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The background theory and the details required for implementation of bond-order potentials are presented in
a systematic fashion. The theory is an O(N) implementation of tight binding that is naturally parallelizable.
Further, it is straightforward to show how the lowest-order approximation to the two-site expansion can
reproduce the Tersoff potential. The accuracy of the forces is demonstrated by means of constant-energy
molecular dynamics, for which the energy is found to be very well conserved. Thus, the method is both an
efficient computational method and a useful analytic tool for the atomistic simulation of materials.

I. INTRODUCTION

In this paper, we present an approach to atomistic model-
ing based on the bond-order potential~BOP!. It is designed
to be a self-contained account of both the underlying
theories1–11 and the technical details required to implement
them as computer programs. The formalism contains math-
ematical methods with which readers may not be familiar, so
attention is given to explaining these methods in some detail.

The motivation for developing the BOP scheme for at-
omistic modeling derives from the rapid growth of interest in
computer simulations at the level of the atom. Whereas it is
certainly true that other length scales are extremely impor-
tant ~both mesoscopic and macroscopic!, and need to be
treated in their own ways, phenomena observed at these
length scales can be strongly influenced by processes at the
atomic level. Atomistic computer simulations have an impor-
tant role to play in bridging the gap between the atomic and
longer length scale phenomena.

There are three constraints that apply to successful com-
puter models: they must be able to be implemented effi-
ciently on a computer; they must be able to produce results
that accurately reproduce observed experimental results; and
they should be able to be applied to a wide range of materials
under diverse conditions within a single framework.

Satisfying all three criteria is an extremely demanding
task, and as yet to our knowledge no model exists that can
claim to achieve this. However, it is straightforward to trans-
late these criteria into some basic decisions, which can then
be developed further. The third criterion~the single frame-
work! requires that we work with a quantum mechanical
model for electron motion, since the difference in properties
between materials derives from the different electron wave
functions. There is a variety of quantum mechanical methods
that are currently used ranging from very accurate many
electronab initio methods, such as quantum Monte Carlo,
through slightly less accurate single electronab initio meth-
ods, such as the local density approximation~LDA ! to den-
sity functional theory~DFT!,12 down to the semiempirical
methods, such as tight binding~TB!.13,14In general, the more
accurate the method, the more computer intensive it is. How-
ever, the computationally least intensive method~TB! offers
remarkable accuracy~given its simplicity! for many materi-
als. Further, results obtained with it often allow clear insight

into the nature of cohesion to be obtained, precisely because
of its simplicity.15 TB models have been applied successfully
to metallic systems,16–18 semiconducting systems,19–26 in-
cluding the liquid phase,27–30 and strongly covalent
systems.31,32 Thus we see that TB satisfies all three criteria
sufficiently well to be very interesting.

The TB model involves the construction of a Hamiltonian
matrix, and the evaluation of the band energy and band
forces from it. The most computationally demanding part of
any implementation of TB is extracting the band energy and
forces from the Hamiltonian. The appropriate numerical
technique for performing this operation when a small num-
ber of atoms~fewer than 100! is being considered is direct
diagonalization of the Hamiltonian matrix. However, the
time to perform this operation typically scales as the third
power of the number of atoms in the unit cell. For periodic
systems, this statement has to be treated with caution. It is
only true when onek point is being used. If manyk points
are used, then the scaling is still cubic in the number of
atoms for eachk point, but the number ofk points needed to
achieve a given level of accuracy scales as the inverse of the
number of atoms. Thus the time to evaluate the energy and
forces scales only as the square of the number of atoms in the
unit cell when working at constant accuracy. However, this
scaling is still disastrous for simulations of large numbers of
atoms. Thus it is necessary to find methods that can extract
the useful information from the Hamiltonian matrix to a
given level of accuracy with a much better scaling, ideally
linear scaling@O(N) methods#.

Several O(N) methods suitable for atomistic simulations
based on TB have been proposed recently.33–35,8,36–40They
are all methods for finding the density matrix, and are based
on a variety of observations about electronic structure: the
density matrix is short ranged for systems with a band gap in
the density of states; the band energy is minimized by the
correct density matrix; the density matrix at finite electron
temperature can be written down explicitly as the Fermi
function of the Hamiltonian; the density of states can be
reconstructed efficiently from the moments of the Hamil-
tonian. The way a method is constructed depends on which
observation one begins with. For BOP, the view is taken that
the mostflexible approach is to work with moment expan-
sions for the densities of states. Working with moments also
has the advantage that it allows an interpretation of elec-
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tronic structure in terms of atomic structure,43,44,1,45,15which
makes it possible to form a direct connection between this
approach and the potentials of Finnis and Sinclair46 and
Tersoff.47

In the remainder of this paper we discuss in detail the
various elements that make up the bond-order potential. We
begin with a quick survey of the TB model, deriving impor-
tant results that allow it to be applied to total energy calcu-
lations. Having introduced the concept of the density of
states, we show how it can be determined very efficiently
from a moments description. We show how Green’s func-
tions provide a very natural, and computationally stable, way
of obtaining densities of states from moments. To evaluate
forces we need the full density matrix. We present BOP as a
method for evaluating the density matrix within a Green’s
function framework. Two versions of BOP are described:
two-site BOP and one-site BOP. It is possible to derive a
Tersoff-like expression for the bond order~the off-diagonal
part of the density matrix! from just the first-order term of
the two-site BOP. However, this formulation cannot provide
a good description of close packed metals, and so we have to
develop the one-site formulation. This requires the use of an
auxiliary space, which is explained in detail. The one-site
formulation is found to give good convergence.

II. TIGHT BINDING

There is already a sizeable literature concerning the use of
the TB model for total energy calculations.42,14,45,15Here we
just summarize the key elements that will be used in the
development of BOP.

The model has its origins in the linear combination of
atomic orbitals~LCAO! method pioneered by Slater and
Koster,13 although, more recently,45 it has been justified by
the Kohn-Sham formulation of the density functional theory
of the electron gas.12 The central equation in the TB model is
an effective single particle Schro¨dinger equation that is
solved self-consistently for the eigenstates:

Ĥc~n!~rW !5e~n!c~n!~rW !,

dn,m5E drW„c~n!~rW !…*c~m!~rW !, ~1!

wheree (n) is an eigenvalue, andc (n)(rW) is the corresponding
eigenfunction. In operator notation, the same equations can
be written as

Ĥun&5e~n!un&,

dn,m5^num&, ~2!

where un& is an eigenstate, andc(rW)[^rWun& is the usual
Schrödinger wave function, and as such is the amplitude for
finding an electron in the neighborhood of the pointrW when
it is in staten. The total electron density is therefore given
by

r~rW !52 (
n~occ!

uc~n!~rW !u2, ~3!

where the factor 2 accounts for spin degeneracy.

In TB the single particle eigenfunctions are assumed to be
expanded in a basis set that is an orthonormal set ofreal
atomiclike orbitalsu ia&, wherei is a site index anda is an
orbital index:

un&5(
ia

Cia
~n!u ia&. ~4!

The error in the energy due to a lack of orthogonality be-
tween orbitals is corrected in the pair potential~see below!.

The Hamiltonian can be represented by the matrix
Hia, jb where

Hia, jb5^ iauĤu jb&5E drWf ia~rW !Ĥf jb~rW !, ~5!

where Ĥ is the Hamiltonian operator, andf ia(rW)5^rWu ia&.
The on-site elements of the matrix are given the symbols
« ia(5Hia,ia). The intersite elements are determined using
the tables of Slater and Koster.13 The important point is that
the matrix elements are not independent of one another, but
are related by symmetry. This means that the number of
integrals needed to define the matrix can be greatly reduced.
For two atoms withs orbitals assigned to them there is, of
course, only one integral (Vsss). With two atoms (a1 and
a2), one of which is assigned ans orbital and the other ap
orbital, there are three possible integrals (^a1suĤua2px&,
^a1suĤua2py& and ^a1suĤua2px&). However, by symmetry,
they can be reduced to one integral (Vsps) which corre-
sponds to the sphericals orbital overlapping ap orbital end
on to form as bond, multiplied by angular factors. If both
atoms havep orbitals assigned to them then there are
nine possible integrals (^a1pxuĤua2px&, ^a1pxuĤua2py&,
^a1pxuĤua2px&, etc.!. These can be reduced to two:Vpps ,
which corresponds to twop orbitals overlapping end-to-end
to form as bond, andVppp , corresponding to twop orbitals
lying parallel to one another to form ap bond. Again these
are multiplied by angular factors.

Combining Eqs.~2!, ~4!, and~5! we obtain the following
matrix equation:

(
jb

Hia, jbCjb
~n!5e~n!Cia

~n! , ~6!

whereCia
(n)[^ iaun& and hence

(
ia

Cia
~n!Cia

~m![(
ia

^nu ia&^ iaum&5dn,m . ~7!

Note that because the atomic orbitals are real, the Hamil-
tonian will be real, and the eigenvectorsCia

(n) can always be
made real. This will be assumed from here on. The cohesive
energy may then be written as45

Ucoh5Uband1Urep2Uatoms

52 (
n~occ!

e~n!1
1

2(iÞ j
f~r i j !2(

ia
Nia
atom« ia , ~8!

wheref(r i j ) is a repulsive pair potential, andNia
atom is the

occupancy of an atomic state in the free atom. The pair po-
tential accounts for the repulsion of the ionic cores at short
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range. It has contributions from electrostatics, and from the
repulsion of overlapping orbitals due to Pauli’s principle.
Combining Eqs.~7! and ~8! we get

Ucoh52 (
n~occ!,ia, jb

Cia
~n!Hia, jbCjb

~n!1
1

2(iÞ j
f~r i j !

2(
ia

Nia
atom« ia . ~9!

Using this equation, the band and atomic energies can be
repartitioned into bond and promotion energies:

Uband2Uatoms52 (
n~occ!,ia, jb

Cia
~n!Hia, jbCjb

~n!2(
ia

Nia
atom« ia

52 (
iaÞ jb

(
n~occ!

Cia
~n!Cjb

~n!Hia, jb

1(
ia

F2 (
n~occ!

Cia
~n!Cia

~n!2Nia
atomG« ia

5Ubond1Uprom . ~10!

The bond energy contains only off-diagonal elements of the
Hamiltonian matrix, and the promotion energy contains only
on-site elements.

The forces on the atoms (FW i) are obtained by differenti-
ating Eq.~9! with respect to atomic positions. Making use of
the orthonormality of the eigenvectors we get

2FW k5
]Ucoh

]rWk

52 (
n~occ!,ia, jb

Cia
~n!

]Hia, jb

]rWk
Cjb

~n!1
1

2(iÞ j

]f~r i j !

]rWk
.

~11!

The first term is the Hellmann-Feynman force.48,49 If we de-
fine the density matrix (r ia, jb) by

r ia, jb5 (
n~occ!

Cjb
~n!Cia

~n! , ~12!

then the cohesive energy and atomic forces can be expressed
in a very compact form:

Ucoh52 (
iaÞ jb

r jb,iaHia, jb1
1

2(iÞ j
f~r i j !

1(
ia

@2r ia,ia2Nia
atom#« ia ,

2FW k52 (
iaÞ jb

r jb,ia

]Hia, jb

]rWk
1
1

2(iÞ j

]f~r i j !

]rWk

1(
ia

@2r ia,ia2Nia
atom#

]« ia

]rWk
. ~13!

Note that there are two important limiting cases in which the
diagonal contribution to the forces is zero. The first is when
there is no self-consistency imposed, in which case the diag-

onal elements of the Hamiltonian are constants, and thus
have zero derivative. The second is whenlocal charge neu-
trality ~LCN! is imposed, as in the tight binding bond
model.14 In this case, the condition(a@2r ia,ia2Nia

atom#50
is imposed on each site by varying the on-site energies. The
splittings between on-site energies on each site are kept
fixed, but they are allowed to move together by an amount
D« i . That is,« ia5« ia

(0)1D« i , where« ia
(0) is an on-site en-

ergy in some reference system. The promotion energy is then
given by

Uprom
LCN 5(

ia
@2r ia,ia2Nia

atom#« ia

5(
ia

@2r ia,ia2Nia
atom#~« ia

~0!1D« i !

5(
ia

@2r ia,ia2Nia
atom#« ia

~0! . ~14!

Note that to obtain the final expression, use has been made of
the LCN condition. It is clear, then, that only the reference
~and hence environment independent! on-site energies ap-
pear in the promotion energy when LCN is imposed. Their
derivatives with respect to atomic coordinates are zero.

III. MOMENTS DESCRIPTION OF THE DENSITY
OF STATES

For all that follows the concept of thedensity of statesis
fundamental. Thetotal density of states@ntotal(E)# is defined
by the following equation:

ntotal~E!5(
n

d~E2e~n!!. ~15!

The band energy@see Eq.~8!# can be rewritten in terms of
the density of states in the following way:

Uband52EEf
Entotal~E!dE, ~16!

whereEf is the Fermi energy, and has a value that lies be-
tween the energy of the highest occupied state and the lowest
unoccupied state.

The total density of states is aglobalproperty of a system.
We are principally interested in studying the behavior of
systems by considering regions of the systems that arelocal-
ized in space. A very useful and important quantity for char-
acterizing the electronic properties in a local manner is the
local density of states.41 To derive an expression for this
quantity, we need two results:

^nud~E2Ĥ !um&5d~E2e~n!!dn,m ,

1̂5(
n

un&^nu5(
ia

u ia&^ iau. ~17!

It is straightforward to check that 1ˆ is the unit operator by
showing that it satisfies 1ˆ251̂. We have defined functions of
operators in the following way:

f ~Ĥ !un&5 f ~«~n!!un&. ~18!

This is easily justified by replacing the function with its Tay-
lor expansion, inserting it into the left hand side of Eq.~18!,
and resumming to obtain the right hand side.
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Inserting these results into Eq.~15!, we obtain

ntotal~E!5(
n

^nud~E2Ĥ !un&

5 (
n,m,ia

^nu ia&^ iaum&^mud~E2Ĥ !un&

5(
ia

H(
n

z^ iaun& z2d~E2e~n!!J
5(

ia
nia~E!. ~19!

Thus we see that the global density of states can be decom-
posed into a sum over local densities of states@nia(E)# pro-
jected onto the atomic orbitals, where

nia~E!5(
n

z^ iaun& z2d~E2e~n!!5^ iaud~E2Ĥ !u ia&,

~20!

where the second expression is obtained by using Eqs.~17!
to remove the sum overn. The interpretation is straightfor-
ward. The probability of finding an electron in stateun& on
orbital u ia& is z^ iaun& z2. Thus the local density of states pro-
jected onto an orbital is just the total density of states
weighted by the probability of finding the electron on that
orbital.

This decomposition into local densities of states also has
the advantage that we can write the promotion and bond
energies in terms of densities of states. From Eq.~4! we
see that Cia

(n)5^ iaun&. Thus from Eq. ~20! we have
nia(E)5(nuCia

(n)u2d(E2e (n)). Substituting this equation
into Eq. ~10!, and then using Eqs.~16! and ~19! we get

Uprom5(
ia

S 2EEf
nia~E!dE2Nia

atomD « ia ,

Ubond5Uband2Uatoms2Uprom

52(
ia

EEf
~E2« ia!nia~E!dE. ~21!

Similarly, we can introduce the generalized density of
electron states

n~E,rW !5(
n

uc~n!~rW !u2d~E2e~n!! ~22!

which follows from Eq.~15!. The electron density and total
density of states are then given by

r~rW !52E dEn~E,rW !,

ntotal~E!5E drWn~E,rW !. ~23!

The generalized density of states has the physical meaning of
being the energy-resolved spatial density of states and is fre-
quently used for the analysis of electron distributions.

As already noted, the most demanding part of evaluating
the cohesive energy is finding the band energy. In particular,
diagonalizing the Hamiltonian matrix to find the eigenvalues
and eigenvectors takes time on a computer that scales as the
cubeof the number of particles in the unit cell. We will now
see how using a moments description for the density of states
makes it possible to evaluate the energy in a time that scales
linearly with the number of atoms in the unit cell.

From Eq.~16! it is clear that evaluating the band energy is
straightforward once the density of states is known. The den-
sity of states is a distribution function of finite width~for
finite basis set size!, and thus can be characterized by the
position of its center, its width, and its shape. These proper-
ties of the density of states can all be described by itsmo-
ments. The pth moment (m ia

(p)) of the projected density of
statesnia(E) is given by

m ia
~p!5E Epnia~E!dE. ~24!

The first moment (m ia
(1)) defines the center of gravity of the

band, the second moment (m ia
(2)) its mean square width, the

third moment (m ia
(3)) gives a measure of how skewed the

band is, the fourth moment (m ia
(4)) determines whether the

density of states is unimodal or bimodal, and so on,42 as is
illustrated in Fig. 1.

There is a useful identity43 which follows directly from
Eq. ~20!, which is that thepth moment of the density of
states projected onto orbitalu ia& equals thepth moment of
the Hamiltonian projected onto the same orbital:

m ia
~p!5E Epnia~E!dE5^ iauĤpu ia&. ~25!

This allows us to evaluate the moments of the projected den-
sity of states from the Hamiltonian matrix. Substituting the
Hamiltonian matrix for the operator in Eq.~25! we obtain

m ia
~p!5 (

j 1b1••• j p21bp21

Hia, j 1b1
Hj 1b1 , j 2b2

•••Hjp21bp21 ,ia
.

~26!

This equation reveals a correspondence between thepth mo-
ment and a process of hopping around the lattice along
closed paths of lengthp. Thus the first moment corresponds
to a hop on a single site, the second to hops to nearest neigh-
bors and back, and so on. Increasing the order of the mo-
ments by two corresponds to obtaining information about
oneextra shell of atoms since you have to hop out and back.
This direct correspondence between electronic structure and
the positions of atoms can give immediate insight into the
nature of cohesion and structural stability, provided not too
many moments are needed for an adequate description of the
density of states.15 Further, the increase in the number of
shells with increasing numbers of moments means that when
only a few moments are necessary to describe the density of
states sufficiently accurately to give a good cohesive energy,
then only a small cluster of atoms contributes to the density
of states. The time to construct the local density of states for
one site depends only on how many moments are needed,
and not on the system size. If this time istM for M moments,
then for a complete system withN sites, the time to construct
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the total density of states isNtM , which is linear in the
number of sites. Thus this is an O(N) method. The benefits
of this are clear from Fig. 2.

IV. GREEN’S FUNCTIONS AND THE RECURSION
METHOD

Although a function can in principle be reconstructed
once its moments are known, care has to be taken to achieve
this in a numerically stable way. The recursion method44 is
an optimal method for building densities of states from mo-
ments which makes use of Green’s functions. It is straight-
forward to see why Green’s functions are useful in this case.
Consider the following expression for thed function:

d~x!52
1

p
lim
h→0

Im$@x1 ih#21%. ~27!

Combining Eqs.~20! and ~27! we obtain

nia~E!52
1

p
lim
h→0

Im$^ iau@E1 ih2Ĥ#21u ia&%. ~28!

The one particle Green’s function is defined by

Ĝ~Z!5@Z2Ĥ#21. ~29!

Substituting Eq.~29! into Eq. ~28! we obtain

nia~E!52
1

p
lim
h→0

Im$Gia,ia~E1 ih!%, ~30!

where we have introduced the notationGia, jb(Z)
5^ iauĜ(Z)u jb&. The expression for the local density of
states in terms of one of the diagonal matrix elements of the
single particle Green’s function is useful because it is pos-
sible to write down an explicit continued fraction expression
for this element of the Green’s function in terms of the ele-
ments of the tridiagonalized Hamiltonian,44 as is explained
below. First, though, we need to introduce the Lanczos algo-
rithm.

The Lanczos algorithm50 is an efficient scheme for tridi-
agonalizing a matrix. Let the diagonal elements of the tridi-

FIG. 1. The dependence of the shape of the density of states on
the moments is illustrated here. The energy scale is given by the
parameterb. Panel ~a! shows how the third moment skews the
density of states. When the shape factorS5@m (4)/(m (2))221# is
less than 1, then a bimodal distribution results, whereas when it is
greater than 1, a unimodal distribution is found, as shown in panel
~b!.

FIG. 2. The time to perform one molecular-
dynamics step is shown here as a function of the
number of atoms being considered. The calcula-
tions were all peformed on HP9000/735 worksta-
tions. The moments method is compared with di-
rect diagonalization. The O(N3) scaling of
diagonalization makes this approach very ineffi-
cient for systems containing more than about 100
atoms.
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agonal Hamiltonian bean and the off-diagonal ones bebn .
Let the states that tridiagonalize the Hamiltonian beuUn&.
We then have

^UmuĤuUn&55
an if m5n,

bn if m5n21,

bn11 if m5n11,

0 otherwise.

~31!

The Lanczos algorithm for finding the tridiagonal matrix is
based on the following recurrence relationship:

ĤuUn&5anuUn&1bnuUn21&1bn11uUn11&, ~32!

and the fact that the statesuUn& are orthonormal
(^UnuUm&5dn,m). Starting with some arbitrary stateuU0&,
we can finda0 from Eq. ~31!. From Eq.~32!, we can then
evaluateb1uU1& ~since we know thatb050), and then from
the normalization ofuU1& we can obtainb1 . Starting with
uU1& the process can be repeated to finda1 , b2 , and uU2&,
and so on. Let us introduce the notationGnm(Z)
5^UnuĜ(Z)uUm&. The element of the Green’s function
G00(Z) can now be obtained from44

G00~Z!5
1

Z2a02
b1
2

Z2a12
b2
2

Z2a22
b3
2

�

. ~33!

In general, if elementGc,c(Z)5^cuĜ(Z)uc& is to be calcu-
lated, thenuU0& is first set equal touc&, and then the above
prescription is applied. Thus any diagonal element of the
Green’s function can be found in this way. In this work,
uc& will always be either an atomic orbital (u ia&) or a linear
combination of atomic orbitals.

Above it was stated that the recursion method is an opti-
mal way of constructing a density of states from its mo-
ments. The connection between moments and recursion can
be made explicit by writing the moments in terms of the
elements of the tridiagonal Hamiltonian~which shall be
called recursion coefficientsfrom now on!. This is easily
accomplished by noting the following:

m ia
~n!5^ iauĤnu ia&

5^U0uĤnuU0&

5 (
m1•••mn21

^U0uĤuUm1
&

3^Um1
uĤuUm2

&•••^Umn21
uĤuU0&. ~34!

The first few moments are

m ia
~0!51,

m ia
~1!5a0 ,

m ia
~2!5a0

21b1
2 ,

m ia
~3!5a0

312a0b1
21a1b1

2 ,

m ia
~4!5a0

413a0
2b1

212a0a1b1
21a1

2b1
21b1

2b2
21b1

4 . ~35!

These equations can be inverted to give the recursion coef-
ficients in terms of the moments. Every extra moment allows
one extra recursion coefficient to be evaluated. Inverting
these equations numerically can be unstable. However, Eq.
~32! always gives stable results.

For an infinite system, there could be an infinite number
of levels in the continued fraction. It is often the case, how-
ever, that the exact values can be replaced by estimated val-
ues after a certain number of levels, without reducing the
accuracy significantly. The simplest approximation is to take
an5a` ,bn5b` for n.N, whereN is the number of exact
levels, anda` andb` are constants defining the band center
and bandwidth.51 The constant terms can be summed exactly
to form the square root terminator:

t~Z!5
1

Z2a`2
b`
2

Z2a`2
b`
2

Z2a`2
b`
2

�

5
1

b`
F S Z2a`

2b`
D 2 iA12S Z2a`

2b`
D 2G . ~36!

For the BOP derivation, we need to differentiate the
Green’s functionG00(Z) with respect to the recursion coef-
ficients. To do that we need to know the first-order change in
the Green’s function due to the small change in the
Hamiltonian.52 Let us make a simple derivation with the use
of Eq. ~29!, which we write formally in the following form:

Ĝ21~Z!5Z2Ĥ5Z2Ĥ02dĤ. ~37!

Multiplying Eq. ~37! by Ĝ0(Z)5(Z2Ĥ0)
21 from the left

and by Ĝ(Z) from the right, bearing in mind thatĤ0 and
dH may be noncommuting operators, we obtain, using
Ĝ0(Z)(Z2Ĥ0)51̂, the well known Dyson equation

Ĝ~Z!5Ĝ0~Z!1Ĝ0~Z!dĤĜ~Z!

5Ĝ0~Z!1Ĝ0~Z!dĤĜ0~Z!1•••. ~38!

Therefore the variation in the Green’s function to first order
in dĤ is dĜ(Z)5Ĝ(Z)dĤĜ(Z). The corresponding matrix
equation isdGnm(Z)5(klGnk(Z)dHklGlm(Z). Taking for
the basis states the Lanczos vector space which is complete
and tridiagonalizes the Hamiltonian@see Eq.~31!#, we obtain
the following derivatives:

]G00~Z!

]an
5G0n~Z!Gn0~Z!,

]G00~Z!

]bn
5G0n~Z!G~n21!0~Z!1G0~n21!~Z!Gn0~Z!.

~39!

The off-diagonal elements of the Green’s function~with re-
spect to the tridiagonalizing states! that appear in the deriva-
tive are evaluated by means of another recurrence relation.
From Eq.~29! we have (Z2Ĥ)Ĝ(Z)51̂. Inserting the tridi-
agonalizing states we obtain the following:
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~Z2an!Gnm~Z!2bnGn21,m~Z!2bn11Gn11,m~Z!5dn,m .
~40!

All elementsG0n(Z) can be obtained from this equation,
onceG00(Z) has been evaluated, sinceG0n(Z)5Gn0(Z).

V. GREEN’S FUNCTIONS AND THE DENSITY MATRIX

In Eq. ~13! we see that both the energy and forces can be
evaluated very simply once the density matrix is known. In
the preceding two sections we have seen how using mo-
ments, and especially the recursion method, allows us to per-
form an efficient evaluation of band energy which scales
linearly with system size. We would like now to combine
these two observations and find a moments based method for
evaluating the density matrix.

Starting with Eq.~12! we can derive the following useful
expression for the density matrix:

r ia, jb5 (
n~occ!

Cia
~n!Cjb

~n!5(
n

Cia
~n!Q~Ef2e~n!!Cjb

~n!

5EEf
dE(

n
Cia

~n!d~E2e~n!!Cjb
~n!

5EEf
dE(

n
^ iaun&^nud~E2Ĥ !un&^nu jb&

5EEf
dE^ iaud~E2Ĥ !u jb&

52
1

p
lim
h→0

ImEEf
dEGia, jb~E1 ih!, ~41!

whereQ(x) is the step function. Thus we see that to obtain
the density matrix, we need the off-diagonal matrix elements
of the Green’s function. BOP is a method for evaluating
these within a moments framework.

Since we know how to evaluate the diagonal matrix ele-
ments of the Green’s function, we could evaluate the off-
diagonal ones also if we could transform the off-diagonal
problem into a diagonal one. There is a simple way to do
this. Consider the statesu1&5 (1/A2) (u ia&1u jb&) ~a bond-
ing state! and u2&5 (1/A2) (u ia&2u jb&) ~an antibonding
state!. We can easily calculateG11(Z)5^1uĜ(Z)u1& and
G22(Z)5^2uĜ(Z)u2& using recursion. If we expand out
the bonding and antibonding states in terms of the atomic
states, and then take the difference betweenG11(Z) and
G22(Z), we obtain the following expression for the off-
diagonal Green’s function:

Gia, jb~Z!5
1

2
@G11~Z!2G22~Z!#. ~42!

This expression can be considered the central one for BOP.
The developments that follow can be considered variations
on this theme.

The bond order (Q ia, jb) is defined by

Q ia, jb52r ia, jb ~ iÞ j !. ~43!

The factor of 2 is a result of spin degeneracy. Combining
Eqs.~41!, ~42!, and~43! we get

Q ia, jb52
1

p
lim
h→0

ImEEf
dE@G11~E1 ih!2G22~E1 ih!#

5
1

2
@N12N2#, ~44!

whereN1 andN2 are the number of electrons in the bond-
ing and antibonding states. This provides us with a simple
picture to illuminate what is meant by a bond order~and
hence density matrix!. This can be illustrated by the
s-valent dimer. Eachs-valent atom is assumed to have one
s orbital, which we shall labelu1& and u2&. The TB Hamil-
tonian matrix for the dimer can then be written as

H5S « v

v « D , ~45!

where« is the on-site energy, andv is the hopping integral
between the two orbitals and is negative. On diagonalizing
this matrix we obtain two eigenstates, one of which is the
bonding state, and the other of which is the antibonding
state. The eigenstates areu1&5(u1&1u2&)/A2 and
u2&5(u1&2u2&)/A2. The eigenvalues aree15«2uvu and
e25«1uvu. Using Eqs.~41! and ~43! we easily find the
bond order for the dimer as a function of a number of elec-
tronsNdimer :

Q125H Ndimer

2
if Ndimer,2,

22
Ndimer

2
if 2,Ndimer,4.

~46!

In Fig. 3 we present the variation of the bond order and the
bond energy with the number of electrons as given by Eqs.
~44! and ~10!. The bond order has a maximum value of 1
when there are two electrons present, both in the bonding
state. This is also the point at which the bond is strongest.
The bond order is then seen to be a measure of the bond
charge density.

FIG. 3. The variation of the bond order~solid line! and the bond
energy~dashed line! as a function of band filling for thes-valent
dimer.
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VI. THE TWO-SITE BOND-ORDER POTENTIAL
EXPANSION

Although Eq. ~42! is formally exact, it is very slowly
convergent. That is, many levels are required in order to
obtain an accurate bond order. We now show how we may
obtain a more rapidly convergent expansion.3

Consider the following linear combination of atomic or-
bitals:

uU0
l&5

1

A2
@ u ia&1eiuu jb&], ~47!

whereu5cos21(l) and21<l<1. This choice is a simple
generalization of the bonding and antibonding orbitals used
in the preceding section. They are given byu1&5uU0

1& and
u2&5uU0

21&. The matrix element of the Green’s function
with respect to this state expands out to give

G00
l ~Z!5^U0

luĜ~Z!uU0
l&5

1

2
@^ iauĜ~Z!u ia&

1^ jbuĜ~Z!u jb&#1l^ iauĜ~Z!u jb&, ~48!

where to obtain the second term we have used the fact that
the tight-binding HamiltonianHia, jb is real and symmetric,
which follows from the choice of real atomic orbitals. The
off-diagonal elements of the Green’s function can now be
obtained by considering two values ofl:

Gia, jb~Z!5
G00

l1~Z!2G00
l2

l12l2
. ~49!

This is a straight generalization of Eq.~42!. In general, this
requires the use of two Green’s functions, and it is this that
leads to the poor convergence. However, by taking the limit
l1→l2 , we obtain the off-diagonal Green’s function as the
derivative of asingleGreen’s function:

Gia, jb~Z!5
]G00

l ~Z!

]l
. ~50!

Combining Eqs.~41!, ~43!, and~50! we get

Q ia, jb5
]Nl

]l
, ~51!

where

Nl52
2

p
lim
h→0

ImEEf
dEG00

l ~E1 ih!. ~52!

Nl is the number of electrons in the stateuU0
l&. Equation

~51! is similar to Eq.~44!, but gives better convergence.4

As was explained above, the diagonal Green’s function
may be written as a continued fraction@Eq. ~33!# and hence
the dependence ofG00

l (Z) on l is through the recursion co-
efficientsa0

l ,b1
l , . . . . Applying the chain rule for partial

differentiation to Eq.~50!, we obtain the following expres-
sion:

Gia, jb~Z!5 (
n50

` ]G00
l

]an
l dan

l1 (
n51

` ]G00
l

]bn
l dbn

l , ~53!

where

dan
l5

]an
l

]l
and dbn

l5
]bn

l

]l
. ~54!

Substituting Eqs.~53!, ~52!, ~39!, and~41! into Eq. ~43!, we
obtain the following exact series expansion for the bond or-
der:

Q ia, jb5 (
n50

`
]Nl

]an
l dan

l1 (
n51

`
]Nl

]bn
l dbn

l

522F (
n50

`

x0n,n0~Ef !dan
l

1 (
n51

`

x0~n21!,n0~Ef !2dbn
lG , ~55!

where the response functionsx0m,n0(Ef) are defined by

x0m,n0~Ef !5
1

p
lim
h→0

ImEEf
G0m

l ~E1 ih!Gn0
l ~E1 ih!dE

~56!

andG0m
l (Z) is calculated from Eq.~40!.

Let us take a look at the expansion for the bond order, to
understand what the terms mean. The expansion consists of
the sum of the product of two types of term: the response
functionsx0m,n0(Ef) and the derivatives of the recursion co-
efficientsdan

l anddbn
l . All the dependence of the bond or-

der on the number of electrons appears in the response func-
tions. However, they have a fairly weak dependence on
atomic coordination, whereas the derivatives of the recursion
coefficients are very sensitive to the local atomic arrange-
ment. This last point becomes apparent when the derivatives
of the recursion coefficients are expanded in terms of deriva-
tives with respect to moments:

dan
l5

]an
l

]l
5 (

r51

2n11 ]an
l

]ml
~r !

]ml
~r !

]l
5 (

r51

2n11 ]an
l

]ml
~r ! z ia, jb

~r11! ,

dbn
l5

]bn
l

]l
5(

r51

2n ]bn
l

]ml
~r !

]ml
~r !

]l
5(

r51

2n ]bn
l

]ml
~r ! z ia, jb

~r11! , ~57!

where ml
(r )5^U0

luĤr uU0
l& and z ia, jb

(r11)5^ iauĤr u jb&. The
quantitiesz ia, jb

(r11) are called interference terms~see Fig. 2 of
Ref. 3!, and are similar to moments, except that they link two
sites, rather than one. The derivatives of the first two recur-
sion coefficients are thus given by

da0
l5Hia, jb ,

db1
l5

1

2b1
l @z ia, jb

~3! 1a0
lHia, jb#, ~58!

where Eq.~35! has been inverted to find derivatives of the
recursion coefficients with respect to the moments. Thus, the
response functions determine to what extent each derivative
of the recursion coefficients does or does not contribute to
the bond order, based on band filling, and the derivatives of
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the recursion coefficients determine the dependence of the
bond order on atomic arrangement.

To illustrate the dependence of the response functions on
band filling, we now consider the case in which the recursion
coefficients have constant values:1 an50,bn5b. From Eq.
~40! we can easily find the off-diagonal Green’s function for
the constant linear chain:

G0n~Z!5
1

b
ei ~n11!u, ~59!

whereu is defined by cos(u)5(Z2a)/(2b). We can then write
analytic expressions for both the number of electrons and the
response functions as a function of the Fermi energy with the
use of Eq.~56!:

N5
2f f

p F12
sin~2f f !

2f f
G

bx0m,n0~Ef !5
1

p Fsin„~m1n11!f f…

m1n11

2
sin„~m1n13!f f…

m1n13 G , ~60!

where cos(ff)5Ef /(2b). There are two important features of
the response functions that can be seen from Fig. 4. The first
is that a new node appears for each new response function,
and the second is that the amplitudes decay with increasing
order. It can be seen from Eq.~60! that the amplitude decays
as

x0m,n0~Ef !'
2

~m1n12!2
@sin„~m1n12!f f…

2~m1n12!f f #}
2f f

m1n12

with increasingm1n.

VII. CONNECTION WITH EMPIRICAL POTENTIALS

We will now show how the lowest-order term in the BOP
expansion for systems containings andp orbitals allows us
to derive in a systematic manner2 a potential with properties
very similar to those of the empirical potential of Tersoff.47

The individual contribution of the bond joining sitesi and
j to the bond energyUbond is

Ui , j52(
a,b

Q ia, jbHjb,ia . ~61!

By rotating the axes such that the quantization axis lies along
the bond, and by making the assumption that
Vsps(r i j )5AuVsss(r i j )uVpps(r i j ), the 232 s block of the
Hamiltonian matrix linking the two sites may be diagonal-
ized with diagonal elements ofVsss(r i , j )2Vpps(r i j ) and 0,
respectively.2 The energy of the bond thus reduces to the
form

Ui , j5@Vsss~r i j !2Vpps~r i j !#Q is, js12Vppp~r i j !Q ip, jp ,
~62!

where the normalized orbitalsu is& and u js& are defined by

u is&5@AuVsss~r i j !uu is&

1AVpps~r i j !u iz&]/AuVsss~r i j !u1Vpps~r i j !,

u js&5@AuVsss~r i j !uu js&

2AVpps~r i j !u jz&]/AuVsss~r i j !u1Vpps~r i j !,

~63!

andQ ip, jp5 1
2 @Q ipx , jpx

1Q ipy , jpy
#. From Eq.~55! the bond

order may be written to lowest order as

Q ia, jb522x̂00,00~Ef !
Hia, jb

b1
, ~64!

where x̂00,00 is the normalized response function,b1x̂00,00
@see Eq.~60!#. Sinceb5b1 is given by the second moment
@see Eq.~35!# we can write thes andp bond orders explic-
itly as

Q is, js5
22x̂00,00~Ef !His, js

A1

2
~m is

~2!1m js
~2!!

,

Q ip, jp5
22x̂00,00~Ef !Hip, jp

A1

2
~m ip

~2!1m jp
~2!!

, ~65!

where m ip
(2)5 1

2 (m ipx
(2)1m ipy

(2)), m jp
(2)5 1

2 (m jpx
(2)1m jpy

(2)),

m is
(2)5^ isuĤ2u is&, and m js

(2)5^ jsuĤ2u js&. The moments
can be evaluated explicitly in terms of hopping integrals and
bond angles, giving

FIG. 4. The variation of the first few response functions for the
simple constant linear chain model as a function of band filling. The
number of nodes increases and the amplitude decreases as the order
of the response function increases.
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m js
~2!5 (

kÞ i , j
@Vsss~r jk!2Vpps~r jk!#

2gs~u!1@Vsss~r i j !

2Vpps~r i j !#
2,

m jp
~2!5 (

kÞ i , j
Vppp
2 ~r jk!gp~u!1Vppp

2 ~r i j !, ~66!

where the angular functions have the formgs(u)
5ã1b̃cosu1c̃cos2u and gp(u)5d̃1ẽcos2u, and ã, b̃, c̃,
d̃ , and ẽ are constants given by ratios of the hopping
integrals.2

The angular functionsgs(u) andgp(u) are shown in Fig.
5 using the Goodwinet al. parameter set for silicon.20 The
angular dependence of the empirical potential of Tersoff47 is
also plotted alongsidegs(u) in Fig. 5 for comparison. For
the s term there is remarkable agreement, which explains
why the potential of Tersoff is successful. However, we also
note that the potential of Tersoff does not include thep
bonding contribution.

From Fig. 5 we see that thes bond angular function is
small ~less than 0.1! for all bond anglesu.100° and has a
minimum around 130°. Thus, atoms may be added which
create bond angles in the range 100°–180° without greatly
affecting the strength of the originals bond ~it can remain
saturated!. Thep bond, on the other hand, shows completely
different behavior. Its angular function is an order of magni-
tude larger thangs at its maximum which occurs at 90°.
Thus, any neighbor will drastically reduce the strength of the
original p bond by making it unsaturated. This is consistent
with the fact that thep bond has lobes extending perpen-
dicular to the bond axis.

VIII. PROBLEMS WITH THE TWO-SITE FORMALISM

It should be noted that the second-moment approximation
used to derive this potential has limitations. For instance, it is
unable to produce the buckling of dimers on the~100! sur-
face of silicon22 stabilized by a Jahn-Teller distortion. Fur-
ther, it does not reproduce the correct structural energy dif-
ference between diamond, simple cubic, and face centered
cubic structures.9 Thus we need to add more moments. Un-
fortunately, adding more moments introduces its own prob-
lems. For simulations involving forces we need the deriva-
tives of the energy. In the second-moment approximation we

can do this explicitly. As more moments are added, this rap-
idly ceases to be an option, and so we must exploit the
Hellmann-Feynman theorem@see Eq. ~11!#. For the
Hellmann-Feynman forces to be equal to the numerical de-
rivatives of the energy, a very high level of convergence for
the bond orders is needed. Thus, the question of improving
the energy convergence cannot be addressed without also
considering force convergence, and thus they will both be
considered from here on.~In Appendix B an alternative
approach59 is described in which the energy can always be
exactly differentiated. However, the price that has to be paid
is that the energy convergence is slower.!

Although the two-site BOP expansion that has just been
derived gives rather better convergence than Eq.~42!, it has
two definite shortcomings: the promotion energy~a single-
site quantity! is not easily defined in a consistent manner
with the bond energy, and the convergence of the bond en-
ergy as compared with single-site recursion is worse than for
single site recursion~see Fig. 6!, most especially for close
packed metals. As was discussed above, when more mo-
ments need to be added to improve energy convergence,
moving to complete convergence becomes essential for the
forces. Thus there is a strong motivation to improve the con-
vergence still more. Both of these considerations point to the
need to reformulate BOP in such a way that it operates one
site at a time. This we now do. The price we have to pay,
though, is an increase in complexity of the algebra, which
requires the introduction of anauxiliary space.

IX. AUXILIARY SPACE

To formulate BOP one site at a time we need a simple
generalization of the procedure used in Sec. VI: that is, we
get Gia, jb(Z) by differentiatingG00(Z) with respect to an
infinitesimal parameterL ia, jb analogous to the parameterl
used in the two-site formalism.8 To do this for all bonds in a
system we have to assign a factor to every orbital on each
site, analogous to the exp(iu) used in the two-site formalism.
The list of these factors can be viewed as a vector. The set of
these lists we call theauxiliary vector space. This auxiliary
space has nothing to do with the physical wave functions

FIG. 5. The angular character of thes and p bonds for an
sp-bonded system within the second moment approximation. The
predicteds bond behavior from BOP~full curve! is compared to
that from the empirical Tersoff potential~dashed curve!.

FIG. 6. The bond energy for silicon as a function of the number
of recursion levels found using two-site BOP~open symbols!, and
single-site recursion~filled symbols!. The exact results are repre-
sented by the horizontal lines without symbols.
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constructed from the on-site atomic orbitals and, hence, the
Hamiltonian does not operate on it. The formalism also al-
lows us to find out the importantsum rulesfor the Green’s
functions and formulate a numerically stable computational
scheme.

We set the following rules for the auxiliary space. It is a
vector space, spanned by the orthonormal unit vectorsuen

0).
Thus

~en
0uen8

0
!5dn,n8. ~67!

All other vectors in this space can be represented as a linear
combination of these vectors. In particular, in order to for-
mulate a single-site version of BOP we will need to consider
the following vectors:

ueia
L )5(

n
Eia,n

L uen
0). ~68!

The inner product between two of these vectors is given by

~ejb
L ueia

L !5 (
n,n8

~en
0u@Ejb,n

L #*Eia,n8
L uen8

0
!5(

n
@Ejb,n

L #*Eia,n
L

5L jb,ia . ~69!

Note thatL jb,ia has no physical meaning. It just allows us to
label bonds between atomic orbitals.

As the single particle HamiltonianĤ does not operate in
this space,Ĥueia

L )5ueia
L )Ĥ. Consider the following expres-

sion: (eia
L uĤuejb

L ). Using Eq. ~69!, this simplifies to
L ia, jbĤ. Similarly, if we consider some function of the
Hamiltonian f (Ĥ), then we will have the corresponding re-
sult „eia

L u f (Ĥ)uejb
L
…5L ia, jb f (Ĥ).

The auxiliary space will always appear in conjunction
with the atomic orbitalsu ia& used to expand the eigenstates
of the Hamiltonian. Let matrix elements of the functionf of
the Hamiltonian be given byf ia, jb5^ iau f (Ĥ)u jb&. We can
now evaluate the following useful matrix element:

„eia
L z^ iau f ~Ĥ !u jb& zejb

L
…5L ia, jb f ia, jb . ~70!

For the derivation of the one-site BOP expansion, we will
use composite vectors of the form

uW0
L%5(

ia
ueia

L )u ia&. ~71!

This is a logical extension of the vectoruU0
l&

5@ u ia&1exp(iu)ujb&]/A2 used to derive the two center BOP
expansion. Expectation values of functions of the Hamil-
tonian with respect to this composite vector are given by

$W0
Lu f ~Ĥ !uW0

L%

$W0
LuW0

L%
5

(
ia, jb

„eia
L z^ iau f ~Ĥ !u jb& zejb

L
…

(
ia, jb

~eia
L z^ iau jb& zejb

L !

5

(
ia, jb

L ia, jb f ia, jb

(
ia

L ia,ia

, ~72!

where use has been made of Eq.~70!.

X. THE SINGLE-SITE BOND-ORDER POTENTIAL
EXPANSION

Following Eq.~72!, we can define the following Green’s
function:

G00
L ~Z!5

$W0
LuĜ~Z!uW0

L%

$W0
LuW0

L%
5

(
ia, jb

Gia, jb~Z!L ia, jb

(
ia

L ia,ia

.

~73!

By direct analogy with Eq.~50!, we differentiate this Green’s
function with respect to the parametersL ia, jb to obtain

Gia, jb~Z!5
]G00

L ~Z!

]L ia, jb
1G00

L ~Z!d i , jda,b , ~74!

where we have now taken( iaL ia,ia51 ~that is, the compos-
ite vector is normalized to 1!. This expression is a much
more general one than the two-site one, though the two-site
one can be derived from it as a special case.

The sole reason for introducing the extra complications of
this more general formalism is so that we can work one site
at a time. IfL jb,kg5d i , jd i ,kda,bda,g , then from Eq.~73! we
haveG00

L (Z)5Gia,ia(Z). Thus we obtain a single-site quan-
tity, which we know gives rapid energy convergence even
for close packed metals, and which allows the promotion
energy to be defined in a way that is completely consistent
with the bond energy@see Eq.~21!#. Note that we need a
separateL for every orbital in the system in order to calcu-
late the energies in a strictly single-site manner. This can be
reduced by using averaged moments as described at the end
of this section. The problem now is how to obtain the bond
orders. The solution is to use

L jb,kg5d i , jd i ,kda,bda,g1h jb,kg , ~75!

wherei is the site whose energy is to be evaluated,a is the
index for the orbitals on that site, andh jb,kg is an infinitesi-
mal quantity. This allows us to keepG00

L (Z) as a single-site
quantity, while still enabling us to differentiate it to obtain
the off-diagonal matrix elements of the Green’s function.
This is a purely formal result. We never need know the val-
ues ofh jb,kg .

ClearlyG00
L (Z) can be expressed in terms of the contin-

ued fraction given in Eq.~33!, thus Eq.~74! can be cast in
the form of Eq.~53!:

Gia, jb~Z!5 (
n50

`

G0n
L ~Z!Gn0

L ~Z!
]an

L

]L ia, jb

12(
n51

`

G0~n21!
L ~Z!Gn0

L ~Z!
]bn

L

]L ia, jb

1G00
L ~Z!d i , jda,b . ~76!

Hence the expansion for the bond order can be cast in a form
essentially identical with Eq.~55!:

Q ia, jb522F (
n50

`

x0n,n0
L

]an
L

]L ia, jb
12(

n51

`

x0~n21!,n0
L

]bn
L

]L ia, jb
G ,

~77!

wherex0m,n0
L is calculated from Eq.~56!.
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We now have to describe the procedure for evaluating the
derivatives of the recursion coefficients. This is rather in-
volved, and will require consideration of the new formalism
in its full generality. The final result, though, is quite simple
and can be evaluated in a stable manner.

The starting point is a simple generalization of the Lanc-
zos algorithm to the compound vectors. The new recurrence
relation is

ĤuWn
L%5an

LuWn
L%1bn

LuWn21
L %1bn11

L uWn11
L %, ~78!

with the condition

$Wn
LuWm

L%5dm,n . ~79!

The Green’s functionG00
L (Z) is given by the usual continued

fraction, but with the recursion coefficients given by Eq.
~78!.

Let us define the orthogonal polynomialsPn
L(x):

xPn
L~x!5bn

LPn21
L ~x!1an

LPn
L~x!1bn11

L Pn11
L ~x!, ~80!

with P21
L (x)50 andP0

L(x)51. The new recursion vectors
can be written as

uWn
L%5Pn

L~Ĥ !uW0
L%5(

ia
Pn

L~Ĥ !u ia&ueia
L ). ~81!

Hence the recursion coefficients and orthonormality condi-
tion can be written as:

dm,n5$Wm
LuWn

L%5 (
ia, jb

^ iauPm
L~Ĥ !Pn

L~Ĥ !u jb&L ia, jb ,

an
L5$Wn

LuĤuWn
L%5 (

ia, jb
^ iauPn

L~Ĥ !ĤPn
L~Ĥ !u jb&L ia, jb ,

bn
L5$Wn21

L uĤuWn
L%

5 (
ia, jb

^ iauPn21
L ~Ĥ !ĤPn

L~Ĥ !u jb&L ia, jb . ~82!

If we now define theO matrix, which is given by

Oia, jb
L,m,n5^ iauPm

L~Ĥ !Pn
L~Ĥ !u jb&, ~83!

then we can write the derivatives of Eqs.~82! as

05Oia, jb
L,m,n1HW0

LU ]Pm
L~Ĥ !

]L ia, jb
Pn

L~Ĥ !UW0
LJ ~84!

1HW0
LUPm

L~Ĥ !
]Pn

L~Ĥ !

]L ia, jb
UW0

LJ ,
]an

L

]L ia, jb
5^ iauPn

L~Ĥ !ĤPn
L~Ĥ !u jb&

12HW0
LU ]Pn

L~Ĥ !

]L ia, jb
ĤPn

L~Ĥ !UW0
LJ ,

]bn
L

]L ia, jb
5^ iauPn21

L ~Ĥ !ĤPn
L~Ĥ !u jb&

1HW0
LU ]Pn21

L ~Ĥ !

]L ia, jb
ĤPn

L~Ĥ !UW0
LJ

1HW0
LUPn21

L ~Ĥ !Ĥ
]Pn

L~Ĥ !

]L ia, jb
UW0

LJ .
Since]Pn

L(x)/]L ia, jb is a polynomial of order less than or
equal tom, it can be expressed as a linear combination of
polynomialsPr

L(x), with r<m. Consequently, the orthonor-
mality condition given in Eq.~82! implies

HW0
LU ]Pm

L~Ĥ !

]L ia, jb
Pn

L~Ĥ !UW0
LJ 50 ~ if m,n!. ~85!

Using Eq.~80! to eliminateĤ in Eq. ~84!, and then substi-
tuting in Eqs.~83! and ~85!, we get

]an
L

]L ia, jb
5bn11

L Oia, jb
L,n11,n2bn

LOia, jb
L,n,n21 ,

2
]bn

L

]L ia, jb
5bn

L~Oia, jb
L,n,n2Oia, jb

L,n21,n21!. ~86!

Thus we have produced a simple final result for the de-
rivatives of the recursion coefficients. We now give the al-
gorithm for evaluating the derivatives in a stable manner.
From the identity

^ iauPm21
L ~Ĥ !„ĤPn

L~Ĥ !…u jb&

5^ iau„Pm21
L ~Ĥ !Ĥ…Pn

L~Ĥ !u jb&, ~87!

we obtain the following recursive relation for theO matrix:

bm
LOia, jb

L,m,n1am21
L Oia, jb

L,m21,n1bm21
L Oia, jb

L,m22,n

5bn11
L Oia, jb

L,m21,n111an
LOia, jb

L,m21,n1bn
LOia, jb

L,m21,n21 .

~88!

To apply this recursion relation, we need a set of starting
matrices. The most natural choice isOia, jb

L,n,0

5(ejbu^ iauWn
L%. However, to generateOia, jb

L,n,n , we need
starting matrices up toOia, jb

L,2n,0 . This means that extra vectors
uWn

L% must be generated. This can be done using Eq.~78!,
but with arbitrary values ofam

L andbm
L for m.n, since the

values of the derivatives of the recursion coefficients are in-
dependent of these values.

As mentioned earlier, it is often useful to use estimated
recursion coefficients after the exact ones, as this can lead to
greatly improved convergence. The square root terminator of
Eq. ~36! is generally found to give greatly improved energy
convergence~though for strongly covalent systems we will
not use it as many levels are needed to achieve force conver-
gence, and it is no longer useful!. This raises the question of
how we can evaluate the derivatives of the estimated recur-
sion coefficients, which we need for the BOP expansion. The
answer is that we cannot evaluate the derivatives exactly, but
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we can make some guesses, and constrain them by sum rules
to make sure certain properties are maintained.

There are two important sum rules5,6 that follow from Eq.
~86! that ensure that the two expressions for the bond energy
@Eqs.~13! and ~21!# give the same results. This equivalence
corresponds to the following equation for the Green’s func-
tion:

15^ iau~Z2Ĥ !Ĝ~Z!u ia&

5ZGia,ia~Z!2(
jb

Hia, jbGjb,ia~Z!. ~89!

To use this for studying sum rules, we need the equivalent
expression forG00

L (Z), namely

15$W0
Lu~Z2Ĥ !Ĝ~Z!uW0

L%

5ZG00
L ~Z!2 (

ia, jb
L ia, jb(

kg
Hia,kgGkg, jb~Z!

5ZG00
L ~Z!2 (

ia, jb
L ia, jb(

kg
Hia,kg

3F (
n50

`

G0n
L ~Z!Gn0

L ~Z!
]an

L

]Lkg, jb

12(
n51

`

G0~n21!
L ~Z!Gn0

L ~Z!
]bn

L

]Lkg, jb
1G00

L ~Z!dk, jdg,bG ,
~90!

where we have substitutedGkg, jb(Z) from Eq. ~76! in the
square brackets. With the use of Eqs.~86! and~82! we obtain
immediately the first sum rule:

(
ia, jb

]an
L

]L ia, jb
L ia, jb5bn11

L $Wn11
L uWn

L%2bn
L$Wn

LuWn21
L %50,

(
ia, jb

]bn
L

]L ia, jb
L ia, jb50. ~91!

This just ensures that the expansion for the bond order does
not contribute to the on-site term. The second sum rule
@which also follows from Eqs.~86! and ~82!# is

(
ia, jb,kg

]an
L

]L ia,kg
L ia, jbHkg, jb5~bn11

L !22~bn
L!2,

(
ia, jb,kg

2
]bn

L

]L ia,kg
L ia, jbHkg, jb5bn

L@an
L2an21

L #. ~92!

Applying this sum rule to Eq.~90! we get

15~Z2a0
L!G00

L ~Z!2 (
n50

`

G0n
L ~Z!Gn0

L ~Z!@~bn11
L !22~bn

L!2#

2 (
n51

`

G0n
L ~Z!G~n21!0

L ~Z!bn
L@an

L2an21
L #. ~93!

This is an identity. Thus the on-site and intersite expressions
for the bond energy are guaranteed to be equal at any level of
approximation.

We are now in a position to evaluate the estimated deriva-
tives of the terminating recursion coefficients. Assuming that
we are using the square root terminator, the right hand sides
of the first two sum rules@Eqs. ~91! and ~92!# are zero for
n>N11 for the derivatives ofan

L , and forn>N12 for the
derivatives ofbn

L . Thus the simplest assumption is that the
derivatives of the recursion coefficients are zero under these
conditions, which makes the sums in Eq.~77! finite. Thus we
need only find expressions for]aN

L/]L ia, jb and
]bN11

L /]L ia, jb . If we assume that bothOia, jb
L,N11,N and

Oia, jb
L,N11,N11 are linear in]a0

L/]L ia, jb , then we obtain the
following expressions by requiring that Eqs.~91! and~92! be
satisfied:

]aN
L

]L ia, jb
5S b`

L

b1
LD 2 ]a0

L

]L ia, jb
2bN

LOia, jb
L,N,N21 ,

2
]bN11

L

]L ia, jb
5b`

Ld i , jda,b1
b`

L~a`
L2a0

L!

~b1
L!2

]a0
L

]L ia, jb
2b`

LOia, jb
L,N,N .

~94!

The energy convergence is now given by the single-site re-
sults in Fig. 6.

As formulated so far, BOP is not guaranteed to be rota-
tionally invariant. That is, if the energy of a crystal is evalu-
ated with the crystal oriented one way, and then evaluated
again after it has been rotated, there is no guarantee that the
two energies will be the same.60 There is a way of overcom-
ing this, which is to work with moments that involve traces
over the magnetic quantum number (m) for a given angular
momentuml . That is, we work with quantities of the form

m i l
~n!5

1

2l11 (
m52 l

l

^ i lmuĤnu i lm&. ~95!

These are rotationally invariant, thus the recursion coeffi-
cients and the Green’s function matrix element generated
from them are rotationally invariant.

In many TB simulations, local charge neutrality~LCN! is
imposed as the simplest form of self-consistency.14 Within
the BOP scheme, this can be applied very efficiently since
we know the response functions. If the excess charge on site
i is Qi , then a good estimate of the shift that should be
applied to the on-site energies is

D i52Qi /Xi , ~96!

where Xi522(ax00,00
L , since 22x00,00

L 5]NL/]a0
L , and

a0
L5« ia . Using this prescription, usually no more than three
or four iterations are needed to achieve convergence.

XI. CONVERGENCE AND FINITE ELECTRON
TEMPERATURE

Here we note a general way of accelerating the rate of
convergence of the energy and~more importantly! the forces,
though at the cost of some loss of accuracy, and demonstrate
the convergence with results from molecular-dynamics simu-
lations for silicon.
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An increased rate of convergence can always be achieved
by giving the electrons a finite temperature. This has the
effect of reducing the range of the density matrix,38 which
means that fewer moments are necessary to describe it. In-
troducing a finite temperature for the electrons means that
the electrons occupy single particle states according to the
Fermi-Dirac distribution.53 That is,

Uband~T!52(
n

e~n! f ~x~n!!52E dEntotal~E! f ~x!,

~97!

where x(n)5(e (n)2m)/(kBT), x5(E2m)/(kBT), m is the
chemical potential,kB is Boltzmann’s constant,T is the elec-
tron temperature, andf (x)51/(11ex). Because electrons
with energies near the chemical potential are free to move
between states, there is an entropy term@Sband(T)# which
must be added to the band energy to produce a band free
energy@Aband(T)#:

Aband~T!5Uband~T!2TSband~T!,

Sband~T!522kB(
n

@ f ~x~n!!ln„f ~x~n!!…

1„12 f ~x~n!!…ln„12 f ~x~n!!…#

522kBE dEntotal~E!s~x!, ~98!

where s(x)5@ f (x)ln„f (x)…1„12 f (x)…ln„12 f (x)…#. The
band energy and the forces@defined now as the negative
gradient of the band free energyAband(T)# are still given by
the compact expressions of Eq.~13!. It is interesting to note
that the force expressionincludesthe electron entropy con-
tribution, provided the forces are evaluated at a constant
number of electrons. The definition of the density matrix,
however, is slightly changed, and is now given by

r ia, jb~T!5(
n

Cia
~n!Cjb

~n! f ~x~n!!

52
1

p
lim
h→0

ImE dEGia, jb~E1 ih! f ~x!. ~99!

Thus introducing finite electron temperature into BOP is
straightforward. The entropy term has to be introduced, and
integrals up to the Fermi energy are now replaced by inte-
grals over all energy but with the Fermi function included as
part of the integrand. The formalism for calculating the inte-
grals is given in Appendix A.

To make explicit the reason for the increased rate of con-
vergence when finite electron temperature is introduced, we
shall look at the integrals for the response functions:

x0m,n0
L ~T!5

1

p
lim
h→0

ImE G0m
L ~E1 ih!Gn0

L ~E1 ih! f ~x!dE.

~100!

Let us define the quantity

gmn
L ~E!5

1

p
lim
h→0

Im$G0m
L ~E1 ih!Gn0

L ~E1 ih!%. ~101!

The response functions are then given by

x0m,n0
L ~T!5E gmn

L ~E! f ~x!dE. ~102!

We saw earlier ~for the constant linear chain! that
x0m,n0

L (T50) hasn1m nodes in it. Thusgnm
L (E) will have

n1m11 nodes in it. So for a band of widthW, the period of
oscillation is about 2W/(n1m11)'W/n ~asun2mu<1 for
the response functions used in the BOP expansion!. We can
rewrite Eq.~102! in the following way to allow us to make
use of this fact:

x0m,n0
L ~T!5E

2`

m

dE8E
2`

`

dEgmn
L ~E!S 21

kBT
D f 8SE2E8

kBT
D .

~103!

The function f 8(E2E8/kBT) is a peaked function with a
width of order 4kBT. Thus the inner integralaverages
gmn

L (E) over an energy range of 4kBT. This average will go
to zero when the energy range over which the averaging is
taking place is of the same order as the period of oscillation,
which is when 4kBT'W/n. Thus the number of levels
needed to reach convergence is given bynmax'W/(4kBT).
IncreasingT thus reduces the value ofnmax. Since adding
one extra recursion level involves adding another shell to the
cluster, introducing finite electron temperature has the effect
of limiting the size of the cluster that needs to be considered.
This is equivalent to saying that the range of the density
matrix is reduced. The increased rate of convergence for the
linear chain can be seen in Fig. 7.

To test the degree of consistency between the energy and
the forces, molecular-dynamics simulations have been per-
formed for crystalline silicon with a real temperature of 500
K. If the forces on the atoms are all equal to the derivatives
of the energy with respect to the atomic positions, then the
total energy of the unit cell will be a constant as a function of
time. One of the sources of the lack of consistency between
the forces and the energy is the errors present in the approxi-
mations made for the derivatives of the terminating recursion

FIG. 7. The variation of convergence with electron temperature
for the response functions for the semi-infinite constant linear chain
with hopping integralb. t5pkBT/(2ubu).
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coefficients. In the limit of a large number of exact coeffi-
cients or large electron temperature, these errors become un-
important.

For all the simulations, five levels of recursion and a
square root terminator are used. The degree of force conver-
gence is then controlled by the electron temperature. This is
an adequate approach for molecular dynamics, and makes
rapid simulations possible. However, if careful static calcu-
lations need to be performed that depend on the fine details
of the electronic structure@for example, to obtain the buck-
ling of the dimers at the~100! surface of Si#, then a different
approach is necessary. Thermal smearing is no longer ac-
ceptable since it averages out fine structure in the density of
states, for which many moments are required. However, the
short range of the density matrix for semiconductors and
insulators means that we can take the moments inside a small
cluster, rather than allowing the cluster to expand, making
this approach computationally efficient. In Fig. 8 is shown
the convergence of the cohesive energy for bulk silicon in
the diamond structure, and the formation energy for an un-
relaxed vacancy, using this approach. A cluster that allows
the first five levels to be evaluated exactly has been used.

Good convergence is found for both quantities. The details
of this approach, and a more complete survey of the conver-
gence properties of BOP with respect to number of levels,
are given elsewhere.11

In Fig. 9 the energy as a function of time is given for
crystalline silicon at 500 K using electron temperatures of
0.1 eV and 1.0 eV. For both temperatures the energy is con-
served very well, though there is a slight improvement on
going from 0.1 eV to 1.0 eV. We have repeated the simula-
tions with a vacancy present~so that there are undercoordi-
nated Si atoms present, which lead to narrow features in the

FIG. 8. The convergence of~a! the cohesive energy of bulk Si in
the diamond structure, and~b! the formation energy of an unrelaxed
vacancy, with respect to the number of levels used, for the case
where a cluster of fixed size and no terminator is used. The size of
the cluster is chosen to give the first five levels exactly.

FIG. 9. The variation of the band structure~potential! energy,
ionic kinetic energy, and total energy of a unit cell as a function of
time for crystalline silicon at 500 K. In panel~a! the results are for
an electron temperature of 0.1 eV, and in panel~b! they are for an
electron temperature of 1.0 eV.

FIG. 10. In panel~a! is shown the variation of the total energy
of a unit cell as a function of time for liquid silicon at 3000 K. The
solid line is for an electron temperature of 0.3 eV, and the dashed
line is for an electron temperature of 1.0 eV. In panel~b! is shown
the pair correlation function for the two electron temperatures. The
same line style convention is used as for panel~a!.
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density of states!. Slightly greater fluctuations in the total
energy are found, but the convergence is still good.

The final set of simulations was on silicon at 3000 K. At
this temperature it is a liquid. Five levels and a square root
terminator were again used, and in Fig. 10 the energy as a
function of time is shown forkBT50.3 eV andkBT51.0 eV,
as is the angular correlation function. The energy is not well
conserved at the lower electron temperature~there is a sys-
tematic upward drift!. However, raising the electron tem-
perature to 1.0 eV leads to better energy conservation. Rais-
ing the temperature still further would improve the
conservation of energy even more, but will eventually
change the dynamics considerably. Thus it is better to add
more moments if better conservation is needed. The angular
correlation is also found to give better agreement with other
calculations at the higher electron temperature.28

XII. THE IMPLEMENTATION OF BOND-ORDER
POTENTIALS ON PARALLEL COMPUTERS

Parallel computation, in which a number of processors are
employed simultaneously on a single problem, offers dra-
matic possibilities for performing large-scale and/or long-
time atomistic molecular-dynamics simulations.61 The BOP
scheme described in this paper is naturally parallelizable
since the evaluation of moments and recursion coefficients
may be performedone site at a timeindependently. We have
adopted a spatial decomposition strategy to parallelization62

in which each processor of the parallel machine is assigned a
region of real space within the simulation cell. Each proces-
sor is then responsible for calculating the energy of, and
forces on, only those atoms within its assigned spatial region.
A small amount of interprocessor communication is required
in order to determine the global Fermi energy and in the
evaluation of interatomic forces. In the latter case this is
because an atom which resides near the boundary of a node’s
spatial region can exert a force on an atom calculated by a
neighboring node. However, the overhead of these commu-
nications is small compared to the time taken to evaluate the

recursion coefficients. The scaleability of the algorithm is
demonstrated in Fig. 11, which shows the time required to
evaluate the energy and forces of a 768 silicon-atom dia-
mond cell as a function of the number of processors. A near
ideal scaling is observed.

XIII. CONCLUSION

The bond-order potential is a numerically efficient
scheme that works within the orthogonal tight binding
framework. It allows the evaluation of the bond and promo-
tion energies, and the corresponding forces, to be evaluated
in a time which scales linearly with the number of particles
for a given accuracy. It is a naturally parallel method, giving
essentially ideal scaling of time with respect to the number
of nodes on a parallel machine.

The details of the theory needed to derive both two-site
and one-site BOP, and to implement one-site BOP as a com-
puter code, has been given in a systematic manner. The fact
that BOP can be represented as a moments expansion allows
us to derive an expression for the bond energy that has the
same properties as the potential of Tersoff. This is one ex-
ample of how BOP can be used as an analytical tool to study
the origins of cohesion, as well as a computational tool.

The question of convergence is studied by means of
constant-energy molecular-dynamics simulations. The en-
ergy is found to be well conserved for crystalline and liquid
silicon, even with a low electron temperature of 0.1 eV in the
case of the solid.
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APPENDIX A

The calculation of energies and response functions at fi-
nite electron temperature requires integrals with the Fermi
function. This is customarily carried out in the complex
plane by summing up an infinite series over the Matsubara
poles.54 The convergence of this series is, however,very
slow. A much more efficient scheme55 is now described. It
should be noted that another scheme exists also.56

It is possible to accelerate considerably the Matsubara
summation by using the following approximant for the ex-
ponential function:

exp~Z!'S 11
Z

nD n ~A1!

which becomesexactas n tends to infinity. This gives the
following very useful representation for the Fermi function:

FIG. 11. The time taken to evaluate, in parallel, the energy and
forces of a 768 atom silicon cell as a function of the number of
processors. The benchmarks were performed on a cluster of
HP9000/735 workstations using five exact recursion levels and a
square root terminator.
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f ~E!5
1

exp„b~E2m!…11
'

1

S 11
b~E2m!

2M D 2M11

,

~A2!

whereb51/kBT, andm is the chemical potential. This ap-
proximation~which becomes exact in the limit of largeM )
has 2M simple poles (Ep) located on a circle in the complex
plane off the real axis

Ep5m1
2M

b
~zp21!,

zp5exp„ip~2p11!/2M …, p50,1, . . . ,2M21 ~A3!

with residuesRp52zp /b.
Now we can write the equation for the bond energy of

individual sites@see Eq.~21!# in the following simple form:

Ebond
ia 5

4

b
Re(

p50

M21

zp~Ep2« ia!Gia,ia~Ep!, ~A4!

whereG00
ia(Z)5^ iau(Z2Ĥ)21u ia&. Analogously, we obtain

the following expressions for the response functions@see Eq.
~101!# and the number of electrons:

x0m,n0
ia 52

2

b
Re(

p50

M21

zpG0m
ia ~Ep!Gn0

ia ~Ep!,

Nia5
4

b
Re(

p50

M21

zpG00
ia~Ep!. ~A5!

We find that typically 30 to 50 complex poles are enough to
achieve convergence within about 12 digits. The present
method is found to be much more stable than analytical
integration.57 Moreover, the method is very general and may
be used with any terminator, such as that which describes
band gaps.58

In the absence of any terminator, it is possible to perform
the integrals exactly. Lete I

L be an eigenvalue of the tridiago-
nal Hamiltonian matrix ($Wn

LuĤuWm
L%) formed from the re-

cursion coefficients, anduC I
L% be the corresponding eigen-

vector. Then we can write

Gnm
L ~Z!5(

I

$Wn
LuC I

L%$C I
LuWm

L%

Z2e I
L . ~A6!

The number of electrons, the band energy, and the entropy
are then given by

NL~T!52(
I

f ~xI
L!,

Uband
L ~T!52(

I
e I

L f ~xI
L!,

Sband
L ~T!52kB(

I
@ f ~xI

L!ln„f ~xI
L!…

1„12 f ~xI
L!…ln„12 f ~xI

L!…#, ~A7!

where xI
L5(e I

L2m)/(kBT). The response functions are
given by

xmn
L ~T!5(

I ,J
$W0

LuC I
L%$C I

LuWm
L%$Wn

LuCJ
L%$CJ

LuW0
L%

3F f ~xIL!2 f ~xJ
L!

e I
L2eJ

L G . ~A8!

APPENDIX B

The starting point for the exactly differentiable energy
approach is the free energy functional given by Eqs.~97! and
~98!:

Atot5Aband1Urep ,

Aband52E dEntot~E!@Ef~x!2kBTs~x!#. ~B1!

The chemical potentialm is found from the conservation of
the number of electronsNe :

Ne52E dE f~x!ntot~E!. ~B2!

The total density of states is found fromḠ00(Z), which is the
average single particle Green’s function for theentire sys-
tem:

ntot~E!52
2No

p
lim
h→0

Im$Ḡ00~E1 ih!%, ~B3!

whereNo is the total number of orbitals in the system. The
Green’s function is expressed by the continued fraction
given in Eq.~33!, and the square root terminator is used@see
Eq. ~36!#. The coefficientsās and b̄s are found from the
average moments (m̄ (s)) of the density of states@see Eq.
~35!#, where

m̄~s!5
1

No
(
ia

m ia
~s! . ~B4!

The equations used to compute the coefficientsās
and b̄s from the moments are as follows:

c0
051,

cj
s50 if j.s or j,0 or s,0,

b̄s11cj
s115cj21

s 2āscj
s2b̄scj

s21 ,

15(
j50

s

(
l50

s

cj
scl

sm̄~ j1 l !,

ās5(
j50

s

(
l50

s

cj
scl

sm̄~ j1 l11!,

b̄s5(
j50

s

(
l50

s21

cj
scl

s21m̄~ j1 l11!. ~B5!
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The quantitiescj
s are the coefficients for the expansion in

powers ofx of the orthogonal polynomialsPr(x) used in the
recursion algorithm.44

All the elements needed to construct the energy functional
are now defined. The forceFW k can be obtained by direct
differentiation of Eq.~B1!:

FW k52
1

2(iÞ j
f i j8 ~r i j !

]r i j

]rWk
1
2NokBT

p
lim
h→0

ImE dE@x f~x!

2s~x!#
]Ḡ00~E1 ih!

]rWk
. ~B6!

To obtain this equation, use has been made of the fact that
]Ne /]rWk50. The derivative of the Green’s function is given
by @see Eq.~38!#

]Ḡ00~Z!

]rWk
5(

s50

m

Ḡ0s~Z!Ḡs0~Z!
]ās

]rWk

12(
s51

m

Ḡ0s~Z!Ḡ~s21!0~Z!
]b̄s

]rWk
, ~B7!

where Ḡ0s(Z) is given by Eq.~40!. The derivatives of the
recursion coefficients can be obtained from Eq.~B5! in terms
of the derivatives of the moments:

]ās

]rWk
5b̄s11(

j50

s11

(
l50

s

cj
s11cl

s]m̄~ l1 j !

]rWk

2b̄s(
j50

s

(
l50

s21

cj
scl

s21 ]m̄~ l1 j !

]rWk
,

]b̄s

]rWk
5
b̄s
2 H (

j50

s

(
l50

s

cj
scl

s]m̄~ l1 j !

]rWk

2(
j50

s21

(
l50

s21

cj
s21cl

s21 ]m̄~ l1 j !

]rWk
J ,

]m̄~s!

]rWk
5

s

No
TrH Ĥs21

]Ĥ

]rWk
J . ~B8!

This completes the formalism for the forces.
For some simulations it is necessary to know the charges

on each site. These can be readily calculated from the local
densities of states for each site. To obtain the local densities
of states, we need the Green’s functions projected onto each
orbital @Gia,ia(Z)#. These can be obtained from Eqs.~76!
and ~B8! with rWk replaced by L ia,ia , where L ia, jb

51/Nod i , jda,b1h ia, jb and ]m̄ (s)/]L ia,ia5m ia
(s)

2m̄ (s).
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