelaxed Si va-
simplifying the study of the convergence with respect to theCanCy formation energyE.,) using the atom-neutral ap-

number of moments. ) . -
The calculations presented here employ the silicon tight_proach. These values decrease slightly if atom neutrality is

binding parametrization of Goodwin, Skinner, and Petttfor not enforced. For comparison, the exact TB supercell results
which has arsp® basis set. In all calculations, the diamond are shown for 64, 216, and 1000 atorenforcing charge

crystal lattice constant is set to 5.4291 A, the result obtainecl]]eu'[r"’“'ty has w_rtually ho gffect on the (_axact TB results
from a 1000-atom supercell calculation. An abrupt cutoff isThe sub_space diagonalization values are in reasonable agree-
imposed at 3.6 Abetween first- and second-neighbor shells ment with the exact TB values fdr=3 and above. The
for compatibility with previous studie€:?! The supercell PredictedE,, for a givenL is similar to the value from the
calculations employ only th€ point in the Brillouin zone. ~ supercell whose size matches the size of the subspace.
Figure 1 shows the convergence of the electronic energy
with subspace size, using both the logical truncatiom to
L =6) and the physical truncation procedures. For this perfect
diamond lattice, the physical truncation procedure picks up
complete neighbor shells as the truncation radius is in-
creased. Because of the first-nearest-neighbor cutdftii,
the first two points(L=1 and 23 in the logical truncation
curve correspond to exactly the same subspaces as for the
physical truncation procedure, so the energies coincide. For
larger subspaces, the logical truncation continues to con-
verge monotonically toward the 1000-atom periodic super-
cell value (an approximation to the infinite-system result
passing very close to the energies from 64- and 216-atom
supercell calculations. In contrast, the physical truncation
shows less satisfactory, honmonotonic behavior. We infer
that logical truncation is preferable to physical truncation,
although this assumption should be more thoroughly tested. 0 L L
In tests of their local-orbitalN-scaling electronic struc- 01 2 3 4 5 6 7 8 9
ture method, Mauri and Gallialso observed that logical NUMBER OF LOGICAL LINKS
truncation was superior to physical truncation, judged by the
residual error for a given subspace size. They did not see the FIG. 3. Si unrelaxed vacancy formation energy using subspace
nonmonotonic behavior observed here because of the variaiagonalization vd.. The dashed lines are the exact TB results for
tional nature of their solution. 64-, 216-, and 1000-atom supercells.
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In a previous study using a low-order moment approxima- 40 T T 1T
tion to TB! E, .. was found to be poorly described, converg- - ' ' .
ing slowly as the number of moments was increased. Both B i
that method and the present method represent explicitly local 30— ,1| .
approximations to TB. If one equates the number of mo- B Iy ]
ments in the low-order method td_2n the present method, L N ]
the local subspaces are equivalent. In both cases the conver- 20 - ,'ll ]
gence is from below, but the errors in the moment method C [ ]
are much larger. For examplE, . is 2.6 eV lower with six < L Iy i
moments than thé =3 subspace diagonalization result, and © 10 .
the 14-momenEg, .. is 1.3 eV lower than thé =7 subspace - | ]
diagonalization result. B [ N

ok VAVAV/\VI‘\ T’ \,' ll ] ]
C. Kernel polynomial method B v ‘,l i J ]
The kernel polynomial methoPM), implemented with -10:- Ll . } | \{ ol il .:

Chebyshev polynomials, offers a controlled approximation to -0.6 -04 '-c;.zl 0.0 0.2 0.4 06
the bond integral in2), while retaining facile differentiabil- @

ity. This section provides an introduction to the KPM suit-

able for the task at hand; the method has been presented in £ 4 The kernel polynomial fok =100 plotted vs the angu-

- 10,11

more formal detail elseyvhe?é. o lar variableg=cos }(x). The raw polynomialdotted ling exhibits

_ Chebyshev polynomials of the first kind@i(x), are_de' Gibbs oscillations. Application of the Jackson damping factors sub-
fined by To(x) =1, T1(x) =X, and the recurrence relation  stantially reduces these oscillations and enforces positigitjid

line).
Tm(X)=2XTm-1(X) = Try—2(X), 9

where the range of is limited to —1<x=<1. They obey the
orthogonality relation

Lanczos approaéfito find the lowest and highest eigenval-
ues] We can then express the projected DOS for itte
basis function as

1 B " ‘
jﬁlw(X)Tm(X)Tn(X)dX_ Qm5m,n ) (10 ni(e)= E:O % ng(X)Tm(X), (15)

h h ight function i —
where the weight function Is where{u,;} are the Chebyshev moments léf

1

W(X)= , 11 Mmi:<i|Tm(H_)|i>- (16)
_ The Gibbs factor$g,,} in (15) are designed to reduce the
andq,,=m whenm=0, and/2 otherwise. Gibbs oscillations resulting from the finité- truncation of
We can express an arbitrary function on the intervalthe series. We choose the form derived by Jackéoh,
{—1:1} as an expansion which maintains the desired positive-definite nature of the

DOS, while optimizing the energy resolution. For a DOS
m with continuity properties, this choice minimizes the uniform
f(x)=m§=‘,0 gy, WOOTm(X). (12 horm, which is defined as the maximum absolute error be-
tween the exact and approximate DOS.
Multiplying Eq. (12) by T,(x), integrating, and comparing The heart of the KPM is the relationship between the
with Eq. (10) shows that the expansion coefficients are justapproximate DOS ir{15) and the exact DOS. This connec-
the Chebyshev moments of the function, tion can be more clearly stated after transformingptspace,
wherex=cod ¢) and themth Chebyshev polynomial is sim-
R ply cos(me). In ¢ space, the approximate DOS is related to
am= Mm= f_lf(X)Tm(X)dX' (13 the exact DOS by a convolution with tkernel polynomigl
an approximation to a Dirac delta functignormalized on
While (12) is exact, we now consider truncating the ex- [0,2])
pansion aM moments to obtain a usable approximation. We

©

M
first shift and scale the energy to obtain whose eigenval- _ i
ues are in the range-1:1} 5K(¢)_m§=:0 20m gmcOS M), (17)
H_=(H—b)/a, (149  Whose width is proportional to M. Figure 4 showsj(¢)
for M =100, with and without Gibbs damping. Thy%5)
x=(e—b)/a. (14p ~ represents a smearing of the exact DOS with a known reso-

lution function. (In energy space, the width of the smearing
[This requires a determination of the range of the eigenvalfunction is not constant, reaching a maximumeat0.) The
ues ofH, which can be accomplished @(N) work using a  generality of the KPM allows, as an alternative, convolution
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of the zero-temperature Fermi function with7), giving a

smeared Fermi level instead of a smeared DOS. The result-Egiec™
ing energy expressions, given below, can be averaged to ob-
tain an improved energy estimate due to the approximate

bounding properties presented in Sec. Il E.
The Chebyshev moments {6) are computed by defin-
ing the moment vector for a basis function

Ym=Tm(H)|i), (19

such that

(T H[i)y= 4t - (19

The time-consuming part of the calculation is then repeate(i.
matrix-vector multiples using the matrix version of the recur-

rence relation in9),

1//m=2H_¢m71—l//m72- (20)

Due to the sparse nature bff, each matrix-vector multiply

requires computational work proportional to the subspace
sizeN; . Because this is then repeated for each basis functiops giscussed below, the average B35, and ESD

in the system, the overall work scales Ms\;N, or MN? if
there is no local truncation.
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SD_ /*‘LOQOSin( ¢F)_ d)F + Sln(zqu))
- . Mm191 p .
- sinmee) | sin(m—2) ]
_mzzs Mm—lgm—l( mar + (m—Z)'n' )

(29

For the smeared-Ferni8F) approximation, we convolute

0(b,pe) with (),

_ 2 _
0K(¢1¢F):fo ok(p— ") 0k(d',pp)dd’. (26

ubstitution of6 for @ in Eg. (21) yields the same expres-
ion forN, 4 as in(23). Thus ¢ is the same for both the SF
and SD approximations. The SF energy expression is found
by substitutingfy (¢, ¢g) for (¢, dg) in Eq. (24),

M .
oF sin(Mer)
Egllvzac: /J“lgo( 1- ?) _mE:l (Mm-1F 4m+1)9m m—ﬂ_
(27)
offers a

elec
better approximation to the true energy than either one alone.

As with the exact-diagonalization case, charge neutrality

Once the Chebyshev moments have been computed, caly pe imposed on each atgatom-neutral methogn; (e) is

culation of Eg. is performed in¢ space. Theg-space
equivalent of Eq(4) is

2T
Noa=2 | 066009106, (21

wheren(¢) is the ¢-space DOS¢y is the Fermi anglgre-
lated to the Fermi energy by¥g=a cos(¢g)+b], and
0(p,¢e) is a 2r-periodic function that equals; for
27— ¢pr=¢p= ¢ and is zero elsewher€The 3 is a conse-
guence of continuing onto the interval0,27].) 6 is related
to 6 in energy spac€Eq. (3)]. Smearing the DOS by apply-
ing the kernel approximation (),

27
nK(¢):j0 (=@ )In(P")de’. (22
and substitutingi, (¢) for n(¢) in Eq. (21), yields
_ $e| < 2GminSin(Mee)
Nval—,U«ogo<1_?)—m§=:l BEwr— (23

Because the choice for the Gibbs damping factpgguar-
antees thahy(¢) is non-negative, Eq23) defines a unique
solution for ¢ ; this can be found, for example, by bisection.
Taking a similar approach to the energy expression,

27

Eele™ zfo 0(¢p,pe)cog p)n(P)d e,

yields the smeared-DO&D) approximation to the energy,

(29

found by summing the moments over the basis functions on
atomi. Alternatively, the DOS for the whole system can be
obtained by summing over all basis functions. Note that
due to the linearity of the KPM, determining(e) for each
atom, and then summing to obtaire), yields a total DOS
that is equivalent to that obtained by summing the moments
over all atoms before applying KPM once to determirie).
This is in contrast to nonlinear methods such as maximum
entropy, where the total DOS contains more information if it
is obtained by summing the maximum-entropy DOS for each
atom (or rotationally invariant subspaceather than deter-
mining it directly from the total system momerdts.

D. Energy derivatives

Differentiating the electronic energy with respect to an
atom coordinatey(;) can be accomplished with the follow-
ing decompoasition:

M

N
oy E (29
dy; i=om=0 Ipmi Y]

The best route for evaluatingE/du,,; depends on
whether there is a fixed Fermi levélhe easiest cagea
floating Fermi leve[solving Eq.(4)], or an individual Fermi
level for each atom(atom-neutral methgd Analytical ex-
pressions can be derived for each case.

The more formidable task, differentiating the moments,
merits discussion. If no local truncation or charge neutrality
is applied, the total moment

N
:‘Lm:Z <i|Tm(H_)|i> (29
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can be differentiated in a straightforward fashion. The trace
over individual moments allows cyclic permutation of the
matrices in each polynomial term, so that the scalar equiva-
lent can be employed:

é’ﬂm_ .
&_yj_Z m(i|

oH -
ay; Un-1(HID, (30
whereU (x) is themth-order Chebyshev polynomial of the 0
second kind. -
In the case of local truncation, which breaks the trace in -1
(29), this approach is only approximateontrary to the as- Al
sertion in Ref. 18 To obtain the exact derivative requires a [/
full matrix treatment of the polynomial expansion, which can /
be accomplished in a fashion that retains Bhacaling. We
exploit the derivative recurrence relation

— N m-1 -t ° 1
MolA)_ M2 S 1k TA(H)

(9yj (9yj a=0
JH FIG. 5. lllustration that the smeared product functieti(e)]; is
X—T (H_) (31)  @lowerbound on the unsmeared form. A Gaussian wi0.5 was
m-—1-a ’ . . .
;i used as the smearing function for this example.

initialized with dTo(H)/dy;=0 and dT,(H)/dy;=dH/d9y;  Here ans subscript will indicate energy smearing via convo-
(herek,=0 if =<0, and 1 otherwise Equation(31), which |, tion with a symmetric, non-negative, normalized smearing
is derived in the Appendix, allows the derivatives to be com-t,nction:

puted using the),, vectors of Eq(18). Although the deriva- .

tives can be approximated using Eg0) (an approximation fs(e):f f(e')S(e' —€)de,

that becomes very good for larde, Eq. (31) is necessary o

for the atom-neutral case, because the moment for each atom

must be differentiated. S(—e)=S(e), (35
Using either Eqs(30) or (31), the energy range spanned

by the DOS, as specified by and b in Eq. (12), must be * _

kept fixed, to avoid terms of the fornviE/da)(dalduy). f,ws(e)de_l'

For the Si calculations presented below, the end points of the . . .

DOS energy range were fixed atl6.0 and+10.0 eV(the By swapping the convolution, E¢34) can be rewritten as an

Se'f_energies €& and Ep were set according to Integl’al over the exact DOS times a Smeanngdf&'),

€;=—3€,=—6.221 25 eV, zeroing the first moment of the sp w o , ) )
DOS. Eelec:2j7 J7 €f(e)n(e')S(e’' —e€)de'de

E. Approximate energy bounds _ wa [€6(e)]n(e)de. (36)
Applying the KPM to smear the DOS leads to an approxi- -
mate lower bound on the true TB energy, while smearing thezonyolution of the functioned(e) with S yields a function

Fermi function gives an approximate upper lower boundihat equals or lies belowb(e) at every point, as indicated in

These bounding relationships are derived in this section. quig. 5. Recalling thatn(e) is non-negative, the bounding
simplicity, we first shift the energy scale byE (®) to place property is easily shown:
the Fermi level atE=0. The electronic energy in the un-

shifted energy syster(rE_fe?éc) can be recovered from the elec- ESD= EeleCJrzf {[e6(e)]s—[€b(e)Iin(e)de
tronic energy in the shifted syste(&,.) using —

Ex(acl)e)c: Eelec+ ESZO)Nvah (32) = Eelec- (37)
whereN, is given by Eq.(4). The energy expression now Within the KPM, ES2. is only an approximate lower bound
becomes to Egee, because the smearing is in fact a true convolution

only in ¢ variables, not ine (as discussed in Sec. I))Cand
S the Fermi level may not be exact.
Eclec= 2 0 n(e)de. 33
elec fﬂc (e)en(e)de 33 Turning now to the smeared Fermi-le&lF) approxima-

tion, we have
The smeared-DOSSD) approximation to(33) is *
i ! Ediec™ f ~ Ole)en(e)de, (39)

ESDzzjme ne(e)de. 34
elec e (e)e ny(e)de 349 which we rewrite as
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FIG. 6. SiEqecUsing KPM withL =3 truncation vs the number
of momentsM; smeared Fermi levdlupper dashed linesmeared
DOS (lower dashed ling and the average of the tw@olid). The
straight line is the exadt =3 result(subspace diagonalizatipn
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FIG. 7. S{100 unrelaxed surface energy ¥ for the 216-atom
system, using KPM at various levels of logical truncatibr;2(+),
L=3 (trianglg, L=4 (squarg, andL=c (@®). The straight line is
the full TB diagonalization.

Figure 7 shows the moment convergence of the unrelaxed
(100) surface energy foL =2, L=3, L=4, andL =«. These
calculations employed a 216-atom supercell with a global
Fermi level. While thd_=1 case gives a very poor descrip-
tion (negative surface energy, not shgwh =2 through
L=4 each appear well converged by=100, and the se-

0
=Ee|ec+2f [6s(e)—1]e n(e)de

+2j:[05(6)]6 n(e)de.

The first integral is non-negative, because over its rang

(39

quence of their asymptotes converges toward the exact TB
result.

Figure 8 showsE, . for a 216-atom system. The upper
curve is the unrelaxed result, using the atom-neutral KPM,
showing rapid convergence to the exact3 result of 5.02
eV (dashed ling Also shown isE, . after a full relaxation of
the atomic coordinates at each moment level. It appears con-

0,(e)<1, <0, andn(e)=0. The second integral is also non-
negative, because over its ran@ge)=0, e=0, andn(e)=0.
ThusEZE. is an upper bound of.. This proof does not
require thatfy(e) be a true convolution, only thatd,(e)<1
everywhere. In the KPM, the Jackson form of Gibbs damp-
ing ensures this property, but the overall bound is approxi-
mate because the position BE is not necessarily exact.

Because the errors iBSo, and ESE, are caused by the
same smearing function, the absolute errors are expected to
be similar in magnitude. This raises the possibility that the
average of these two approximate bounds gives a less biased
estimate of the exact TB energy. Empirically, we have found
this to be true.

lll. SILICON TEST CALCULATIONS

Figure 6 shows the moment convergence of the electronic
energy (per atom for the L=3 truncated Si system. The
upper dashed curve results from applying the KPM to smear
the Fermi function, while the lower dashed curve results

VACANCY FORMATION ENERGY (eV)

unrelaxed exqct_L=3

unrelaxed KPM

P

IlIII

relaxed KPM

relaxed exact T8

Illllllllllllllllll

o

50 100 150
NUMBER OF MOMENTS

200

from using the KPM to smear the DOS. Using the average of FiG. 8. Sj vacancy formation energy for the 216-atom system
the smeared DOS and smeared Fermi methods, convergenggng KPM with L =3 truncation; unrelaxed geomet(®) and re-
to the exact =3 result is seen to be more rapid, deviating bylaxed geometryO). The upper dotted line is the exact, unrelaxed

0.08% atM =50 and 0.005%2.4x10 3 eV) at M =100. We
use this average energy form hereafter.

L =3 result(from subspace diagonalizatipnvhile the lower dotted
line is the relaxed, untruncated, exact TB result.
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4.0 T accurate approximation to the true tight binding.

- We have also studied the vacancy systemLfei2 KPM.
] At M =90, the unrelaxed vacancy formation energy of 2.96
i eV is similar to the subspace diagonalization result plotted in
— Fig. 3 (about 3.2 eV, but, upon relaxation, drops to 0.04 eV.
_________________ - This nearly 3-eV relaxation is strikingly different from the
N 0.7-eV relaxation effect foL =3. We conclude that artificial
behavior can result when the overall truncation range is too
short.

Bulk 2™ NN distance

°

w
3

IV. CONCLUSIONS

D
(8]
T | LI

The locally truncatedN-scaling approximation to TB pre-
sented here should be useful for atomistic simulation of ma-
terials. The kernel polynomial method gives a well-

INTERATOMIC DISTANCE (A)
(&}
5
T T | 1 T
ﬂ

Bulk 1® NN distance

20000 v o b b v b controlled approximation to the exact TB energy. Applying
0 50 100 150 200 Gibbs damping in the Jackson form eliminates unphysical
NUMBER OF MOMENTS behavior such as negative DOS values and multiple solutions

for the Fermi energy. Approximate upper and lower bounds

FIG. 9. Distances between atoms adjacent to relaxed vacanc§Q the exact energy result from smearing either the DOS or
using atom-neutral,L=3 KPM. Jahn-Teller distortion breaks the Fermi function, respectively, and averaging these ap-
R;=R, symmetry, leading to short “bondsTR,(®)] and long proximate bounds gives an energy estimate that converges
“pbonds” [Ry(O)]. Dotted lines showR; and R, for untruncated, rapidly with the number of moments. The exact energy de-
exact TB. rivatives derived here are crucial for short truncation lengths

. L or when the atom-neutral method is used. A logical trunca-
verged byM =100, offering a good approximation to the tion range ofL=3-5, with M=100 moments, appears ad-

untruncated, relaxed_, exact TB result Of_ 3.89 él\!of[e that equate for investigating defect energetics and geometries.
because energy derivatives are not easily determined for the In comparing the present method to an untruncated mo-

truncated-subspace  diagonalization, the infinite-momen,on annroach, we note that there is a significant disparity

Ilmgfor th_e r.ellaxedL|=3| C‘T“Sr%'ﬁ not a;:aﬂabl)i. laxed Si between the necessary number of momdis~50-100
Irst-principles calculatio ave shown the relaxed Sl o,y the necessary subspace dize-3-5. The use of 50
vacancy exhibits D4 Jahn-Teller distortion in which the —,entg without truncation would define a very large sub-

four neighbors of the vacancy site, initially second-nearesgpace corresponding to=25, which is about six lattice con-

ﬁl_ghbors tlo eat;)h othec;,_pa_:_rBuptt(()j_formb tv\\//\(/) shoréer: bonds, tants in radius for the silicon system with a nearest-neighbor
IS was aiso observed In studies by Yvang, Lhan, anf Conversely, limiting the calculation to a subspace

Ho, ™ as vyeII as in the present study. This behQV|or_|s ProPs5ize of L=5 with untruncated moments would set the num-
erly predicted by thelL-truncated KPM approximation if Dber of moments aM =10, which has been shown here and

enough moments are use_d. Figur_e 9 shows the re_Iaxed d'gfsewher%1 to be inadequate for Salthough it appears to be
tance between the two unique pairs of vacancy-neighbor at:;idequate for metai526-2

oms as a function dfl using the atom-neutral method. Up to
M ~30, the two distances are equivalef®; ER,), but re-
duced from the unrelaxed bulk valg®,=R,=3.84 A), in-
dicating a symmetric relaxation of the atoms toward the va
cancy. AtM~50, there is a bifurcation as the Jahn-Teller
distortion occurs, withR;, the distance between the atoms
making the new bond, becoming shorter tHRy the dis-
tance between the pairs of atoms not involved in a new bond.

(Note that this new “bond” is still much longer than the ACKNOWLEDGMENTS

bulk nearest-neighbor distance, 2.39 Kor M>100, there The authors gratefully acknowledge the Department of
is qualitative agreement with the exact, untruncated TB 9€Energy, Office of Basic Energy Sciences, for funding this
ometry (dotted line$. This transition atM ~50 is a conse- work, and thank S. Goedecker, H. &, I. Kwon, and T.
guence of theM-dependent energy resolution of the DOS. Lenosky for illuminating discussions.

Below a critical value ofM, the smearing obscures the in-
formation that there is a partially filled state at the Fermi
level.

If the atom-neutral restriction is eliminated without  Here we derive Eq(31), the derivative of a Chebyshev

changing the atomic geometry, the vacancy formation energgolynomial of a matrix. We write the Chebyshev recurrence
at M =100 drops from 4.26 to 3.69 eV. Allowing the atomic relation as

geometry to relax lowers this further, to 3.54 eV. Interest- Tos1=(1+K)XT— T 1. (A1)
ingly, this relaxed global Fermi-level system loses nearly all

of the Jahn-Teller distortion, witlR;=2.93 andR,=2.94. HereT, is understood to meah,(X), whereX is a matrix,
The atom-neutral description thus appears to offer a morand

For use as a short-ranged interatomic potential form with
exact energy derivatives, improved accuracy could be ob-
tained by refitting the tight-binding parameters specifically
for the desired values dfl andL. However, use of a trun-
cation range that is too short may cause unphysical behavior
that cannot by mitigated by adjusting the TB parameters.

APPENDIX
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_ 1 if a=1 m m
Ka=lo i a=o. (A2) XRHS<A4>—E (1K) TaTins1- a+2 (I+K)ToTro1- 4
Differentiating(Al) gives mel
me1= (IHK) X T+ (LK) XT =Ty (A3) —2 (I+kmi1-) TaTmi1-a

Replacing indexm with m—«, multiplying by (1+k,)T,,

summing overx from zero tom, and reordering terms leads
0 - 2 (ko) TaThoaas (A6)

m

2 (1k) Ltk o) TaX T

m—1

and noting thaff,=1, ky=0, T;=0 andT_,=0, and insert-
m m ing (A2),

= (1K) ToTheo a+2 (LK) ToTh 1w m
«0 XRHS(A4):Tr,n+1+a21 2T, Thi1-oT T

(A4) m—2
+2 2T, T 1., 22TTm+l 2T

a=1

—2_‘,0 (1+Ky) (14K o) ToXT,

m—a*

Using the recurrence relation in the form
(1+k,)T X=T,,1+T,_4 to modify the terms in the nega-
tive sum, the right-hand side ¢A4) becomes — E 2T, T 1 .

XRHSAD) = 20 (1+K)ToThsa a+2 14k ) ToTh 1 a

=Thi1~ Thm-1- (A7)
m
= (4K ) Tar1 T Thus, from(A7) and (A4),
a=0 "
m ! !
S Ak T Th e Tro=Th 1+go(1+ka)(1+km*amx T as
a=0 (A8)
Shifting the indices on the negative terifs® thatT always
appears with am subscrip}, which matches Eq31) if the indexm is replaced wittm—1.
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