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Roughening and preroughening in the six-vertex model with an extended range of interaction
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We study the phase diagram of the body-centered solid on @G&0S model with an extended interac-
tion range using transfer matrix techniques, pertaining to(1@€) surface of single-component fcc and bcc
crystals. The model shows ax2 reconstructed phase and a disordered flat phase. The deconstruction transi-
tion between these phases merges with a Kosterlitz-Thouless line, showing an interplay of Ising and Gaussian
degrees of freedom. As in studies of the fully frustra¥ed model, exponents deviating from Ising are found.
We conjecture that tricritical Ising behavior may be a possible explanation for the non-Ising exponents found
in those models.

I. INTRODUCTION AND MOTIVATION reconstructed phaseThe latter applies to our model. Both
The recent interest in surface phase transitions focuses %hases display a fourfold degeneracy, as will be described in

. : ! Y i i llow differen
the interplay between roughening and reconstruction degreeseC IV. Deconstruction of this phase can follow different

: : . [ [ iori its universalit
of freedom’~° The further-than-nearest-neighbor interactions> oo o 10> and there is mopriori reason why its universality

between surface atoms governs the reconstruction of the su?l-ass should be Isin.
9 When the Gaussian, out-of-plane degrees of freedom be-

face. Den N'.JS e R(_Jmmelse have established the exIStene® me disordered, the surface roughens. The roughening tran-
of a phase intermediate between the rough and the recogisn is of the Kosterlitz-ThouleséKT) type. When both
structed phase in a simple restricted solid on SORSOS  ansitions, deconstruction and KT, merge into a single line
model, in which the s_urface is disordered but remains flat oRe gyrface roughens and deconstructs at the same tempera-
average. They called it the disordered fléDOF) phase. The  yre. The question as to the universality class of this transi-
principle behind the DOF phase is the simultaneous eXisttion seems to have a different answer for different models.
ence of Ising degrees of freedofwhich govern the recon- pen Nij$ studies the(110) surface of an fcc crystal by
struction of the surfageand Gaussian degrees of freedommeans of a four-state chiral clock step model, and finds the
(which govern the rougheningand the possibility of sepa- transition to be of a decoupled nature, i.e., Isirg KT.
rate and joined transitions of these degrees of freedom. Mazzeo, Carlon, and Van Beijeren, however, find that the
Recent research on surface models with further-thantwo transitions actually never merge but only become expo-
nearest-neighbor interactions has clarified much of the natuneentially close’ Nevertheless, the exponents on the decon-
of the DOF phase and its transitions to flat, rough, and restruction branch deviate from Ising even when both transi-
constructed phasé$. The long range of the interactions tions are still well separatetf.’ We shall come back later to
present in these models disables exact solutions, and severehjs point.
limits the maximum system sizes in numerical calculations. The close interplay between Ising and Gaussian degrees
For that reason, only limited work has been done on moref freedom is also observed in fully frustratédy models
realistic models than that studied by Rommelse and DeiFFXY), where the frustration is responsible for an Ising-
Nijs. Mazzeo, Carlon, and Van Beijeren studied {1©0  type degeneracy, whereas te&¥ degrees of freedom are
surface of a two component bcc crystal like CSGind  Gaussiart'™*"The generic version of this type of models, the
Mazzeo, Jug, Levi, and Tosatti ti#10) surface of a single coupled XY-Ising model*28 is actually dual to the clock
component fcc crystal, pertaining to the noble metdls. step model of Den Nigsin the zero chirality limit. In the
The RSOS model of Rommelse and Den Riiescribes  FFXY models, both transitions are found to be either closely
the (100 surface of sc lattices. The reconstructed phasseparatet! or simultaneous, and exponents deviating from
present in their model, which they call body-centered solidsing are found by many authors. The same puzzling phe-
on solid (BCSOY flat, has a simple BCSOS nature and nomenon thus is observed here, and the question as to the
therefore displays an Ising-type degeneracy. These in-plangniversality class of the transition in the X¥ models may
degrees of freedom become disordered when temperaturewgll be the same question as in the case of the surface mod-
increased, giving rise to a DOF phase. It is therefore naturadls.
to expect this transition, generally referred to as In this paper, we present the study of {1©0 surface of
deconstructiort to be in the Ising universality class, and a single component fcc crystal like argon. The model is
indeed this is found in their numerical calculations. Theequipped with further than nearest neighbor interactions, and
(100 and (110 surfaces of bcc and fcc lattices, on the otherwe believe it to be a realistic description of these surfaces. In
hand, give rise to reconstructed phases of a more complanother paper, we present Monte Ca4C) simulations on
cated nature. In the case of HLO) surface this is the missing a Lennard-Jones fcc structure pertaining to argon, to calcu-
row (MR) reconstructed phase, also referred to as12 late the coupling constants of our modeDur model exhib-
reconstructed.In the case of 4100 surface it is the X2 its a 2<2 reconstructed phase which is not, to our knowl-
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FIG. 1. The vertices of the six-vertex model. Height differences
on the sites are indicated with thin arrows. The bold arrows indicate
the net polarization of the vertices, and correspond to a height dif-
ference on one of the two sublattices. The vertices 5 and 6 are fl
and remain empty.

FIG. 2. Boltzmann weights in terms of loop configurations. Dots
enote the positions of the vertices. The presence of a (ithigk
ines) between two atoms of one sublattice denotes a height differ-
ence of these atoms. Loops are characterized\ ax B loops,

. . . depending on the corresponding sublattice.
edge, realized in nature. Indeed, our MC calculations on

argon show that it$100 surface does not exhibit a DOF or

reconstructed phase. Nevertheless, our calculations indicagifferences of=2 are given a Boltzmann weigh¥ in the
what kind of interactions on @100 surface can give rise to case of nearest neighbors aKdin the case of next-nearest
DOF phases. neighborsW andK are the parameters of the phase diagram.

Moreover, we also observe that the interplay betweerwe limit ourselves to that part of the phase diagram where
roughening and Ising degrees of freedom yields exponentimequality of next-nearest neighbor heights is disapproved of,
deviating from Ising. We find that the exponents agree fairlyin other wordsK<1.
well with those found in the FXKY models, and argue that An alternative formulation is obtained when height differ-
both transitions are in the same universality class. To classifgnces between atoms of a sublattice are indicated by an ori-
the values of the exponents at the deconstruction transitiornted loop. Each vertex corresponding to a height difference
we want to put forward the conjecture that instead of Isingon one of the two sublattices carries a net polarization that
behavior, tricritical Ising behavior may be involved. can be indicated by an arrow, as depicted in Fig. 1. The

This paper is organized as follows. In Sec. Il we give acollection of all polarization arrows forms loops, each loop
description of our model. In Sec. Il we present the phasepertaining to one of the two sublattices, so that we can dis-
diagram. In Sec. IV we study the ordered phases and th#nguish betweerA and B loops. A loop indicates a height
possible interfaces between them, in order to understandifference of+ 2. Adjacent loops of the same sublattice carry
qualitatively the behavior of the model and to present theantiparallel arrows, whereas adjacent loops of different sub-
techniques used to derive the phase diagram. In Sec. V wlattices carry parallel arrows. Loops of different sublattices
present the results of the calculation of the critical exponentsdo not cross. In terms of these loops, the Boltzmann weights
In Sec. VI we put forward our conjecture of tricritical Ising areWK? per unit length for a straight piec#&/K for a corner
behavior. andW? for an intersection; see Fig. 2.

The lineK=1 in the phase diagram implies absence of
next-nearest-neighbor interactions, and the model equals the
exactly solved= model. On this line, the surface is flat for

The model under study is an extended version offhe W< 3, and exhibits a KT transition &/= 3 to a rough phase.
modef® which was exactly solved by Lieth. The F model ~ We check our computer program against this exact solution,
falls into the larger class of six-vertex models. In 1977, Vanand it enables us to get an indication of the accuracy of the
Beijeren formulated these six-vertex models in terms oftechniques used to estimate the critical exponents of the
heights, in order to use them to describe surfaces of bcc anodel. This is the more important, as the long range of the
fcc crystals?? Hence the name BCSOS model. interaction limits the maximum system size which we can

Our model is formulated on a square lattice, where orréach with our calculations.
every lattice site a height variable is defined that can have The other extreme of the phase diagranKis 0, where
integer values, with the restriction that nearest neighbogll height differences between next nearest neighbors of a
heights always differ by+ 1 or — 1. This can be represented sublattice are forbidden. The line=0 thus corresponds to a
by putting an arrow on each bond of the dual lattice, givingflat surface for allW. This can be established by filling the
rise to the six possible vertices of the six-vertex model on théattice with vertices 5 and 6 in a checkerboard configuration.
sites of the dual lattice. The arrows of each vertex satisfy théNo loops are present on the lattice, and its free energy is
ice rule: two arrows point inward, two arrows point outward equal to 0. This phase is twofold degenerate, and exists for
(Fig. D). W< 1. The average heiglih) is half-integer.

The formulation in terms of heights gives rise to two For W>1, it is cheaper to form a reconstructed phase,
equivalent sublattices, with heights even on one lattice anwhere the heights of one of the two sublattices are all equal
odd on the other. Let us, throughout this paper, denote thésay 0, whereas the heights of the other sublattice are alter-
“even” sublattice with A and the “odd” sublattice withB. nately+1 and—1. In terms of loops the lattice is filled with
The interactions between heights of different sublattices onlyntersections, as in Fig. 3, where the phase is depicted, to-
exists by means of the above-mentioned restriction, whereagether with possible interfaces between the different realiza-
the interaction between heights of the same sublattice argons of this phaseA (B) loops indicate height differences of
between nearest and next-nearest neighbors. Equal heightstbe even(odd) sublattice and are depicted as sdldhshed
the atoms are given a Boltzmann weight 1, whereas heigHines. The phase is calledx2 reconstructed. It has a free

Il. DESCRIPTION OF THE MODEL
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2 2 < 4 2 2 2 0
0 0 2 0 0 2 2
2 2 < 4 2 2 2 0
0 0 R 2 0 0 2 2
N N 4 2 2 0 0! FIG. 3. Interfaces between different realiza-
s 2 2 2 2 2 X 2 tions of the 2 2 reconstructed ground state. The
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ configuration is depicted in terms of the loops in
4 4 4 4 0 0 0 0 Fig. 2. Vertices reside on the sites of the square
2 2 2 2 2 2 2 2 lattice (thin, dotted lines The solid lines are the
A loops; the dashed lines are tBeloops. Digits
(@) ) indicate the heights of the alternating sublattice;
heights of the fixed sublattice not being indicated.
The phase in the upper left corner of each of the
2 5 2 i ’:,(: : 2 N <ig \,(: 3 pictures isA*(1), the lindicating the average
. 3 : height. (a) is the double step interface between
0 0 R 0 0 AL, AT(1) andA*(3), (b) is the Ising interface be-
2 2 201 i 2 9 NERIANE tweenA* (1) andA~ (1), and(c) and(d) are the
p p N o single step interfaces betweeA*(1) and
0 0 o3 0 0 Ao B*(2) andB~(2), respectively. The “thick” part
A1 PN 2 2 SRR of the A-B interface can be seen as a “thin” part
X N L 7 A ;4 together with an additional Ising interface.
B3I P3N 3N Tisgi i a1 M1 EN
NG Al ; 1t N3 M3 PR3 i3
N N N . \A/ A% N N \A’
3 M3 IA 3 NG 3N \1 KA 1,; # \1 X, 1/’:&“:
RARERA R RR Y SRS ER ISR
© (d)

energyf= —In(W) for K=0, and will therefore be stable for changes from integer to half integer, continuing into a pre-
W=>1. It is fourfold degeneratéapart from the infinite de- roughening line.

generacy resulting from overall height changes W=1 At point Q in our phase diagram, the interface free energy
there is a phase transition between the flat and the recofpetween integer surface height and half-integer surface
structed phase. At and slightly aboke=0 all possible ex-
citations are heavily suppressed, so that the transition must
be of first order. 02

IIl. THE PHASE DIAGRAM 2x2 RECONSTRUCTED

04

First let us present the phase diagram of the moEig).

4). The line K=1 corresponds to the exactly solved
model. Forw< 3 the surface is flat. AW=3 there is a KT
transition into the rough phase, where the model renormal-
izes to the Gaussian model. The whole area below the line
T-R-S-U belongs to this rough phase.

At K=0, where next nearest neighbors at both sublattices s
are forced to be of equal height, there is a first order transi-
tion from the flat phase into the X2 reconstructed flat
phase. At poinfQ this first order transition goes over into the
line Q-R, which is a preroughening lin&To the right of this
line there is a DOF phase. The lir@-S is an Ising-like
transition into the X2 reconstructed phase. We do, actually, G, 4. The phase diagram of the BCSOS model with extended
not find Ising exponents on this line. interaction range. The parametéf is the Boltzmann weight per-

This part of the phase diagram closely resembles that ofining to a nearest neighbor height difference on a sublattide.
Den Nijs* In this reference he considers an RSOS modethe weight pertaining to a next nearest neighbor height difference.
with nearest and next-nearest-neighbor interactions. He alsthe line K=1 corresponds to the exactly solvéd model. The
finds a first order line, where the average surface heighlashed line is the estimat/ K= 1 of the KT transition.

0.6

1.0
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height vanishes, which correspondsitstep melting. On the
preroughening line the surface is rough. /
On the lineS-U the surface roughens and deconstructs ' /
simultaneously. In this respect our phase diagram differs ’
from that of Ref. 4 where the two transition lin@®ughen- A (n)
ing and deconstructioractually cross. The behavior in our — ’
model is more similar to the clock step model analyzed later ~ A"(n)
by Den Nijs® where the reconstructed rough phase does not " K ()
exist. This phase, where the Ising order is still present but the N /s
surface is already rough, does not exist in our model. The B'(n+1)
transition lineS-U therefore includes roughening and simul- )
taneous disordering of the Ising degrees of freedom. We do
not find Ising exponents on this line. ]
The merging of the Ising-like transitio®-S and the KT /
line R-S'is also described by Mazzes al® They claim that |
in their model the lines never actually merge, but become
more and more closely separated. We believe, however, that FIG. 5. The behavior of tha-B interface of Figs. &) and 3d).
this question is by no means settled and cannot be settled laghe “thick” part of the depicted interface consists of a “thin” part
purely numerical methods. Two separate transitions occurand an Ising part, which can split off and wander over the lattice,
ring nearby will strongly influence each other and are likelyeventually become connected to other single step interfaces. The
to join. A true resolution of this point will require analytical solid line is a pureA-B interface; the dashed lines are Ising walls.
methods, probably employing the supersymmetry which
might be invoked bySTinvariance’ andn—1 and those of sublatticB are fixed. The plus and
In our calculations, the limited system size prevents arminus signs refer to the antiferromagnetic order.
accurate determination of the transition points. We choose to The integem is the height of the fixed sublattice, which is
interpret our data such that both lines meet at p&inbut  equal to the average height of the phase. We thus have the
stress that we are neither certain of its existence nor of itéollowing phases:

precise location. An analytical approach will be necessary to N N ,
settle this open question. A"(n)and A”(n) with n odd,

B*(n)and B7(n) with n even. (@)

IV. INTERFACES AND CRITICAL EXPONENTS . .
It follows that an interface betweeh andB always carries

In both the flat and the reconstructed phase the surface it least one step up or down.
ordered. The flat phase is twofold degenerate with respect to Figure 3 shows four possible interfaces, bending around a
its arrow representation, the phases corresponding to an agerner. The phase in the upper left corner in each of the four
erage height of+3 mod 2n, respectively. It undergoes a figures isA"(n=1). The interface in Fig. @) is between
roughening transition when the free energy of the interfaced* (1) andA*(3), anddoes therefore not affect the Ising
between the two realizations of this phase vanishes. Thierder, but only the roughness of the surface. It carries a
interface has the character of a single step and consists of thuble step. The interface in Fig(t8 is betweem* (1) and
A or B loops in Fig. 2 as discussed before. Ri=1 this A (1) and does not carry a step but has the character of a
transition takes place &/= 3. The weight per unit length of pure Ising-Bloch wall.
the interface is theiV. For K#1 this weight isSWK? for a In Figs. 3c) and 3d) the interfaces are betweexi' (1)
straight piece an&WK for a corner. The average weight is on the one hand anB* (2) andB~(2) on the other. As can
thereforeWK®?2 and we can estimate the KT lifB-R by  be seen from the figure, the character of the interface is dif-
plotting WK®?=1 in the phase diagrartthe dotted line in ferent in the horizontal and vertical directions. The thin,
Fig. 4), giving a good agreement with the actual line. This“cheap” part of the interface can be seen as a pArB
means that roughening on the lifieR is established via the interface, carrying a single step, whereas the thick, “expen-
same mechanism as in tiremodel. sive” part is anA-B interface together with an Ising wall,

The reconstructed phase is fourfold degenerate. Heightshich, in the figure, is depicted alongside the single step
on one sublattice are fixed, whereas heights on the othénterface. A corner in thé\-B interface thus creates an Ising
sublattice alternate in a checkerboard fashion, which can b@&all, which can eventually split off and wander freely over
chosen in two equivalent ways. The average height equals &he lattice, thereby gaining entropy, as depicted in Fig. 5. It
integer. The ground state itself corresponds to a lattice filledollows that there is an important interplay between the in-
exclusively with intersections of one type of loop. This is terfaces of Figs. ®), 3(c), and 3d), or between roughening
depicted in Fig. 3, together with possible interfaces betweeand reconstruction degrees of freedom. An attempt to locate
the different realizations of this phase. Note that the degenthe transition points by just estimating the interface free en-
eracy present in the MR reconstructed phasd1df) sur-  ergies is therefore likely to fail.
faces is of the same type. Now it can be seen that in principle two different sce-

Let us denote the phases By (n), A~(n), B*(n), and  narios for deconstruction can be imagifed/hen only the
B~ (n). The A andB refer to the loop type. For the phase free energy of the pure Ising interface vanishes, the Ising
A=(n), the heights of sublatticA alternate between+ 1 order is destroyed. The surface remains flat, as the domain
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wall does not carry a step, and only one type of loop interapplied. WhenL is odd the ground state only fits over the
sections A or B) prevails on the surface. It is natural to cylinder when it is shifted by one unit in the diagonal direc-
assume that this scenario for deconstruction falls in the Isingion. Under such a shifA*(n) turns intoA*(n) (and B*
universality class. The second scenario applies when singieto B¥); hence the system is forced to generate an Ising
step interfaces become free, but steps occur in an up-downvall. The corresponding interface free energy will be de-
up-down order, such that the surface remains flat. This sceroted by#,(L) (7 odd).
nario can apply when parallel steps are repulsive and anti- Furthermore, we perform calculations with antiperiodic
parallel steps are attractive. This is the qualitativeBC’s. The arrows on the bonds of the six-vertex lattice are
mechanism as described by Rommelse and Den®Niijghis  flipped on the boundary. As a result, the net number of steps
case the Ising order is destroyed and both loop typaadB on the surface is not conserved anymore. Antiperiodic BC'’s
appear on the surface. There is aqoriori reason for this also generate an Ising wall, but imply in addition an inver-
deconstruction scenario to fall in the Ising universality classsion h— —h of the Gaussian height variables. The interface
Instead, one could argue it to be prerougheninglike as théree energy will be denoted by_(L).
transition involves two phases with different average heights And finally, we calculate the largest eigenvalue in the cen-
merging into a single phase with an intermediate averageral block of the transfer matrix that corresponds to an eigen-
height. See also Ref. 8 and Sec. V. vector which is antisymmetric under arrow inversion. This
The two scenarios give rise to different DOF phases. Ireigenvalue allows us to calculate an inverse correlation
the first scenario, the DOF phase is actually ordered withength which will be denoted by, (7 Ising),
respect to the prevailing sublattice loofr B and is there-
fore called deconstructed, even, fl@EF) by Bernasconi
and Tosattf The second scenario gives rise to sublattice as 7i(L)=— Eln
well as Ising disorder. We will see that in our model the first

scenario applies; therefore the appearing phase is actuallyhere )\ _is the largest eigenvalue corresponding to an ei-
DEF, but as both types generally are referred to as DOF ienyector which is antisymmetric under arrow inversion.

the literature, we chose to follow this convention. \s is the maximum eigenvalue of the transfer matrix, whose

A method to extract information on the phase diagram an%igenvector is symmetric under arrow reversion. Hence the

critical exponents is to force the system to generate interg,serints. The correlation length corresponds to the Ising
faces by applying different boundary conditiofBC’s).

) . _order as follows from the symmetry of the involved eigen-
When the ground state does, as a result of the BC's, not fit %ector.

the lattice, the system will be forced to generate an interface We do, actually, need to generate still two additional in-

at the expense of a high_er free energy. Subtracting the fret'\:érfaces. We need to distinguish between the two different
energy of the system without an interface yields the puryeconsiryction scenarios described above. Therefore we need
interface free energy). To calculate these free energies we, gecide whether there is either only Ising disorder or Ising
employ transfer matrix calculations on lattices of dimension,q \vell as sublattice disorder in the DOF region. The re-
L. As compared to Fig. 3, we choose the direction ofg ireq BC's therefore shoulth) generate an odd number of
Fransfer to be diagonal. The or|g|r_1al six-vertex square Iat'uc%teps on the surface, thus coupling&mnd aB phase over
is then tilted over 45 degrees. This enables us to do calculgp, boundary, andb) be antiperiodic in order to retain the
tions on lattices with a maximal dimension of\ﬁ) in terms up-down-up-down order of stefgthere can be no up-down-
Of the Iattice distance. We denote th|S dimensionlbylo. up_down Order Of Steps When the number Of Steps is odd and
The interface free energy(L) per unit length is then calcu- periodic BC's are applied The corresponding interface free
lated as energy then vanishes when there is sublattice disorder but
remains finite when there is only Ising disorder in the DOF
' region. The second additional interface we need to generate
n(L)=- fln(f) ’ @ isthe pure single step interface which we need to confirm the
Gaussian nature of the preroughening line.
where\ is the largest eigenvalue of the transfer matrix with ~ With the direction of transfer chosen as above, it is im-
L even and periodic BC’s anil’ is the largest eigenvalue possible to generate these two interfaces. Therefore we per-
pertaining to other BC’s. Fdr odd, we interpolate between form limited calculations on the same model, but with the
L—1 andL+1. direction of transfer chosen as thertical direction with
With periodic BC's, the net number of steps on the latticerespect to the lattice depicted in Fig. 3. The ground state then
is a conserved quantity. As a result, the transfer matrix splitéits on the lattice when its size is an even number of vertices
up into blocks, each block corresponding to a number ofind when periodic BC’'s are applied. With respect to this
steps which is @:2,+4,... 2 The ground state, or the direction, a vertical unit shift turn&= into B* (and a hori-
largest eigenvalue, is to be found in the central block of thezontal unit shift turnsA= into B*). Hence a single step
transfer matrix, corresponding to a net number of zero stepimterface can be generated by choosing the system size odd.
on the surface. We also calculate the largest eigenvalue in thEhe interface decisive of sublattice disorder is generated by
subcentral block corresponding to two up or down steps. Thehoosing the system size odd and applying antiperiodic BC's
corresponding interface free energy is denotedgbt) (»  as well.
step. The interface free energies allow us to distinguish be-
It is readily seen that the reconstructed ground state onljween the various possible phases. Extrapolating o
fits on the lattice wherlL is even and periodic BC’s are yields the infinite size free energy. Performing the extrapola-

)\ as)
WL (3



53 ROUGHENING AND PREROUGHENING IN THE SIX-VERTEX ... 131

tion with and without the value for the lowest row size=2  independent of the value of the Gaussian coupkgg In the
yields an estimate of the error. In the flat phase, only present model on the ling-U in the phase diagram, where
vanishes. In the reconstructed flat phage _ , andysare  Gaussian degrees of freedom couple to the deconstruction
finite. In the DOF phasey_ and 7, vanish, and in the rough degrees of freedom, it is natpriori clear how to disentangle
phase all interface free energies vanish. Vanishing interfacthis contribution. However, in order to see whether in the
free energies all exhibit an exponential finite size dependencgcaling limit a decoupling scenario makes sense, it will be
everywhere but at criticality, where they scale als.1Plot-  useful to simply subtract this contribution from the value of
ting L »(L) for various system sizes thus yields informationL 7_(L).

about phases, phase transitions, and critical exponents by It is often taken for granted that the interface free energies

standard techniques of finite size scalifg9.% 71, and the inverse correlation length must yield the same
Interface free energies are inverse correlation lengths, aneixponentx. The BC’s used to calculatg, generate an Ising
scale as wall and correspond to the correlation function of a disorder

operator, which is, in the Ising model, dual to the spin-spin
L (L :E 5 4 correlation functiorf® This is not necessarily true in the
n(L) gﬂ X (4) present casécf. also Ref. 16 and we will carefully distin-
L . . . guish the different exponents by indicating them withand
at cnucghty, wherex is the crlt!cal exponent pertaining to the x; , respectively. The exponent from_ will be indicated as
correlation function of the disorder operator that generateg  The exponent pertaining tg, is involved when rough-

the interface in questioff. The exponenk is extracted by ening takes place and is conventionally expressed in terms of
plotting L (L) for different values of the system sike and the Gaussian couplinfy. The thermal exponent, is cal-

extrapolating the values at the intersection points of thejated from the singular behavior of the specific heat. The
curves. The central charge can be calculated from the flnltgingmar part of the specific hegt is in our model propor-
size dependence of the free enéfgy tional to the variance of the number of brokerex) nearest

neighbor bonds:
C

fL)=f(=)= 5z ©) p p
C—W—_m| W f(WKLL) |, (©)
The double step interfacgg scales in the rough phase as g
1 or a similar expression with derivatives with respectkio
Lpy(L)= EKgaZ, 6) The specific heat scales as

C~L2%2 2 (10)

whereK is the value of the Gaussian coupling aae 2 is o .
the step height. We consider double steps, and exitadty ~ at criticality,™ enabling us to extract the value xf.
extrapolatingsL »4(L). Single steps are more difficult to
treat in this model, as they couple to the Ising order as well. V. RESULTS
We will only occasionally need those single step interfaces,
to distinguish between the two possible deconstruction sce-
narios giving rise to DOF and DEF phases, respectively, and In the rough phase, under the lifeR-S-U, the model
to establish the Gaussi@rough nature of the preroughening renormalizes to the Gaussian modely_(L) assumes its
line. When the model renormalizes to the Gaussian modelyniversal value;r as it should Eq. (8)]. The lineT-R-S is
the ratio of the single and double step free energy is preciseligentified as a KT transition, where single steps melt, via the
4, as can be read off from E(6). We will use this prediction linear behavior of Ky— im)? as in Eq.(7).
to confirm the Gaussian nature of the preroughening line. The lineP-Q is a first order transition and goes over into

In the rough phase close to the KT transitiéh, assumes the preroughening lin@-R. At the preroughening line, the

A. The KT and preroughening lines

the behavidt’ surface is rough and the model renormalizes to the Gaussian
model. The preroughening transition, together with its first
1 order continuation, is now well understodd.lt draws a
Kg:§7T+AVT_TC* (7 close resemblance to tie line which is, in our phase dia-

gram, the lineK=1. At the first order line, there is coexist-

where the critical valués and the square root are universal. ence of different ordered phases with different surface
The quantity Ky~ 7/2)? should vanish linearly when ap- heights. At pointQ (or similarly, at pointT), the interface
proaching a KT point. We use this linear behavior as theree energy between these different heights vanishes, and the
identification of a KT transition. surface roughens. Coexistent phases at pQirdare integer

Antiperiodic BC’s imply in particular an inversion valued (the reconstructed phageand half-integer valued
h— —h of the Gaussian height variables. In the rough phasgthe flat phases This means that roughening of the surface
and on the KT lines, where the model renormalizes to theagkes place vig-step melting. As a consequence, the univer-
Gaussian model, this inversion yields a universal defect freea| value of the Gaussian couplig equals 2r at pointQ.
energy® The preroughening ling-R is a line with continuously
varying critical exponents, as is tiieline for W> 3.

Roughening of surfaces is conventionally described by

1
Ly-(L)— 2™ ®) the sine-Gordon Hamiltonian
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FIG. 6. Seam free enerdy»_(L) for L=2,4,6,8,10 on the line ) ) )
K=0.60. LargerL values correspond to steeper curves. The inter- G- 7. The interface free enerdy,(L) of the interface which
section points on the right and on the left clearly correspond tdlistinguishes between sublattice order and disorder in the DOF re-
different locations. The values &fy_(L) in between drops to zero, 9ioN- It is calculgted using antiperiodic boundary conditions that
indicating a DOF phase. The intersections on the left converge t§OUPIEA loops withB loops over the boundary. It is calculated on
3, indicating the Gaussian character of the preroughening linethe line K=0.55 for L=5,7,9,11, curves increasing on the right
The intersection points on the right clearly are abéve indicating correspondlng _to increasing valueslaf Extrapolating the location
the non-Ising character of the deconstruction transition. of the intersection points gives a value\w~1.03. The prerough-

ening transition is found to be &/=1.08 on this line, whereas

1 deconstruction is located W= 1.25. This implies that the intersec-
tion points actually belong to the preroughening transition, and that
H= J dzr[ EK9|V¢r|2_ Uz cod2m¢y) r;(L)premains finitye in thegDOF repgion, i?wdicatigg sublattice order-
ing. See the text for further explanations.
—U, cos(4m¢>,)] , (11
section points are found on this line, the valuelof_(L)
strongly decreases in between these points, and we expect it
where¢ denotes the average surface height. In the flat phaséo drop to zero for larger values af. We take this as con-
the average surface height is half-integer, which means thatusive evidence for the existence of a DOF phase in be-
U,<0. In the reconstructed phase this average height is intween these points.
teger, meanindJ,>0. The lineQ-R therefore must corre- Strong crossover is to be expected in the DOF region,
spond toU,= 0, meaning that integer as well as half-integerwhich is relatively small, and on the lir@-S, and we should
average surface heights are allowed. The renormalization tdde careful interpreting our data. The paramdier of the
wards the Gaussian model on this line is governed by thsine-Gordon model in Eq.11) is relevant in the renormal-
parameterJ, which remains irrelevant up to the poiQ ization sense, but still small, as it vanishes on the prerough-
whereK takes the renormalized valuer2 ening line. From the lindR-S we see that the value of the
Our numerical calculations confirm this. On the prerough-Gaussian couplind{, is indeed above its universal value
ening lineL _(L) converges td as it should. The value 3w, but yet slightly. This means that the DOF region, to-
of K4 should equab at pointR and increase to 2 at point  gether with the lineQ-S, exhibits a strong Gaussian-like
Q. We find atk=0.60 the valueK,=1.754(14), slightly behavior and that the real, flat nature of the surface only
above;m, andK = 2.07(5) atk = 0.55.K increases further becomes apparent for much larger system sizes.
to 27 at pointQ. Moreover, Gaussian behavior predicts that
the ratio of the single and double step interface free energies .
is 4. We determine this ratio at poit=0.55 and find it to B. The line Q-S
be 4.12). The most interesting part of the phase diagram are the
The DOF phase, confined by the lin@sR-S-Q, is char-  lines Q-S and S-U, as they exhibit the interplay between
acterized by a finite value of the double step interface fre@oughening and reconstruction degrees of freedom. The lo-
energy and vanishing af, and »_ . Also the central charge cation of the lineQ-S is determined by the vanishing of the
¢ should converge to zero in this region, but we do not seénterface free energies_ and n, . First we determine which
this as there is a strong crossover to Gaussian behavior of the two scenarios, as described in Sec. IV, applies to the
this region. Clear evidence for the existence of the DOFdeconstruction transitio®-S. We examine the behavior of
phase is given in Fig. 6, wheten_(L) is plotted for differ-  the required interface as described in this section. It is calcu-
ent values ofL on the lineK=0.60. Intersection points of lated using the “vertical” transfer matrix, odd system size,
the curves indicate critical points. Two clearly distinct inter- and antiperiodic BC's. Its free energy on the like=0.55 is
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depicted in Fig. 7. We find that it remains finite in the DOF VI. DISCUSSION
region up to the preroughening line. This is conclusive to Interpretation of our data apart from the lin€@sS and
decide that it is the first scenario which applies, meaning thaé—u is straightforward. The lin@-R-S is a KT line, Q-R is
only the Ising order is destroyed in the DOF region, but thata preroughening line .anQ—P is a first order Iine’ actually
still one of the two sublattice loop& or B prevails on the ' '

surface. It is therefore expected that the €S is an Ising extendlr}g to thq<=0 axis. N
. . T The lineQ-S is expected to be an Ising line but does not
transition with central charge=3. We are, however, not

able to confirm this. display Ising exponents. This could be due to the fact that it

is squeezed between the two multicritical poiftsand Q.

oo e e T 2 pectc, 1o OSSN Uyaeed 1 e ok tep model f Den Nihere the ik
: 9 g rﬂcritical point Q is absent, Ising-like behavior is found. On

the exponent p_ertamlng 9 Is no'F smooth. Of the central the other hand, in the model studied by Mazzsal® the
charge, no estimate whatsoever is made. The exponent . . . L
phase diagram is in this respect similar to that of the clock

varies from 0.17() to 0.'1925) " the C_III’eCtIOI’]QﬁS, but step model, but these authors do find exponents deviating
we should be careful interpreting this as we find a non- o Ising 0

fom of the ransiton difers fom other methods. Al of this s A {€3LUre which i present i both our model and that o
: Mazzeoet al. but not in the clock step model is the presence

to be expected from the strong crossover. Figure 6 show : : . . i
; : f th .1 hich no |
curves forL»_(L) on the lineK=0.60 for different values 8f the vertices 5 and €Fig. 1), to which no Ising spins are

L assigned. These vertices act like vacancies with a fugacity
orL. .. 1MW. It is quite conceivable that it is these vacancies that
The exponenk, does not suffer from crossover as it is

. o ) . . alter the universality class. The model displaying these va-
insensitive to Gaussian behavior. Convergence of xhis Y Paying

: cancies is the tricritical Ising or Blume-Capel mod&IThe
smooth and the estimates do not vary over the @r8. We model shows a criticallsing) line terminating in a tricritical
haye very few points to detgrmlne this value because of OUSoint beyond which the transition becomes first order.
limited system SIZES, but W'th _smooth convergence we fin The central charge of the tricritical Ising point @s= 15
x0=0.0681(8). This value deflm.telly dlffer_s from the lIsing and its exponents are=3, &, I, and £3! Apart from the
valuex=g. The exp_onent pertamm_g tqi yields a valu_e of central charge, which shows a notorious bad convergence,
x;=0.204(5) at pointk =0.60, which is also inconsistent \ o are able to identify the three most relevant exponents
ywth Islng. Finally we determlnegl t.he thermal exponentlt 1,4 exponents, (0.075 is identified withx,=0.068(8) on
is difficult to determine and exhibits generally a bad CONVer5_g and (with larger erroy with x,=0.07(2) onS-U. The
gence. AtK=0.60, however, the convergence shows to beexponent% (0.20 corresponds to; =0.204(5) onQ-S, but
good and yield,=0.841). Its Ising value isx,=1. not on S-U, wherex;=0.151). The third exponentx= %

Np exponent whatsoever is found consistent with Ising OrtO.875 is found asx,=0.88(1) on the lineQ-S. The last
the lineQ-S. exponentx_ that we measured alonQ-S stems from anti-
periodic BC'’s and suffers from strong crossover to Gaussian
behavior. In the Gaussian phase, this exponent=ig as
follows from Eq.(8). If the crossover is perfect, one tends to

On the lineS-U, the KT lineR-S merges with the decon- think that this value adds up to the actual value, which means
struction line. We do not expect Ising exponents, however, athat the exponent should be identified with 3 yielding
we did not find them on the lin@-S. Surprisingly, we find a  (coincidentally 2. Indeed, the finite size value rises up to
(smoothly convergingcentral charge value af=1.471), about 0.20 and then starts to decrease for larger values of
which is close to its KTX Ising value, but seems to be even The exponenk_ should thus be identified witk. To com-
lower. However, central charges are notoriously difficult toplete the identification, the least relevant exponznt?
calculate and the convergence could be an artifact of oushould be sought for.
small system sizes. In summary, the lin€-S shows tricritical Ising exponents

The Gaussian coupling, does not display the universal within the error bars. On the lin&U, where the surface
behavior of Eq(7), and its value at the transition seems to bebecomes rough as well, deviations from this behavior are
lower than the universal valugr. found.

The exponent corresponding #p_ displays smooth con- This coincidence could lead one to the conjecture that this
vergence and yields a value ®f =0.20((2). The(admit-  part of the phase diagram is to be understood as a tricritical
tedly inaccurate determination of the exponent from, Ising model(coupled to a Gaussian mogleHowever, apart
gives x,=0.072). The exponent from; displays non- from the fact that the tricritical Ising exponents are found
smooth convergence and gives=0.151), but theestimate along the whole lin€Q-S and not in a single point, the puz-
of the error may be much too small. The thermal exponentzling feature is that the scaling fields to which these expo-
shows for largeWW bad convergence and is impossible tonents belong do not fit. Our magnetic expongnis identi-
determine. Just beyond poi® however, determination is fied with the thermal tricritical exponentx= £ while our
still possible and we findx;=0.73(3) atW=1.60 and thermal exponemnt, appears as theagnetictricritical expo-
x,=0.72(7) atW=1.75. Beyond this point, seems to de- nent x={. Further research is needed to see whether the
crease, but no conclusions as to its value can be inferretemarkable coincidence of the calculated exponents with the
from our data. We cannot even exclude the possibility of theexponents of the tricritical Ising model is a mere accident or
transition becoming first order further away from pogit whether there is a deeper connection. A better understanding

C. The line S-U
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is even more called for in view of the large number of recentmodel shows varying critical exponents, presumably due to
papers that discuss models with similar behavior. crossover. The exponents found in the above mentioned pa-
Mazzeo, Levi, Jug, and Tosatti studied deconstruction angers display roughly the same values as in our model on the
roughening of the A(L10 surface in a MC simulatioh. line S-U. The thermal exponen, is generally found some-
They find two separate but nearby transitions, and claim thawhat lower than the tricritical Ising valug, the exponent
the deconstruction transition is in the Ising universality classpertaining to_ agrees fairly withx=1%, and the correlation
Their result for the exponent function exponenk; is about 0.15.
We therefore conjecture that the joined transitions of the
12 two-component BCSOS model, our model, and the coupled
XY-Ising model fall into the same universality class. We find
varying critical exponents along this line, and the transition
may eventually become first order, as in the coupied
Ising model.

Z=2—2x,
v

wherex is a magnetic exponent, ig v=1.8(2), which cor-
responds to an exponext 0.1(1), actually consistent with
Ising as well as tricritical Ising behavior. The specific h€at
shows. a logarithmic size dependence, indicating IS|ng—I_|ke VIl. CONCLUSIONS
behavior, but, as argued in Ref. 13, power law and logarith-
mic behavior may be very difficult to distinguish. We con- We have calculated the phase diagram of a single-
clude therefore that their results do not necessarily indicateomponent BCSOS model with nearest and next-nearest-
Ising behavior but are consistent with behavior deviatingneighbor interactions between atoms of each of the two su-
from Ising as well. blattices, using transfer matrix techniques. We found a rich
Mazzeo, Carlon, and Van Beijeréstudy the phase dia- phase diagram, with flat, 222 reconstructed, DOF, and
gram of the two-component BCSOS model. They find arough phases. Existence and character of the preroughening
roughening transition initially separated from a deconstruciransition between flat and DOF phases as established by
tion transition. The latter falls into the Ising universality Den Nijs** are confirmed by our calculations. The Ising-like
class. When the two transitions become nearby, they findeconstruction transition between the reconstructed and DOF
exponents deviating from Ising. They find a magnetic expophases actually shows exponents deviating from Ising. Merg-
nent x, well below the Ising valug} and a central charge ing of this line with a KT transition line gives rise to a

above3.® simultaneous roughening and deconstruction transition with
Another model showing an interplay between Gaussiarexponents deviating from Ising.
and Ising degrees of freedom is theX*¥Fmodel. The model We stress the similarity of this interplay between rough-

is believed to be equivalent with a line in the full phaseening and Ising degrees of freedom with that in fully frus-
diagram of the coupled XY-Ising model, with tratedXY models, note that the observed exponents in both

Hamiltoniart?18 cases roughly coincide, and therefore argue that both transi-
tions fall in the same universality class.
_ We observe qualitatively that the interplay between
H=- A(l+ o0, .—0,))+Coio;. 13 . . .
UE,J') (1+0ioj)co8 6~ 6)) + Caio, (13 roughening and Ising degrees of freedom in our model may

Ising spins. The model shows an Ising line and a KT line, ' mpz . X ) P .
those of the tricritical Ising point present in the phase dia-

merging into a single critical line that eventually becomes
firstgorégerlz'18 In stl?dies of the FKY model mos%/ authors gram of the Blume-Capel model. We observe a remarkable
: ' coincidence, and conjecture that tricritical Ising behavior

find that there is a single transition with exponents deviatingrather than Ising behavior may well be involved
from Ising1t*3151The hypothesis of the two transitions to 9 y '
be simultaneous is not always confirfiédr is rejected.’ It

is thus believed that the B’ model is located in the phase
diagram of the coupleX Y-Ising model close to the merging It is a pleasure to thank Enrico Carlon and Henk van
of the Ising and KT lines. The single critical line of this Beijeren for stimulating discussions.
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