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The background theory and the details required for implementation of bond-order potentials are presented in
a systematic fashion. The theory is anN)(implementation of tight binding that is naturally parallelizable.
Further, it is straightforward to show how the lowest-order approximation to the two-site expansion can
reproduce the Tersoff potential. The accuracy of the forces is demonstrated by means of constant-energy
molecular dynamics, for which the energy is found to be very well conserved. Thus, the method is both an
efficient computational method and a useful analytic tool for the atomistic simulation of materials.

I. INTRODUCTION into the nature of cohesion to be obtained, precisely because
of its simplicity 1® TB models have been applied successfully
In this paper, we present an approach to atomistic modeko metallic system&®~® semiconducting systentg;?® in-
ing based on the bond-order potentiBOP). It is designed cluding the liquid phas&/° and strongly covalent
to be a self-contained account of both the underlyingsystems32Thus we see that TB satisfies all three criteria
theories™'* and the technical details required to implementsufficiently well to be very interesting.
them as computer programs. The formalism contains math- The TB model involves the construction of a Hamiltonian
ematical methods with which readers may not be familiar, sanatrix, and the evaluation of the band energy and band
attention is given to explaining these methods in some detaiforces from it. The most computationally demanding part of
The motivation for developing the BOP scheme for at-any implementation of TB is extracting the band energy and
omistic modeling derives from the rapid growth of interest inforces from the Hamiltonian. The appropriate numerical
computer simulations at the level of the atom. Whereas it i¢echnique for performing this operation when a small num-
certainly true that other length scales are extremely imporber of atoms(fewer than 10Dis being considered is direct
tant (both mesoscopic and macroscopiand need to be diagonalization of the Hamiltonian matrix. However, the
treated in their own ways, phenomena observed at thedéme to perform this operation typically scales as the third
length scales can be strongly influenced by processes at tip@wer of the number of atoms in the unit cell. For periodic
atomic level. Atomistic computer simulations have an impor-systems, this statement has to be treated with caution. It is
tant role to play in bridging the gap between the atomic andnly true when oné point is being used. If mank points
longer length scale phenomena. are used, then the scaling is still cubic in the number of
There are three constraints that apply to successful conatoms for eaclk point, but the number df points needed to
puter models: they must be able to be implemented effiachieve a given level of accuracy scales as the inverse of the
ciently on a computer; they must be able to produce resultsumber of atoms. Thus the time to evaluate the energy and
that accurately reproduce observed experimental results; aridrces scales only as the square of the number of atoms in the
they should be able to be applied to a wide range of materialgnit cell when working at constant accuracy. However, this
under diverse conditions within a single framework. scaling is still disastrous for simulations of large numbers of
Satisfying all three criteria is an extremely demandingatoms. Thus it is necessary to find methods that can extract
task, and as yet to our knowledge no model exists that cathe useful information from the Hamiltonian matrix to a
claim to achieve this. However, it is straightforward to trans-given level of accuracy with a much better scaling, ideally
late these criteria into some basic decisions, which can thelinear scalingd O(N) methods.
be developed further. The third criterigthe single frame- Several ON) methods suitable for atomistic simulations
work) requires that we work with a quantum mechanicalbased on TB have been proposed recefitly>®3¢-4°They
model for electron motion, since the difference in propertiesare all methods for finding the density matrix, and are based
between materials derives from the different electron waven a variety of observations about electronic structure: the
functions. There is a variety of quantum mechanical methoddensity matrix is short ranged for systems with a band gap in
that are currently used ranging from very accurate manyhe density of states; the band energy is minimized by the
electronab initio methods, such as quantum Monte Carlo,correct density matrix; the density matrix at finite electron
through slightly less accurate single electaiminitio meth-  temperature can be written down explicitly as the Fermi
ods, such as the local density approximatit®A) to den-  function of the Hamiltonian; the density of states can be
sity functional theory(DFT),}? down to the semiempirical reconstructed efficiently from the moments of the Hamil-
methods, such as tight bindii@B).1>*In general, the more tonian. The way a method is constructed depends on which
accurate the method, the more computer intensive it is. Howebservation one begins with. For BOP, the view is taken that
ever, the computationally least intensive metli®B) offers  the mostflexible approach is to work with moment expan-
remarkable accuracfgiven its simplicity for many materi- sions for the densities of states. Working with moments also
als. Further, results obtained with it often allow clear insighthas the advantage that it allows an interpretation of elec-
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tronic structure in terms of atomic structur&**14>18yhich In TB the single particle eigenfunctions are assumed to be
makes it possible to form a direct connection between thigxpanded in a basis set that is an orthonormal seaeaf
approach and the potentials of Finnis and Sinffaand  atomiclike orbitalsi a), wherei is a site index andr is an
Tersoff#’ orbital index:

In the remainder of this paper we discuss in detail the
various elements that make up the bond-order potential. We |n):E C-(”)|ia> 4
begin with a quick survey of the TB model, deriving impor- o ¢ '
tant results that allow it to be applied to total energy calcu- . )
lations. Having introduced the concept of the density of!he error in the energy due to a lack of orthogonality be-
states, we show how it can be determined very efficientlfWeen orbitals is corrected in the pair potentite below.
from a moments description. We show how Green’s func- The Hamiltonian can be represented by the matrix
tions provide a very natural, and computationally stable, wayTia«.js Where
of obtaining densities of states from moments. To evaluate
forces we need the full density matrix. We present BOP as a Hiap=(i a||:||jﬂ>:f dF¢ia(F)|:|¢jg(F), (5)
method for evaluating the density matrix within a Green’s
function framework. Two versions of BOP are described:
two-site BOP and one-site BOP. It is possible to derive
Tersoff-like expression for the bond ordghe off-diagonal

whereH is the Hamiltonian operator, andl;,(r)={r|ic).
%he on-site elements of the matrix are given the symbols

€io(=Hisia). The intersite elements are determined using

part of the density matrixfrom just the first-order term of . o
the two-site BOP. However, this formulation cannot providethe tablgs of Slater and Kost:b""r.The important point is that
he matrix elements are not independent of one another, but

a good descrlptlon. of close pa_lcked ”f‘eta's’ and so we have gore related by symmetry. This means that the number of
develop the one-site formulation. This requires the use of an . X
o L . . . .._Integrals needed to define the matrix can be greatly reduced.
auxiliary space, which is explained in detail. The one-5|teFOr o atoms withs orbitals assianed to them there is. of
formulation is found to give good convergence. . 9 .
course, only one integralMg,). With two atoms &, and
a), one of which is assigned anorbital and the other a
orbital, there are three possible integral@;6|H|azpy),
There is already a sizeable literature concerning the use (ﬁals|H|a2py> and (a;s|H|a,p,)). However, by symmetry,
the TB model for total energy calculatiofs'**>*°*Here we  they can be reduced to one integralsf,) which corre-
just summarize the key elements that will be used in thesponds to the sphericalorbital overlapping g orbital end
development of BOP. on to form ao bond, multiplied by angular factors. If both
The model has its origins in the linear combination ofatoms havep orbitals assigned to them then there are
atomlclaorbnals(LCAO) method pioneered by Slater and nine possible integrals (41p,|/H|a,p,), (a1pxHlasp,),
Koster!? although, more recentf’, it has been justified by (a;pyH|aypy), etc). These can be reduced to twd,, ,
the Kohn-Sham formulation of the de.nsit'y functional theqrywhich corresponds to twp orbitals overlapping end_?g_end
of the electron ga¥: The central equation in the TB model is g form ac bond, andV,,,,, corresponding to twp orbitals

an effective single particle Schimger equation that is |ying parallel to one another to form = bond. Again these

II. TIGHT BINDING

solved self-consistently for the eigenstates: are multiplied by angular factors.
- R R Combining Eqs(2), (4), and(5) we obtain the following
Hy(M(r)=e™yM(r), matrix equation:
Snm= J dr(g™(n)* g™ (r), (1) ZB Hia,sClH =eMC(, (6)
J

wheree™ is an eigenvalue, ang™(r) is the corresponding whereC{V=(ia|n) and hence
eigenfunction. In operator notation, the same equations can

e wirten s > =2 (nlia)(ia|lm)=&yn. (7)
I:||n>=e(")|n>, la la
Note that because the atomic orbitals are real, the Hamil-
Snm={(NIM), (2)  tonian will be real, and the eigenvectd$ can always be

. . s e made real. This will be assumed from here on. The cohesive
where |n) is an eigenstate, ang(r)=(r|n) is the usual energy may then be written s
Schralinger wave function, and as such is the amplitude for

finding an electron in the neighborhood of the p(ﬁ'm/hen Ucon=Upandt Urep— Uatoms
it is in staten. The total electron density is therefore given 1
by =2 3 M+ 23 p(r) - 2 NETe,,  (8)
n(occ) 2|¢J i
p(N=2 > [y"(N)? (3 where(r;;) is a repulsive pair potential, ard?°™ is the

n(oco) occupancy of an atomic state in the free atom. The pair po-

where the factor 2 accounts for spin degeneracy. tential accounts for the repulsion of the ionic cores at short
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range. It has contributions from electrostatics, and from the@nal elements of the Hamiltonian are constants, and thus

repulsion of overlapping orbitals due to Pauli’'s principle. have zero derivative. The second is wHeoal charge neu-

Combining Egs(7) and(8) we get trality (LCN) is imposed, as in the tight binding bond
model* In this case, the conditioB ,[2p;, ;,—N2°™=0

1 is imposed on each site by varying the on-site energies. The
- (n) (n, — . L . ; .
Ucoh_znwc;  CiaHiajgCy B+2Z b(rij) splittings between on-site energies on each site are kept
dajp i#] .
fixed, but they are aIIowed to move together by an amount
2 atom_ Ag;. That is, 8|a—e O+ Ag, wheres,a) is an on-site en-
—2 Nig © ergy in some reference system. The promotion energy is then
given by
Using this equation, the band and atomic energies can be
repartitioned into bond and promotion energies: Ulﬁrco'\rln E (2010 ia— NEO™ g,
Upand— Yatoms= 2 CiHia i sClh Natemg.
band atoms n(oc%a,jﬁ ia,jB % i i ZZ [Zpia,ia—N?Ctvom](Si(g)‘FASi)
la
=2 > > CWciH,
1718 niloco e =2 [2pi0ia= Nl (14
+E 2> cimcim — natom| g, - Note that to obtain the final expression, use has been made of
ia | n(occ) the LCN condition. It is clear, then, that only the reference
_ (and hence environment independeah-site energies ap-
=Upondat Uprom- (10 pear in the promotion energy when LCN is imposed. Their

The bond energy contains only off-diagonal elements of thélerivatives with respect to atomic coordinates are zero.
Hamiltonian matrix, and the promotion energy contains only
on-site elements.

The forces on the atomsf() are obtained by differenti- ) ]
ating Eq.(9) with respect to atomic positions. Making use of  For all that follows the concept of thigensity of statess

the orthonormality of the eigenvectors we get fundamental. Théotal density of statepn;q:5(E)] is defined
by the following equation:

IIl. MOMENTS DESCRIPTION OF THE DENSITY
OF STATES

. If :aUcoh
Kar nma|<E)=§ S(E—€M). (15)
- 2 cm aHiaviﬁan)_'_ z ‘9‘1’(“1) The band energlsee Eq(8)] can be rewritten in terms of
nocoiaip | © ar, P 207 ar, the density of states in the following way:
11 Ei
o (D Usani=2 | ENra( E)GE, (16

The first term is the Hellmann-Feynman fofé?° If we de-
fine the density matrixg;, ;) by whereE; is the Fermi energy, and has a value that lies be-

tween the energy of the highest occupied state and the lowest
3 cimem unoccupied state.
Pia,jp™ ni5to CigCia s (12) The total density of states isggobal property of a system.
We are principally interested in studying the behavior of
then the cohesive energy and atomic forces can be expressggstems by considering regions of the systems thalpaed-
in a very compact form: izedin space. A very useful and important quantity for char-
1 acterizing the eIectror:ngilc properties in a local manner is the
_ local density of stateS To derive an expression for this
Ucon= Zi;ﬁ PigicHiaipt Egj ¢(rij) quantity, we need two results:

S(E-H = 8(E—€™) 8y m,
+ 2 [2pimia— NE ey, (n| S(E—F)|m)=5(E— ™),

1=2 |n)(n|=2 lia)ial. (17)
= aHla]ﬁ &d)(ru)
_szzia;jﬁ Pipia o, + 2;1- o, It is straightforward to_check that i the unit operator by
showing that it satisfies?E 1. We have defined functions of
I€iq operators in the following wa
+ 3 1201010 N2, ay P N9 R
I f(H)In)=f(™)|n). (18)

Note that there are two important limiting cases in which theThis is easily justified by replacing the function with its Tay-
diagonal contribution to the forces is zero. The first is wherlor expansion, inserting it into the left hand side of Etg),
there is no self-consistency imposed, in which case the diagand resumming to obtain the right hand side.
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Inserting these results into E@L5), we obtain As already noted, the most demanding part of evaluating
the cohesive energy is finding the band energy. In particular,
diagonalizing the Hamiltonian matrix to find the eigenvalues
and eigenvectors takes time on a computer that scales as the
cubeof the number of particles in the unit cell. We will now
see how using a moments description for the density of states
makes it possible to evaluate the energy in a time that scales
linearly with the number of atoms in the unit cell.
_ E E i a|n)RS(E — e™) From Eq.(16) it is clear that evaluating the band energy is
=~ |4 straightforward once the density of states is known. The den-
sity of states is a distribution function of finite widitior
finite basis set si2e and thus can be characterized by the
position of its center, its width, and its shape. These proper-
ties of the density of states can all be described byrits
Thus we see that the global density of states can be decorfients The pth moment @(p)) of the projected density of
posed into a sum over local densities of statgg(E)] pro- statesn, ,(E) is given by e
jected onto the atomic orbitals, where e

nmm(E):g (n|8(E—H)|n)

= S (nlia)(ialm)(ml5E-F)ln)

=% N (E). (19)

. (M= | EPn,,(E)dE. 24
()= (i alPoE- ) =(ialSE-Flia), 2= | et 2
n
(200  The first moment 4(%)) defines the center of gravity of the
band, the second momen&@) its mean square width, the
third moment (%)) gives a measure of how skewed the
. 4) .
ward. The probability of finding an electron in st4ré on ~ Pand is, the fourth mqmenw(fa) determines whi%her the
orbital |i @) is |{i a|n)[2. Thus the local density of states pro- density of states is unimodal or bimodal, and so"oas is

jected onto an orbital is just the total density of statedllustrated in Fig. 1.

weighted by the probability of finding the electron on that _ 1here is a useful identify which follows directly from
orbital. Eqg. (20), which is that thepth moment of the density of

This decomposition into local densities of states also haStat€s projected onto orbitfile) equals thepth _mqment of
the advantage that we can write the promotion and bon{1® Hamiltonian projected onto the same orbital:
energies in terms of densities of states. From &j.we

where the second expression is obtained by using @4d%.
to remove the sum over. The interpretation is straightfor-

see thatC{V=(ialn). Thus from Eq. (200 we have Mi(g)zf EPN;o(E)dE=(ia|HP|ia). (25
N (E)=3,/CV|25(E—€M). Substituting this equation
into Eq. (10), and then using Eq$16) and(19) we get This allows us to evaluate the moments of the projected den-

sity of states from the Hamiltonian matrix. Substituting the
Hamiltonian matrix for the operator in E¢R5) we obtain

Uprom:%

E¢
2f Nio(E)AE=NX"| &y,

(P — > H - 2H 2« »---H: .
_ Hig = . ia,j1By 11181.028 ip-1Bp—1.ia:
Ubond_Uband_Uatoms_Uprom ¢ j1B1 - -Ip-1Bp-1 IR p=1Fp-17¢

(26)

Et
=2 (E—¢&ja)Nio(E)ME. (21)  This equation reveals a correspondence betweepttheno-
e ment and a process of hopping around the lattice along
Similarly, we can introduce the generalized density of¢!0s€d paths of lengtp. Thus the first moment corresponds
electron states to a hop on a single site, the second to hops to nearest neigh-
bors and back, and so on. Increasing the order of the mo-
. _ ments bytwo corresponds to obtaining information about
n(E,")=2 [¢(r)|28(E— €M) (22)  oneextra shell of atoms since you have to hop out and back.
" This direct correspondence between electronic structure and
which follows from Eq.(15). The electron density and total the positions of atoms can give immediate insight into the
density of states are then given by nature of cohesion and structural stability, provided not too
many moments are needed for an adequate description of the
. R density of state®® Further, the increase in the number of
p(r)= Zf dENn(E,r), shells with increasing numbers of moments means that when
only a few moments are necessary to describe the density of
. . states sufficiently accurately to give a good cohesive energy,
ntota,(E)zf drn(E,r). (23 then only a small cluster of atoms contributes to the density
of states. The time to construct the local density of states for
The generalized density of states has the physical meaning ohe site depends only on how many moments are needed,
being the energy-resolved spatial density of states and is frend not on the system size. If this timetjs for M moments,
guently used for the analysis of electron distributions. then for a complete system with sites, the time to construct
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the total density of states iNty,, which is linear in the
number of sites. Thus this is an @) method. The benefits
of this are clear from Fig. 2.

IV. GREEN'S FUNCTIONS AND THE RECURSION
METHOD

Although a function can in principle be reconstructed
once its moments are known, care has to be taken to achieve
this in a numerically stable way. The recursion metfds
an optimal method for building densities of states from mo-
ments which makes use of Green’s functions. It is straight-
forward to see why Green'’s functions are useful in this case.
Consider the following expression for ti&function:

6(x)=—%lim Im{[x+i»n]"1}. (27)

n—0
Combining Eqs(20) and (27) we obtain

Ni (E)=— %Iimolm{<ia|[E+i 7—HI Yia)}. (28
e

The one particle Green’s function is defined by

G(Z2)=[z-H] % (29)
Substituting Eq(29) into Eq. (28) we obtain
1
nia(E):__Iim Im{Gia,ia(E+i77)}v (30)
0

where we have introduced the notatio®;, js(Z)
=(ia|G(2)|jB). The expression for the local density of
states in terms of one of the diagonal matrix elements of the

FIG. 1. The dependence of the shape of the density of states agingle particle Green’s function is useful because it is pos-
the moments is illustrated here. The energy scale is given by thgjple to write down an explicit continued fraction expression
parameterb. Panel(2) shows how the third moment skews the for this element of the Green’s function in terms of the ele-

density of states. When the shape facBest[u®/(u?)2-1] is

ments of the tridiagonalized Hamiltoni4has is explained

less than 1, then a bimodal distribution results, whereas when it iBeIOW. First, though, we need to introduce the Lanczos algo-
greater than 1, a unimodal distribution is found, as shown in panefii, 1 ' '

(b).

The Lanczos algorith is an efficient scheme for tridi-
agonalizing a matrix. Let the diagonal elements of the tridi-

Time/MD Step (s)

-2

-

B—FEIK Space

-« 7 Moments
===« 9 Moments
=11 MOments

1 year

10
10

100 1000
Number of Atoms

1 month

1 week

1 day FIG. 2. The time to perform one molecular-
dynamics step is shown here as a function of the
number of atoms being considered. The calcula-

1 hour tions were all peformed on HP9000/735 worksta-
tions. The moments method is compared with di-

1 minute rect diagonalization. The ®¢) scaling of
diagonalization makes this approach very ineffi-
cient for systems containing more than about 100

1second atoms.

10000
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agonal Hamiltonian be,, and the off-diagonal ones i, . These equations can be inverted to give the recursion coef-
Let the states that tridiagonalize the Hamiltonian|bs,). ficients in terms of the moments. Every extra moment allows
We then have one extra recursion coefficient to be evaluated. Inverting

these equations numerically can be unstable. However, Eq.

an it m=n, (32 always gives stable results.
- b, if m=n-1, For an infinite system, there could be an infinite number
(Un[H[Up)= b it m=nd+1 (3D of levels in the continued fraction. It is often the case, how-
nel 7 ever, that the exact values can be replaced by estimated val-
0 otherwise. ues after a certain number of levels, without reducing the
The Lanczos algorithm for finding the tridiagonal matrix is accuracy significantly. The simplest approximation is to take
based on the following recurrence relationship: a,=a.,,b,=b, for n>N, whereN is the number of exact

- levels, anda,, andb,, are constants defining the band center
H|Up)=ay/Up) +by[Un_1)+bni4|Uns1), (32 and bandwidtif The constant terms can be summed exactly
and the fact that the statesU,) are orthonormal to form the square root terminator:
((UplU) =8, m). Starting with some arbitrary state),),

we can finda, from Eq. (31). From Eq.(32), we can then _ 1
evaluateb,|U,) (since we know thaby=0), and then from w2)= b2
the normalization ofU;) we can obtairb,. Starting with Z—a,— b2
|U,) the process can be repeated to fand b,, and|U,), Z—a. — i
and so on. Let us introduce the notatioG,(Z) ” b2
=(U,|G(Z)|U). The element of the Green's function Z_a“_T
Goo(Z) can now be obtained froth
1 { Z—ax) _ Z-a.
1 =— —i - (36
1
278 b3 For the BOP derivation, we need to differentiate the
Z—a;— T 2 Green'’s functionGy(Z) with respect to the recursion coef-
Z—a,— _3 ficients. To do that we need to know the first-order change in

the Green’s function due to the small change in the
In general, if elemenG,, ,(Z) =(#|G(2)|¢) is to be calcu- Hamiltonian>? Let us make a simple derivation with the use
lated, thenU,) is first set equal td), and then the above Of Eq.(29), which we write formally in the following form:
prescription is applied. Thus any diagonal element of the - A - -
Green’s function can be found in this way. In this work, G X2Z)=Z-H=Z-Hy-8H. (37)
1)l s b i lomic obiac) o 2 A1y 6, (37 by Cu2)=(2i) o e e
Above it was stated that the recursion method is an optiand by G(Z) from the right, bearing in mind thati, and
mal way of constructing a density of states from its mo-éH may be noncommuting operators, we obtain, using
ments. The connection between moments and recursion c&py(Z)(Z—Hg)=1, the well known Dyson equation
be made explicit by writing the moments in terms of the . - - .
elements of the tridiagonal Hamiltoniafwhich shall be G(Z)=Go(Z)+Go(Z2)HG(Z)
called recursion coefficient§from now or). This is easily - - ~ A
accomplished by noting the following: =Go(2)+Go(2)HG(Z) + - - - (39)
Therefore the variation in the Green’s function to first order
in H is 6G(Z)=G(Z) SHG(Z). The corresponding matrix
=(Ug|H"Uo) equation is8G,(Z) == Gn(Z) 8H\ G m(Z). Taking for
the basis states the Lanczos vector space which is complete

wW=(ia|A"i )

- 3 (u ||:||U ) and tridiagonalizes the Hamiltonidsee Eq(31)], we obtain
my- 0 my the following derivatives:
n—1
X (U [H|Um )+ (U |H[Ug). 34 IGoy(Z
< m1| | m2> < mn,1| | 0> ( ) ;0( ) =G0n(Z)Gn0(Z):
The first few moments are an
(D=1, 9Goo(Z2)
Hie b =Con(2)Gin-10(Z)+Go(n-1)(Z)Gro(2).
n
my=aq, (39)
w?=a3+b?, The off-diagonal elements of the Green’s functigvith re-
spect to the tridiagonalizing stajebat appear in the deriva-
w¥=ad+2ab2+a;b?, tive are evaluated by means of another recurrence relation.

From Eq.(29) we have Z—ﬁ)é(Z)= 1. Inserting the tridi-
pie =ag+3agbi+2apa.bi+atbi+bibs+b]. (35  agonalizing states we obtain the following:
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(Z_an)Gnm(Z)_bnanl,m(Z)_bn+lGn+1,m(Z):5n,m- 1.0 N T 0.0
(40) \ Bond Order
\\ === Bond Energy
\,
All elements Gy,(Z) can be obtained from this equation, 081N @
onceGgy(Z) has been evaluated, sinGg,(Z) =Go(Z). 5 0c \\ E.
o YVor "\
S \ / 2
V. GREEN’'S FUNCTIONS AND THE DENSITY MATRIX e \ /7 —1,'0 Q
S 04| \ -
1]
In Eq. (13) we see that both the energy and forces can be N\ =
evaluated very simply once the density matrix is known. In 02| N\
the preceding two sections we have seen how using mo- N\ /
ments, and especially the recursion method, allows us to per- 0.0 , N . -2.0
form an efficient evaluation of band energy which scales 0 1 2 3 4
Number of electrons

linearly with system size. We would like now to combine

these two observations and find a moments based method for FIG. 3. The variation of the bond ordésolid line) and the bond

evaluat|.ng th_e density matrix. . . energy(dashed ling as a function of band filling for the-valent
Starting with Eq.(12) we can derive the following useful gimer.

expression for the density matrix:

1 E
@ 5= — —lim |mf 'dE[G, ,(E+i7)—G__(E+in)]

ko

Piajp™ > cfQ)c};‘;:E Ci(g)(a(Ef_f(n))CJ(%)
n(occ) n 7—0

Es 1
=f dEY, C{I'o(E—eM)ClY =5IN.=N_], (44)
n

whereN, andN_ are the number of electrons in the bond-
ing and antibonding states. This provides us with a simple
picture to illuminate what is meant by a bond ordand
hence density matr)x This can be illustrated by the
s-valent dimer. Eacls-valent atom is assumed to have one
s orbital, which we shall lab€ll) and|2). The TB Hamil-
tonian matrix for the dimer can then be written as

:fEde; (i an)(n| S(E—F)[n)(nlj B)

Ef ~
- [MaegialsE-flip)

1 Et .
:——I|mlmf dEG,,jg(E+in), (41

T,0

where®(x) is the step function. Thus we see that to obtain
the density matrix, we need the off-diagonal matrix elements
of the Green's function. BOP is a method for evaluating
these within a moments framework.

Since we know how to evaluate the diagonal matrix eley \ o .« is the on-site energy, and is the hopping integral

ments of the Green’_s function, we could evaluate Fhe Oﬁc'between the two orbitals and is negative. On diagonalizing
diagonal ones al_so if we could tran;form _the Off'd'agon":llthis matrix we obtain two eigenstates, one of which is the
prpblem ||jt0 a diagonal one. There.|s a §|mple way to dQDonding state, and the other of which is the antibonding
.th|s. Consider the stafgs: ) = (.1/\/5) .(|'a>+“ﬁ>) (a boqd— state. The eigenstates aré+)=(|1)+]2))/V2 and
ing stat¢ and |_>.: (1\2) (ia)~1iB)) (an antibonding |-Y=(]1)—|2))/\/2. The eigenvalues are,=&—|v| and
statg. We can easily calculat®, , (2)=(+[G(Z)[+) and e_=e+|v|. Using Egs.(41) and (43) we easily find the
G__(2)=(=|G(2)|~) using recursion. If we expand out 1onq order for the dimer as a function of a number of elec-
the bonding and antibonding states in terms of the atom"fronsNd» :

states, and then take the difference betw&en, (Z) and mer

G__(2), we obtain the following expression for the off-

(45

diagonal Green'’s function: Ngimer it N <2
L —2 dimer ’ ( )
@12: 46
R = — — N
Gla,],B(Z) 2[G++(Z) G,,(Z)]. (42) 2_ dimer if 2<Ndimer<4-

This expression can be considered the central one for BOP.

The developments that follow can be considered variationﬁ1 Fig. 3 we present the variation of the bond order and the
on this theme. . , bond energy with the number of electrons as given by Egs.
The bond order®;,,;4) is defined by (44) and (10). The bond order has a maximum value of 1

Q. —o _— when there are two electrons present, both in the bonding

0i4,ip=2piajp (1F]). 43 state. This is also the point at which the bond is strongest.
The factor of 2 is a result of spin degeneracy. CombiningThe bond order is then seen to be a measure of the bond
Egs.(41), (42), and(43) we get charge density.
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VI. THE TWO-SITE BOND-ORDER POTENTIAL where
EXPANSION
. . gal ab)
Although Egq. (42) is formally exact, it is very slowly sal=—— and oSbh=——. (54)
convergent. That is, many levels are required in order to I\ IN

obtain an accurate bond order. We now show how we ma%ubstituting Eqs(53), (52), (39), and(41) into Eq. (43), we

obtain a more rapidly convergent expgns?pn. _ obtain the following exact series expansion for the bond or-
Consider the following linear combination of atomic or-

. der:
bitals:
o N o NN
1 . A —_Sal+ A
U= Llia)+elip), (@7) O101= 2 Zor S0t 2, Jpr ob)
where §=cos (\) and —1<\<1. This choice is a simple -9 . E.)sa
=- a
generalization of the bonding and antibonding orbitals used nzo Xonno(E¢) 92y

in the preceding section. They are given |by)=|Ug) and "
|=)=|Uy1). The matrix element of the Green’s function n E28b: 55
with respect to this state expands out to give ngl Xorn-1).n0(Er)20bn |, ®9

- 1 . . where the response functioigm no(Es) are defined by
Goo 2)=(Up|G(2)|Up) = 5[(ial G(2)li ) o

1 Et
N “ T A : by :
+(1B16(2)iB)+MialG(2)|ip), (49 XomnolE)= WJ?'L“O'mf Gom(E+17)GnolE+17)dE
where to obtain the second term we have used the fact that (56)
the tight-binding HamiltoniarH;, ;5 is real and symmetric, andG) () is calculated from Eq(40)
Oom .

which follows from the choice of real atomic orbitals. The Let us take a look at the expansion for the bond order, to

ogid.laggnbal eIemt;nt; oftthe Glreen;,f function can now beunders;tand what the terms mean. The expansion consists of
obtained by considering two values the sum of the product of two types of term: the response

GM(Z)—G"Z functionsxom no(Es) and the derivatives of the recursion co-
Giajp(2)= —2 oy (49  efficientsda) and sby, . All the dependence of the bond or-
’ A=A der on the number of electrons appears in the response func-

This is a straight generalization of EG42). In general, this tions. However, they have a fairly weak dependence on
requires the use of two Green’s functions, and it is this thaftomic coordination, whereas the derivatives of the recursion
leads to the poor convergence. However, by taking the |imipoeff|C|ents are very sensitive to the local atomic arrange-
N1—\,, We obtain the off-diagonal Green’s function as theMent. This last point becomes apparent when the derivatives

derivative of asingle Green’s function: of the recursion coefficients are expanded in terms of deriva-
tives with respect to moments:
G 7)= 7God2) 50 No2n+1 (1) 2n+1 .\
i jf(Z) = — (50) L oah gal ou\ g o
dan == 21 20 o Zl o0 S
Combining Eqgs(41), (43), and(50) we get r=1 oK r=1 oK\
INM aby 2 bt gu” 20 op
Oais= (51) sby= =2 =2 L (57)
J N N =1 ey 2N r=1 duy ]
where where u{)=(UB|H"IUS) and {73 =(ialH"jB). The
2 E quantitiesgi(;fj};) are called interference ternisee Fig. 2 of
N = — Zlim |mf dEG)(E+in). (52 Ref. 3, and are similar to moments, except that they link two
Ty—0 sites, rather than one. The derivatives of the first two recur-

N* is the number of electrons in the stdtéé). Equation sion coefficients are thus given by

(51) is similar to Eq.(44), but gives better convergente. sa\=H. .
As was explained above, the diagonal Green'’s function 0 Te)fy
may be written as a continued fractipiqg. (33)] and hence 1
thg (.depemienge @(2) on)_\ is through_the recursion co- 5b}=2—w[§i(§?jﬁ+ aSHia,jﬁ]i (58)
efficientsag ,by, ... . Applying the chain rule for partial 1

differentiation to Eq.(50), we obtain the following expres- \yhere Eq.(35) has been inverted to find derivatives of the
sion. recursion coefficients with respect to the moments. Thus, the
response functions determine to what extent each derivative

. IGY, = 9GY, - . -
G (Z)= sat+ Sbt, 53 of the recursion coefficients does or does not contribute to
i 2) nZO gah " " nZl obh " 53 the bond order, based on band filling, and the derivatives of
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the recursion coefficients determine the dependence of the 1.0 . . '
bond order on atomic arrangement. i
To illustrate the dependence of the response functions on 0.9 [ m=0.n=0 )l
band filling, we now consider the case in which the recursion 0s |k — m=0:n=1 .
coefficients have constant valuks;,=0b,=b. From Eq. -=== m=1,n=1
(40) we can easily find the off-diagonal Green'’s function for 07 ——= m=1,n=2 )
the constant linear chain: 06 F —e= m=2,n=2 4
1 s 16 05 | -
— _ai(n 3 1
Gon(2)= &™), (59 . oa
whered is defined by cog])=(Z—a)/(2b). We can then write 2 0.3
analytic expressions for both the number of electrons and the [
: ) : ) 0.2
response functions as a function of the Fermi energy with the L
use of Eq.(56): 0.1
No 2%, sin2¢n) 007
o ow 2y -0.1
o (E) 1[sin((m+n+1) ;) 0.2
XomnolEf) = — . PP S
e G m+n+1 %0 o5 10 15 20

sin((m+n+3) ¢¢)
B m+n+3

: (60)

FIG. 4. The variation of the first few response functions for the
where COS@f):Ef /(2b) There are two important features of Simple constant linear chain model as a function of band filling. The
the response functions that can be seen from Fig. 4. The fir§mber of nodes increases and the amplitude decreases as the order
is that a new node appears for each new response functioff, the response function increases.

and the second is that the amplitudes decay with increasing

order. It can be seen from E(60) that the amplitude decays i) =[VIVss(rij)]lis)
o + Wope T2 IVagr T Vopo (i),
XOm,nO(Ef)%(m_Hq%z)z[Sin«m'F n+2) ) lio)=[[Vsso(ripllis)
264 = Woppo (T I2)1 VIVsso (1)1 + Vppo(Tij).
—(m+n+2)¢f]mm 63)
with increasingm+n. and®, ;.= 3[Oip jp + ®ip, jp, - From Eq.(55) the bond

order may be written to lowest order as
VII. CONNECTION WITH EMPIRICAL POTENTIALS

Hiois

We will now show how the lowest-order term in the BOP 014.i5= — 2Xo00.0d Ef) ,
expansion for systems containisgand p orbitals allows us by
to derive in a systematic manfex potential with properties \yhere Yo0.00 is the normalized response functiody Yoo 0o
very similar to those of the empirical potential of Terstff. [see Eq(60)]. Sinceb=b; is given by the second moment

The individual contribution of the bond joining sitegnd  [see Eq(35)] we can write ther and 7 bond orders explic-

(64)

j to the bond energ¥,onq IS itly as
Ui,jZZ% OiuisHigia- (61) ® _ —2X000d ENHic o

io,jo— ,
1
By rotating the axes such that the quantization axis lies along \/ E(,ui(f,)Jr mi2)

the bond, and by making the assumption that
Vspo(Ti)) = VIVsss (1) [Vppo(Tij), the 22 o block of the

= 2Xo000d ENHinjm

Hamiltonian matrix linking the two sites may be diagonal- Oirin= (65)
ized with diagonal elements &f,g,(r; ;) —Vpp(ri;) and 0, 1 >, @ '

respectively> The energy of the bond thus reduces to the E(Miw +uiy

form

2

where  u{@= 3 (ul 23), ()= 2 Si)

)+ i D=3 (up)+ u
wd=(io|H?lio), and u{?=(jo|H?|jo). The moments
can be evaluated explicitly in terms of hopping integrals and

where the normalized orbitalso) and|jo) are defined by  bond angles, giving

Ui,j:[Vs&r(rij)_vppo(rij)]itr,jtr+2Vppw(rij)®iﬂ—,j7{é2)
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FIG. 5. The angular character of the and = bonds for an
sp-bonded system within the second moment approximation. The 135
predictedo bond behavior from BORfull curve) is compared to
that from the empirical Tersoff potentialashed curve

FIG. 6. The bond energy for silicon as a function of the number
2)_ 2 of recursion levels found using two-site BA&pen symbols and
Hio _k;,j [VssoTjk) = Vopo(Tji) 1790 8) + [ Vs (rij) single-site recursiorfilled symbol3. The exact results are repre-
sented by the horizontal lines without symbols.
_Vppa(rij)]za
can do this explicitly. As more moments are added, this rap-
2 _ 2 2 idly ceases to be an option, and so we must exploit the
'ui”_k;,j Vopr(1i1) 9 0) +Vip(Tiy), (66) Hellmann-Feynman theorenisee Egq. (11)]. For the
_ Hellmann-Feynman forces to be equal to the numerical de-
where the angular functions have the formg,(6) rivatives of the energy, a very high level of convergence for
=a+bcosp+ccosd and g,.(0)=d+ecosd, anda, b, ¢,  the bond orders is needed. Thus, the question of improving
d, and@ are constants given by ratios of the hoppingthe energy convergence cannot be addressed without also
integrals? considering force convergence, and thus they will both be
The angular functiong,(#) andg.,(6) are shown in Fig. considered from here onln Appendix B an alternative
5 using the Goodwiret al. parameter set for silicof?. The  approach’ is described in which the energy can always be
angular dependence of the empirical potential of Teféidf  exactly differentiated. However, the price that has to be paid
also plotted alongsidg,(6) in Fig. 5 for comparison. For is that the energy convergence is slower.
the o term there is remarkable agreement, which explains Although the two-site BOP expansion that has just been
why the potential of Tersoff is successful. However, we alsoderived gives rather better convergence than(Eg), it has
note that the potential of Tersoff does not include the two definite shortcomings: the promotion ener@ysingle-
bonding contribution. site quantity is not easily defined in a consistent manner
From Fig. 5 we see that the bond angular function is With the bond energy, and the convergence of the bond en-
small (less than 0.for all bond angle®y>100° and has a €rgy as compared with single-site recursion is worse than for
minimum around 130°. Thus, atoms may be added whictgingle site recursiotsee Fig. 6, most especially for close
create bond angles in the range 100°—180° without greatlipacked metals. As was discussed above, when more mo-
affecting the strength of the originat bond (it can remain Ments need to be added to improve energy convergence,
saturateyl The 7 bond, on the other hand, shows completelymoving to complete convergence becomes essential for the
different behavior. Its angular function is an order of magni-forces. Thus there is a strong motivation to improve the con-
tude larger tharg, at its maximum which occurs at 90°. Vergence still more. Both of these considerations point to the
Thus, any neighbor will drastically reduce the strength of the€ed to reformulate BOP in such a way that it operates one
original 7= bond by making it unsaturated. This is consistentSite at a time. This we now do. The price we have to pay,

with the fact that ther bond has lobes extending perpen_thou_gh, is an increase in complexity of the algebra, which
dicular to the bond axis. requires the introduction of aauxiliary space

VIIl. PROBLEMS WITH THE TWO-SITE FORMALISM IX. AUXILIARY SPACE

It should be noted that the second-moment approximation To formulate BOP one site at a time we need a simple
used to derive this potential has limitations. For instance, it iggeneralization of the procedure used in Sec. VI: that is, we
unable to produce the buckling of dimers on 1€0) sur-  get G;, jz(Z) by differentiatingGoy(Z) with respect to an
face of silico” stabilized by a Jahn-Teller distortion. Fur- infinitesimal parameteA;, ; ; analogous to the parameter
ther, it does not reproduce the correct structural energy difused in the two-site formalisfTo do this for all bonds in a
ference between diamond, simple cubic, and face centeregystem we have to assign a factor to every orbital on each
cubic structured.Thus we need to add more moments. Un-site, analogous to the exp) used in the two-site formalism.
fortunately, adding more moments introduces its own probThe list of these factors can be viewed as a vector. The set of
lems. For simulations involving forces we need the derivathese lists we call thauxiliary vector space. This auxiliary
tives of the energy. In the second-moment approximation wepace has nothing to do with the physical wave functions
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constructed from the on-site atomic orbitals and, hence, the X. THE SINGLE-SITE BOND-ORDER POTENTIAL
Hamiltonian does not operate on it. The formalism also al- EXPANSION
lows us to find out the importargum rulesfor the Green’s
functions and formulate a numerically stable computationa]f
scheme.

We set the following rules for the auxiliary space. It is a
vector space, spanned by the orthonormal unit ve¢E‘j})s {WQIG(Z)lWS} &t

Thus Géo(Z) = T
oo (W W3} S A
(ev|ev,):5V'Vr. (67) s ia,ia
All other vectors in this space can be represented as a linear (73

combination of these vectors. In particular, in order to for-gy girect analogy with Eq(50), we differentiate this Green’s
mulate a single-site version of BOP we will need to considefynction with respect to the parametets, 5 to obtain

the following vectors:

Following Eq.(72), we can define the following Green’s
unction:

2> Giaisg(DAiajs

IGod Z)
aAlaylﬁ

i o where we have now taken, A, ;,=1 (thatis, the compos-

The inner product between two of these vectors is given bya vector is normalized to )1 This expression is a much
more general one than the two-site one, though the two-site

(efglet) =2 (e%[EN I*ED 1e2)=> [El; J*ES,,  one can be derived from it as a special case.
v v The sole reason for introducing the extra complications of
(69) this more general formalism is so that we can work one site
atatime. IfA;z 1, = 60 kOa, 50,y then from Eq(73) we

Note thatA 4 i, has no physical meaning. It just allows us to haveGé}o(Z) =Giqa.ia(Z). Thus we obtain a single-site quan-
label bonds between atomic orbitals. tity, which we know gives rapid energy convergence even
As the single particle HamiltoniaH does not operate in for close packed metals, and which allows the promotion
this spaceH|ei’\a):|eiAa)H_ Consider the following expres- energy to be defined in a way that is completely consistent

sion: A(eiAa|I:I|eJAﬁ). Using Eq. (69), this simplifies to With the bond energysee Eq.(21)]. Note that we need a

AiajgH. Similarly, if we consider some function of the separate\ for every orbital in the system in order to calcu-

oo . . late the energies in a strictly single-site manner. This can be
Hamiltonianf(H), then we will have the corresponding re- . .
A et A ~ reduced by using averaged moments as described at the end
sult (eia|f(H)|em)=Aiaymf(H).

_. . ) ) . of this section. The problem now is how to obtain the bond
The auxiliary space will always appear in conjunction

: . e ) orders. The solution is to use
with the atomic orbitalgia) used to expand the eigenstates

Giajp(Z)= +GY(2) 88 p (74)

let)=2 E |€9). (68)

:Ajﬁ,ia'

of the Hamiltonian. Let matrix elements of the functibrof Ajgky=6ij0i kOu,p0u,yt Mgy (75)
the Hamiltonian be given b, j5=(ia|f(H)|j 8). We can  wherei is the site whose energy is to be evaluateds the
now evaluate the following useful matrix element: index for the orbitals on that site, angl v, is an infinitesi-
- - . I i A i - i
@i a|f(H)|Jﬂ>|ef\ﬁ)=Aia,jﬁfia,jg- (70) mal quantity. This allows us to kedpyy(Z) as a single-site

quantity, while still enabling us to differentiate it to obtain
For the derivation of the one-site BOP expansion, we willthe off-diagonal matrix elements of the Green’s function.

use composite vectors of the form This is a purely formal result. We never need know the val-
ues of nj4 .y -
|W3}=2 le})]ia). (72 Clearly G{,(Z) can be expressed in terms of the contin-
ia ued fraction given in Eq(33), thus Eq.(74) can be cast in

This is a logical extension of the vectoful)y the form of Eq.(53):

=[l|ia)+exp( 0)|j,8>]/\/§ used to derive the two center BOP i gal
expansion. Expectation values of functions of the Hamil- Gigjp(2)= > Gy (2)GA(2) A k
tonian with respect to this composite vector are given by n=0 ia,jp
® A
. A el (A BYled +2 Gh o 1(Z)GA(Z) ——
WA (D WA 2 EhKialttFliple) 2 Goin-1,(2)Grof Yok,
WiWay A
{ 0| 0} izjﬁ (elj\a|<|a|JB>|e]Aﬁ) +GOO(Z) 5i,j6a,ﬁ' (76)

Hence the expansion for the bond order can be cast in a form
essentially identical with Eq55):

A © A
aa, b,

O, z=—2 A T 42 A — ],
ia,jB nZO Xon,no 3Aia,j,8 nzl Xo(n-1),n0 <9Aia,j3
(77

iZjﬁ Aia,igfiais
= (72

% Aia,ia

where use has been made of Efp). Wherexf)‘m'no is calculated from Eq(56).
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We now have to describe the procedure for evaluating the ab/n\
derivatives of the recursion coefficients. This is rather in-
. . . : . INiajp
volved, and will require consideration of the new formalism ]

=(ia|P)_L(H)HPA(H)|jB)

in its full generality. The final result, though, is quite simple PA (A
; Al d n-1(H) - A A
and can be evaluated in a stable manner. 0 THPn(H) Wy
The starting point is a simple generalization of the Lanc- te,] B
zos algorithm to the compound vectors. The new recurrence A
algol Al Ao~ dP (H)
relation is +1 Wy | P (H)H A Wi .
ia,jB

2 A\ A A WA A . . .
HIWa}=ag Wt +by|Wa_ i} +by 4| Wh, 1}, (78) Since P} (x)/3A ;4 is a polynomial of order less than or
equal tom, it can be expressed as a linear combination of

with th ndition . .
e conditio polynomialsP?(x), with r<m. Consequently, the orthonor-

WA|W V=5 (79 mality condition given in Eq(82) implies
m,n -
An

The Green'’s functiolG(Z) is given by the usual continued Al PPm(H) oyl o
fraction, but with the recursion coefficients given by Eg. 0 INiaip Pn(H)\Wo (=0 (if m<n). (89
(78). _ A .

Let us define the orthogonal polynomiél’ﬁ(x): Using Eq.(80) to eliminateH in Eq. (84), and then substi-

tuting in Egs.(83) and (85), we get
XPR(X)=byPi_1(x) 27 PR (X)+ b, 1Pr4(X), (80) sa)

. A _ A _ . bn+1 IAanJrl,n bAOI/;nn 1,
with PZ,(x)=0 andPy(x)=1. The new recursion vectors INinip iB iB

can be written as

A
Jb]

— A A,n,n A,n—-1n—-1
WAL =PAE)IWAL =S PAfialel). (8D 2N agp D (Clais~ O b 89

ia,jB ia,jB

Thus we have produced a simple final result for the de-
Tivatives of the recursion coefficients. We now give the al-
gorithm for evaluating the derivatives in a stable manner.
From the identity

Hence the recursion coefficients and orthonormality condi;
tion can be written as:

AAA A
Smn={ Wi W7} = E (il PrFOPAFII BYA g (ia|PA_,(F)APLA)IIB)

=(ia|(PA_,(H)F)PA(A)|jB), (87)

ar={WalHWy}= 2 (ialPA(F)HPY(H)[iBYAia s,
el we obtain the following recursive relation for tii® matrix:

b ={Wa_1|H|W;} bAOATI+al ;oMM b johm 2
A A ~ A,m—1n+1 A,m—1n AAA,mM 1n1
=2 (ialPhy(FORPRHIiB) i (82 =10l " an Ol O
IaJ (88)
If we now define theD matrix, which is given by To apply this recursion relation, we need a set of starting
Amn N matrices. The most natural choice |sOﬁ1r}g
ONMN=(ia| Pr(H)PA(H)I] B), (83 =(e4l(ia|Wa}. However, to generat®,"7, we need

starting matrices up t@;};7. This means that extra vectors

then we can write the derivatives of Eq82) as
W W vatv a82) |WAY must be generated. This can be done using (E§),

( ) but with arbitrary values oaA and bA for m>n, since the
0= oIAaTB” [Wo m pg( A ’ (84) values of the derivatives of the recursion coefficients are in-
INiq,jp dependent of these values.
. As mentioned earlier, it is often useful to use estimated
- &PQ(H) recursion coefficients after the exact ones, as this can lead to
+[W3 Pr(H) WcA)], tly i d Th t terminator of
IN i ip greatly improved convergence. The square root terminator o
Eq. (36) is generally found to give greatly improved energy
A convergencdthough for strongly covalent systems we will
=(ial pA(H)H pA(H)|]B> not use it as many levels are needed to achieve force conver-
ﬂ/\.a iB gence, and it is no longer usefuThis raises the question of
opA (|:|) h_ow we can evaluatg the derivatives of the estimate_d recur-
rofwd| Z PA(Q)’WQ] , sion coefficients, which we need for the BOP expansion. The
INiaip n answer is that we cannot evaluate the derivatives exactly, but
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we can make some guesses, and constrain them by sum rul€kis is an identity. Thus the on-site and intersite expressions

to make sure certain properties are maintained. for the bond energy are guaranteed to be equal at any level of
There are two important sum rufdsthat follow from Eq.  approximation.

(86) that ensure that the two expressions for the bond energy We are now in a position to evaluate the estimated deriva-

[Egs.(13) and(21)] give the same results. This equivalencetives of the terminating recursion coefficients. Assuming that

corresponds to the following equation for the Green’s func-we are using the square root terminator, the right hand sides

tion:
1=(ia/(Z-H)G(2Z)|ia)

:sz,m<Z>—§ Hi.i5Gig.ialZ)- (89)

To use this for studying sum rules, we need the equivale

expression foGQO(Z), namely

1={W}|(Z—H)G(Z)|wW}}
= ZGé)\o(Z) - iEjB Aia,jBkE Hia,kka%J’B(Z)
a, Y

ZZG{)\O(Z)__E Aia,jBE Hioky
ia,jB ky

A
gal

Iy ,ip

X| 2 Gon(2)Grol2)

A
ob?

IAyyip

"'221 Gon-1)(2)Gno(2) +Go(Z) 8By,

(90

where we have substitute@y, ;z(Z) from Eq. (76) in the
square brackets. With the use of E(6) and(82) we obtain
immediately the first sum rule:

Jap
2GR,y Nieas =00 (WaaWa) — b {WalWn_g} =0,
abh
—~Niajg=0. 91
igﬁaAia,jﬁ llp D)

This just ensures that the expansion for the bond order do
not contribute to the on-site term. The second sum rul

[which also follows from Eqs(86) and (82)] is

A
> % AjajpHi ]-B=(bﬁ,\+l)2—(b£)2,
ia pky MNigiy L&
obl
2——— A, igHe, g=b at—-at ;1. (92
i By aAia,k'y ia,jB" 'ky,iB n[ n n 1] ( )

Applying this sum rule to Eq(90) we get
1=(Z-29)Gof2)~ 2, Gonl(Z)Gro2)[(bp:1)*~ (b)?)

_ n; G(Z)GA_1)(2)bMad—al_,]. @3

of the first two sum rule$Eqgs. (91) and (92)] are zero for
n=N+1 for the derivatives o&), and forn=N+2 for the
derivatives ofbﬁ. Thus the simplest assumption is that the
derivatives of the recursion coefficients are zero under these
conditions, which makes the sums in Eg7) finite. Thus we
need only find expressions foraa’N‘/ﬂAia'jf and
gb/N‘H/aAia,m. If we assume that bottO},;*" and
NLAN+ LN+ ; oA ’ ;

i are linear indag/dA;, iz, then we obtain the
following expressions by requiring that Eq91) and(92) be
satisfied:

gal (bﬁ)z
Aiajp \BT

dal

—proANN-1
igjpg "

ia,jB 1

A
IO+ 1

bA(al-ad) osad AN
(b1)2  dAiajp @B
(94
The energy convergence is now given by the single-site re-
sults in Fig. 6.

As formulated so far, BOP is not guaranteed to be rota-
tionally invariant. That is, if the energy of a crystal is evalu-
ated with the crystal oriented one way, and then evaluated
again after it has been rotated, there is no guarantee that the
two energies will be the san®8 There is a way of overcom-
ing this, which is to work with moments that involve traces
over the magnetic guantum numben)( for a given angular
momentuml. That is, we work with quantities of the form

2

:bgéi,jéa,ﬁ+

1
/~Li(ln):— E

. An.
TESl {Im[H"iIm).

(95
These are rotationally invariant, thus the recursion coeffi-
cients and the Green’s function matrix element generated
from them are rotationally invariant.

In many TB simulations, local charge neutralityCN) is
'rﬁnposed as the simplest form of self-consistetftyvithin
j e BOP scheme, this can be applied very efficiently since
we know the response functions. If the excess charge on site
i is Q;, then a good estimate of the shift that should be
applied to the on-site energies is

Ai=—-Qi/X;, (96)

where X;=—23 ,xg000 SINCE —2x5005= IN"/3a), and
a{}z i, - Using this prescription, usually no more than three
or four iterations are needed to achieve convergence.

Xl. CONVERGENCE AND FINITE ELECTRON
TEMPERATURE

Here we note a general way of accelerating the rate of
convergence of the energy afore importantly the forces,
though at the cost of some loss of accuracy, and demonstrate
the convergence with results from molecular-dynamics simu-
lations for silicon.
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An increased rate of convergence can always be achieved
by giving the electrons a finite temperature. This has the
effect of reducing the range of the density matfixyhich

0.5 T y y y y y y y y T T

—_— =0

means that fewer moments are necessary to describe it. In- o, 0—01-0.0001
troducing a finite temperature for the electrons means that o—Ot-0.0005
the electrons occupy single particle states according to the o
Fermi-Dirac distributior?® That is, osf
5
Uband(T):zg E(n)f(x(n))zzf dEntotaI(E)f(X)- - ozt
(97)

where x(W= (€ — 1)/ (kgT), x=(E— )/ (kgT), u is the 01 b

chemical potentialkg is Boltzmann’s constant; is the elec-

tron temperature, and(x)=1/(1+¢e*). Because electrons

with energies near the chemical potential are free to move o0 X
between states, there is an entropy téi®9,,4T)] which n

must be added to the band energy to produce a band free
energy[ Apand D I: FIG. 7. The variation of convergence with electron temperature
for the response functions for the semi-infinite constant linear chain
Aband T)=Upand T) = TSyand T), with hopping integrab. t=wkgT/(2|b]).

The response functions are then given by

Sband T)=—2kg >, [f(x™)In(f(x™))

+ (@@= fF(xMNIN@—f(x™))] Xém,no(T)=f Imn(E) f(x)dE. (102
_ We saw earlier (for the constant linear chainthat
=—2kg | dE E , 98 o X

Bf Motal(E)o(X) ©8) Xomno(T=0) hasn+m nodes in it. Thug(E) will have

where o(x)=[f()IN(F(X))+ (1—F(x))In(L—f(x))]. The n+m+_1 npdes in it. So for a band of widil, the period of
band energy and the forcdgefined now as the negative OScillation is about W/(n+m-+1)~W/n (as|n—m|<1 for
gradient of the band free enerdy,..(T)] are still given by the response fun_ct|ons used in the BOP expanske can
the compact expressions of Ed3). It is interesting to note rewrite Eq.(102) in the following way to allow us to make
that the force expressioncludesthe electron entropy con- USe Of this fact:
tribution, provided the forces are evaluated at a constant . . 1 E_E’
number of electrons. The definition of the density matrix, A _ / e T il
however, is slightly changed, and is now given by Xom.no(T) f_wdE f—wdEgA”(E)( kBT>f ( kT )
(103

Piajp(T)=2 CRICIRT(X™) The functionf’'(E—E'/kgT) is a peaked function with a
" w[i\dth of order 4&gT. Thus the inner integrahverages
i . Omn(E) over an energy range ofkdT. This average will go
== ;“m Imf dEGi,,js(E+in)f(x). (99 g zero when the energy range over which the averaging is
70 taking place is of the same order as the period of oscillation,
Thus introducing finite electron temperature into BOP iswhich is when &gT~W/n. Thus the number of levels
straightforward. The entropy term has to be introduced, antieeded to reach convergence is givennhy,,~W/(4kgT).
integrals up to the Fermi energy are now replaced by inteincreasingT thus reduces the value of,,,. Since adding
grals over all energy but with the Fermi function included asone extra recursion level involves adding another shell to the
part of the integrand. The formalism for calculating the inte-cluster, introducing finite electron temperature has the effect
grals is given in Appendix A. of limiting the size of the cluster that needs to be considered.
To make explicit the reason for the increased rate of conThis is equivalent to saying that the range of the density
vergence when finite electron temperature is introduced, wenatrix is reduced. The increased rate of convergence for the
shall look at the integrals for the response functions: linear chain can be seen in Fig. 7.
To test the degree of consistency between the energy and
A - A . the forces, molecular-dynamics simulations have been per-
f Gom(E+12)Gno(E+i7)TO)dE. formed for crystalline silicon with a real temperature of 500
(100 K. If the forces on the atoms are all equal to the derivatives
of the energy with respect to the atomic positions, then the
total energy of the unit cell will be a constant as a function of
1 time. One of the sources of the lack of consistency between
gﬁm(E): Zlim Im{Gé‘m(E+i ,7)(3/“\0(E+i 7)}. (101) the _forces and the energy is _the errors present in the approxi-
50 mations made for the derivatives of the terminating recursion

A 1.
Xom,no(T)=—lim Im
n—0

Let us define the quantity
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ur FIG. 9. The variation of the band structufgotentia) energy,
ionic kinetic energy, and total energy of a unit cell as a function of
a5 } time for crystalline silicon at 500 K. In pan&) the results are for
an electron temperature of 0.1 eV, and in paglthey are for an
electron temperature of 1.0 eV.
4.0 . . L Good convergence is found for both quantities. The details
0.0 10.0 20.0 30.0

of this approach, and a more complete survey of the conver-
gence properties of BOP with respect to number of levels,
are given elsewherg.

FIG. 8. The convergence ¢) the cohesive energy of bulk Si in In Fig. 9 the energy as a function of time is given for
the diamond structure, aritl) the formation energy of an unrelaxed crystalline silicon at 500 K using electron temperatures of
vacancy, with respect to the number of levels used, for the casg.1 eV and 1.0 eV. For both temperatures the energy is con-
where a cluster of fixed size and no terminator is used. The size dferyed very well, though there is a slight improvement on
the cluster is chosen to give the first five levels exactly. going from 0.1 eV to 1.0 eV. We have repeated the simula-

tions with a vacancy presefgo that there are undercoordi-
coefficients. In the limit of a large number of exact coeffi- nated Si atoms present, which lead to narrow features in the
cients or large electron temperature, these errors become un-
important.

For all the simulations, five levels of recursion and a
square root terminator are used. The degree of force conver-
gence is then controlled by the electron temperature. Thisis  ,,]
an adequate approach for molecular dynamics, and makes
rapid simulations possible. However, if careful static calcu-
lations need to be performed that depend on the fine details
of the electronic structurgfor example, to obtain the buck-
ling of the dimers at th¢100) surface of Sj, then a different
approach is necessary. Thermal smearing is no longer ac-
ceptable since it averages out fine structure in the density of
states, for which many moments are required. However, the L.

. . . 00 01
short range of the density matrix for semiconductors and
insulators means that we can take the moments inside a small

cluster, rather than allowing the cluster to expand, making giG. 10. In panela) is shown the variation of the total energy
this approach computationally efficient. In Fig. 8 is showns g unit cell as a function of time for liquid silicon at 3000 K. The
the convergence of the cohesive energy for bulk silicon insejid line is for an electron temperature of 0.3 eV, and the dashed
the diamond structure, and the formation energy for an untine is for an electron temperature of 1.0 eV. In pai®lis shown
relaxed vacancy, using this approach. A cluster that allowshe pair correlation function for the two electron temperatures. The
the first five levels to be evaluated exactly has been usedame line style convention is used as for paag!

Number of Levels

(Eo(1)-E,o,(0)) (eV)
9.(0)

05 F

0.0
0.0
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6(deg)
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recursion coefficients. The scaleability of the algorithm is

demonstrated in Fig. 11, which shows the time required to
?A—_.—A;f;":e ‘:l(:\IOde evaluate the energy and forces of a 768 silicon-atom dia-
mond cell as a function of the number of processors. A near
ideal scaling is observed.

40.0

]
o
=)

X1ll. CONCLUSION

The bond-order potential is a numerically efficient
scheme that works within the orthogonal tight binding
framework. It allows the evaluation of the bond and promo-
tion energies, and the corresponding forces, to be evaluated
in a time which scales linearly with the number of particles
. . . . for a given accuracy. It is a naturally parallel method, giving
1 2 3 4 5 6 essentially ideal scaling of time with respect to the number

Number of processors of nodes on a parallel machine.
. . The details of the theory needed to derive both two-site

FIG. 11. The time taken to evaluate, in parallel, the energy andand one-site BOP, and to implement one-site BOP as a com-
forces of a 768 atom silicon cell as a function of the number of uter code. has b(’aen given in a systematic manner. The fact
processors. The benchmarks were performed on a cluster ﬂwat BOP c,an be represented as a moments ex ans.ion allows
HP9000/735 workstations using five exact recursion levels and . P - P
s i us to derive an expression for the bond energy that has the

quare root terminator. . . ..
same properties as the potential of Tersoff. This is one ex-
ample of how BOP can be used as an analytical tool to study
the origins of cohesion, as well as a computational tool.
The final set of simulations was on silicon at 3000 K. At The question of convergence 1S stydled .by means of
gonstant-energy molecular-dynamics simulations. The en-

this temperature it is a liquid. Five levels and a square roo : ! -
: g . ergy is found to be well conserved for crystalline and liquid
terminator were again used, and in Fig. 10 the energy as a

function of time is shown foksT=0.3 eV anckgT=1.0 eV, sHicon,fe\r/]en wli_tg a low electron temperature of 0.1 eV in the
as is the angular correlation function. The energy is not welfa3s€ © the solid.

conserved at the lower electron temperatfinere is a sys-

tematic upward drift However, raising the electron tem- ACKNOWLEDGMENTS

perature to 1.0 eV leads t_o better energy congervation. Rais- \we would like to acknowledge the important input of
ing the temperature still further would improve the pgter Gumbsch during the early stages of the development of
conservation of energy even more, but will eventuallygop. it was his hard work when at Imperial College, Lon-
change the dynamics considerably. Thus it is better to adflo studying energy and force convergence that started us
more moments if better conservation is needed. The angulgjiong the road of sum rules. This work was carried out using
correlation is also found to give better agreement with othegne computational facilities of the Materials Modelling Labo-

CPU time per MD step (s)
n
(=]
o

-
o
(=]

0.0

density of statgs Slightly greater fluctuations in the total
energy are found, but the convergence is still good.

calculations at the higher electron temperattire. ratory (MML ) in the Department of Materials at Oxford Uni-
versity. The MML was patrtially funded by SERC Grant No.
XIl. THE IMPLEMENTATION OF BOND-ORDER GR/H58278. A.H. and M.A. would like to thank Hewlett-
POTENTIALS ON PARALLEL COMPUTERS Packard and NED@Japan, respectively, for their financial
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Parallel computation, in which a number of processors are
employed simultaneously on a single problem, offers dra-
matic possibilities for performing large-scale and/or long-
time atomistic molecular-dynamics simulatidhsThe BOP The calculation of energies and response functions at fi-
scheme described in this paper is naturally parallelizablgéite electron temperature requires integrals with the Fermi
since the evaluation of moments and recursion coefficientfunction. This is customarily carried out in the complex
may be performedne site at a timéndependently. We have plane by summing up an infinite series over the Matsubara
adopted a spatial decomposition strategy to paralleliz3tion poles® The convergence of this series is, howeveery
in which each processor of the parallel machine is assignedglow. A much more efficient scherffeis now described. It
region of real space within the simulation cell. Each processhould be noted that another scheme exists %lso.
sor is then responsible for calculating the energy of, and It is possible to accelerate considerably the Matsubara
forces on, only those atoms within its assigned spatial regiorsummation by using the following approximant for the ex-
A small amount of interprocessor communication is requirechonential function:
in order to determine the global Fermi energy and in the
evaluation of interatomic forces. In the latter case this is
because an atom which resides near the boundary of a node’s exp(Z)~
spatial region can exert a force on an atom calculated by a
neighboring node. However, the overhead of these commuwhich becomesxactas n tends to infinity. This gives the
nications is small compared to the time taken to evaluate théollowing very useful representation for the Fermi function:

APPENDIX A

n

(A1)

1+ =
n
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B 1 1 where x,A=(e|A—,u)/(kBT). The response functions are
f(E)_exp(B(E—M))Jrl% (1+ BE—m) 2M+11 given by
2M
(A2) X T)= 24 WG W HP W HWa W1 5 Wo)

where B=1/kgT, and w is the chemical potential. This ap- N A
proximation (which becomes exact in the limit of lardé) f(x") —f(x3)
XN—Fx"_ A& |

(A8)

has 2V simple poles E,) located on a circle in the complex €' — €
plane off the real axis
. oM . APPENDIX B
=u+t—1(z,—1), . . . .
pm K B (z=1) The starting point for the exactly differentiable energy

approach is the free energy functional given by Eg%) and
zy=explim(2p+1)/2M), p=0,1,...,2M—1 (A3) (99):

with residuesR,= —z,/5. _ Avor=Ppandt Urep,
Now we can write the equation for the bond energy of
individual sites[see Eq.21)] in the following simple form:

w1 Abandzzf dEno(E)[Ef(x) —kgTa(x)].  (B1)

Ebona= BRGE Zp(Ep—£i4)GisialEp),  (A4)  The chemical potentigk is found from the conservation of
A the number of electrond,:
whereGy(2) =(ia|(Z—H) !|ia). Analogously, we obtain
the following expressions for the response functisee Eq. N :zf dE f(X)Nyo(E). (B2)
(101)] and the number of electrons: € ot

The total density of states is found fr(ﬁ?bo(Z), which is the

X =— “Re> z, la (E )Gi%(Ep) zavneqrage single particle Green'’s function for thetire sys-
o M 2N, —
N"“:E Repg0 2,GL(Ep). (A5) Niot(E) = — TLITOIm{Goo(H i)} (B3)

We find that typically 30 to 50 complex poles are enough towhereN, is the total number of orbitals in the system. The
achieve convergence within about 12 digits. The presenGreen’s function is expressed by the continued fraction
method is found to be much more stable than analyticagiven in Eq.(33), and the square root terminator is ugede
integration®’ Moreover, the method is very general and mayEq. (36)]. The coefficientsa; and bs are found from the
be used with any terminator, such as that which describeaverage momentsu(®) of the density of state§see Eq.

band gaps® (35)], where
In the absence of any terminator, it is possible to perform
the integrals exactly. Le=1|A be an eigenvalue of the tridiago- :_2 (B4)
nal Hamiltonian matrix {W>|H|WA1) formed from the re- Nota e
cursion coefficients, anfi?''} be the corresponding eigen- _
vector. Then we can write The equations used to compute the -coefficieats
T andbg from the moments are as follows:
{Wa | W HW T Wint
G2 =2 — = (A6) =1,
[ €
The number of electrons, the band energy, and the entropy cJ-S=O if j>s or j<0 or s<Q0,
are then given by L
be:1CS i =cf 1 —aci—bcS?,
NYT)=22) f(x}) s s
[
1=3, 3, ciefut ™,
Upand T 22 MY, .
_S:]-ZO |=20 C]S I;(‘+|+1)
Shand T) = —ke 2 [FO)IN(F(x)) )
S S—
h = SaS— 1 (j+1+1)
+@A-fMNINA- T, (A7) 5= 2 & cfer W0, (B5)
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The quantitiescjs are the coefficients for the expansion in Jag — stl s ,;;(HJ)
powers ofx of the orthogonal polynomialB,(x) used in the = =Dbgyq, E cf“cf—a
recursion algorithnf? ary =01=0 Iy
All the elements needed to construct the energy functional s s-1 g0+
. = . . T 1 OM
are now defined. The forcB, can be obtained by direct —bs, cier I
differentiation of Eq.(B1): 1=01=0 Iy
- z?t‘” okgT . ob. b aﬁ(ﬂ'i)
Fv=— Z & (r .,) Thmolmf dE[xf(x) —fzf Z Z coes
n— &rk J=01=0 &rk
IGo(E+in) s—1s-1 )
—o(x )]—0( 7 (B6) _ C_s—lcls—laﬂe ,
Iy =oi=o ! ary
To obtain this equation, use has been made of the fact that ) .
aNe/aFk=0. The derivative of the Green’s function is given s _ iTr ﬁs_lﬂ . (B9)
by [see Eq(38)] o, No ary
dGoy(Z2) — = as This completes the formalism for the forces.
P :SZO 0s(2)Gso(Z) —= For some simulations it is necessary to know the charges
k - k

on each site. These can be readily calculated from the local
m densities of states for each site. To obtain the local densities

+22 GOS(Z (s— 10(2)
ark

where Goi(Z) is given by Eq.(40). The derivatives of the and (B8) with ry replaced by Aj,;,, where Aj,;jz
recursion coefficients can be obtained from BBp) in terms

of the derivatives of the moments:

of states, we need the Green’s functions projected onto each
orbital [G;,, m(Z)] These can be obtained from Ed36)

&

iaia™ Mig

—1/N 8 10w pt Map and EMSIEIN
— b
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