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The first-principles divide-and-conquer density-functional approach has been extended to solid-state sys-
tems. The method has the following featurés) It divides a periodic solid-state system into equivalent
primitive cells and further divides each cell into subsystems. The electron density of each subsystem is
determined through the local representation of the one-electron Hamiltonian and used to form the total density
per primitive cell. The method calculates the electronic structure of solids without involving the reciprocal
space and its associated band struct(2g.lt uses numerical atomic orbitals as basis functions with great
variational flexibility. The Hamiltonian and other matrix elements are evaluated by numerical integration
without any shape approximation to the effective one-electron potef8)arhis method, based on real space
partition, can be applied to extended solid-state systems without translational symmetry, such as defects and
surface chemisorption. As the first step, we have applied and tested the method to the electronic structure
calculations of various crystalline solids: metallic lithium and copper, ionic sodium chloride, and covalent
diamond and silicon. The self-consistently computed cohesive energies, structural properties, and density of
states are in good agreement with those from the local-density approximation band-structure calculations and
experimental results.

[. INTRODUCTION tended systems again scales as the cube of the number of
atoms involved in the region of interest. This rapid scaling is
The past two decades have seen tremendous progresstire ultimate bottleneck for the applications of these methods
the development of first-principles band-structure calculato large systems.
tions based on Kohn-Sham density-functional thé&dty To break theN3-scaling bottleneck, we have recently de-
(DFT) for periodic solid-state systemis?? To date, a variety veloped the linear scaling divide-and-conquer methdar
of such computational techniqgues have emerged to make liarge molecules: divide a large molecule into subsystems,
possible to accurately predict ground-state properties ofletermine the electron density of each subsystem separately,
simple solids. Despite the great success of modern firsand sum the corresponding contributions from subsystems to
principles band-structure calculations on solids, the compuebtain the total density and energy. We have demonstrated in
tational effort normally scales as the cube of the number ofnany tests that with the increasing use of buffer atoms
atoms per unit cell and consequently limits the size of systentneighboring atoms for each subsysjetthe divide-and-
which can be studied. conquer method can reproduce the corresponding Kohn-
For extended solid-state systems without translationaBham result€>=3" A great deal of effort has been subse-
symmetry, such as defects in crystals, reconstructed soliquently devoted to the search for ordéralgorithms for
surfaces, adsorption, and chemical reactions on surfacelrge scale electronic structure calculatiéfis! We expect
band-structure methods are usually not very efficient. Therthese linear scaling methods to significantly enhance our
are many other theoretical approaches for these extendeility to performab initio calculations on large systems.
system$>~% In particular, various embedded-cluster ap- Since the computational effort in the divide-and-conquer
proaches are widely usé@:*3The basic assumption in this approach scales linearly with the system size, it has the po-
kind of approach is that the electronic structure of an extential for application to complex solid-state systems. In this
tended system can be established as the result of local intgpaper we particularly focus on the implementation of the
actions. These methods have proved to be very useful in theethod for periodic solid-state systems. In principle, such an
studies of defects in crystals, adsorption, and chemical reaégmplementation should enable us to calculate the electronic
tions on surfaces. A major problem in the embedding schemstructure of periodic crystalline solids with large and com-
is how to take the boundary effects into consideration rigorplex unit cells without involving their band structures. We
ously. The computational effort in all these methods for ex-want to point out here that the current implementation of the
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divide-and-conquer method is an all-electron one. We alsscale asN®. But the electron density is a local variable. To
expect the divide-and-conquer method to become a rigorousccurately represent the density locally, we do not need the
and efficient approach fab initio calculations of extended delocalized Kohn-Sham orbitals. Much simplification can be
systems where the translational symmetry is broken. We caachieved via a divide-and-conquer approach without losing
divide an extended system into subsystems and calculate ethe Kohn-Sham accurad.The method is based on a well-
plicitly the electron densities for those subsystems in the&known expression for the electron density,

physical region of interest. In this sense the divide-and- _ . .

conquer method is similar to the embedding scheffies. p(N=2(r|p(u—H)|r), (6)

We want to emphasize here that in this d|V|de—amd—conque(Nhere 7(x) is the Heaviside step function and is the

embedding,” the boundary effects can be taken into Cons'dE:hemicaI potential, which is related to the density normaliza-

eration in asystematlc_fashlqn by including the contrlbutlonsﬁon. We divide a System into subsystems by the following
of more and more neighboring atoms. The charge transfer

between the region of interest and the environment is ef-SmOOth partition:

fected by the chemical potential equalization. .
The remainder of this article is organized as follows. In 1= p¥(r),

Sec. Il we briefly review the recent development of the *

dlv_lde-and-_conquer method. V\_/e then present th_e mplemethere pa(F) is a positive weighting function for the sub-

tation of this approach for solid-state computations in Secsystema. The total density now reads

lll. In Sec. IV we compare our results for metallic lithium

and copper, ionic sodium chloride, and covalent diamond

and silicon with those from the local-density approximation p(N)=22 p*(r){rinp(u—H)INy=2 pr), (7
(LDA) band-structure calculations and experimental values. “ “
We provide some concluding remarks in Sec. V. where the subsystem density is defined as

Il. THE DIVIDE-AND-CONQUER METHOD p*(N)=2p(r)(r| p(u—H)r). (8)

Most of the contemporary electronic structure calculationsVe now make the local approximation to the Kohn-Sham
for solid-state systems are based on the Hohenberg-Kohfdamiltonian in Eq.(8):
Sham density-functional theory. In the Kohn-Sham

method®® the ground-state electron density of an PN =2p(r)(r|f g(w—Hr), 9)
N-electron system is expressed as where fg(x) is the Fermi function {fs(x)
N/2 =[}+exp(—/3x)]‘1} andH® is the subspace approximation
p(F):22 |17/,i(F)|2, (1) of H. We then represeit“ as well as the subsystem eigen-
i=1

functions{{"} in terms of the nonorthogonal basis functions

WherEI//i(F) is the Kohn-Sham orbital satisfying the equation {¢} that are localized in the subsystem

Hi(N=[-iV2+ue(NIG(D=c(r), (2 He=2 [yfyed(yd, (10

with veﬁ(F) as the effective one-electron potential. The total
energy is given by

(=2 CRai(r), (1D
N/2 J
Zp\Zg
E[P]Zzzl 8i+Q[P]+A§>:B Reg ’ (3 where{ef} and{y{} are found by solving the matrix equa-
B tion
where
(H*=&{'S"C{*=0, (12)
Qlp]= f p(N[—Lp(N)—vy(Ndr+Edpl, (4  with the matrix elements given by
S(1)=[p(F")/|F=F'|dF" is the Coulomb potential, and Hii = (&l HI¢),  Si=(of¢])- (13

v,(r)=6E,[p]/8p is the exchange-correlation potential. The expression of the total electron density now becomes
With the local-density approximatioftDA),

5<F>=§ '5“<F)=2§ |o“<r*>2i fo(u—eM|y(n|?,

Exc[p]:f p(r)ey(r)dr, 5 (14)

where &,,(r) is the exchange-correlation energy density.with . determined by the normalization constraint
Equations(1) and (2) have to be solved self-consistently to
find the ground-state energy and electron density. N:f~ Adr=2 f — e oD

The global orbital representation of the electron density in p(1) Ea: Z sl =P (D197
the Kohn-Sham approach causes the computational effort to (15
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TABLE |. The buffer schemes for lithium, copper, diamond, silicon, and sodium chloride calculations.
For each element, the first column gives the number of buffer atoms for each buffer scheme and the second
column indicates the distan¢a.u) between the buffer atoms and the subsystem.

Buffer schemes Li Cu Diamond Si NacCl
1 8 5.713 12 4.811 4 2913 4 4443 6 5.320
2 26 9.329 18 6.803 16 4.757 16 7.256 18 7.523
3 58 11.426 42 8.332 34 6.727 34 10.261 26 9.214
4 88 14.377 54 9.621 46 7.331 46 11.181 32 10.639
5 112 14.751 78 10.757 70 8.239 70 12.567 56 11.895
6 86 11.783 86 8.739 86 13.329 80 13.030
The eigenvalue summation in E() is replaced by A. Division and buffer schemes

To take advantage of the periodicity we divide a solid into
gzzj (r|Hp(u—H)|rdr equivalent primitive cells and then further divide all primi-
tive cells into subsystems in the same way. In principle, the
partition of a primitive cell is arbitrary. For simplicity, in our
=D 50=22 D falu—eMeX(yf|p4f), (16)  current implementation we typically let the subsystem con-
@ @ sist of a single atom. With this division we only need to
and the approximated total energy is qalculate the densitie; of those subsystems within one primi-
tive cell. The summations over the subsystems in Et$,
(16), and(18) now become summations over primitive cells.
(17)  In general, we have two summations: one over all primitive
cells and the other over the subsystems in a primitive cell.
Other electronic properties can also be calculated in the sa SeInce solids are infinite systems, the quantities to be calcu-
manner. A quantity of interest is the density of electronic dted are the total energy and f:iensny per primitive ce!l. We
states(DOS), which has the following form in the divide- only need to perform summations over subsystems in one

Zalg

E=%+Q[p]+ 2,

AsB Rap

i primitive cell in Egs.(14), (16), and (18). In addition, the
and-conquer methdd number of electrons in a primitive cell should be used in Eq.
dN(e) (15) to determine the proper normalization.
g(e)= de =2§ Z (o)t p(e—ef), (18) We define the general normalized partition function for

subsystema as the sum of the atomic partition functions

. L . . over the atoms in subsystem
Wheref,g(x) is the derivative of the Fermi function. Y

The subsystem density can be accurately represented with . .
some local basis sets. The local basis set for a subsystem pe(r)= 2 pA(r), (19
includes the atomic orbitals of the subsystem and its neigh- Aca
boring atoms which are called buffer atoms. The use of localyhere
basis sets is a truncation approximation, and the buffer atoms
provide a systematicsway 'Fo reduce the.error associated'with ) pQ(IF— §A|)(ero/|rl Ral 17— Fol| F— §A|)
the truncation. TheN*-scaling computational bottleneck in pA(r)= - —
the Kohn-ShamKS) scheme has thus been eliminated be- Sepg(|Ir—Rg|) (eI Rel—1—r/|r —Rg|)
cause the divide-and-conquer method does not employ the (20
global Kohn-Sham orbital representation of the total electron A 2 . ) i
density. Various molecular test calculations have shown thaith fo = 0.5 andpg(|r—Ra[) being the spherical atomic
in general the divide-and-conquer method with proper buffedensity for atomA located aR, . The summation in Eq20)
atom schemes is capable of reproducing the correspondirig over all atoms in a solid. Other forms of partition functions

Kohn-Sham result® >’ can also be chosen. With this set of partition functions the
total density can be decomposed into the contributions from
IIl. EXTENSION TO SOLID-STATE SYSTEMS subsystems in primitive cells.

For each subsystem in a primitive cell, its neighboring
Since the divide-and-conquer method is a general apatoms are chosen as buffer atoms to form a set of buffer
proach for large systems, as the first step, we here extend sthemes according to their distances from the subsystem. We
to periodic crystalline solids. We will follow the general pro- present in Table | the buffer schemes used in our calculations
cedures outlined by Yang and Zhou for the extension of thdor lithium, copper, diamond, silicon, and sodium chloride.
method to periodic solid® The most important characteris- Note that some of the buffer atoms with different distances
tic of the crystalline solids is the periodicity. The whole sys-from a subsystem are grouped together so that there is a
tem can be constructed from a representative cell — thsignificant increase in the number of buffer atoms for adja-
primitive cell. cent buffer schemes.
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B. Construction of the one-electron potential pA(r)paedr). This procedure significantly saves CPU time.

In solids the crystal potential contains contributions fromye also only need to calculafE(r)pqe(r) for those atoms
an infinite system. Many calculations have demonstrated tha the representative primitive cell because of the periodicity.
the LDA can provide an adequate treatment for theror the density at a given point in the central cell, the infinite
exchange-correlation effects in ground-state solids. Since theymmation in Eq(24) can be terminated in a short-range
exchange-correlation potential depends on the density in gpace due to its fast convergence. From the expansion in Eq.

local way, direct summation can be carried out. We herg24) the deformation potential can be determined as
focus on the construction of the electrostatic potential. To

achieve convergent results, we need to calculate the nuclear ("
i i - i- Pde >, > > IO
and the electronic potential together. The long-range contri J ar=> > [0SO F = Ry) +0/9%%(F — Ry,

bution to the electrostatic potential is generated by the defor- |F— F’| a Aca
mation densitypge(r) defined as (26)
P(F)=patomd 1) + paef ), (2)  where
Wherepatomi({F) is the superposition of the atomic densities. . 1 %
The nuclear potential is vihortr)=4w% mY,’“(Q;)‘ r'fr poef (s)st~'ds
- Zp "
on(N=-2 2 PR (22) —r"’lf pf\‘f;<s>s'+2ds], (27)
r
and the total electrostatic potential is
and
L Za po(Ir' —Ral)
Un(r)+¢(r):2A2 [_|F_§|+j |r?_r?/| dr, | o 1 o0 def
A v,‘j”g(r)=4w% mY[“(Q;)xr*'*lfo po (s)s' 2ds
poell’) -,
|fe_r*/| dr, (23 > YI'(Q7) Qaim
TS Qv T (28

where« is the cell index andh is the nuclear index. In Eq.

(23) the summations are performed over the electrostatic pQznere Qaim is the multipole associated with atof The

tentials of neutral atoms, and are therefore short ranged ansdummation of the S term in Eq.(26) converges very fast
A .

fast converging. The deformation densijiye(r) is repre-  and can be done in the short-range spaghin the radius
sented on a real space multicenter numerical grid and canngg Renort from the origin as the deformation density. The
be intt_egrated directly to get its pot(_ential. To compute thesymmation of the)',f“g term contains the well-known Made-
potential generated by the deformation density, we need g sym. with the charge neutrality constraint in one primi-
decompose . thg deformation density .apprOX|mateI.y INtGjye cell, the long-range summation is conditionally conver-
atomic contributions, and perform a multipolar expansion forgent for|=0. There exist many methods to deal with the

each of thent: conditional convergence problem for the Madelung ston
example, see Ref. 10In our calculations we have adopted
el =2, pg‘Ef(F_ Ra) the conventional Ewald technigifdor the summation of thg
A terms forl=0. To assess the accuracy of only including
=0 terms in the Madelung sum, we performed the long-
=2 D o (IF—Ra)YP(r—Ra), (24  range sum for all the terms withup to 2, using the screen-
A Im ing function method developed by te Velde and Baeréfids.
In this method, all the multipole lattice sums in E88) are
evaluated in real space up to a cutoff radius, by weighting
the contributions with a Fermi-like screening function de-
pi?fn(s)=f . YM(F—RW)PANPaefr)dQ. (25)  pending on its distance to the central cell. Our test calcula-
s=[r=Ry| tions for NaCl show that neglectirig~0 terms in the Made-
lung sum gives less than 16 hartree in error for the
. . . - . - — o cohesive energy per primitive cell. It appears that for high-
With 'th|s cho.|ce.opr(r), the quant|§ypA(r)pd?f(r) IS the' symmetry bulk structures the inclusion lof 0 terms in the
atomic contribution to .the. deformation density. Eollgwmg Madelung sum is unlikely to have much effect on the calcu-
Eq. (14) for the determination of subsystem densiff(r),  |ations of cohesive properties. Therefore we have neglected
pA(r)peedr) is determinedon the integration griddirectly  thosel >0 terms in all the test calculations presented in this
from the eigenvalues and eigenfunctidas$ , ¢} of the sub-  paper. However, there are cases where the inclusion of
systemea to which atomA belongs. In this way we do not 1>0 terms would be important, e.g., calculations of the po-
need to calculate the total densitpy summing the sub- larization in an external field, and our program is capable of
system contributionsand then patrtition the result to get the including these terms where they are needed.

wherep%®' (|r—R,|) is given by the projection

Here the atomic partition function is defined in EQO).



53 STRUCTURE OF SOLID-STATE SYSTEMS FROM EMBEDDED. . 12 717

C. Integration and matrix evaluation atomic orbitals from the subsystem and surrounding buffer

Our program uses the numerical Kohn-Sham atomic or&toms to form a local basis sf#;"} for each subsysten;
bitals as basis functiori€.All the multicenter integrals in- (iii) superimpose the atomic densities as the initial total den-
cluding those required for the construction of the Hamil-Sity to generate the effective one-electron potential; for
tonian and other matrices are evaluated by Delley’s three€ach subsystenr, solve Eq.(12) to obtain{e{*,i'}; (v)
dimensional multicenter numerical integration metfidthe  determinew and p(r) to obtain the new effective potential
partition function defined in Eq20) is also employed in the and repeat step8v) and (v) until self-consistency(vi) fi-
numerical integratiol.We need to pay special attention to nally, compute the total energy per unit cell. We need to
the evaluation of the potential matrix elements since there isnodify Eq. (17) to compute the total energy per primitive
an infinite number of atoms in solids. This means we at leastell. Since all the primitive cells are equivalent, we only
have to perform numerical integration to compute theneed to sum over all subsystem contributions in one primi-
nuclear potential matrix elements in the region where all bative cell (the central ce)l The calculation of per cell in Eq.
sis functions have non-negligible values. Such a region if{16) is straightforward. The second term[£) and the
solids usually involves hundreds of atoms thus making thenuclear repulsion term in Eq17) have to be combined to-
numerical integration extremely time consuming. To calcu-gether to give the convergent result. Rewrite the two terms as
late the potential matrix more efficiently, we have adopted &ollows:
very simple approach in the spirit of the local-projection

method>® Define the following local-projection function: Z\Z

R=Q[p]+ >, ——=R;+R,, (31)
A>B AB

pr)= 1—expl —ka|r — Rp|? 29

pe(r) Al;[a{ exp( —Ka|r —Ral9)} (29 where
wherea is the subsystem inde® runs over all the atoms in R 1 ) ) R RN
the solid except for those atoms in subsysterrand the R1=f p(r)[—E[qﬁ(r)+vn(r)]—vxc(r)+sxc(r)}dr,

buffer atoms for subsysteias, IfiA is the nuclear position of (32)
atomA in the solid, andk, is a constant depending on the

type of atoms and basis functions. The function serves tand

project away the singularities contributed from atoms other

than the buffer atoms of subsystem The potential matrix B N ZpZg
for subsystemr is now computed in the following form: RZ_EJ p(r)”n(r)dHAZB Rag (33
Vﬁ:wiaﬁ |V|¢}”>- (300  With the partition functionp®(r), we can easily find the

per-primitive-cell quantitiesR{ and R,

Outside the buffer regionW(F) takes zero values at the 1
singularities of the potentidthe positions of atomsand the Ra:f DR = ZTd(H) +v.(F)]— r
integrand in Eq.(30) becomes smooth. Thus its numerical 1 p(r)pe(r) 2[¢( )+ on(N)]=vxlr)
integration is performed with only those points generated
from atoms within the buffer area of subsystem +ey F)] dr, (34)

The current approach smoothly removes the Coulomb po-
tential singularities outside the buffer area for each sub-

system. We do not expect this approach to have much impact 1 Zs p§(|F— F§B|) .

on the accurate evaluation of the potential matrix, since the R‘z":E 2 Zp R f ————dr
local-projection function defined in E€9) is effective only Aca  BFA [ TAB | =Rl

within a very local region around each nucleus outside the 1 A(|F—§ K

buffer atoms. Test calculations in Sec. IV attest to this point. = > ZAf de

Viewed from a different angle, the approach can be consid- 2 A< Ir —Ral

ered as a modified local-projection method which uses dif- .

ferent left-side and right-side basis s&tsf one of the basis 1 ZppdedT) & 35
sets is highly localized, the multicenter integrals can be re- 2 &, Ir =Ry r\ (39

duced to single-center integrals. Several single-center projec-

tion functions have been proposed to obtain the localizedvhere the total density has been expressed as the sum of the
basis set in the local-projection methtdn the current ap-  spherical atomic density and the deformation density as de-
proach as shown in Eq$29) and (30), the integration is, fined in Eq.(21). In Eq. (35) the first two terms are short

the buffer region of each subsystem. long-range term can be computed in the same way as the
deformation potential in Eq26).
D. Self-consistency and total energy The cohesive energy per atom is

The self-consistent procedure in our solid-state calcula-
tions is as fo_llows(l) Dlv_lde a solid into pr!r_nltlve cel_ls and Ec=( 2 Eé— Ea) Ne, (36)
subsystems in each celli) choose the partition function and

Aca
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TABLE II. The cohesive energie&@.u) per atom of lithium, copper, diamond, silicon, and sodium
chloride for differentk, values from the modified local-projection method. The experimental lattice constants
(3.491 A for lithium, 3.567 A for diamond, 5.430 A for silicon, 5.610 A for sodium chloride, and 3.60 A for
coppej and the fourth buffer scheme are used in all calculations. Three basisSs&s &ndP) are used in
the lithium calculations and the minimal basis se8$ {or others. See Sec. IV for detalils.

Ka Li Cu Diamond Si NacCl

S D P
1 0.04275 0.05615 0.06353 0.09384 0.25262 0.16277 0.15297
5 0.04316 0.05653 0.06345 0.10024 0.30106 0.16560 0.15364
10 0.04324 0.05657 0.06342 0.10354 0.30239 0.16561 0.15381
15 0.04329 0.05663 0.06342 0.10600 0.30271 0.16560 0.15393
20 0.04331 0.05667 0.06342 0.10806 0.30290 0.16560 0.15403

where E* is the total energy per primitive ceIEQ is the  merical atomic basis séfsare used here: the singl&)( set
energy for isolated ator\ (determined from our Kohn- for the minimal basis set @functions, the double D) set
Sham atomic programandN¢ is the number of atoms per for double functions for valence atomic orbitalss(8unc-
primitive cell. In all the calculations, the inverse temperaturetions), and the polarizationK) set for the inclusion of po-
B is set to 300 atomic units. For the exchange-correlatiodarization functions (8 and 1p functions. The calculated
energy functional, the LDA in the Vosko-Wilk-Nusair ground-state properties of metallic lithium from the divide-
(VWN) parametrization is used. and-conquer method are summarized in Table Il

To test the total-energy convergence with respect to
buffer atoms, we have carried out a series of self-consistent
divide-and-conquer calculations for bulk lithium with up to

Before we present the results for various solids from thethe fifth buffer scheme considered. The experimental lattice
divide-and-conquer calculations, we here demonstrate the aconstant of 3.491 A was used in the calculations. In Fig. 1
curacy and stability of the modified local-projection methodwe plot the absolute values of errors in total energy per
described in Sec. 1l C. We show in Table Il the cohesiveprimitive cell as a function of the buffer atoms used. We
energies per atom of lithium, copper, diamond, silicon, ancbbserve that with the increasing use of buffer atoms the er-
sodium chloride for differentk, values (from Harris  rors in total energy per primitive cell can be reduced to the
functionaP’ calculations with the fourth buffer scheme as values (102 hartree or lesswhich are within the inherent
defined in Table)l The results indicate that except for somelinear combination of atomic orbitald CAO) basis set er-
very small values, the total energies are generally insensitiveors. It is encouraging to notice that the convergence behav-
to the change ink, (energy difference normally around ior of the total energy with respect to buffer atoms for this
10 % to 102 hartreg. We have chosel, to be 1.0, 5.0, nearly-free-electron system is similar to that of a tetrapeptide
10.0, 10.0, and 10.0 for the calculations on lithium, coppermolecule®® The calculated cohesive energies &rD, and
diamond, silicon, and sodium chloride, respectively. We nowP sets are 1.14, 1.47, and 1.74 eV/atom, respectively, which

IV. RESULTS AND DISCUSSION

describe our calculations in detail. compare well with the LDA band-structure results and the
experimental value of 1.66 eV/atothAll these seem to con-
A. Lithium firm that the divide-and-conquer approach, which only uses

the local orbitals to represent the density, is capable of de-

_As the first example we have chosen metallic lithium.scribing the electronic structure of systems with delocalized
Lithium is a typical alkali metal and has been extensivelyglectrons.

studied by a large number of experimental techniques and
theoretical method®-%3 It is well known that the valence TABLE Ill. Comparison of the ground-state properties for me-
electrons in bulk lithium behave almost like free electrons !@llic lithium from the divide-and-conquébC) method, other theo-
Since the divide-and-conquer method is based on a localize§tica! calculations, and experiments. TRdasis set and the fourth
description of the electronic structure, it is particularly inter- 2Uffer scheme are used in all DC calculations.
esting to see how the method performs for such a delocalized
system.

We divide bcce bulk lithium into primitive cells with only
one atom as a subsystem in each cell. The buffer schemes are

Method Cohesive energy Lattice constant Bulk modulus
(eV/atom A) (Mban

presented in Table I. The cutoff radius for the short-rangeyc 1.74 3.42 0.116
summationRghor, is chosen as 30 a.u. The integration acCu-kkR? (Ref. 59 1.65 3.40 0.15
racy of 10 ° a.u. for density and electrostatic energy is usedg TP (Ref. 62 1.65 3.45 0.138
throughout all our calculations. In the lithium case this cor-gy (Ref. 61 1.66 3.491 0.123

responds to about 3000 integration points per atom and gen-
erally leads to sufficient accuracy. The basis set plays afKorringa-Kohn-Rostoker.
important role in theab initio studies of metals. Three nu- PGaussian-type orbitals.
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FIG. 1. Errors in the divide-and-conquer total self-consistent- 0064 I ]
field (SCPH energies per primitive cell as a function of the buffer 0065 N R R B
atoms used for bulk lithium. The energies from the calculations that ' 15.00 20.00 25.00 30.00
use the fifth buffer scheme are taken as reference$fa, and vk
P basis sets. The square is for tBeset, triangle forD set, and _ ¢ for bulk lithi e basi )
pentagon foP set. FIG. 2. Equation of state for bulk lithium. The basis set is

used in the calculations. The square is for the third buffer scheme

To determine the equilibrium lattice constant and bulk®"d the pentagon for the fourth.

modulus for lithium, we have performed a set of calculations

using theP basis set to obtain the total self-consistent fieldand locations of the corresponding peaks in Figs) and
(SCP energies per primitive cell with the lattice constant 3(b) are quite similar, differences between the two curves do
varied from 3.09 to 3.79 A. The cohesive energies and coreXist. It seems that the DOS quantity is more sensitive to the
responding primitive cell volumes are then fitted to thebuffer scheme used than the cohesive energy and structural

widely used Murnaghan equation of stéfe: properties.
BV VAR Bo B. Copper
— !
E(V)—E(Vo)+m Bo 1=+ |*|v| 1 Copper is a transition metal and presents a challenging

(37) problem for the theoretical determination of its electronic
structure® It has a special electronic configuration with a
whereV, is the equilibrium volumeB, the bulk modulus, filled outer 3 shell and a half-filled 4 valence orbital. The
andBy the pressure derivative &;. We display the results correct description of both the highly localized 3tates and
for the third and fourth buffer schemes with tRebasis set in
Fig. 2. Both fitting curves are closely parallel to each other,
which means the good convergence of structural properties
with respect to buffer atoms. The calculated cohesive energy,
equilibrium lattice constant, and bulk modulus are 1.67 eV/
atom, 3.41 A, and 0.116 Mbar for the third buffer scheme
and 1.74 eV/atom, 3.42 A, and 0.116 Mbar for the fourth. 800
These results are in good agreement with those from the |
LDA band-structure calculations and experimental values
(see Table II).
To investigate the performance of the divide-and-conquer
method on metallic lithium, we computed the total electronic

80.0

50.0 B

40.0

DOS(arb. units)

density of state§DOS). Density of states is an important 0~

single-electron quantity which can give us insight into many

phenomena related to solids. Most of the electronic proper- 200 ~

ties of metals are determined by those electronic states near I

the Fermi energy. Since the divide-and-conquer approach 00

does not involve a set of global single-electron eigenstates, I

the calculation of the DOS for metallic lithium provides a 00 F YT YSE— PP
stringent test for the method. Presented in Figa) 8nd 3b) Energy(ev)

are the calculated DOS curves near the Fermi energy for bulk
lithium with the use of theP set and the fourth and fifth FIG. 3. The total density of states for bulk lithium. The calcu-
buffer schemes. Both curves clearly indicate that lithium is gations are performed with th® basis set(a) is for the fourth

metal. The Fermi energy in Fig(&® agrees well with the one  puffer scheme an¢b) for the fifth. The Fermi energy is indicated
in Fig. 3(b). Although the major features such as the widthsby the dashed line in each figure.
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TABLE IV. Ground-state properties for fcc copper. Other LDA calculations and experimental values are
listed for comparison.

Method Cohesive Lattice Bulk
energy constant modulus
(eV/atom A) (Mbanr)
DC 4.48 3.58 1.67
FLAPWF (Ref. 65 4.14 3.60 1.62
KKR (Ref. 58 4.08 3.58 1.55
LCAO (Ref. 10 4.27 3.55 1.67
Expt. (Refs. 63, 65 and 66 3.48 3.60 1.37,1.42

&Calculations with theD basis set and fourth buffer scheme.
bCalculations with theS basis set and fourth buffer scheme.
Full-potential linearized augmented plane wave.

the loosely bound ¢ state can be considered as a stringentrig. 4 we notice that the errors in total energy per primitive
test for any first-principles method. Therefore it is interestingcell decrease monotonically with the increasing use of buffer
to see how the divide-and-conquer method performs for thistoms (about 1.6 millihartree with 54 buffer atoms uged
system. The cohesive energies determined fr&mandD set calcula-
The face-centered cubi@cc) copper crystal is divided tions are 2.75 and 4.49 eV/atom, respectively, against the
into primitive cells with only one atonfone subsystemin  experimental value of 3.49 eV/atoinPrevious calculations
each cell. The cutoff radius for the short-range summation ignow that the LDA normally overestimates the cohesive en-
chosen as 35 a.u. About 6000 integration points per COPP&Lrgy of copper by about 20—40 ¥ee Table 1V/.1°
atom are needed to achieve the integration accuracy of \yg have fitted the Murnaghan equation of state for cop-
107> a.u. Two basis setsS(andD) are used in our calcula- o from the calculations which use the third and fourth

gzpSf}c;rr::ethcslgiu\)%t:ig&?gggéit:rtemrg&%%rtgz ?urrr]n?:g::;;g?rl?uffer schemes with th& basis set. The calculated cohesive
Table IV. We have performed self-consistent divide-and-— <1 9Y: equilibrium lattice constant, and bulk quulus are
conquer calculations for bulk copper with up to the fifth 3.79 eV/atom, 3.59 A, and 1.77 Mbar for the third buffer

buffer scheme considered. The absolute values of the errofgheme and 3.90 eV/atom, 3.58 A, and 1.67 Mbar for the

in total energies per primitive cell are plotted as a function of ourth. Overall our structural data are in good agreement
the number of buffer atoms in Fig. 4. The experimental lat-Vith the experimental and other LDA resuitee Table IV.

tice constant of 3.60 A was used in all calculati§hg&rom  The accuracy of these computed cohesive properties mainly
depends on the accuracy of our total-energy calculations. For

cohesive energy and lattice constant, we have found that the
uncertainties associated with numerical integrations in these
two sets of numbers are typically smé#ss than 1% How-
ever, the bulk modulus data are strongly affected by the nu-
merical accuracy in our total-energy calculatigttse errors

can be as large as 20%

Presented in Figs.(& and §b) are the calculated DOS
curves near the Fermi energy for bulk copper with the use of
the third and fourth buffer schemes. The sharp peaks below
the Fermi energythe nearest position teg is about 2.08
eV) obviously have contributions from the highly localized
filled d states. The relatively flat and extended peaks corre-
spond to the loosely bounstp states at about 9.77-10.54
E ‘ . . ‘ eV, which is in good agreement with other LDA calculation
o 10 20 30 40 s0 0 70 result§>®7 (9.88—10.26 eY and the experimental valence-

number of buffer atoms band width of 8.6 e\;'\’8

10-1

Error (a.u./cell)

102

1073

FIG. 4. Errors in the divide-and-conquer total SCF energies per
primitive cell as functions of the buffer atoms used for diamond C. Diamond
(triangle, silicon (squarg, sodium chloridgpentagoi, and copper . ) .
(hexagop. For diamond and sodium chloride, the energies from the Diamond serves as a typical covalently bonded insulator.
calculations that use the sixth buffer scheme are taken as the refeFhe €lectronic structure of diamond crystal has been well
ences. For silicon and copper, the energies from the calculation@stablished both theoretically and experiment&y. The
that use the fifth buffer are taken as the references. The minimdPpcalized electron density distribution and the highly direc-
basis set is used in all calculations. tional sp® bonding in diamond certainly provide a significant
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400.00 T TABLE V. Ground-state properties for diamond. Other theoreti-
cal results and experimental values are listed for comparison. The
minimal basis set is employed in all divide-and-conq(i2€) cal-

L culations.
Cohesive Lattice Bulk

300.00 - Method energy constant  modulus

(eV/atom A) (Mbar)
DC 8.1F 352 419
I Plane waveRef. 73 7.58 3.602 4.33
2 Local orbital (Ref. 74 7.84 3.560 4.37
§ 200,00 Hartree-Fock Ref. 72 5.69 3.59 5.9
8 ’ Expt. (Ref. 74 7.37 3.567 4.42
0
a aCalculations with the sixth buffer scheme.
_ bCalculations with the third buffer scheme.
Table V) as well as with the experimental values is excellent.

100.00 I~ We have noticed that the structural properties for diamond
converge more easily with respect to buffer schemes than
those for lithium. This is probably due to the fact that dia-

I mond has a very large bulk modulus. Figuréa) &nd &b)
show the DOS curves for the fifth and sixth buffer schemes.
. Although the details of the two curves do not match very
000 s 12.0 80 40 well, both curves give almost the same energy gap of 6.0 eV

for diamond, compared with the experimental gap of 5.4

Energy(ev) eV 63

FIG. 5. The total density of states for fcc copper. The calcula- -
tions are performed with th8 basis set(a) is for the third buffer D. Silicon
scheme and)) for the fourth. The Fermi energy is indicated by the We take the silicon Crysta' as the examp'e of the app"ca_
dashed line in each figure. tion of the divide-and-conquer method to semiconductors.

) o N Silicon has the same crystal structure as diamond and has

test for any computational method in its ability to accuratelyz|sg been thoroughly investigated by numerous experimental
represent the large deviations from the superimposed sphetng theoretical approaches, due to its technical importance in
cal densities and potentials. semiconductor technology:%% 7882

The diamond crystal is partitioned into primitive cells  The partition scheme is the same as the one for diamond.

with two atoms in one cell. Each primitive cell is further we setRg,., = 50 a.u. For simplicity we only used the
divided into two subsystems with only one carbon atom in

each subsystem. For every subsystem, the surrounding buffer
atoms and the corresponding buffer schemes are determined.
The results are tabulated in Table I. We need about 4000
integration points to achieve the integration accuracy of
10"° a.u. The short-range summation cutd®,,,, is set to

35 a.u. Previousb initio calculations on diamond seem to
suggest that the minimal basis set is already good enough for
many purpos€d="° so we only use theS set (X/1p)
throughout our calculations. The calculated cohesive energy
and structural properties are listed in Table V. We show in
Fig. 4 the convergence of the total energy per primitive cell
with respect to the buffer atoms included in the calculations.
We observe that the convergence is very smooth and roughly
70 buffer atoms are needed to bring the errors in total energy
around 1 millihartree. Our computed cohesive energy is 8.11
eV/atom, against the experimental value of 7.37 eV/atom.
As many calculations have shown, the LDA normally over-

estimates cohesive eneryyThe cohesive energy, equilib- 00 _20‘_0 T _10'.0
rium lattice constant, and bulk modulus from the fitted Mur- Energy(ev)
naghan equation of state for diamond are 7.55 eV/atom, 3.56

A, and 3.86 Mbar for the second buffer scheme and 7.96 FIG. 6. The total density of states for diamond. The calculations
eV/atom, 3.53 A, and 4.19 Mbar for the third. The agreementre performed with the minimal basis sé) is for the fifth buffer
between these two sets of data and other LDA reqgkte  scheme andb) for the sixth.

200.0 T

150.0

100.0

DOS (arb. units)

(b)

50.0 -
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TABLE VI. Ground-state properties for silicon. Other theoreti-  TABLE VII. Ground-state properties for sodium chloride. Other
cal results and experimental values are listed for comparison. TheEDA calculations and experimental values are listed for compari-
minimal basis set is used in all divide-and-conqUe€) calcula-  son.

tions.
Method Cohesive Lattice Bulk
Method Cohesive Lattice Bulk energy constant modulus
energy constant  modulus (eV/atom A) (Mbar)

(eViatory * (Mban DC 427 5.50° 0.308
DC 452 5.42 0.80° FLAPW (Ref. 83 4.14 5.64 0.304
Plane wavgRef. 80 4.68 5.451 0.98 ASW € (Ref. 89 4.05 5.40 0.32
Plane wavegRef. 81 5.427 0.855 LCAO (Ref. 10 4.41 5.48 0.315
Plane wave(Ref. 82 5.37 0.89 Expt. (Refs. 63, 83, and 85 4.03 5.61 0.266
GTO (Ref. 79 4.90 5.350 1.15 _ _ _ _
LMTO® (Ref. 79 4.98 5410 1.0 ZCaIcuIatl.ons w!th theP bas.ls set and the flf.th buffer scheme.
Local orbital (Ref. 10 525 5.429 0.95 CCalculatlons with Fhes basis set and the third buffer scheme.
Expt. (Ref. 10 4.63 5.43 0.99 Augmented spherical wave.

&Calculations with the fifth buffer scheme. E. Sodium chloride

bCalculations with the third buffer scheme. We finally apply the divide-and-conquer method to the
“Linear muffin-tin orbitals. calculation of an ionic crystal, sodium chloride. This typical
ionic solid has been thoroughly investigated by numerous
minimal basis set (§2p) in our calculations. The conver- expgrimenté? ’83'85'?63”‘1 theoretical approa‘?hg&a’&j”m’sg
gence curve of the total energy per primitive cell with respecfor ionic crystals like NaCl, the long-range interactions be-
to buffer atoms, shown in Fig. 4, is similar to that of dia- fween ions should be taken into conglderatlon very carefully
mond. Note that the total energy converges faster for silicod @ny accurate total-energy calculations. Many methods ex-
than for diamond in the sense that fewer buffer atoms aréSt to deal with the divergence and conditional convergence
needed to reduce the error in total energy to a certain toleRroblems related to the Madelung summation of the long-
ance. This probably lies in the fact that with the same crystaf@nge potential. One of the well-known efficient summation
structure silicon has a much larger lattice constant than diaSchemes is the Ewald technlq?j‘en which the lattice sum is-
mond. The calculated cohesive energy, equilibrium latticeivided into two, both rapidly convergent, summations, in
constant, and bulk modulus can be found in Table VI. They'®@l space anl space. In our potential scheme, the Coulomb
are overall in good agreement with other LDA and eXperi__pot_entlal is first obtained from the electron density calculated
mental results. The DOS curves of silicon presented in Figdnside the short-range spacBg,= 58 a.u. for NaGQl by
7(a) and 7b) for the fourth and fifth buffer schemes both solving the Poisson equation, and then outside this range to

give band gap of about 2.0 eV against the experimental valul@finity the potential is computed with the conventional
of 1.14 eV at 300 K3 Ewald point charge model. Our calculated ground-state prop-

erties for NaCl from this potential scheme suggest that it
works very well for ionic crystals.

The NacCl crystal is divided into primitive cells with two
ions in one cell. Each primitive cell is further divided into
two subsystems with only one Na or Cl ion in each sub-
system. The buffer schemes for NaCl crystal are listed in
i 1 Table 1. About 4000 integration mesh points per atom are
2000 y needed to achieve the numerical precision of L.0Besides
I the S (single basis set, th® (double basis set and (po-
larization includingd functions for Na and Cl atomsasis

300.0

250.0 - @) 7

DOS (arb. units)

1800 1 ] set are also used to obtain more accurate cohesive energy.
i ] The calculated ground-state properties are listed in Table
VII.

C ®
1000 T The convergence of the total energy per unit cell with

respect to the number of buffer atoms is shown in Fig. 4. The
behavior of the convergence for NaCl is much better than
those of lithium and diamond. In fact, the total energy is
converged to X 10 2 hartree for the fourth buffer scheme
(with only 32 buffer atoms includédand 1x 102 hartree

50.0 I~

200 Ener;y(:'eov) ' for the fifth buffer schemé56 buffer atoms The good con-

vergence in total energy for NaCl can be attributed to its

FIG. 7. The total density of states for silicon. The calculationswell-localized electrons, which can be accurately and effi-
are performed with the minimal basis s@. is for the fourth buffer ~ ciently described by the divide-and-conquer strategy. The
scheme andb) for the fifth. calculated cohesive energies with respect to the ions are

0.0
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3.81, 4.17, and 4.21 eV/atom f@, D, and P basis sets, —— .
respectively, which are in good agreement with other LDA
results(see Table VII. Again, the LDA slightly overestimate
the cohesive energy compared with the experimental value.

The fit to the well-known Murnaghan equation of state is
excellent for the fourth, fifth, and sixth buffer schemes. The
cohesive energy, equilibrium lattice constant, and bulk
modulus from the fitting curves are 3.85 eV/atom, 5.40 A, 400.00
and 0.318 Mbar for the fourth buffer scheme, 3.82 eV/atom,
5.45 A, and 0.313 Mbar for the fifth, and 3.81 eV/atom, 5.50
A, and 0.308 Mbar for the sixth. With increasing buffer at-
oms, our calculated structural parameters converge very well
to the experimental resultsee Table VI).

The total DOS curves calculated with the fourth, fifth, and 200.00
sixth buffer schemes are plotted in Figga)8-8(c). Com- L@
pared to the DOS for the fourth buffer scheme, the DOS
from the fifth is closer to that of the sixth. The band gap
obtained from the sixth buffer DOS curve is about 5.8 eV,

600.00 - @ .

500.00 [~ 7

300.00 |~ T

DOS (arb. units)

100.00 -

against the experimental result of 8.6 8\t is well known 0.00 ‘ o N o
that the LDA normally underestimates the experimental band 1200 -1000  -8.00 -6.00 -4.00 -2.00
gaps by 30-50 % for highly localized insulat8fsOther Energy(ev)

LDA calculations give about 4.7 eV for the band g&p.
FIG. 8. The total density of states for sodium chloride. The

calculations are performed with the minimal basis &&t.(b), and
V. SUMMARY (c) are for the fourth, fifth, and sixth buffer schemes, respectively.

We have presented in this paper the divide-and-conquer
density-functional approach for solid-state systems. Theénethod can also be easily applied to extended solid-state
method directly determines the electronic structure of perisystems without translational symmetry. The implementation
odic solids without involving band structure. Our successfulof this method for theoretical investigations on adsorption
applications of this approach to four qualitatively differentand chemical reactions on surfaces is in progress.
solid-state systemgmetal, insulator, semiconductor, and
ionic solid) ha\_/e clearly demonstrated the_utlllty o_f _the ACKNOWLEDGMENTS
method. In particular, we see from Fig. 4 that in our “divide-
and-conquer embedding” scheme, one typically only needs This research is supported by the National Science Foun-
about 40 to 50 buffer atoms to converge the cohesive energyation. We thank Dr. Zhongxiang Zhou, Dr. Darrin M. York,
to around 0.1 eV. But for all the solid-state systems considbr. Qingsheng Zhao, and Tai-sung Lee for helpful discus-
ered in this paper, it appears that the DOS quantity is muckions and the North Carolina Supercomputing Center for
more difficult to converge with respect to the size of theCPU time. W.Y. acknowledges partial finanacial support
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