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The first-principles divide-and-conquer density-functional approach has been extended to solid-state sys-
tems. The method has the following features.~1! It divides a periodic solid-state system into equivalent
primitive cells and further divides each cell into subsystems. The electron density of each subsystem is
determined through the local representation of the one-electron Hamiltonian and used to form the total density
per primitive cell. The method calculates the electronic structure of solids without involving the reciprocal
space and its associated band structure.~2! It uses numerical atomic orbitals as basis functions with great
variational flexibility. The Hamiltonian and other matrix elements are evaluated by numerical integration
without any shape approximation to the effective one-electron potential.~3! This method, based on real space
partition, can be applied to extended solid-state systems without translational symmetry, such as defects and
surface chemisorption. As the first step, we have applied and tested the method to the electronic structure
calculations of various crystalline solids: metallic lithium and copper, ionic sodium chloride, and covalent
diamond and silicon. The self-consistently computed cohesive energies, structural properties, and density of
states are in good agreement with those from the local-density approximation band-structure calculations and
experimental results.

I. INTRODUCTION

The past two decades have seen tremendous progress in
the development of first-principles band-structure calcula-
tions based on Kohn-Sham density-functional theory1–4

~DFT! for periodic solid-state systems.5–22To date, a variety
of such computational techniques have emerged to make it
possible to accurately predict ground-state properties of
simple solids. Despite the great success of modern first-
principles band-structure calculations on solids, the compu-
tational effort normally scales as the cube of the number of
atoms per unit cell and consequently limits the size of system
which can be studied.

For extended solid-state systems without translational
symmetry, such as defects in crystals, reconstructed solid
surfaces, adsorption, and chemical reactions on surfaces,
band-structure methods are usually not very efficient. There
are many other theoretical approaches for these extended
systems.23–33 In particular, various embedded-cluster ap-
proaches are widely used.28–33 The basic assumption in this
kind of approach is that the electronic structure of an ex-
tended system can be established as the result of local inter-
actions. These methods have proved to be very useful in the
studies of defects in crystals, adsorption, and chemical reac-
tions on surfaces. A major problem in the embedding scheme
is how to take the boundary effects into consideration rigor-
ously. The computational effort in all these methods for ex-

tended systems again scales as the cube of the number of
atoms involved in the region of interest. This rapid scaling is
the ultimate bottleneck for the applications of these methods
to large systems.

To break theN3-scaling bottleneck, we have recently de-
veloped the linear scaling divide-and-conquer method34 for
large molecules: divide a large molecule into subsystems,
determine the electron density of each subsystem separately,
and sum the corresponding contributions from subsystems to
obtain the total density and energy. We have demonstrated in
many tests that with the increasing use of buffer atoms
~neighboring atoms for each subsystem! the divide-and-
conquer method can reproduce the corresponding Kohn-
Sham results.35–37 A great deal of effort has been subse-
quently devoted to the search for order-N algorithms for
large scale electronic structure calculations.38–51We expect
these linear scaling methods to significantly enhance our
ability to performab initio calculations on large systems.

Since the computational effort in the divide-and-conquer
approach scales linearly with the system size, it has the po-
tential for application to complex solid-state systems. In this
paper we particularly focus on the implementation of the
method for periodic solid-state systems. In principle, such an
implementation should enable us to calculate the electronic
structure of periodic crystalline solids with large and com-
plex unit cells without involving their band structures. We
want to point out here that the current implementation of the
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divide-and-conquer method is an all-electron one. We also
expect the divide-and-conquer method to become a rigorous
and efficient approach forab initio calculations of extended
systems where the translational symmetry is broken. We can
divide an extended system into subsystems and calculate ex-
plicitly the electron densities for those subsystems in the
physical region of interest. In this sense the divide-and-
conquer method is similar to the embedding schemes.28–33

We want to emphasize here that in this ‘‘divide-and-conquer
embedding,’’ the boundary effects can be taken into consid-
eration in a systematic fashion by including the contributions
of more and more neighboring atoms. The charge transfer
between the region of interest and the environment is ef-
fected by the chemical potential equalization.

The remainder of this article is organized as follows. In
Sec. II we briefly review the recent development of the
divide-and-conquer method. We then present the implemen-
tation of this approach for solid-state computations in Sec.
III. In Sec. IV we compare our results for metallic lithium
and copper, ionic sodium chloride, and covalent diamond
and silicon with those from the local-density approximation
~LDA ! band-structure calculations and experimental values.
We provide some concluding remarks in Sec. V.

II. THE DIVIDE-AND-CONQUER METHOD

Most of the contemporary electronic structure calculations
for solid-state systems are based on the Hohenberg-Kohn-
Sham density-functional theory. In the Kohn-Sham
method,52 the ground-state electron density of an
N-electron system is expressed as

r~rW !52(
i51

N/2

uc i~rW !u2, ~1!

wherec i(rW) is the Kohn-Sham orbital satisfying the equation

Ĥc i~rW !5@2 1
2¹21veff~rW !#c i~rW !5« ic i~rW !, ~2!

with veff(rW) as the effective one-electron potential. The total
energy is given by

E@r#52(
i51

N/2

« i1Q@r#1 (
A.B

ZAZB
RAB

, ~3!

where

Q@r#5E r~rW !@2 1
2f~rW !2vxc~rW !#drW1Exc@r#, ~4!

f(rW)5*r(rW8)/urW2rW8udrW8 is the Coulomb potential, and

vxc(rW)5dExc@r#/dr is the exchange-correlation potential.
With the local-density approximation~LDA !,3

Exc@r#5E r~rW !«xc~rW !drW, ~5!

where «xc(rW) is the exchange-correlation energy density.
Equations~1! and ~2! have to be solved self-consistently to
find the ground-state energy and electron density.

The global orbital representation of the electron density in
the Kohn-Sham approach causes the computational effort to

scale asN3. But the electron density is a local variable. To
accurately represent the density locally, we do not need the
delocalized Kohn-Sham orbitals. Much simplification can be
achieved via a divide-and-conquer approach without losing
the Kohn-Sham accuracy.34 The method is based on a well-
known expression for the electron density,3

r~rW !52^rWuh~m2Ĥ !urW&, ~6!

where h(x) is the Heaviside step function andm is the
chemical potential, which is related to the density normaliza-
tion. We divide a system into subsystems by the following
smooth partition:

15(
a

pa~rW !,

where pa(rW) is a positive weighting function for the sub-
systema. The total density now reads

r~rW !52(
a

pa~rW !^rWuh~m2Ĥ !urW&5(
a

ra~rW !, ~7!

where the subsystem density is defined as

ra~rW !52pa~rW !^rWuh~m2Ĥ !urW&. ~8!

We now make the local approximation to the Kohn-Sham
Hamiltonian in Eq.~8!:

r̃a~rW !52pa~rW !^rWu f b~m2Ĥa!urW&, ~9!

where f b(x) is the Fermi function $ f b(x)
5@11exp(2bx)#21% and Ĥa is the subspace approximation
of Ĥ. We then representĤa as well as the subsystem eigen-
functions$c i

a% in terms of the nonorthogonal basis functions
$f j

a% that are localized in the subsystema:

Ĥa5(
i

uc i
a&« i

a^c i
au, ~10!

c i
a~rW !5(

j
Cji

a f j
a~rW !, ~11!

where$« i
a% and$c i

a% are found by solving the matrix equa-
tion

~Ha2« i
aSa!Ci

a50, ~12!

with the matrix elements given by

Hi j
a 5^f i

auĤuf j
a&, Si j

a 5^f i
auf j

a&. ~13!

The expression of the total electron density now becomes

r̃~rW !5(
a

r̃a~rW !52(
a

pa~rW !(
i
f b~m2« i

a!uc i
a~rW !u2,

~14!

with m determined by the normalization constraint

N5E r̃~rW !drW52(
a

(
i
f b~m2« i

a!^c i
aupa~rW !uc i

a&.

~15!
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The eigenvalue summation in Eq.~3! is replaced by

«̃52E ^rWuĤh~m2Ĥ !urW&drW

5(
a

«̃a52(
a

(
i
f b~m2« i

a!« i
a^c i

aupauc i
a&, ~16!

and the approximated total energy is

Ẽ5 «̃1Q@ r̃ #1 (
A.B

ZAZB
RAB

. ~17!

Other electronic properties can also be calculated in the same
manner. A quantity of interest is the density of electronic
states~DOS!, which has the following form in the divide-
and-conquer method35

g~«!5
dN~«!

d«
52(

a
(
i

^c i
aupauc i

a& f b8 ~«2« i
a!, ~18!

where f b8 (x) is the derivative of the Fermi function.
The subsystem density can be accurately represented with

some local basis sets. The local basis set for a subsystem
includes the atomic orbitals of the subsystem and its neigh-
boring atoms which are called buffer atoms. The use of local
basis sets is a truncation approximation, and the buffer atoms
provide a systematic way to reduce the error associated with
the truncation. TheN3-scaling computational bottleneck in
the Kohn-Sham~KS! scheme has thus been eliminated be-
cause the divide-and-conquer method does not employ the
global Kohn-Sham orbital representation of the total electron
density. Various molecular test calculations have shown that
in general the divide-and-conquer method with proper buffer
atom schemes is capable of reproducing the corresponding
Kohn-Sham results.35–37

III. EXTENSION TO SOLID-STATE SYSTEMS

Since the divide-and-conquer method is a general ap-
proach for large systems, as the first step, we here extend it
to periodic crystalline solids. We will follow the general pro-
cedures outlined by Yang and Zhou for the extension of the
method to periodic solids.53 The most important characteris-
tic of the crystalline solids is the periodicity. The whole sys-
tem can be constructed from a representative cell — the
primitive cell.

A. Division and buffer schemes

To take advantage of the periodicity we divide a solid into
equivalent primitive cells and then further divide all primi-
tive cells into subsystems in the same way. In principle, the
partition of a primitive cell is arbitrary. For simplicity, in our
current implementation we typically let the subsystem con-
sist of a single atom. With this division we only need to
calculate the densities of those subsystems within one primi-
tive cell. The summations over the subsystems in Eqs.~14!,
~16!, and~18! now become summations over primitive cells.
In general, we have two summations: one over all primitive
cells and the other over the subsystems in a primitive cell.
Since solids are infinite systems, the quantities to be calcu-
lated are the total energy and density per primitive cell. We
only need to perform summations over subsystems in one
primitive cell in Eqs.~14!, ~16!, and ~18!. In addition, the
number of electrons in a primitive cell should be used in Eq.
~15! to determine the proper normalization.

We define the general normalized partition function for
subsystema as the sum of the atomic partition functions
over the atoms in subsystema:

pa~rW !5 (
APa

pA~rW !, ~19!

where

pA~rW !5
r0
A~ urW2RW Au!~er0 /ur

W2RW Au212r 0 /urW2RW Au!

(Br0
B~ urW2RW Bu!~er0 /ur

W2RW Bu212r 0 /urW2RW Bu!
~20!

with r 0 5 0.5 andr0
A(urW2RW Au) being the spherical atomic

density for atomA located atRW A . The summation in Eq.~20!
is over all atoms in a solid. Other forms of partition functions
can also be chosen. With this set of partition functions the
total density can be decomposed into the contributions from
subsystems in primitive cells.

For each subsystem in a primitive cell, its neighboring
atoms are chosen as buffer atoms to form a set of buffer
schemes according to their distances from the subsystem. We
present in Table I the buffer schemes used in our calculations
for lithium, copper, diamond, silicon, and sodium chloride.
Note that some of the buffer atoms with different distances
from a subsystem are grouped together so that there is a
significant increase in the number of buffer atoms for adja-
cent buffer schemes.

TABLE I. The buffer schemes for lithium, copper, diamond, silicon, and sodium chloride calculations.
For each element, the first column gives the number of buffer atoms for each buffer scheme and the second
column indicates the distance~a.u.! between the buffer atoms and the subsystem.

Buffer schemes Li Cu Diamond Si NaCl

1 8 5.713 12 4.811 4 2.913 4 4.443 6 5.320
2 26 9.329 18 6.803 16 4.757 16 7.256 18 7.523
3 58 11.426 42 8.332 34 6.727 34 10.261 26 9.214
4 88 14.377 54 9.621 46 7.331 46 11.181 32 10.639
5 112 14.751 78 10.757 70 8.239 70 12.567 56 11.895
6 86 11.783 86 8.739 86 13.329 80 13.030
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B. Construction of the one-electron potential

In solids the crystal potential contains contributions from
an infinite system. Many calculations have demonstrated that
the LDA can provide an adequate treatment for the
exchange-correlation effects in ground-state solids. Since the
exchange-correlation potential depends on the density in a
local way, direct summation can be carried out. We here
focus on the construction of the electrostatic potential. To
achieve convergent results, we need to calculate the nuclear
and the electronic potential together. The long-range contri-
bution to the electrostatic potential is generated by the defor-
mation densityrdef(rW) defined as

r~rW !5ratomic~rW !1rdef~rW !, ~21!

whereratomic(rW) is the superposition of the atomic densities.
The nuclear potential is

vn~rW !52(
a

(
APa

ZA

urW2RW Au
, ~22!

and the total electrostatic potential is

vn~rW !1f~rW !5(
a

(
APa

H 2
ZA

urW2RW Au
1E r0

A~ urW82RW Au!

urW2rW8u
drW8J

1E rdef~rW8!

urW2rW8u
drW8, ~23!

wherea is the cell index andA is the nuclear index. In Eq.
~23! the summations are performed over the electrostatic po-
tentials of neutral atoms, and are therefore short ranged and
fast converging. The deformation densityrdef(rW) is repre-
sented on a real space multicenter numerical grid and cannot
be integrated directly to get its potential. To compute the
potential generated by the deformation density, we need to
decompose the deformation density approximately into
atomic contributions, and perform a multipolar expansion for
each of them:9

r̃def~rW !5(
A

rA
def~rW2RW A!

5(
A

(
lm

rAlm
def ~ urW2RW Au!Yl

m~rW2RW A!, ~24!

whererAlm
def (urW2RW Au) is given by the projection

rAlm
def ~s!5E

s5urW2RW Au
Yl
m~rW2RW A!pA~rW !r̃def~rW !dV. ~25!

Here the atomic partition function is defined in Eq.~20!.
With this choice ofpA(rW), the quantitypA(rW) r̃def(rW) is the
atomic contribution to the deformation density. Following
Eq. ~14! for the determination of subsystem densityr̃a(rW),
pA(rW) r̃def(rW) is determined~on the integration grid! directly
from the eigenvalues and eigenfunctions$« i

a ,c i
a% of the sub-

systema to which atomA belongs. In this way we do not
need to calculate the total density~by summing the sub-
system contributions! and then partition the result to get the

pA(rW) r̃def(rW). This procedure significantly saves CPU time.
We also only need to calculatepA(rW) r̃def(rW) for those atoms
in the representative primitive cell because of the periodicity.
For the density at a given point in the central cell, the infinite
summation in Eq.~24! can be terminated in a short-range
space due to its fast convergence. From the expansion in Eq.
~24! the deformation potential can be determined as

E r̃def~rW8!

urW2rW8u
drW85(

a
(
APa

$vA
short~rW2RW A!1vA

long~rW2RW A!%,

~26!

where

vA
short~rW !54p(

lm

1

2l11
Yl
m~V rW!H r lE

r

`

rAlm
def ~s!s12 lds

2r2 l21E
r

`

rAlm
def ~s!sl12dsJ , ~27!

and

vA
long~rW !54p(

lm

1

2l11
Yl
m~V rW!3r2 l21E

0

`

rAlm
def ~s!sl12ds

54p(
lm

Yl
m~V rW!

2l11

QAlm

r l11 , ~28!

whereQAlm is the multipole associated with atomA. The
summation of thevA

short term in Eq.~26! converges very fast
and can be done in the short-range space~within the radius
of Rshort from the origin! as the deformation density. The
summation of thevA

long term contains the well-known Made-
lung sum. With the charge neutrality constraint in one primi-
tive cell, the long-range summation is conditionally conver-
gent for l50. There exist many methods to deal with the
conditional convergence problem for the Madelung sum~for
example, see Ref. 10!. In our calculations we have adopted
the conventional Ewald technique54 for the summation of the
terms for l50. To assess the accuracy of only including
l50 terms in the Madelung sum, we performed the long-
range sum for all the terms withl up to 2, using the screen-
ing function method developed by te Velde and Baerends.10

In this method, all the multipole lattice sums in Eq.~28! are
evaluated in real space up to a cutoff radius, by weighting
the contributions with a Fermi-like screening function de-
pending on its distance to the central cell. Our test calcula-
tions for NaCl show that neglectingl.0 terms in the Made-
lung sum gives less than 1024 hartree in error for the
cohesive energy per primitive cell. It appears that for high-
symmetry bulk structures the inclusion ofl.0 terms in the
Madelung sum is unlikely to have much effect on the calcu-
lations of cohesive properties. Therefore we have neglected
thosel.0 terms in all the test calculations presented in this
paper. However, there are cases where the inclusion of
l.0 terms would be important, e.g., calculations of the po-
larization in an external field, and our program is capable of
including these terms where they are needed.
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C. Integration and matrix evaluation

Our program uses the numerical Kohn-Sham atomic or-
bitals as basis functions.36 All the multicenter integrals in-
cluding those required for the construction of the Hamil-
tonian and other matrices are evaluated by Delley’s three-
dimensional multicenter numerical integration method.9 The
partition function defined in Eq.~20! is also employed in the
numerical integration.9 We need to pay special attention to
the evaluation of the potential matrix elements since there is
an infinite number of atoms in solids. This means we at least
have to perform numerical integration to compute the
nuclear potential matrix elements in the region where all ba-
sis functions have non-negligible values. Such a region in
solids usually involves hundreds of atoms thus making the
numerical integration extremely time consuming. To calcu-
late the potential matrix more efficiently, we have adopted a
very simple approach in the spirit of the local-projection
method.55 Define the following local-projection function:

p̄a~rW !5 )
A¹a

$12exp~2kAurW2RW Au2!% ~29!

wherea is the subsystem index,A runs over all the atoms in
the solid except for those atoms in subsystema and the
buffer atoms for subsystema, RW A is the nuclear position of
atomA in the solid, andkA is a constant depending on the
type of atoms and basis functions. The function serves to
project away the singularities contributed from atoms other
than the buffer atoms of subsystema. The potential matrix
for subsystema is now computed in the following form:

Vi j
a 5^f i

ap̄a uVuf j
a&. ~30!

Outside the buffer region,p̄a(rW) takes zero values at the
singularities of the potential~the positions of atoms! and the
integrand in Eq.~30! becomes smooth. Thus its numerical
integration is performed with only those points generated
from atoms within the buffer area of subsystema.

The current approach smoothly removes the Coulomb po-
tential singularities outside the buffer area for each sub-
system. We do not expect this approach to have much impact
on the accurate evaluation of the potential matrix, since the
local-projection function defined in Eq.~29! is effective only
within a very local region around each nucleus outside the
buffer atoms. Test calculations in Sec. IV attest to this point.
Viewed from a different angle, the approach can be consid-
ered as a modified local-projection method which uses dif-
ferent left-side and right-side basis sets.55 If one of the basis
sets is highly localized, the multicenter integrals can be re-
duced to single-center integrals. Several single-center projec-
tion functions have been proposed to obtain the localized
basis set in the local-projection method.55 In the current ap-
proach as shown in Eqs.~29! and ~30!, the integration is,
instead, carried out with points generated from atoms within
the buffer region of each subsystem.

D. Self-consistency and total energy

The self-consistent procedure in our solid-state calcula-
tions is as follows.~i! Divide a solid into primitive cells and
subsystems in each cell;~ii ! choose the partition function and

atomic orbitals from the subsystem and surrounding buffer
atoms to form a local basis set$f i

a% for each subsystema;
~iii ! superimpose the atomic densities as the initial total den-
sity to generate the effective one-electron potential;~iv! for
each subsystema, solve Eq.~12! to obtain $« i

a ,c i
a%; ~v!

determinem and r(rW) to obtain the new effective potential
and repeat steps~iv! and ~v! until self-consistency;~vi! fi-
nally, compute the total energy per unit cell. We need to
modify Eq. ~17! to compute the total energy per primitive
cell. Since all the primitive cells are equivalent, we only
need to sum over all subsystem contributions in one primi-
tive cell ~the central cell!. The calculation of«̃ per cell in Eq.
~16! is straightforward. The second term Q@r# and the
nuclear repulsion term in Eq.~17! have to be combined to-
gether to give the convergent result. Rewrite the two terms as
follows:

R5Q@r#1 (
A.B

ZAZB
RAB

5R11R2 , ~31!

where

R15E r~rW !H 2
1

2
@f~rW !1vn~rW !#2vxc~rW !1«xc~rW !J drW,

~32!

and

R25
1

2E r~rW !vn~rW !drW1 (
A.B

ZAZB
RAB

. ~33!

With the partition functionpa(rW), we can easily find the
per-primitive-cell quantities,R1

a andR2
a ,

R1
a5E r~rW !pa~rW !H 2

1

2
@f~rW !1vn~rW !#2vxc~rW !

1«xc~rW !J drW, ~34!

R2
a5

1

2 (
APa

ZA (
BÞA

H ZB
RAB

2E r0
B~ urW2RW Bu!

urW2RW Au
drWJ

1
1

2 (
APa

ZAE r0
A~ urW2RW Au!

urW2RW Au
drW

2
1

2 (
APa

E ZAr̃def~rW !

urW2RW Au
drW, ~35!

where the total density has been expressed as the sum of the
spherical atomic density and the deformation density as de-
fined in Eq. ~21!. In Eq. ~35! the first two terms are short
ranged while the last term withr̃def(rW) is long ranged. The
long-range term can be computed in the same way as the
deformation potential in Eq.~26!.

The cohesive energy per atom is

Ec5S (
APa

E0
A2EaD YNa, ~36!

53 12 717STRUCTURE OF SOLID-STATE SYSTEMS FROM EMBEDDED- . . .



whereEa is the total energy per primitive cell,E0
A is the

energy for isolated atomA ~determined from our Kohn-
Sham atomic program!, andNa is the number of atoms per
primitive cell. In all the calculations, the inverse temperature
b is set to 300 atomic units. For the exchange-correlation
energy functional, the LDA in the Vosko-Wilk-Nusair
~VWN! parametrization is used.56

IV. RESULTS AND DISCUSSION

Before we present the results for various solids from the
divide-and-conquer calculations, we here demonstrate the ac-
curacy and stability of the modified local-projection method
described in Sec. III C. We show in Table II the cohesive
energies per atom of lithium, copper, diamond, silicon, and
sodium chloride for differentkA values ~from Harris
functional57 calculations with the fourth buffer scheme as
defined in Table I!. The results indicate that except for some
very small values, the total energies are generally insensitive
to the change inkA ~energy difference normally around
1024 to 1023 hartree!. We have chosenkA to be 1.0, 5.0,
10.0, 10.0, and 10.0 for the calculations on lithium, copper,
diamond, silicon, and sodium chloride, respectively. We now
describe our calculations in detail.

A. Lithium

As the first example we have chosen metallic lithium.
Lithium is a typical alkali metal and has been extensively
studied by a large number of experimental techniques and
theoretical methods.58–63 It is well known that the valence
electrons in bulk lithium behave almost like free electrons.
Since the divide-and-conquer method is based on a localized
description of the electronic structure, it is particularly inter-
esting to see how the method performs for such a delocalized
system.

We divide bcc bulk lithium into primitive cells with only
one atom as a subsystem in each cell. The buffer schemes are
presented in Table I. The cutoff radius for the short-range
summation,Rshort, is chosen as 30 a.u. The integration accu-
racy of 1025 a.u. for density and electrostatic energy is used
throughout all our calculations. In the lithium case this cor-
responds to about 3000 integration points per atom and gen-
erally leads to sufficient accuracy. The basis set plays an
important role in theab initio studies of metals. Three nu-

merical atomic basis sets36 are used here: the single (S) set
for the minimal basis set (2s functions!, the double (D) set
for double functions for valence atomic orbitals (3s func-
tions!, and the polarization (P) set for the inclusion of po-
larization functions (3s and 1p functions!. The calculated
ground-state properties of metallic lithium from the divide-
and-conquer method are summarized in Table III.

To test the total-energy convergence with respect to
buffer atoms, we have carried out a series of self-consistent
divide-and-conquer calculations for bulk lithium with up to
the fifth buffer scheme considered. The experimental lattice
constant of 3.491 Å was used in the calculations. In Fig. 1
we plot the absolute values of errors in total energy per
primitive cell as a function of the buffer atoms used. We
observe that with the increasing use of buffer atoms the er-
rors in total energy per primitive cell can be reduced to the
values (1023 hartree or less! which are within the inherent
linear combination of atomic orbitals~LCAO! basis set er-
rors. It is encouraging to notice that the convergence behav-
ior of the total energy with respect to buffer atoms for this
nearly-free-electron system is similar to that of a tetrapeptide
molecule.36 The calculated cohesive energies forS, D, and
P sets are 1.14, 1.47, and 1.74 eV/atom, respectively, which
compare well with the LDA band-structure results and the
experimental value of 1.66 eV/atom.63 All these seem to con-
firm that the divide-and-conquer approach, which only uses
the local orbitals to represent the density, is capable of de-
scribing the electronic structure of systems with delocalized
electrons.

TABLE II. The cohesive energies~a.u.! per atom of lithium, copper, diamond, silicon, and sodium
chloride for differentkA values from the modified local-projection method. The experimental lattice constants
~3.491 Å for lithium, 3.567 Å for diamond, 5.430 Å for silicon, 5.610 Å for sodium chloride, and 3.60 Å for
copper! and the fourth buffer scheme are used in all calculations. Three basis sets (S, D, andP) are used in
the lithium calculations and the minimal basis sets (S) for others. See Sec. IV for details.

kA Li Cu Diamond Si NaCl
S D P

1 0.04275 0.05615 0.06353 0.09384 0.25262 0.16277 0.15297
5 0.04316 0.05653 0.06345 0.10024 0.30106 0.16560 0.15364
10 0.04324 0.05657 0.06342 0.10354 0.30239 0.16561 0.15381
15 0.04329 0.05663 0.06342 0.10600 0.30271 0.16560 0.15393
20 0.04331 0.05667 0.06342 0.10806 0.30290 0.16560 0.15403

TABLE III. Comparison of the ground-state properties for me-
tallic lithium from the divide-and-conquer~DC! method, other theo-
retical calculations, and experiments. TheP basis set and the fourth
buffer scheme are used in all DC calculations.

Method Cohesive energy Lattice constant Bulk modulus
~eV/atom! ~Å! ~Mbar!

DC 1.74 3.42 0.116
KKRa ~Ref. 58! 1.65 3.40 0.15
GTOb ~Ref. 62! 1.65 3.45 0.138
Expt. ~Ref. 61! 1.66 3.491 0.123

aKorringa-Kohn-Rostoker.
bGaussian-type orbitals.
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To determine the equilibrium lattice constant and bulk
modulus for lithium, we have performed a set of calculations
using theP basis set to obtain the total self-consistent field
~SCF! energies per primitive cell with the lattice constant
varied from 3.09 to 3.79 Å. The cohesive energies and cor-
responding primitive cell volumes are then fitted to the
widely used Murnaghan equation of state:64

E~V!5E~V0!1
B0V

B08~B0821!
HB08F12

V0

V
G1FV0

V
GB0821J ,

~37!

whereV0 is the equilibrium volume,B0 the bulk modulus,
andB08 the pressure derivative ofB0 . We display the results
for the third and fourth buffer schemes with theP basis set in
Fig. 2. Both fitting curves are closely parallel to each other,
which means the good convergence of structural properties
with respect to buffer atoms. The calculated cohesive energy,
equilibrium lattice constant, and bulk modulus are 1.67 eV/
atom, 3.41 Å, and 0.116 Mbar for the third buffer scheme
and 1.74 eV/atom, 3.42 Å, and 0.116 Mbar for the fourth.
These results are in good agreement with those from the
LDA band-structure calculations and experimental values
~see Table III!.

To investigate the performance of the divide-and-conquer
method on metallic lithium, we computed the total electronic
density of states~DOS!. Density of states is an important
single-electron quantity which can give us insight into many
phenomena related to solids. Most of the electronic proper-
ties of metals are determined by those electronic states near
the Fermi energy. Since the divide-and-conquer approach
does not involve a set of global single-electron eigenstates,
the calculation of the DOS for metallic lithium provides a
stringent test for the method. Presented in Figs. 3~a! and 3~b!
are the calculated DOS curves near the Fermi energy for bulk
lithium with the use of theP set and the fourth and fifth
buffer schemes. Both curves clearly indicate that lithium is a
metal. The Fermi energy in Fig. 3~a! agrees well with the one
in Fig. 3~b!. Although the major features such as the widths

and locations of the corresponding peaks in Figs. 3~a! and
3~b! are quite similar, differences between the two curves do
exist. It seems that the DOS quantity is more sensitive to the
buffer scheme used than the cohesive energy and structural
properties.

B. Copper

Copper is a transition metal and presents a challenging
problem for the theoretical determination of its electronic
structure.65 It has a special electronic configuration with a
filled outer 3d shell and a half-filled 4s valence orbital. The
correct description of both the highly localized 3d states and

FIG. 1. Errors in the divide-and-conquer total self-consistent-
field ~SCF! energies per primitive cell as a function of the buffer
atoms used for bulk lithium. The energies from the calculations that
use the fifth buffer scheme are taken as references forS, D, and
P basis sets. The square is for theS set, triangle forD set, and
pentagon forP set. FIG. 2. Equation of state for bulk lithium. TheP basis set is

used in the calculations. The square is for the third buffer scheme
and the pentagon for the fourth.

FIG. 3. The total density of states for bulk lithium. The calcu-
lations are performed with theP basis set.~a! is for the fourth
buffer scheme and~b! for the fifth. The Fermi energy is indicated
by the dashed line in each figure.
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the loosely bound 4s state can be considered as a stringent
test for any first-principles method. Therefore it is interesting
to see how the divide-and-conquer method performs for this
system.

The face-centered cubic~fcc! copper crystal is divided
into primitive cells with only one atom~one subsystem! in
each cell. The cutoff radius for the short-range summation is
chosen as 35 a.u. About 6000 integration points per copper
atom are needed to achieve the integration accuracy of
1025 a.u. Two basis sets (S andD) are used in our calcula-
tions. The calculated ground-state properties of metallic cop-
per from the divide-and-conquer method are summarized in
Table IV. We have performed self-consistent divide-and-
conquer calculations for bulk copper with up to the fifth
buffer scheme considered. The absolute values of the errors
in total energies per primitive cell are plotted as a function of
the number of buffer atoms in Fig. 4. The experimental lat-
tice constant of 3.60 Å was used in all calculations.66 From

Fig. 4 we notice that the errors in total energy per primitive
cell decrease monotonically with the increasing use of buffer
atoms ~about 1.6 millihartree with 54 buffer atoms used!.
The cohesive energies determined fromS andD set calcula-
tions are 2.75 and 4.49 eV/atom, respectively, against the
experimental value of 3.49 eV/atom.65 Previous calculations
show that the LDA normally overestimates the cohesive en-
ergy of copper by about 20–40 %~see Table IV!.10

We have fitted the Murnaghan equation of state for cop-
per from the calculations which use the third and fourth
buffer schemes with theS basis set. The calculated cohesive
energy, equilibrium lattice constant, and bulk modulus are
3.79 eV/atom, 3.59 Å, and 1.77 Mbar for the third buffer
scheme and 3.90 eV/atom, 3.58 Å, and 1.67 Mbar for the
fourth. Overall our structural data are in good agreement
with the experimental and other LDA results~see Table IV!.
The accuracy of these computed cohesive properties mainly
depends on the accuracy of our total-energy calculations. For
cohesive energy and lattice constant, we have found that the
uncertainties associated with numerical integrations in these
two sets of numbers are typically small~less than 1%!. How-
ever, the bulk modulus data are strongly affected by the nu-
merical accuracy in our total-energy calculations~the errors
can be as large as 20%!.

Presented in Figs. 5~a! and 5~b! are the calculated DOS
curves near the Fermi energy for bulk copper with the use of
the third and fourth buffer schemes. The sharp peaks below
the Fermi energy~the nearest position to«F is about 2.08
eV! obviously have contributions from the highly localized
filled d states. The relatively flat and extended peaks corre-
spond to the loosely bounds-p states at about 9.77–10.54
eV, which is in good agreement with other LDA calculation
results65,67 ~9.88–10.26 eV! and the experimental valence-
band width of 8.6 eV.68

C. Diamond

Diamond serves as a typical covalently bonded insulator.
The electronic structure of diamond crystal has been well
established both theoretically and experimentally.69–77 The
localized electron density distribution and the highly direc-
tional sp3 bonding in diamond certainly provide a significant

TABLE IV. Ground-state properties for fcc copper. Other LDA calculations and experimental values are
listed for comparison.

Method Cohesive
energy

Lattice
constant

Bulk
modulus

~eV/atom! ~Å! ~Mbar!

DC 4.49a 3.58b 1.67b

FLAPWc ~Ref. 65! 4.14 3.60 1.62
KKR ~Ref. 58! 4.08 3.58 1.55
LCAO ~Ref. 10! 4.27 3.55 1.67
Expt. ~Refs. 63, 65 and 66! 3.48 3.60 1.37,1.42

aCalculations with theD basis set and fourth buffer scheme.
bCalculations with theS basis set and fourth buffer scheme.
cFull-potential linearized augmented plane wave.

FIG. 4. Errors in the divide-and-conquer total SCF energies per
primitive cell as functions of the buffer atoms used for diamond
~triangle!, silicon ~square!, sodium chloride~pentagon!, and copper
~hexagon!. For diamond and sodium chloride, the energies from the
calculations that use the sixth buffer scheme are taken as the refer-
ences. For silicon and copper, the energies from the calculations
that use the fifth buffer are taken as the references. The minimal
basis set is used in all calculations.
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test for any computational method in its ability to accurately
represent the large deviations from the superimposed spheri-
cal densities and potentials.

The diamond crystal is partitioned into primitive cells
with two atoms in one cell. Each primitive cell is further
divided into two subsystems with only one carbon atom in
each subsystem. For every subsystem, the surrounding buffer
atoms and the corresponding buffer schemes are determined.
The results are tabulated in Table I. We need about 4000
integration points to achieve the integration accuracy of
1025 a.u. The short-range summation cutoff,Rshort, is set to
35 a.u. Previousab initio calculations on diamond seem to
suggest that the minimal basis set is already good enough for
many purposes72–75 so we only use theS set (2s/1p)
throughout our calculations. The calculated cohesive energy
and structural properties are listed in Table V. We show in
Fig. 4 the convergence of the total energy per primitive cell
with respect to the buffer atoms included in the calculations.
We observe that the convergence is very smooth and roughly
70 buffer atoms are needed to bring the errors in total energy
around 1 millihartree. Our computed cohesive energy is 8.11
eV/atom, against the experimental value of 7.37 eV/atom.63

As many calculations have shown, the LDA normally over-
estimates cohesive energy.10 The cohesive energy, equilib-
rium lattice constant, and bulk modulus from the fitted Mur-
naghan equation of state for diamond are 7.55 eV/atom, 3.56
Å, and 3.86 Mbar for the second buffer scheme and 7.96
eV/atom, 3.53 Å, and 4.19 Mbar for the third. The agreement
between these two sets of data and other LDA results~see

Table V! as well as with the experimental values is excellent.
We have noticed that the structural properties for diamond
converge more easily with respect to buffer schemes than
those for lithium. This is probably due to the fact that dia-
mond has a very large bulk modulus. Figures 6~a! and 6~b!
show the DOS curves for the fifth and sixth buffer schemes.
Although the details of the two curves do not match very
well, both curves give almost the same energy gap of 6.0 eV
for diamond, compared with the experimental gap of 5.4
eV.63

D. Silicon

We take the silicon crystal as the example of the applica-
tion of the divide-and-conquer method to semiconductors.
Silicon has the same crystal structure as diamond and has
also been thoroughly investigated by numerous experimental
and theoretical approaches, due to its technical importance in
semiconductor technology.10,63,78–82

The partition scheme is the same as the one for diamond.
We setRshort 5 50 a.u. For simplicity we only used the

FIG. 5. The total density of states for fcc copper. The calcula-
tions are performed with theS basis set.~a! is for the third buffer
scheme and~b! for the fourth. The Fermi energy is indicated by the
dashed line in each figure.

TABLE V. Ground-state properties for diamond. Other theoreti-
cal results and experimental values are listed for comparison. The
minimal basis set is employed in all divide-and-conquer~DC! cal-
culations.

Method
Cohesive
energy

Lattice
constant

Bulk
modulus

~eV/atom! ~Å! ~Mbar!

DC 8.11a 3.53b 4.19b

Plane wave~Ref. 73! 7.58 3.602 4.33
Local orbital ~Ref. 74! 7.84 3.560 4.37
Hartree-Fock~Ref. 72! 5.69 3.59 5.9
Expt. ~Ref. 74! 7.37 3.567 4.42

aCalculations with the sixth buffer scheme.
bCalculations with the third buffer scheme.

FIG. 6. The total density of states for diamond. The calculations
are performed with the minimal basis set.~a! is for the fifth buffer
scheme and~b! for the sixth.
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minimal basis set (3s/2p) in our calculations. The conver-
gence curve of the total energy per primitive cell with respect
to buffer atoms, shown in Fig. 4, is similar to that of dia-
mond. Note that the total energy converges faster for silicon
than for diamond in the sense that fewer buffer atoms are
needed to reduce the error in total energy to a certain toler-
ance. This probably lies in the fact that with the same crystal
structure silicon has a much larger lattice constant than dia-
mond. The calculated cohesive energy, equilibrium lattice
constant, and bulk modulus can be found in Table VI. They
are overall in good agreement with other LDA and experi-
mental results. The DOS curves of silicon presented in Figs.
7~a! and 7~b! for the fourth and fifth buffer schemes both
give band gap of about 2.0 eV against the experimental value
of 1.14 eV at 300 K.63

E. Sodium chloride

We finally apply the divide-and-conquer method to the
calculation of an ionic crystal, sodium chloride. This typical
ionic solid has been thoroughly investigated by numerous
experimental63,83,85,86and theoretical approaches.10,83,84,87,88

For ionic crystals like NaCl, the long-range interactions be-
tween ions should be taken into consideration very carefully
in any accurate total-energy calculations. Many methods ex-
ist to deal with the divergence and conditional convergence
problems related to the Madelung summation of the long-
range potential. One of the well-known efficient summation
schemes is the Ewald technique,54 in which the lattice sum is
divided into two, both rapidly convergent, summations, in
real space andk space. In our potential scheme, the Coulomb
potential is first obtained from the electron density calculated
inside the short-range space (Rshort5 58 a.u. for NaCl! by
solving the Poisson equation, and then outside this range to
infinity the potential is computed with the conventional
Ewald point charge model. Our calculated ground-state prop-
erties for NaCl from this potential scheme suggest that it
works very well for ionic crystals.

The NaCl crystal is divided into primitive cells with two
ions in one cell. Each primitive cell is further divided into
two subsystems with only one Na or Cl ion in each sub-
system. The buffer schemes for NaCl crystal are listed in
Table I. About 4000 integration mesh points per atom are
needed to achieve the numerical precision of 1025. Besides
theS ~single! basis set, theD ~double! basis set andP ~po-
larization includingd functions for Na and Cl atoms! basis
set are also used to obtain more accurate cohesive energy.
The calculated ground-state properties are listed in Table
VII.

The convergence of the total energy per unit cell with
respect to the number of buffer atoms is shown in Fig. 4. The
behavior of the convergence for NaCl is much better than
those of lithium and diamond. In fact, the total energy is
converged to 231023 hartree for the fourth buffer scheme
~with only 32 buffer atoms included! and 131023 hartree
for the fifth buffer scheme~56 buffer atoms!. The good con-
vergence in total energy for NaCl can be attributed to its
well-localized electrons, which can be accurately and effi-
ciently described by the divide-and-conquer strategy. The
calculated cohesive energies with respect to the ions are

TABLE VI. Ground-state properties for silicon. Other theoreti-
cal results and experimental values are listed for comparison. The
minimal basis set is used in all divide-and-conquer~DC! calcula-
tions.

Method Cohesive
energy

Lattice
constant

Bulk
modulus

~eV/atom! ~Å! ~Mbar!

DC 4.52a 5.42b 0.80b

Plane wave~Ref. 80! 4.68 5.451 0.98
Plane wave~Ref. 81! 5.427 0.855
Plane wave~Ref. 82! 5.37 0.89
GTO ~Ref. 78! 4.90 5.350 1.15
LMTOc ~Ref. 79! 4.98 5.410 1.0
Local orbital ~Ref. 10! 5.25 5.429 0.95
Expt. ~Ref. 10! 4.63 5.43 0.99

aCalculations with the fifth buffer scheme.
bCalculations with the third buffer scheme.
cLinear muffin-tin orbitals.

FIG. 7. The total density of states for silicon. The calculations
are performed with the minimal basis set.~a! is for the fourth buffer
scheme and~b! for the fifth.

TABLE VII. Ground-state properties for sodium chloride. Other
LDA calculations and experimental values are listed for compari-
son.

Method Cohesive
energy

Lattice
constant

Bulk
modulus

~eV/atom! ~Å! ~Mbar!

DC 4.21a 5.50b 0.308b

FLAPW ~Ref. 83! 4.14 5.64 0.304
ASW c ~Ref. 84! 4.05 5.40 0.32
LCAO ~Ref. 10! 4.41 5.48 0.315
Expt. ~Refs. 63, 83, and 85! 4.03 5.61 0.266

aCalculations with theP basis set and the fifth buffer scheme.
bCalculations with theSbasis set and the third buffer scheme.
cAugmented spherical wave.
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3.81, 4.17, and 4.21 eV/atom forS, D, and P basis sets,
respectively, which are in good agreement with other LDA
results~see Table VII!. Again, the LDA slightly overestimate
the cohesive energy compared with the experimental value.

The fit to the well-known Murnaghan equation of state is
excellent for the fourth, fifth, and sixth buffer schemes. The
cohesive energy, equilibrium lattice constant, and bulk
modulus from the fitting curves are 3.85 eV/atom, 5.40 Å,
and 0.318 Mbar for the fourth buffer scheme, 3.82 eV/atom,
5.45 Å, and 0.313 Mbar for the fifth, and 3.81 eV/atom, 5.50
Å, and 0.308 Mbar for the sixth. With increasing buffer at-
oms, our calculated structural parameters converge very well
to the experimental results~see Table VII!.

The total DOS curves calculated with the fourth, fifth, and
sixth buffer schemes are plotted in Figs. 8~a!–8~c!. Com-
pared to the DOS for the fourth buffer scheme, the DOS
from the fifth is closer to that of the sixth. The band gap
obtained from the sixth buffer DOS curve is about 5.8 eV,
against the experimental result of 8.6 eV.86 It is well known
that the LDA normally underestimates the experimental band
gaps by 30–50 % for highly localized insulators.87 Other
LDA calculations give about 4.7 eV for the band gap.88

V. SUMMARY

We have presented in this paper the divide-and-conquer
density-functional approach for solid-state systems. The
method directly determines the electronic structure of peri-
odic solids without involving band structure. Our successful
applications of this approach to four qualitatively different
solid-state systems~metal, insulator, semiconductor, and
ionic solid! have clearly demonstrated the utility of the
method. In particular, we see from Fig. 4 that in our ‘‘divide-
and-conquer embedding’’ scheme, one typically only needs
about 40 to 50 buffer atoms to converge the cohesive energy
to around 0.1 eV. But for all the solid-state systems consid-
ered in this paper, it appears that the DOS quantity is much
more difficult to converge with respect to the size of the
buffer cluster~see Fig. 5 to Fig. 8!. The divide-and-conquer

method can also be easily applied to extended solid-state
systems without translational symmetry. The implementation
of this method for theoretical investigations on adsorption
and chemical reactions on surfaces is in progress.
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