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Photon focusing, internal diffraction, and surface states in periodic dielectric structures
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Several analogies between electrons and phonons in semiconductors and electromagnetic waves in periodic
dielectric structures are used to demonstrate the existen€p stirface or edge states at the boundaries
between the periodic structure and 4&ir) focusing of the electromagnetic energy emitted by a point source,
and (iii) the existence ointernal diffractionas known for coherent acoustic waves. In addition, the inclusion
of dispersion in the optical constants, which is a unique feature of periodic dielectrics and have no equivalent
in phonon or electron band structures, is briefly discuss®@i163-182@06)10019-9

[. INTRODUCTION tive energies and become trapped in deep potentials, while
the equivalent problem for photons reduces itself to finding
Since the pioneering work of Yablonovitch great deal eigenvalues of the form; = w?/c? which must be>0 if the
of effort has been put in understanding the properties of eleddielectric functione(w) of the objects forming the lattice is
tromagnetic waves in periodic dielectric structu(e®s. It real and positive.
has been shown theoretically and experimentaly®’ that Notwithstanding the major progress in this field, we are
forbidden gaps exist in PDS and the tephotonic band convinced that several other analogies with what is known
materialshas been coined accordingly. The literature in thefrom phonons and electrons can be exploited still for elec-
field is vast as the reader may appreciate through some of tHeomagnetic waves in PDS’s. In particular, the full conse-
papers published in conferences related to or specialized iuences of the details of the bands for particular cases have
the subject been, in general, overlooked by the search of a reasonable
One of the main concerns has been the conditions for thparameter set producing the desired gap. The nature of the
existence of photonic gafsin particular, the existence of wave propagation in these structures is fascinating by itself
gaps for all possible polarizations of the electromagneticand leads to very interesting phenomena already known for
wave. It very often ensues that gaps for a given polarizatiopphonons as we shall show later. Furthermore, not all analo-
do not overlap with gaps for othetsThe existence and gies with electrons have been exploited so far. We shall
search of forbidden energy regions for arbitrary polarizatiorshow the example o$urface states at the boundaried-
have been of prime importance in the field. Likewise, differ-tained from the bulk band structure, in complete equivalence
ent periodic structures show optimum values for the fillingwith what is known for electrons in semiconductors. Of par-
fraction of the unit cell in order to open gaps, and thesdicular interest are the existence piire surface states.e.,
values are different for distinct shapes of the dielectric ob-solutions with energies in the forbidden gap. We show that
jects and for different lattices. In this respect, numericalthese solutions exist through a calculation for a particular
simulatiorf has benefited the selection of possible candidategxample and compare our method of calculation with previ-
for observing the desired effects. Last but not least, one mapusly reported supercell resutts.
jor concern has been the possibility of observing electromag- The paper is organized as follows: Sec. Il gives a brief
netic localization in disordered dielectrigs'* a subject introduction to the method of calculation and the band struc-
which would deserve a chapter by itself. tures for the examples we shall use. Section Il presents the
The field has benefited from analogies to and differencesalculation and underlying concepts for the surface states.
from other excitations in solids. The very concept of a gap isSection IV shows explicitly how the existence of bands can
an example but more elaborate analogies exist, for instancgroduce focused emission by a point source and the phenom-
the presence afonoror acceptorstates in the gdpinduced  enon ofinternal diffractionas known for acoustic phonons.
by a defect (as in semiconductors The search for Section V presents the possibility of including dispersion in
localizatiort® is another example fueled by the familiar ex- the dielectrics, a feature which has no counterpart for
amples of Anderson localization for electrons. In thesephonons or electrons. Finally, Sec. VI underscores a few
analogies the ultimate differences among the different typeanalogies between long-wavelength electromagnetic waves
of excitations are also highlighted. As an example, the vecand the theory of elasticity for sound waves. In Sec. VI a few
torial character of the electromagnetic field is sharply op-inal remarks are given.
posed to the scalar nature of electrons leading to different
bands for different polarizations. In this particular respect,
electromagnetic waves are definitely closer to phonons than
electrons. Another difference is the fact that Maxwell's equa- We deal with two-dimensional2D) periodic dielectric
tions have a second-order partial derivative with respect tatructures for simplicity. Furthermore we restrict ourselves to
time, while the Schidinger equation has only a first partial propagation perpendicular to the rods. Since we deal with a
derivative oft. As a consequence, electrons can have neggeriodic structure Bloch’'s theorem applies. We know the

Il. THEORETICAL OVERVIEW
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wherer =xi+yj is a vector in the plane perpendicular to the 050 Blisiongap
rods andG are the reciprocal-lattice vectors of the selected ob 1 s
lattice. By replacing(l) into Maxwell's equation$® the A X r A
propagation for polarization perpendicular to the rods
[E(K, )L zKk] is reduced to the eigenvalue problem k
N > N > > > > (1)2 >
E (k+G)-(k+G’)K(G—G’)A(G’,k)=?A(G,k), 7
G’ =
2 5
where A(G,k) are the Fourier components bf(k,») and %
x(G—G’) are the Fourier expansion coefficients of the in- Q
verse of the position-dependent dielectric functétﬁﬁ) (con-
sidered here as dispersionless and). If E(k, ») is parallel
to the rods the eigenmodes are obtained frdm
® (2nalc)
2
N > > > > w >
> (k+G")2k(G—G)A(G’' k) =—=A(G,k), (3 FIG. 1. (8 Electromagnetic band structurgvith 499 plane
~r C . . . . . . .
G waves for a triangular lattice of dielectric rods wite=5 in air

(e=1). The filling factor of the structure i5=0.169 and the bands
correspond to polarization parallel to the rods. The hexagonal BZ
@nd the principal symmetry directions are also givé;DOS as
obtained from a random sampling of 4@'s in the region limited

by I', X, andA.

where A(G,k), in this case, are the Fourier components of
the electric field. Solving the electromagnetic band structur
through (2—3 is equivalent to solving an electronic band
structure by the pseudopotential meti8dhe main differ-
ences with the electronic case drethe existence of differ-
ent band structures according to polarization éndhe fact

that empirical pseudopotentials are relatively smooth func-"" .

. = . o . existence of relatively flat bands above the galso seen as
tions of G, while periodic dielectric structures have sharpsharp singularities in the DOSNote also that the gap is
dielectric discontinuities and several Fourier coeﬁicientsdeﬁned between the maximum energy of éoeusticbranch
«(G—G’) are needed in the expansion. Consequently, elecat A and the minimum of the bands above the gagreafter
tronic band structures in semiconductdwsith only three  conduction bands in analogy with semiconductasX. In
Fourier coefficients for the pseudopotenffacan be calcu-  the language of semiconductors this would be a structure
lated with a plane-wave basis of 60—90 waves, while with an indirect gap.

(2—-3 need normally a basis of size200. - The second example we use is shown in Figs) and

~ We shall use two examples in this paper with filling frac- 2(b). The lattice is again triangular with cylindical rods but
tions f taken from Ref. 4 to optimize the opening of a gap.the dielectric function of the rods is now= 14 with a filling

The first is one is a 2D triangular lattice filled with circular fraction of f=0.431# The band structure, however, corre-
rods of dielectric constar=5. The background is assumed sponds to polarization perpendicular to the rods. The same
to be air €=1). The filling fraction (defined as the area features of the first example can be observed here. The DOS
occupied by the circular rods per cell, normalized by the are@as been calculated as in Figal Note also that in both

of the cel) is f=0.169. The electromagnetic band structurerigs. 1(a) and 2a) the direct gap atA is slightly larger than
for polarization parallel to the rods is shown in Figajlfor  the one aX.

the principal symmetry directionshown also in the figuye
These bands have been calculated with a basis of 499 plane
waves. In Fig. 1b) we show the density of statéBO9) of ll. SURFACE STATES

electromagnetic modes calculated through a random sam- Having presented the electromagnetic band structures for
pling of 10* k vectors in the 1/12th-irreducible part of the two infinite PDS'’s in the previous sections we discuss here
first Brillouin zone(BZ) betweenl”, X, andA. Energies are the existence of surface states as obtained from the bulk band
reduced to dimensionless quantities by the factorstructure. The aim of this section is to show a specific ex-
w—w(2malc), wherea is the lattice parameter amtithe  ample of surface states and discuss briefly their implications.
speed of light. The following features should be noticed for Every real implementation of a PDS is necessarily finite.
the forthcoming discussiorti) the existence of a gap around The existence of surfaces in the structure allows the presence
w~0.45[see also Fig. (b)]; (ii) the presence of amcoustie of solutions which are not directly contemplated(#+-3) if

like branch below the gafwith @k close tol') and(iii) the
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a r Tr ] matching rely on the exact position chosen for the surface
S, . | ] relative to the phase of the modulation potential
% 03 06 09 12 Uoeexp(GXx). This approach has been used very successfully
for semiconductors and reports for GaAs, Si, and Ge can be
o (2ralc) found as early as 196@Ref. 20 in calculations using the

E-ﬁ method for the bulk electronic states. In a solid, surface
FIG. 2. Same as Figs.(d and 1b) but for dielectric rods of States can be calculated for the different inequivalent sur-
e=14 in air and polarization perpendicular to the rods; DOS  faces of the structure. In GaAs and the like, surface eigen-

calculated as in Fig. (b). states with imaginank are normally calculated for111],

) [110], and[001] surfaces. For a 2D triangular lattice there
k is real. In fact, Bloch’'s theorem vouches for solutions ofare two different inequivalent surfaces shown in Fig. 3 that

the form (1) but does not restrick to be real. The latter Cut the structure through lattice sitéetomic positions in the
comes as an aftermath to the fact that only nondivergerase of electronsWe calculate the electromagnetic surface
solutions for the fields are physically acceptabIeE i al- states for these two surfaces for polarization perpendicular to

lowed to have an imaginary component(it) the field will theNrordrs. I in the 1D example for surf tat hown
irremediably diverge in an infinite lattice. This constraint is ormally, as € example for surface states sho

removed if a surface is introduced and this is a standar@reviously, solutions with imaginark will show up as ana-
textbook example of surface stafésLet us briefly review lytic continuations connecting neighboring roots for reait
how these states are formed in the nearly-free-electroa given point in the BZ° As we shall show later, these
model. Take a 1D weakly periodic potential as analytic continuations may interact and cross with each other
V(x)=Ug exp(iGx). This opengin first orde) only one gap  and connect eventually the solutions for realt » with their

at the boundary of the first BZ. The two wave functions atmirror images at- » which are, in turn, analytic continua-
the gap can be expressed asF~C,exp(kx) tions in thew<O plane. The best way to obtain solutions in
+C, exdi(k—G)x] whereC, , come from the Hamiltonian  the gap, for example, is to start in those points of the BZ that

have eigenenergies for relalon both sides and close to the
A, Uo\[(Cy o} gap in question. A situation like the one depicted in the 1D
= 4 example given above can be, therefore, expected in which
Uo Az Ca the analytic continuation crosses the gap and produces sur-

with A =#2k2/2m. \,=h%(k—G)%/2m and eigenvalues face states with no energy overlap with respect to the bulk

bands. An additional characteristic of the surface states ob-
E=3(N1+X2) = Vi(Ay— A1)+ UJ. Expressing wave vec- tained by these analytic continuations is that they formally
tors with respect to the zone boundayy (G/2—Kk) and en-  regard the surface as a sharp, featureless, flat interface in the
ergiesE with respect to the center of the gap we obtainmatching with external solutions. The latter is certainly not a
Ng=VEZ—U2 with \,=/i%g%/2m. Two cases are distin- limitation for 1D layered medf&>°but is not formally cor-
guished:(i) |E|>U, with real values of G/2—k) and (i)  rectin 2D or 3D PDS'’s where surfaces are not flat planes but
|E|<U, with imaginary 4, i.e., imaginary wave vectors. have their own topology. Accordingly, roots with very large
These solutions decay exponentially inside the solid and calm(k) (i.e., with fields penetrating less than a single layer
be matched to evanescent waves into the vacuum to beconage not to be taken agood solutions to match with waves
surface states. In fact, these solutions araraalytic continu-  into the vacuum, in the sense that the field pattern is non-
ation of the band structure through the gap. Details of thenegligible only in the region where the original approxima-

Co
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FIG. 4. Surface states &t calculated with 271 plane waves.
Both branches of the analytic continuations alodgand I' are o .
joined atl". These states with RE[=0 represent pure exponential G- 5. Surface states &t calculated as in Fig. 4 but with
deacays of the fields inside the struct(see text for details Re(k)=X. Note the existence of solutions in the gap for

Im(K) <|X|. These solutions have both, an exponential decay and a
tion of a flat, sharp, interface is not valid. Another possibility modulation given by Ré(). The field pattern for midgap energy is
to study modes at the surface is to solve a supercell formeshown in Fig. 7.
by layers separated by air, in exact analogy to what is done

7 . . .

for electroné The latter is a more sophisticated approachihese states cannot ignore the strong scattering electrons suf-
that avoids the problem of matching and bequeaths directlya \yith the bulk bands which are degenerate with them. In
all solutions which can be C'?SS'T'edl_és') extended in both 6 case of electromagnetic waves this limitation is removed
the crystal and air(ii) decaying in air and the crysteliii)  ang solutions at the surface calculated by this method are
extended in air and decaying in the crystal, afie) decay- expected to be more reliable. Photons do not interact with
ing in both air and the crystal. These solutions treat the SUraach other in linear media and the existence of bulk states
face details correctly. The price to be paid is to work with\yith the same or similar energies to these surface states do
supercells which have to be defined for each direction of,; perturb or scatter them by any means.

interest. In addition, solutions with very long penetration A more interesting situation results when considering sur-
depths (larger than the supercell sizeare not properly fice states aX and A as shown in Figs. 5 and 6. In these

treated. To some extent, this method is complementary t - .
ours which treats better those solutions with large penetra?-Igures we set Ré( to be either a or atA and we allow

tions into the bulk. Moreover, the method presented herémM(k) to be #0 to find the analytic continuations of the
uses the very same band structure of the bulk and does nB&nds around those points in the BZ. Figure 5 shows that the
require additional computational effort in building the super-two solutions above and below the gap at k€0 are at-
cells. It also provides solutions along directions other thariracted to each other and join in the forbidden gap of the bulk
the principal for which a supercell method may prove to beat a value of Imk)<|X|, i.e., there are solutions in the gap
impossible and gives a quick answer to penetration depths ihich expand over several lattice constants in real space.
the gaps along different directions. Figure 6 shows the equivalent calculation fof14] surface.

In Fig. 4 we show the surface states Bt[i.e., Re |f we take the midgap energy as a reference, and we find the

(k)=0] for the bands in Fig. @). We plot two cases in Fig. solution with the smallest Ink{) for the surface states at
4: (i) Im(K)[|[[10] and (i) Im(k)|[11]. Since Rek)=0, both
cases are branches of the same analytic function and can be

therefore joined af”. The calculation is perfomed with a F e st
basis of 271 plane waves. These solutions represent states 1.0 ;Re(k)mﬁ
that are pure exponential decays of the field inside the struc- - - \
ture. According to the previous discussion, states across the < i S
gap atw~0.32 are not expected for small Iﬁ)( since none q 05¢ L % ;gﬁ
of the states al’ define this gap. After some crossings and N L oo ‘*\ o
anticrossings the analytic continuations of the solutions at ol e L ‘ Y
I' show several branches pointing downwards that would I T
meet the mirrored solutions in the plane<0 if we made the 0 4 8
analytic continuations there. Some of these branches cross

the gap but only for large values of Idf])(. There are, how- Im(k)

ever, plenty of solutions with small Ik in the conduction R

band These solutions penetrate the structure several lattice FIG. 6. Surface states at [i.e., Rek)=A] calculated as in
constants as a pure exponential decay. It is worth noting thdtigs. 4 and 5. There is a crossing of one branch through the gap at
there is a fundamental difference in this respect with them(k) smaller than the zone boundary along this directias in
electronic case. Although solutions that overlap with the con¥ig. 5. Note that the solution at midgap energy with the smallest
duction and valence band in semiconductors are obtained as(k) implies a shorter penetration in the structure than than for a
in here, comparison with an experimental determination of10] surface in Fig. 5see text for detai)s
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interface of these structures is far from being exhausted by

dielectric rods . . .
(triangular lattice) the simple example given _here. We shall come back briefly
0 S T 0. 0Mb. 0. to some of these aspects in Sec. VI.
mid-gap surface 030305070 3PEHOSO
state OXO0XO0XOXOX0
OROROADXOX]
020209020202
O~ROSOXOXOF0OR0 IV. PHOTON FOCUSING AND INTERNAL DIFFRACTION
0205060504950
Q/AS = .
8080808080808( We shall now turn briefly to another aspect of wave
0305050704 0A0H propagation in these structures. We show here the direct con-
[0]-surface 0209030305030800% sequence of the existence of bands onto the emsission pro-
PoCoCCCCoPHC0 duced by a point source and its relation with known phenom-
L ena for phonons.
[10]-planes In anisotropic media energy does not flow in the same

direction of k. When excitations are represented by bands

FIG. 7. Field distribution for the surface state at midgap energ))abel?d b'yk with a given dispe.rgiomi)(k),aenergy ﬂqws in
(polarizationL to the rod$ on a[10] surface taken from Fig. 5. The the direction of the group velocity=V - w(k). In fact, it can
triangular lattice of circular rods is plotted for comparison and thepe shown formally that, obtained as a gradient af(k),
[10] planes indicated. Note that this solution penetrates roughly 1 oincides with the direction of the Pointing vect&ic

lattice planes and that this is about four times the penetration dept > ] ) -
at the same energy for[41] surface(see Fig. 6. EX H for electromagnetic waves.For a given fixed energy
we can define two surface§) the constant energipr slow-

. ness surface, obtained directly from the band structure as the
and X, we note that electromagnetic waves have a larger

: O intersection of the bands with a given energy abscissa and,
penetration depth inside th_e bulk fof F0] S“ffff‘ce f[han fo_r a (i) the wave surface, formed by the locus of all possible
[11] one. The branch starting from the solution immediately locities. The wav if represents the wave front
above the gap ak in Fig. 6 decreases and crosses the mid-Jroup Veloclties. The wave surlace represents e wave

_ ) i that would emerge from a point source had it emitted a pulse
gap energy at Ink) ~0.75A|. By comparing the latter with  of 4 few cycles at. In order to fix ideas we show a specific
the solution of smallest Ink) for the same energy &€ in example for the bands shown in Figal Figure §a) shows
Fig. 5 we find that electromagnetic waves penetrafeur  two slowness surfaces for the band structure in Fig) at
times more on 410] surface than on §11] one. The field two different values of the reduced energy= 0.365 and
pattern for the midgap solution with the smallest knon a  0.76. The curve ab=0.365 cuts thecoustic branchalmost
[10] surface is plotted in Fig. 7. This solution has, beside theat the zone boundary of the first BZ and has a sitiately
exponential decay, an oscillatory modulation produced byvisible) anisotropy between the values alongand X (the
Re(k)=|X|. Note that the general shape of the analytic con-Surface is~1.5% larger along). The curve fofo=0.76 is,
tinuations in Figs. 4—6 convey the same impression of thélOWeVver, very anisotropic betweénandX and comes only
surface states for electrons in semiconductors calculated #0M the seconctonduction bandn Fig. 1(a). The reason
Ref. 20. why we have chosen these two particular cases will become

The existence of surface states is a natural consequence @far soon. In Fig. &) we show the calculated wave surfaces
any excitation in a periodic structure and are an artless outfor these two cases, by numerically evaluatingrom the
come of Bloch’s theorem, albeit they are normally ignoredband structure on the slowness surface. From Hig) &e
except when the physics of the interface becomes an imposee that the wave surface far=0.365 is anisotropic and
tant part of the problem. Roots of the bulk band structureshows that electromagnetic waves emitted by a point source
with imaginaryk are an unavoidable aspect of many practi-Will travel faster alongA than alongX at this particular
cal aspects of the physics of the interfaces in PDS’s. Ex€nergy. Moreoverthe fact that the wave surface is aniso-
amples would include the expansion of a field in a defect ofropic produces focusing of the emission in complete analogy
impurity close to the surfad® but, more importantly per- With the phenomenon of (acoustic) phonon focufrgven
haps, the very process of reflection of electromagneti®vhen the source may send forth an isotropic distribution of
waves. Suppose the following situation: an electromagneti®ave vectors, the corresponding distributiongebup veloc-
wave impinges from the outside onto a PDS, along a giverity vectorsv will be anisotropic and consequently the photon
symmetry direction, with an energy lying in the gap. We emission. An additional important feature is that the wave
know that the wave is neither propagated in the forward di-surface forw=0.365 is single valued, in other words, it has
rection nor absorbed, since dissipatiimaginary compo-  no folds and for a given direction af there is only one
nents were not included in the dielectric functions of the rodsrossing with the surface. As a consequence, for a particular

and, therefore, energy is preserved. The latter means that tho tion defined by a vectarfrom the source, there is only
wave is going to be reflected and we ask ourselves how the

field at the interface looks in the reflection process. It jsonegroup ve_Iocity vecton. parallel tor contriputing to the
through the coupling to these evanescent waves that the rENETIY. flux in that d|.rec?t|on and therefor.e orgye Yvave
flection process takes place and, from that point of viewYectork (not necessarily in the same directioAccordingly,
they constitute an important part of the understanding of howo interference among differekts occurs. A very different
we can couple to these structures from the outsidéeed-  situation comes about f@=0.76 as shown in Fig.(8). The
less to say, the physics of the electromagnetic modes at theave surface for this cagebtained from the slowness sur-
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Z;Em‘a/c|=0I3615 AT ] FIG. 8. (a) Slowness surfaces f@ = 0.365 andw=0.76 calcu-
- . lated with the bands of Fig.(4). The surface fofw=0.365 has a
0.05 - ATl small (~ 1.5% anisotropy betweeiX and A; (b) Wave surfaces
i ] for the same two energies. Note the presence of a smooth single-
= L 4 valued surface foto =0.365 in contrast t@=0.76 which has mul-
-1 - tiple folds. The anisotropies in the wave surfaces are responsible for
[>> 0 n photon focusing, while the folds give rise to internal diffract{see
n_ i ] text); (c) The five portions of the slowness surfacewst 0.76 that
> L ] contribute to the emission alon¢are marked with a square. These
L - points have the gradierthormal to the surfagepointing in the
-0.05 same direction along. Full dots are the threk’s with a gradient
[ 2m0alc=0.76 i pointing alongA. The interference among these modes produces a
e b T diffraction limitedimage of the wave surface.

-0.05 0 0.05

V.=V (k)

face in Fig. 8a)] shows a complex structure of folds. Note, the wave surface has folds as in here. It is sometimes claimed
in addition, that along"— A andI'—X the seconcdtonduc- that this effect has no optical anal&t®

tion bandin Fig. 1(a) has a negative slope and, accordingly, In Figs. 9 and 10 we show an explicit calculation of the
energy flows in this case in the directioppositeto k. If we  photon emission by a point source at these two energies. The
take the emissions alond and X we note that the wave reason for using the bands with polarization parallel to the
surface is cut in three and five places, respectively. Indeed, iods in this example is that the different electric fields, dif-
is very easy to identify these contributions as shown in Figfracted along different directions, add up like scalars. In Fig.
8(c), where we show the slowness surfacedor 0.765 with 9 we show the coherent and incoherent emission at a fixed
thosek’s on it that have the same direction for the gradientdistance from a point source as a function of angle. The
(normal to the surfadepointing towardsA or X. In the case  principal symmetry directions are indicated in the figure.
of emission alongX two pairs of points shown in Fig.(8)  Since the wave front has no folds in this case, only ored

are doubly degeneratee. same direction and modulus for ono ¢ contributes to the emission for a given angle and there-
the gradientwhile one is §|ngle degeneratthe mter_sectlon fore there is no interference among them. The energy is,
qf the sloyvness surface right aloh@. T_hese constitute the however, strongly focused along limited solid angiés. In

f""? crossings of the wave surface in FigcB Along A, two . 10 a very different situation arises between the coherent
points on the slowness surface are degenerate and one haa incoherent emissions. In addition to a strong focusing of
different value for the modulus of, these are, respectively, the emission alon¥ [Fig. 10@)] the coherent case shows a
the three crossings alonty of the wave surface in Fig.(B).  complex interference pattern coming from the simultaneous

This new situation implies that energy emitted along a g'verhctmn of modes with differerit’s but the same group veloc-
direction will come from several dlfferem s and, conse- |ty directions. One of the lobes a|or)g|s shown in detail in
quently, from different’s, displaying and interference pat- Fig. 10b) for both coherent and incoherent emission. Actu-
tern. This is callednternal diffractionand was predicted by ally, the coherent emission representslitiraction limited
Maris®® for acoustic-phonon emission in those case wherémage of the wave surfade complete analogy with acoustic
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does not exist in crystal optics of uni- or biaxial crytals. The
electromagnetic modes in a crystal with dielectric terfspr
are obtained from Fresnel equations

— ™
—
—
—

2
2a o\ o A~z
incoherent k SX(SX am)+ C2 e.aw_o’ (5)

Intensity

wheres=k/|k|, anda,, a unit vector in the direction of the
| coferemt e]ectrlc field. L'et us ez<pr'ess.all the coordinates in phia-
cipal axes basisvheree;; is diagonal and take the example

of bothk and éw in the x-y plane. It is not difficult to show
0 200 400 that the dispersion relation in this case &=

cVkZ/ e,y K3l €y, i.€., the slowness surfaces for anyis an
ellipse. Therefore, emission by a point source in a crystal
angle [deg] like this can be focused but the wave surface has neither
folds nor singularities producing directions of infinite emis-
FIG. 9. Coherent and incoherent emission by a point source ai0n. These are two peculiarities added by the PDS. In fact,
®=0.365 as a function of angle. The intensity pattern is calculatedhe focusingeffect is very mild in birefringent crystals and is
at a constant radial distance from the source of 100 lattice constantsormally refered to simply aanisotropy of the wave surface
Principal symmetry directions are indicated accordingly. Since théA situation with a contrast among different solid angles of
wave surface is single valued no internal diffraction takes place ana@lmost 100% as in Figs. 9 and 10 cannot normally be ob-
both cases look essentially the same. The emission is howevéained.
strongly focused along certain directions. Minima in these curves Had we observed the emission of a point source on a
are very close to zero. The curves have been shifted vertically fosurface(instead of at a fixed radial distance as in Figs. 9 and
clarity. 10) then the intensity pattern is a projection of the wave
surface onto the surface in question. This image is again
phonons®~%° Note also the existence of sharp singularitiesdiffraction limited if folds in the wave front exist. Extensions
in the incoherent emission. These singularities can arise ifo 3D of all these phenomena are straightforward.
the direction of the group velocity =V - w(K) is stationary In conclusion, we showed in this section that the phenom-
for one mode with respect to a small variatiorkif® in other ~ €na of phonon focusing, directions of infinite emission and
words, if the wave surface moveadially instead oftangen-  internal diffractiorf® *°have their direct analogs for electro-

tially. This is actually the case on both sides of the lobedgn@gnetic waves in PDS's. In the case of phonons these phe-
along X of the wave surface fos=0.76 in Fig. §b) and Nomena can be observed under special conditions. Limiting

gives rise to a divergencénfinite emission along certain  factors are temperature and different scattering mechanism

directions. This phenomenon is also known for acoustic®f the coherently generated phonons. Actudibgusing and
phonon§8 and is linked to the more general phenomenon ofcoherent interference is a natural consequence of any exci-

phonon focusing. It is worth noting that internal diffraction tation represented by anisotropic bandshe reason why
these phenomena are not relevant for electrons, for example,

is that scattering times are very short and the possibilities of
observing collisionless coherent transport over macroscopic
distances(and spatial interference among different wave
functiong are very limited if(hot) electrons are expected to
be distributed among different bands and valleys and remain
there for long times. To some extent the same can be said for
phonons, except for acoustic modes at very low temperatures
in crystals with anisotropic slowness surfackiee silicor?®).

All these limitations do not exist for electromagnetic waves
which are long lived, can have special coherence attributes
and are not thermally scattered. In addition, several different
types of sources and detectors can be used. These advantages
would put PDS’s in a privileged position to study coherent
wave propagation in complex structures.

diffraction
limited
image

incoherent

—_—

Intensity

self-diffracted
signal

incoherent

S B

0 200 400 100 120 140

angle [deg] angle [deg]
V. PERIODIC DIELECTRICS WITH DISPERSION

FIG. 10. (a) same as Fig. 9 but fa&=0.76. The existence of So far, only examples in which the dielectrics are disper-
folds in the wave surface produces a very different pattern for cosionless have been considered. This is due to its conceptual
herent and incoherent waves. The coherent emission forms a digimplicity but also because all practical implementations of
fraction limited image of the wave surface as shown(f. In PDS'’s to date fall in this category. It is however interesting
addition, sharp singularities coming from td&ections of infinite  t0 explore the possible consequences of dispersion in the
intensitycan be seen in the incoherent pattésee text for details  dielectrics on the overall picture of the band structure. To
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this end, let us review briefly the consequences of including Let us briefly consider the simplest possible example of

dispersion ine(F). If e depends o so doesk(é) through  factorization of thew dependence irMij(IZ,w) without go-
ing into the details. Let us suppose we form a PDS out of
two different materials with optical constants(w) and
K(Gw)=S } o iGT ©) ep(w). We assume that both dielectrip objects and back-
T e(r,o) ground havethe samegap wg but different oscillator _
strengths. We further take one example that does not require
numerical handling of the roots. We assume befh(w) to
be given by the two-level system expressions

Let us take the example of bands for polarization perpen
dicular to the rods given by2). We write the eigenvalue
problem (2) in a slightty more formal manner as

I\?Iij(lz,w)Aj=)\Ai, whereA; are the Fourier components of € ()~ €, (o) + [€ab(0)— €5 ()]
the field,M;; (K, @) = (k+ G;) - (k+ G;) X «(G; - G; , ), and ab ab 1—wlwg

_27n2 _
A=t In _the most general c_ase, Ehedependence €an= i this way, the problem can be solved by working out the
not be factorized from the matrid;;(k,w) and, therefore, ,gots of the dispersionless problem  (2—-3  with

the problem of finding suitable solutions ferreduces itself [€.5(0)— €a ()] in (6) and transforming the spectrum of
to work out the roots of a nonlinear function @f(containing eig'envalues’ by

transcendental functionsbtained from an X n determinant,

beingn the size of the plane-wave basis in use. This problem ) 2

represents a formidable task. As mentioned in the Introduc- o e 2 L2 ®)
tion, solving Egs(2-3 is equivalent to an electronic band- 2w 4_Zwo '

structure calculation by means of the pseudopotential

. 2 L The transformatior8) is valid only for those roots of the
method. The Fourier component$G) play in this analogy ; : .
the role of the pseudopotential coefficients. Allowing @an spectrum for which (7) holds, in practical terms, for

o ) o w<wq, but sufficiently close to resonance so that we can
dependence inc(G) would be equivalent to havingme-

X neglect thew—« limit of e(w). Besides modifications in
dependent pseupotentidisr the electrons. In fact, any cal- the gaps, Eq(8) induces a quadrati& dependence in the
culation of electron-phonon interaction implies a time- 9aps, Eq d P

. . [ - ;
dependent pseudopotential. Phonansdulate the atomic d'SperS'.on forw” (in a somewhat similar fashlpn as t.he non-
ngarabollcny of electron bangl&ind a substantial diminution

)

itions an n ntly, th I ntial of th X o X
positions and, consequently, the total pseudopotential of t epending onwg) of the group velocity in theacoustic

structure is modulated at the frequency of the phonons an hes Had lected a diff it f sinaularity f
produces scattering of the electronic states. The latter is ho ranches Had we selected a difierent type ot singularity Tor
éhe dispersion ofe, ,(w) then, the transformation of the

ever an example in which the time dependence of th ¢ f ei I has 1 b ; q icall
pseudopotential can be treated as a perturbation dfalzen spectrum of €igenvalues has 1o be p’er ormed_numerically
from an implicit equation of the formf (', w)=0. Equation

band structure. Our case here is equivalent to a time

dependent pseudopotential calculation which cannot b&?) has been deliberately chosen because it allows an explicit

: 4 ) . :
treated perturbately and, accordingly, has no direct anal(zgeXpreSS'on fo” as a function of the roots of the dispersion-

for electrons. There are of course a few examples for eled€SS Problem.

trons in which the perturbation cannot be treated perturbately

and a new exitation is created. Representatives are excitonVl. ACOUSTIC BRANCHES AND LONG-WAVELENGTH
polaritons and also resonant interactions with phonons ob- EFFECTIVE MEDIUM

tained in special casdmagnetic fields, for exampleThese
affect, however, only a limited number of states in the band[h

structure(those in resonance with the excitation > . . ;
. ) . lem which ignores the microscopic structure of the lattice. In
The solutions of the nonlinear transcendental equation fo

R 2 2 ferms of the elastic constants,,, - the acoustic modes are
o produced by the determinafil;; (k) — (®/c) dj| can  gojytions ofpw?a,=c,,,.k,k,a,, wherep is the density
transform the discrete spectrum of eigenvalues of the origiz 13 the olarizgtionﬂvecto?l The harmonic potential for
nal bands into a mixture of continous and discrete energ P ' P

- ) . ¥he continuum reads)=1/2e,C,ze; with e, being the
bands for a giverk depending on several factors; among gtrain components an@,, the elastic stiffness constants.
them: the type of dispersion selected for the dielectrics, thia_ venk th h . | d thei i
dispersion of the background medium, the proximity to reso- or a.g|ver? there are three eigenvalues an. t.e|r corre
nance, etc. There are a few trivial examples in which theSPonding eigenvectora. These areexactly longitudinal or

dispersion can be factorized frolf; (k,w) and the problem {ransverse t& only along high symmetry directions. If we
can be solved by avoiding the nonlinear determinant. Eve@Ssume the lattice at rest and we force a given amplitude for
here, a numerical solution of one transcendental equation {1 straine, components representing a mode, we have to
sometimes required, except for the simplest type of disperinvest some energy according to the polarization selected.
sion. The price to be paid is, as in most examples of nonlinThe larger the energy the morgid the medium and the
ear equations that can be solved in a relatively easy mannd@ster the speed of sound for that polarization.

that this example is of little practical importance. Its signifi- Suppose we want to force upon a PDS a low-frequency
cance still is based on showing the emergence of new phge—0 field with a given polarization. We can control the
nomena that can guide more complicated examples. electric displacemerd from the outsidgwe only have ac-

It is well known from the theory of acoustic phonons that
e long-wavelength limit can be treated as continuum prob-
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0'06_ T 71 T LIS B B B B ] E:f€a+(1_f)6b (9)
—e :aralleldp_)olfrlzatllonl “ :
r ——=o Perpendicular polarization
i i and
E 0.04 C 7
& ) (a) (b) ]
~ L y le=fle;+(1—1)lep, (10
€ 002 C ]
| Lattice of i i
L aFi;e2° La.:?;i"f ] respectively. These formulas are not strictly correct because
T N T they neglect the real field distribution at the boundaries of

0 the rods, but give the appropriate order of magnitude. In the
0.50 025 0 0.25 0.50 example of Fig. 1(a) they predict a ratio of speeds for the
two polarizations given by, /v|~0.502, while the calcu-
k lated ratio is 0.587. For Fig. 18) we obtainv, /v~0.831
to be compared with the calculated one of 0.873. These

FIG. 11. Long-wavelength acoustic branches for both polariza-ipeeds are, of course, independent of the direction chosen for

tions. (a) branches for the lattice of Fig. f) same for the lattice of K in the limit k—0 as can be checked from the acoustic
Fig. 1. Note that electromagnetic waves always travel fastet for branches in Figs. 1 and 2. The small corrections to the result
polarization in these structures, reflecting the fact that¢j. The  given by (9—10 arise from the actual details of the field
result is also valid for PDS’s made of air rods in a dielectric me-distributions of the modes for different polarizations around
dium. The slopes of the branches obtained in the calculations amhe dielectric objects forming the lattice, and produce the
expected to satisfy the proportionaliby- 1/V ecfecive @nd can give  same quantitative result one would get by solving éihec-
accurate values of theffective dielectric components the struc-  trostatic problem and evaluating the effective screening for a
ture for static fields. The inverse of the dielectric tensor componetgjiven electric field. These corrections depend, of course, not
play t'he role of .the elastic stiffness constants in the analogy Witrbmy on the dielectric functions of the rods and background
classical acoustic waves. as in(9-10 but also on the selected type of lattice and rods.

cess to the free charges, whieis fixed by the the external

field and the internal rearrangement of chajg8sippose, for VIl. CONCLUSIONS

example, we have two pargllel plates with equal posjtive and \we have exploited several analogies with phonons and
negative charges, respectively, and we want to introducgjectrons to highlight different aspects of the electromagnetic
these plates inside the PDS with a given orientatjuarallel  excitations in periodic dielectric structures. A detailed ac-
or perpendicular to the rogisThere is an energy associated count of electromagnetic surface states obtained from the
with this configuration given by =1/ 1/¢;;(0)]D;D; fora  bulk band structure and emission produced by a point source
fixed D. The smaller theeffective dielectric functiorfior a  Wwith all its consequences of focusing and internal diffraction
given polarization the larger the energy. This a measure ofias not been given before to the best of our knowledge. In
the rigidity of the mode and the smaller tlaethe faster the —addition, we discussed briefly the possibility of including
mode for that polarization. This is the reason why all PDS'sdispersion in the dielectrics and show that this particular as-
in 2D have always the acoustic brancheso the rods faster pect has no d!rect analog for ele_ctrons. The simplest possible
than thosd| since the effective dielectric constants normally €X@mple of this type has been discussed. Further work on the

satisfy ¢, <¢|. In Fig. 11 we show the long wavelength latter is under way and will be published elsewh&ré. few

. - analogies with the elastic theory of acoustic phonons and the
acoustic branches for both polarizations and for both Xj e with the electrostatics of the problem and thiective-

amples tghlve.n n Flgs.f %hang 2| Ir:.tht;: analogly W'Thacmljsuc edium dielectric propertiebave been highlighted in the
){/r\:avels, t'e T};erse ° et Ite efc e ens?r pﬁys © rze Ioast section. We confronted the different analogies from a
€ elastic stliness constants Tor acoustic pnonons. ANAiGsyiq_state physicist’s point of view and emphasized simple

gies of this type are not surprising since mec_hanical an oncepts rather than mathematical or computational com-
electromagnetic systems are known to have equivalences; t ‘Fexity

typical example being the damped oscillator and a LRC cir-
cuit. The important point to recognize here is, however, that
long-wavelength acoustic branches have information on the
average properties of the medium treated as a continuum and ACKNOWLEDGMENTS
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