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Several analogies between electrons and phonons in semiconductors and electromagnetic waves in periodic
dielectric structures are used to demonstrate the existence of~i! surface or edge states at the boundaries
between the periodic structure and air,~ii ! focusing of the electromagnetic energy emitted by a point source,
and~iii ! the existence ofinternal diffractionas known for coherent acoustic waves. In addition, the inclusion
of dispersion in the optical constants, which is a unique feature of periodic dielectrics and have no equivalent
in phonon or electron band structures, is briefly discussed.@S0163-1829~96!10019-9#

I. INTRODUCTION

Since the pioneering work of Yablonovitch1 a great deal
of effort has been put in understanding the properties of elec-
tromagnetic waves in periodic dielectric structures~PDS!. It
has been shown theoretically2–5 and experimentally1,6,7 that
forbidden gaps exist in PDS and the termphotonic band
materialshas been coined accordingly. The literature in the
field is vast as the reader may appreciate through some of the
papers published in conferences related to or specialized in
the subject.8

One of the main concerns has been the conditions for the
existence of photonic gaps,4 in particular, the existence of
gaps for all possible polarizations of the electromagnetic
wave. It very often ensues that gaps for a given polarization
do not overlap with gaps for others.5 The existence and
search of forbidden energy regions for arbitrary polarization
have been of prime importance in the field. Likewise, differ-
ent periodic structures show optimum values for the filling
fraction of the unit cell in order to open gaps, and these
values are different for distinct shapes of the dielectric ob-
jects and for different lattices. In this respect, numerical
simulation4 has benefited the selection of possible candidates
for observing the desired effects. Last but not least, one ma-
jor concern has been the possibility of observing electromag-
netic localization in disordered dielectrics;9–14 a subject
which would deserve a chapter by itself.

The field has benefited from analogies to and differences
from other excitations in solids. The very concept of a gap is
an example but more elaborate analogies exist, for instance,
the presence ofdonoror acceptorstates in the gap15 induced
by a defect ~as in semiconductors!. The search for
localization16 is another example fueled by the familiar ex-
amples of Anderson localization for electrons. In these
analogies the ultimate differences among the different types
of excitations are also highlighted. As an example, the vec-
torial character of the electromagnetic field is sharply op-
posed to the scalar nature of electrons leading to different
bands for different polarizations. In this particular respect,
electromagnetic waves are definitely closer to phonons than
electrons. Another difference is the fact that Maxwell’s equa-
tions have a second-order partial derivative with respect to
time, while the Schro¨dinger equation has only a first partial
derivative oft. As a consequence, electrons can have nega-

tive energies and become trapped in deep potentials, while
the equivalent problem for photons reduces itself to finding
eigenvalues of the forml i5v i

2/c2 which must be.0 if the
dielectric functione(v) of the objects forming the lattice is
real and positive.

Notwithstanding the major progress in this field, we are
convinced that several other analogies with what is known
from phonons and electrons can be exploited still for elec-
tromagnetic waves in PDS’s. In particular, the full conse-
quences of the details of the bands for particular cases have
been, in general, overlooked by the search of a reasonable
parameter set producing the desired gap. The nature of the
wave propagation in these structures is fascinating by itself
and leads to very interesting phenomena already known for
phonons as we shall show later. Furthermore, not all analo-
gies with electrons have been exploited so far. We shall
show the example ofsurface states at the boundariesob-
tained from the bulk band structure, in complete equivalence
with what is known for electrons in semiconductors. Of par-
ticular interest are the existence ofpure surface states, i.e.,
solutions with energies in the forbidden gap. We show that
these solutions exist through a calculation for a particular
example and compare our method of calculation with previ-
ously reported supercell results.17

The paper is organized as follows: Sec. II gives a brief
introduction to the method of calculation and the band struc-
tures for the examples we shall use. Section III presents the
calculation and underlying concepts for the surface states.
Section IV shows explicitly how the existence of bands can
produce focused emission by a point source and the phenom-
enon of internal diffractionas known for acoustic phonons.
Section V presents the possibility of including dispersion in
the dielectrics, a feature which has no counterpart for
phonons or electrons. Finally, Sec. VI underscores a few
analogies between long-wavelength electromagnetic waves
and the theory of elasticity for sound waves. In Sec. VI a few
final remarks are given.

II. THEORETICAL OVERVIEW

We deal with two-dimensional~2D! periodic dielectric
structures for simplicity. Furthermore we restrict ourselves to
propagation perpendicular to the rods. Since we deal with a
periodic structure Bloch’s theorem applies. We know the
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electricEW (kW ,v) @or magneticHW (kW ,v)# field of the propagat-
ing wave can be expressed as

EW ~kW ,v!5(
GW

A~GW ,kW !ei ~k
W1GW !•rW, ~1!

whererW5xî1y ĵ is a vector in the plane perpendicular to the
rods andGW are the reciprocal-lattice vectors of the selected
lattice. By replacing~1! into Maxwell’s equations4,5 the
propagation for polarization perpendicular to the rods

@EW (kW ,v)'zk̂# is reduced to the eigenvalue problem

(
GW 8

~kW1GW !•~kW1GW 8!k~GW 2GW 8!A~GW 8,kW !5
v2

c2
A~GW ,kW !,

~2!

whereA(GW ,kW ) are the Fourier components ofHW (kW ,v) and
k(GW 2GW 8) are the Fourier expansion coefficients of the in-
verse of the position-dependent dielectric functione(rW) ~con-
sidered here as dispersionless and.0). If EW (kW ,v) is parallel
to the rods the eigenmodes are obtained from4,5

(
GW 8

~kW1GW 8!2k~GW 2GW 8!A~GW 8,kW !5
v2

c2
A~GW ,kW !, ~3!

whereA(GW ,kW ), in this case, are the Fourier components of
the electric field. Solving the electromagnetic band structure
through ~2–3! is equivalent to solving an electronic band
structure by the pseudopotential method.18 The main differ-
ences with the electronic case are~i! the existence of differ-
ent band structures according to polarization and~ii ! the fact
that empirical pseudopotentials are relatively smooth func-
tions of GW , while periodic dielectric structures have sharp
dielectric discontinuities and several Fourier coefficients
k(GW 2GW 8) are needed in the expansion. Consequently, elec-
tronic band structures in semiconductors~with only three
Fourier coefficients for the pseudopotential18! can be calcu-
lated with a plane-wave basis of;60290 waves, while
~2–3! need normally a basis of size.200.

We shall use two examples in this paper with filling frac-
tions f taken from Ref. 4 to optimize the opening of a gap.
The first is one is a 2D triangular lattice filled with circular
rods of dielectric constante55. The background is assumed
to be air (e51). The filling fraction ~defined as the area
occupied by the circular rods per cell, normalized by the area
of the cell! is f50.169. The electromagnetic band structure
for polarization parallel to the rods is shown in Fig. 1~a! for
the principal symmetry directions~shown also in the figure!.
These bands have been calculated with a basis of 499 plane
waves. In Fig. 1~b! we show the density of states~DOS! of
electromagnetic modes calculated through a random sam-
pling of 104 kW vectors in the 1/12th-irreducible part of the
first Brillouin zone~BZ! betweenG, X, andL. Energies are
reduced to dimensionless quantities by the factor
ṽ→v(2pa/c), wherea is the lattice parameter andc the
speed of light. The following features should be noticed for
the forthcoming discussion:~i! the existence of a gap around
ṽ;0.45@see also Fig. 1~b!#; ~ii ! the presence of anacoustic-

like branch below the gap~with ṽ}k close toG) and~iii ! the
existence of relatively flat bands above the gap~also seen as
sharp singularities in the DOS!. Note also that the gap is
defined between the maximum energy of theacousticbranch
atL and the minimum of the bands above the gap~hereafter
conduction bands in analogy with semiconductors! at X. In
the language of semiconductors this would be a structure
with an indirect gap.

The second example we use is shown in Figs. 2~a! and
2~b!. The lattice is again triangular with cylindical rods but
the dielectric function of the rods is nowe514 with a filling
fraction of f50.431.4 The band structure, however, corre-
sponds to polarization perpendicular to the rods. The same
features of the first example can be observed here. The DOS
has been calculated as in Fig. 1~a!. Note also that in both
Figs. 1~a! and 2~a! thedirect gap atL is slightly larger than
the one atX.

III. SURFACE STATES

Having presented the electromagnetic band structures for
two infinite PDS’s in the previous sections we discuss here
the existence of surface states as obtained from the bulk band
structure. The aim of this section is to show a specific ex-
ample of surface states and discuss briefly their implications.

Every real implementation of a PDS is necessarily finite.
The existence of surfaces in the structure allows the presence
of solutions which are not directly contemplated in~2–3! if

FIG. 1. ~a! Electromagnetic band structure~with 499 plane
waves! for a triangular lattice of dielectric rods withe55 in air
(e51). The filling factor of the structure isf50.169 and the bands
correspond to polarization parallel to the rods. The hexagonal BZ
and the principal symmetry directions are also given;~b! DOS as

obtained from a random sampling of 104 kW ’s in the region limited
by G, X, andL.
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kW is real. In fact, Bloch’s theorem vouches for solutions of
the form ~1! but does not restrictkW to be real. The latter
comes as an aftermath to the fact that only nondivergent
solutions for the fields are physically acceptable. IfkW is al-
lowed to have an imaginary component in~1! the field will
irremediably diverge in an infinite lattice. This constraint is
removed if a surface is introduced and this is a standard
textbook example of surface states.19 Let us briefly review
how these states are formed in the nearly-free-electron
model. Take a 1D weakly periodic potential as
V(x)5U0 exp(iGx). This opens~in first order! only one gap
at the boundary of the first BZ. The two wave functions at
the gap can be expressed asC;C1exp(ikx)
1C2 exp@ i (k2G)x# whereC1,2 come from the Hamiltonian

S l1 U0

U0 l2
D SC1

C2
D 5ESC1

C2
D ~4!

with l15\2k2/2m, l25\2(k2G)2/2m and eigenvalues

E5 1
2(l11l2)6A1

4 (l22l1)
21U0

2. Expressing wave vec-
tors with respect to the zone boundaryg5(G/22k) and en-
ergiesE with respect to the center of the gap we obtain
lg5AE22U0

2 with lg5\2g2/2m. Two cases are distin-
guished:~i! uEu.U0 with real values of (G/22k) and ~ii !
uEu,U0 with imaginarylg , i.e., imaginary wave vectors.
These solutions decay exponentially inside the solid and can
be matched to evanescent waves into the vacuum to become
surface states. In fact, these solutions are ananalytic continu-
ation of the band structure through the gap. Details of the

matching rely on the exact position chosen for the surface
relative to the phase of the modulation potential
U0exp(iGx). This approach has been used very successfully
for semiconductors and reports for GaAs, Si, and Ge can be
found as early as 1966~Ref. 20! in calculations using the
kW•pW method for the bulk electronic states. In a solid, surface
states can be calculated for the different inequivalent sur-
faces of the structure. In GaAs and the like, surface eigen-
states with imaginarykW are normally calculated for@111#,
@110#, and@001# surfaces. For a 2D triangular lattice there
are two different inequivalent surfaces shown in Fig. 3 that
cut the structure through lattice sites~atomic positions in the
case of electrons!. We calculate the electromagnetic surface
states for these two surfaces for polarization perpendicular to
the rods.

Normally, as in the 1D example for surface states shown
previously, solutions with imaginarykW will show up as ana-
lytic continuations connecting neighboring roots for realkW at
a given point in the BZ.20 As we shall show later, these
analytic continuations may interact and cross with each other
and connect eventually the solutions for realkW atv with their
mirror images at2v which are, in turn, analytic continua-
tions in thev,0 plane. The best way to obtain solutions in
the gap, for example, is to start in those points of the BZ that
have eigenenergies for realkW on both sides and close to the
gap in question. A situation like the one depicted in the 1D
example given above can be, therefore, expected in which
the analytic continuation crosses the gap and produces sur-
face states with no energy overlap with respect to the bulk
bands. An additional characteristic of the surface states ob-
tained by these analytic continuations is that they formally
regard the surface as a sharp, featureless, flat interface in the
matching with external solutions. The latter is certainly not a
limitation for 1D layered media21–25but is not formally cor-
rect in 2D or 3D PDS’s where surfaces are not flat planes but
have their own topology. Accordingly, roots with very large
Im(kW ) ~i.e., with fields penetrating less than a single layer!
are not to be taken asgood solutions to match with waves
into the vacuum, in the sense that the field pattern is non-
negligible only in the region where the original approxima-

FIG. 2. Same as Figs. 1~a! and 1~b! but for dielectric rods of
e514 in air and polarization perpendicular to the rods;~b! DOS
calculated as in Fig. 1~b!.

FIG. 3. Triangular lattice and lattice planes along@10# and@11#.

Families of lattice planes are normal tokW vectors along principal

symmetry directions. Planes along@10# are normal tokW ’s alongX,

while those along@11# are' to kW ’s alongL. The hexagonal BZ of
the triangular lattice is shown schematically around one lattice
point.
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tion of a flat, sharp, interface is not valid. Another possibility
to study modes at the surface is to solve a supercell formed
by layers separated by air, in exact analogy to what is done
for electrons.17 The latter is a more sophisticated approach
that avoids the problem of matching and bequeaths directly
all solutions which can be classified as17 ~i! extended in both
the crystal and air,~ii ! decaying in air and the crystal,~iii !
extended in air and decaying in the crystal, and,~iv! decay-
ing in both air and the crystal. These solutions treat the sur-
face details correctly. The price to be paid is to work with
supercells which have to be defined for each direction of
interest. In addition, solutions with very long penetration
depths ~larger than the supercell size! are not properly
treated. To some extent, this method is complementary to
ours which treats better those solutions with large penetra-
tions into the bulk. Moreover, the method presented here
uses the very same band structure of the bulk and does not
require additional computational effort in building the super-
cells. It also provides solutions along directions other than
the principal for which a supercell method may prove to be
impossible and gives a quick answer to penetration depths in
the gaps along different directions.

In Fig. 4 we show the surface states atG @i.e., Re
(kW )50# for the bands in Fig. 2~a!. We plot two cases in Fig.
4: ~i! Im(kW )i@10# and~ii ! Im(kW )i@11#. Since Re(kW )50, both
cases are branches of the same analytic function and can be
therefore joined atG. The calculation is perfomed with a
basis of 271 plane waves. These solutions represent states
that are pure exponential decays of the field inside the struc-
ture. According to the previous discussion, states across the
gap atṽ;0.32 are not expected for small Im(kW ), since none
of the states atG define this gap. After some crossings and
anticrossings the analytic continuations of the solutions at
G show several branches pointing downwards that would
meet the mirrored solutions in the planev,0 if we made the
analytic continuations there. Some of these branches cross
the gap but only for large values of Im(kW ). There are, how-
ever, plenty of solutions with small Im(kW ) in theconduction
band. These solutions penetrate the structure several lattice
constants as a pure exponential decay. It is worth noting that
there is a fundamental difference in this respect with the
electronic case. Although solutions that overlap with the con-
duction and valence band in semiconductors are obtained as
in here, comparison with an experimental determination of

these states cannot ignore the strong scattering electrons suf-
fer with the bulk bands which are degenerate with them. In
the case of electromagnetic waves this limitation is removed
and solutions at the surface calculated by this method are
expected to be more reliable. Photons do not interact with
each other in linear media and the existence of bulk states
with the same or similar energies to these surface states do
not perturb or scatter them by any means.

A more interesting situation results when considering sur-
face states atX andL as shown in Figs. 5 and 6. In these
figures we set Re(kW ) to be either atX or atL and we allow
Im(kW ) to be Þ0 to find the analytic continuations of the
bands around those points in the BZ. Figure 5 shows that the
two solutions above and below the gap at Im(kW )50 are at-
tracted to each other and join in the forbidden gap of the bulk
at a value of Im(kW )!uXu, i.e., there are solutions in the gap
which expand over several lattice constants in real space.
Figure 6 shows the equivalent calculation for a@11# surface.
If we take the midgap energy as a reference, and we find the
solution with the smallest Im(kW ) for the surface states atL

FIG. 4. Surface states atG calculated with 271 plane waves.
Both branches of the analytic continuations alongX and G are

joined atG. These states with Re(kW )50 represent pure exponential
deacays of the fields inside the structure~see text for details!.

FIG. 5. Surface states atX calculated as in Fig. 4 but with

Re(kW )5X. Note the existence of solutions in the gap for

Im(kW ),uXu. These solutions have both, an exponential decay and a
modulation given by Re(kW ). The field pattern for midgap energy is
shown in Fig. 7.

FIG. 6. Surface states atL @i.e., Re(kW )5L# calculated as in
Figs. 4 and 5. There is a crossing of one branch through the gap at

Im(kW ) smaller than the zone boundary along this direction~as in
Fig. 5!. Note that the solution at midgap energy with the smallest

Im(kW ) implies a shorter penetration in the structure than than for a
@10# surface in Fig. 5~see text for details!.
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and X, we note that electromagnetic waves have a larger
penetration depth inside the bulk for a@10# surface than for a
@11# one. The branch starting from the solution immediately
above the gap atL in Fig. 6 decreases and crosses the mid-
gap energy at Im(kW );0.75uLu. By comparing the latter with
the solution of smallest Im(kW ) for the same energy atX in
Fig. 5 we find that electromagnetic waves penetrate;four
times more on a@10# surface than on a@11# one. The field
pattern for the midgap solution with the smallest Im(kW ) on a
@10# surface is plotted in Fig. 7. This solution has, beside the
exponential decay, an oscillatory modulation produced by
Re(kW )5uXu. Note that the general shape of the analytic con-
tinuations in Figs. 4–6 convey the same impression of the
surface states for electrons in semiconductors calculated in
Ref. 20.

The existence of surface states is a natural consequence of
any excitation in a periodic structure and are an artless out-
come of Bloch’s theorem, albeit they are normally ignored
except when the physics of the interface becomes an impor-
tant part of the problem. Roots of the bulk band structure
with imaginarykW are an unavoidable aspect of many practi-
cal aspects of the physics of the interfaces in PDS’s. Ex-
amples would include the expansion of a field in a defect or
impurity close to the surface26 but, more importantly per-
haps, the very process of reflection of electromagnetic
waves. Suppose the following situation: an electromagnetic
wave impinges from the outside onto a PDS, along a given
symmetry direction, with an energyv lying in the gap. We
know that the wave is neither propagated in the forward di-
rection nor absorbed, since dissipative~imaginary! compo-
nents were not included in the dielectric functions of the rods
and, therefore, energy is preserved. The latter means that the
wave is going to be reflected and we ask ourselves how the
field at the interface looks in the reflection process. It is
through the coupling to these evanescent waves that the re-
flection process takes place and, from that point of view,
they constitute an important part of the understanding of how
we can couple to these structures from the outside.17 Need-
less to say, the physics of the electromagnetic modes at the

interface of these structures is far from being exhausted by
the simple example given here. We shall come back briefly
to some of these aspects in Sec. VI.

IV. PHOTON FOCUSING AND INTERNAL DIFFRACTION

We shall now turn briefly to another aspect of wave
propagation in these structures. We show here the direct con-
sequence of the existence of bands onto the emsission pro-
duced by a point source and its relation with known phenom-
ena for phonons.

In anisotropic media energy does not flow in the same
direction of kW . When excitations are represented by bands
labeled bykW with a given dispersionv(kW ), energy flows in
the direction of the group velocityvW 5¹W •v(kW ). In fact, it can
be shown formally thatvW , obtained as a gradient ofv(kW ),
coincides with the direction of the Pointing vectorSW }

EW 3HW for electromagnetic waves.27 For a given fixed energy
we can define two surfaces:~i! the constant energy~or slow-
ness! surface, obtained directly from the band structure as the
intersection of the bands with a given energy abscissa and,
~ii ! the wave surface, formed by the locus of all possible
group velocities. The wave surface represents the wave front
that would emerge from a point source had it emitted a pulse
of a few cycles atv. In order to fix ideas we show a specific
example for the bands shown in Fig. 1~a!. Figure 8~a! shows
two slowness surfaces for the band structure in Fig. 1~a! at
two different values of the reduced energyṽ5 0.365 and
0.76. The curve atṽ50.365 cuts theacoustic branchalmost
at the zone boundary of the first BZ and has a small~barely
visible! anisotropy between the values alongL andX ~the
surface is;1.5% larger alongX). The curve forṽ50.76 is,
however, very anisotropic betweenL andX and comes only
from the secondconduction bandin Fig. 1~a!. The reason
why we have chosen these two particular cases will become
clear soon. In Fig. 8~b! we show the calculated wave surfaces
for these two cases, by numerically evaluatingvW from the
band structure on the slowness surface. From Fig. 8~b! we
see that the wave surface forṽ50.365 is anisotropic and
shows that electromagnetic waves emitted by a point source
will travel faster alongL than alongX at this particular
energy. Moreover,the fact that the wave surface is aniso-
tropic produces focusing of the emission in complete analogy
with the phenomenon of (acoustic) phonon focusing.28 Even
when the source may send forth an isotropic distribution of
wave vectors, the corresponding distribution ofgroup veloc-

ity vectorsvW will be anisotropic and consequently the photon
emission. An additional important feature is that the wave
surface forṽ50.365 is single valued, in other words, it has
no folds and for a given direction ofvW there is only one
crossing with the surface. As a consequence, for a particular
direction defined by a vectorrW from the source, there is only
onegroup velocity vectorvW parallel torW contributing to the
energy flux in that direction and therefore onlyone wave
vectorkW ~not necessarily in the same direction!. Accordingly,
no interference among differentkW ’s occurs. A very different
situation comes about forṽ50.76 as shown in Fig. 8~b!. The
wave surface for this case@obtained from the slowness sur-

FIG. 7. Field distribution for the surface state at midgap energy
~polarization' to the rods! on a@10# surface taken from Fig. 5. The
triangular lattice of circular rods is plotted for comparison and the
@10# planes indicated. Note that this solution penetrates roughly 10
lattice planes and that this is about four times the penetration depth
at the same energy for a@11# surface~see Fig. 6!.
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face in Fig. 8~a!# shows a complex structure of folds. Note,
in addition, that alongG2L andG2X the secondconduc-
tion bandin Fig. 1~a! has a negative slope and, accordingly,
energy flows in this case in the directionoppositeto kW . If we
take the emissions alongL and X we note that the wave
surface is cut in three and five places, respectively. Indeed, it
is very easy to identify these contributions as shown in Fig.
8~c!, where we show the slowness surface forṽ50.765 with
thosekW ’s on it that have the same direction for the gradient
~normal to the surface! pointing towardsL or X. In the case
of emission alongX two pairs of points shown in Fig. 8~c!
are doubly degenerate~i.e. same direction and modulus for
the gradient! while one is single degenerate~the intersection
of the slowness surface right alongX). These constitute the
five crossings of the wave surface in Fig. 8~c!. AlongL, two
points on the slowness surface are degenerate and one has a
different value for the modulus ofvW , these are, respectively,
the three crossings alongL of the wave surface in Fig. 8~b!.
This new situation implies that energy emitted along a given
direction will come from several differentvW ’s and, conse-
quently, from differentkW ’s, displaying and interference pat-
tern. This is calledinternal diffractionand was predicted by
Maris29 for acoustic-phonon emission in those case where

the wave surface has folds as in here. It is sometimes claimed
that this effect has no optical analog.28,30

In Figs. 9 and 10 we show an explicit calculation of the
photon emission by a point source at these two energies. The
reason for using the bands with polarization parallel to the
rods in this example is that the different electric fields, dif-
fracted along different directions, add up like scalars. In Fig.
9 we show the coherent and incoherent emission at a fixed
distance from a point source as a function of angle. The
principal symmetry directions are indicated in the figure.

Since the wave front has no folds in this case, only onevW and
onekW contributes to the emission for a given angle and there-
fore there is no interference among them. The energy is,
however, strongly focused along limited solid anglesdV. In
Fig. 10 a very different situation arises between the coherent
and incoherent emissions. In addition to a strong focusing of
the emission alongX @Fig. 10~a!# the coherent case shows a
complex interference pattern coming from the simultaneous
action of modes with differentkW ’s but the same group veloc-
ity directions. One of the lobes alongX is shown in detail in
Fig. 10~b! for both coherent and incoherent emission. Actu-
ally, the coherent emission represents adiffraction limited
image of the wave surfacein complete analogy with acoustic

FIG. 8. ~a! Slowness surfaces forṽ50.365 andṽ50.76 calcu-
lated with the bands of Fig. 1~a!. The surface forṽ50.365 has a
small (; 1.5%! anisotropy betweenX andL; ~b! Wave surfaces
for the same two energies. Note the presence of a smooth single-
valued surface forṽ50.365 in contrast toṽ50.76 which has mul-
tiple folds. The anisotropies in the wave surfaces are responsible for
photon focusing, while the folds give rise to internal diffraction~see
text!; ~c! The five portions of the slowness surface atṽ50.76 that
contribute to the emission alongX are marked with a square. These
points have the gradient~normal to the surface! pointing in the

same direction alongX. Full dots are the threekW ’s with a gradient
pointing alongL. The interference among these modes produces a
diffraction limited image of the wave surface.
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phonons.28–30 Note also the existence of sharp singularities
in the incoherent emission. These singularities can arise if
the direction of the group velocityvW 5¹W •v(kW ) is stationary
for one mode with respect to a small variation inkW ,29 in other
words, if the wave surface movesradially instead oftangen-
tially. This is actually the case on both sides of the lobes
alongX of the wave surface forṽ50.76 in Fig. 8~b! and
gives rise to a divergence~infinite emission! along certain
directions. This phenomenon is also known for acoustic
phonons28 and is linked to the more general phenomenon of
phonon focusing. It is worth noting that internal diffraction

does not exist in crystal optics of uni- or biaxial crytals. The
electromagnetic modes in a crystal with dielectric tensorê i j
are obtained from Fresnel equations

k2sW3~sW3aW v!1
v2

c2
ê•aW v50, ~5!

wheresW5kW /uku, andaW v a unit vector in the direction of the
electric field. Let us express all the coordinates in theprin-
cipal axes basiswhereê i j is diagonal and take the example
of both kW andaW v in the x-y plane. It is not difficult to show
that the dispersion relation in this case isv5

cAkx2/eyy1ky
2/exx, i.e., the slowness surfaces for anyv is an

ellipse. Therefore, emission by a point source in a crystal
like this can be focused but the wave surface has neither
folds nor singularities producing directions of infinite emis-
sion. These are two peculiarities added by the PDS. In fact,
the focusingeffect is very mild in birefringent crystals and is
normally refered to simply asanisotropy of the wave surface.
A situation with a contrast among different solid angles of
almost 100% as in Figs. 9 and 10 cannot normally be ob-
tained.

Had we observed the emission of a point source on a
surface~instead of at a fixed radial distance as in Figs. 9 and
10! then the intensity pattern is a projection of the wave
surface onto the surface in question. This image is again
diffraction limited if folds in the wave front exist. Extensions
to 3D of all these phenomena are straightforward.

In conclusion, we showed in this section that the phenom-
ena of phonon focusing, directions of infinite emission and
internal diffraction28–30have their direct analogs for electro-
magnetic waves in PDS’s. In the case of phonons these phe-
nomena can be observed under special conditions. Limiting
factors are temperature and different scattering mechanism
of the coherently generated phonons. Actually,focusing and
coherent interference is a natural consequence of any exci-
tation represented by anisotropic bands. The reason why
these phenomena are not relevant for electrons, for example,
is that scattering times are very short and the possibilities of
observing collisionless coherent transport over macroscopic
distances~and spatial interference among different wave
functions! are very limited if~hot! electrons are expected to
be distributed among different bands and valleys and remain
there for long times. To some extent the same can be said for
phonons, except for acoustic modes at very low temperatures
in crystals with anisotropic slowness surfaces~like silicon28!.
All these limitations do not exist for electromagnetic waves
which are long lived, can have special coherence attributes
and are not thermally scattered. In addition, several different
types of sources and detectors can be used. These advantages
would put PDS’s in a privileged position to study coherent
wave propagation in complex structures.

V. PERIODIC DIELECTRICS WITH DISPERSION

So far, only examples in which the dielectrics are disper-
sionless have been considered. This is due to its conceptual
simplicity but also because all practical implementations of
PDS’s to date fall in this category. It is however interesting
to explore the possible consequences of dispersion in the
dielectrics on the overall picture of the band structure. To

FIG. 9. Coherent and incoherent emission by a point source at
ṽ50.365 as a function of angle. The intensity pattern is calculated
at a constant radial distance from the source of 100 lattice constants.
Principal symmetry directions are indicated accordingly. Since the
wave surface is single valued no internal diffraction takes place and
both cases look essentially the same. The emission is however
strongly focused along certain directions. Minima in these curves
are very close to zero. The curves have been shifted vertically for
clarity.

FIG. 10. ~a! same as Fig. 9 but forṽ50.76. The existence of
folds in the wave surface produces a very different pattern for co-
herent and incoherent waves. The coherent emission forms a dif-
fraction limited image of the wave surface as shown in~b!. In
addition, sharp singularities coming from thedirections of infinite
intensitycan be seen in the incoherent pattern~see text for details!.
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this end, let us review briefly the consequences of including
dispersion ine(rW). If e depends onv so doesk(GW ) through

k~GW ,v!5(
GW

1

e~rW,v!
e2 iGW •rW. ~6!

Let us take the example of bands for polarization perpen-
dicular to the rods given by~2!. We write the eigenvalue
problem ~2! in a slightly more formal manner as
M̂ i j (kW ,v)Aj5lAi , whereAi are the Fourier components of
the field,M̂ i j (kW ,v)5(kW1GW i)•(kW1GW j )3k(GW i2GW j ,v), and
l5v2/c2. In the most general case, thev dependence can-
not be factorized from the matrixMi j (kW ,v) and, therefore,
the problem of finding suitable solutions forv reduces itself
to work out the roots of a nonlinear function ofv ~containing
transcendental functions! obtained from an3n determinant,
beingn the size of the plane-wave basis in use. This problem
represents a formidable task. As mentioned in the Introduc-
tion, solving Eqs.~2–3! is equivalent to an electronic band-
structure calculation by means of the pseudopotential
method. The Fourier componentsk(GW ) play in this analogy
the role of the pseudopotential coefficients. Allowing anv

dependence ink(GW ) would be equivalent to havingtime-
dependent pseupotentialsfor the electrons. In fact, any cal-
culation of electron-phonon interaction implies a time-
dependent pseudopotential. Phononsmodulate the atomic
positions and, consequently, the total pseudopotential of the
structure is modulated at the frequency of the phonons and
produces scattering of the electronic states. The latter is how-
ever an example in which the time dependence of the
pseudopotential can be treated as a perturbation of thefrozen
band structure. Our case here is equivalent to a time-
dependent pseudopotential calculation which cannot be
treated perturbately and, accordingly, has no direct analog
for electrons. There are of course a few examples for elec-
trons in which the perturbation cannot be treated perturbately
and a new exitation is created. Representatives are exciton-
polaritons and also resonant interactions with phonons ob-
tained in special cases~magnetic fields, for example!. These
affect, however, only a limited number of states in the band
structure~those in resonance with the excitation!.

The solutions of the nonlinear transcendental equation for
v produced by the determinantuM̂ i j (kW ,v)2(v2/c2)d i j u can
transform the discrete spectrum of eigenvalues of the origi-
nal bands into a mixture of continous and discrete energy
bands for a givenkW depending on several factors; among
them: the type of dispersion selected for the dielectrics, the
dispersion of the background medium, the proximity to reso-
nance, etc. There are a few trivial examples in which the
dispersion can be factorized fromMi j (kW ,v) and the problem
can be solved by avoiding the nonlinear determinant. Even
here, a numerical solution of one transcendental equation is
sometimes required, except for the simplest type of disper-
sion. The price to be paid is, as in most examples of nonlin-
ear equations that can be solved in a relatively easy manner,
that this example is of little practical importance. Its signifi-
cance still is based on showing the emergence of new phe-
nomena that can guide more complicated examples.

Let us briefly consider the simplest possible example of
factorization of thev dependence inMi j (kW ,v) without go-
ing into the details. Let us suppose we form a PDS out of
two different materials with optical constantsea(v) and
eb(v). We assume that both dielectric objects and back-
ground have the samegap v0 but different oscillator
strengths. We further take one example that does not require
numerical handling of the roots. We assume bothea,b(v) to
be given by the two-level system expressions

ea,b~v!;ea,b~`!1
@ea,b~0!2ea,b~`!#

12v/v0
. ~7!

In this way, the problem can be solved by working out the
roots of the dispersionless problem ~2–3! with
@ea,b(0)2ea,b(`)# in ~6! and transforming the spectrum of
eigenvalues by

v8→2
v2

2v0
1A v4

4v0
2 1v2. ~8!

The transformation~8! is valid only for those rootsv of the
spectrum for which ~7! holds, in practical terms, for
v,v0 , but sufficiently close to resonance so that we can
neglect thev→` limit of e(v). Besides modifications in
the gaps, Eq.~8! induces a quadratickW dependence in the
dispersion forv8 ~in a somewhat similar fashion as the non-
parabolicity of electron bands! and a substantial diminution
~depending onv0) of the group velocity in theacoustic
branches. Had we selected a different type of singularity for
the dispersion ofea,b(v) then, the transformation of the
spectrum of eigenvalues has to be performed numerically
from an implicit equation of the formF(v8,v)50. Equation
~7! has been deliberately chosen because it allows an explicit
expression forv8 as a function of the roots of the dispersion-
less problemv.

VI. ACOUSTIC BRANCHES AND LONG-WAVELENGTH
EFFECTIVE MEDIUM

It is well known from the theory of acoustic phonons that
the long-wavelength limit can be treated as continuum prob-
lem which ignores the microscopic structure of the lattice. In
terms of the elastic constantscmsnt the acoustic modes are
solutions ofrv2am5cmsntksknat , wherer is the density
andaW the polarization vector.31 The harmonic potential for
the continuum readsU51/2eaCabeb with ea being the
strain components andCab the elastic stiffness constants.
For a givenkW there are three eigenvalues and their corre-
sponding eigenvectorsaW . These areexactly longitudinal or
transverse tokW only along high symmetry directions. If we
assume the lattice at rest and we force a given amplitude for
the strainem components representing a mode, we have to
invest some energy according to the polarization selected.
The larger the energy the morerigid the medium and the
faster the speed of sound for that polarization.

Suppose we want to force upon a PDS a low-frequency
v→0 field with a given polarization. We can control the
electric displacementDW from the outside~we only have ac-
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cess to the free charges, whileEW is fixed by the the external
field and the internal rearrangement of charges!. Suppose, for
example, we have two parallel plates with equal positive and
negative charges, respectively, and we want to introduce
these plates inside the PDS with a given orientation~parallel
or perpendicular to the rods!. There is an energy associated
with this configuration given byU51/2@1/e i j (0)#DiD j for a

fixed DW . The smaller theeffective dielectric functionfor a
given polarization the larger the energy. This a measure of
the rigidity of the mode and the smaller thee the faster the
mode for that polarization. This is the reason why all PDS’s
in 2D have always the acoustic branches' to the rods faster
than thosei since the effective dielectric constants normally
satisfy e',e i . In Fig. 11 we show the long wavelength
acoustic branches for both polarizations and for both ex-
amples given in Figs. 1 and 2. In the analogy with acoustic
waves, the inverse of the dielectric tensor plays the role of
the elastic stiffness constants for acoustic phonons. Analo-
gies of this type are not surprising since mechanical and
electromagnetic systems are known to have equivalences; the
typical example being the damped oscillator and a LRC cir-
cuit. The important point to recognize here is, however, that
long-wavelength acoustic branches have information on the
average properties of the medium treated as a continuum and
the equivalent branches in PDS’s can be used to obtain in-
formation on theeffective dielectric propertiesof the struc-
ture. Following Refs. 7 and 32, an estimation of the effective
long-wavelength dielectric constants for a given structure
can always be obtained from the limiting cases of maximum
(EW i to all interfaces! and minimum (EW' to all interfaces!
screening given by

e5 f ea1~12 f !eb ~9!

and

1/e5 f /ea1~12 f !/eb , ~10!

respectively. These formulas are not strictly correct because
they neglect the real field distribution at the boundaries of
the rods, but give the appropriate order of magnitude. In the
example of Fig. 11~a! they predict a ratio of speeds for the
two polarizations given byv' /v i;0.502, while the calcu-
lated ratio is 0.587. For Fig. 11~b! we obtainv' /v i;0.831
to be compared with the calculated one of 0.873. These
speeds are, of course, independent of the direction chosen for
kW in the limit kW→0 as can be checked from the acoustic
branches in Figs. 1 and 2. The small corrections to the result
given by ~9–10! arise from the actual details of the field
distributions of the modes for different polarizations around
the dielectric objects forming the lattice, and produce the
same quantitative result one would get by solving theelec-
trostaticproblem and evaluating the effective screening for a
given electric field. These corrections depend, of course, not
only on the dielectric functions of the rods and background
as in~9–10! but also on the selected type of lattice and rods.

VII. CONCLUSIONS

We have exploited several analogies with phonons and
electrons to highlight different aspects of the electromagnetic
excitations in periodic dielectric structures. A detailed ac-
count of electromagnetic surface states obtained from the
bulk band structure and emission produced by a point source
with all its consequences of focusing and internal diffraction
has not been given before to the best of our knowledge. In
addition, we discussed briefly the possibility of including
dispersion in the dielectrics and show that this particular as-
pect has no direct analog for electrons. The simplest possible
example of this type has been discussed. Further work on the
latter is under way and will be published elsewhere.33 A few
analogies with the elastic theory of acoustic phonons and the
link with the electrostatics of the problem and theeffective-
medium dielectric propertieshave been highlighted in the
last section. We confronted the different analogies from a
solid-state physicist’s point of view and emphasized simple
concepts rather than mathematical or computational com-
plexity.
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FIG. 11. Long-wavelength acoustic branches for both polariza-
tions.~a! branches for the lattice of Fig. 2.~b! same for the lattice of
Fig. 1. Note that electromagnetic waves always travel faster for'

polarization in these structures, reflecting the fact thate',e i . The
result is also valid for PDS’s made of air rods in a dielectric me-
dium. The slopes of the branches obtained in the calculations are
expected to satisfy the proportionalityv;1/Aeeffective and can give
accurate values of theeffective dielectric componentsof the struc-
ture for static fields. The inverse of the dielectric tensor componets
play the role of the elastic stiffness constants in the analogy with
classical acoustic waves.
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