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A simple model for an electron moving in a disordered one-dimensional system is investigated analytically
and the persistent current in this model of a disordered mesoscopic system is studied. We show that persistent
currents decrease exponentially with increasing sample circumference. Our analysis is based on comparison
with an exact calculation of the average resistance of a disordered one-dimensional chain.
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Recently, considerable effort has been made in under-
standing the nature of electronic states in one dimensional
~1D! disordered systems.1–4 This is partly due to the connec-
tion with the problem of two-dimensional electronic systems
in a magnetic field and electrons in the presence of the ran-
dom barriers, especially mesoscopic quantum interference
effect contributions to the conductivity.

The investigation of the electrical conductivity of 1D
metal with static disorder was initiated by Landauer,5 who
derived a connection between total transmission and resis-
tance. The averaged resistance is^r&;(eL/j21), wherej is
the localization length of the localized states. The electron
localization was discussed by Andersonet al.6 in the frame-
work of scaling theory for 1D disorder systems. Thouless7

has proposed a relation between the density of states and the
electron localization length. Since then, several results on the
relation between the conductance and the transmission coef-
ficient of the chain have been established numerically and
analytically to support the idea of localization.3,4,8,9 On the
other hand, the Kubo formula for the conductivity was used
for a tight binding model with random site energies.10 With
the sizeL of the sample as a scaling parameter, Ahrahams
and Stephen11 examined the changes in conductivity for a
small size sample.

The persistent current in 1D disordered mesoscopic ring
has been the subject of much interest now. In close analogy
to the behavior of localization dependence in the resistance,
it was theoretically predicted that the averaged current am-
plitude would decrease as a function of degrees of disorder
for a disordered ring. The current amplitude is found to be
I;I 0e

2L/j.12 This behavior can be understood as the eigen-
functions of electrons in the disordered system, which are
exponentically localized. Such a localization dependence has
further been discussed by using the concept of one-electron
localization13 and by the single band spinless fermion
model14 in a one-dimension disordered ring. According to
these results, the disorder tends to localize the electrons in
the lowest energy site in the sample and, consequently, re-
duces the presistent current.

In this paper, we attempt to examine the issue of expo-
nential decay behavior of persistent current by analytically
calculating the averaging persistent current over an en-
semble, with a fixed number of electrons for an exactly solv-
able 1D disorder model. Unlike the previous
discussions,12–14 and in order to show the influence of the
localization effect on the persistent current in 1D disordered
mesoscopic ring, we solve the generalized Kronig-Penny
ring consisting ofN arbitrary barriers arranged periodically
on the circumference. We thought that it might be of some
interest to use the technique developed in the study of resis-
tance fluctuation to show how the electron localization en-
tered when the system is disordered. We consider the one-
dimensional ring geometry with a magnetic fluxF threading
through it. Our approach is based on the method used in
Refs. 3,4, where the localization length was calculated for
the uniformly distributed amplitude of thed-function poten-
tial. We work in terms of a transmission coefficient, the
modulus squared of which is inverse proportional to the re-
sistence for the model. We then apply this to calculate aver-
aged persistent currentĪ . We can obtain an expression for
the persistent current in terms of the transmission coefficient
of the system. According to the localization theory, the lo-
calization lengthj can be expressed in terms of the resis-
tance, which could further be calculated through the trans-
mission coefficient by using Landauer formula.
Consequently, the amplitude of persistent current can be es-
timated through the modulus of the transmission coefficient
in terms of localization length,j. Hence, we obtain the de-
pendence of persistent current toj and ring circumference
L. For clarity and convenience, we convert the problem on a
ring to a problem on a line with periodL. We used an exact
solvable model, which differs from the previous ones in lit-
erature and this model is solved analytically.

The Hamiltonian for the system, which consists of uni-
formly spacedd-function potential of random strengths,
reads
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lnd~x2na!, ~1!

where m is the bare electron mass andln is potential-
strength parameter, which may be considered as an on-site
diagonal disorder in the tight binding model, anda is the
lattice spacing. We have not written the magnetic flux in the
Hamiltonian~1! explicitly, but take the flux into account by
requiring a twisted periodic condition for the wave function

c~x1L !5exp~ i 2pF/F0!c~x!, ~2!

whereF0 is the flux quantumhc/e and L5Na, meaning
that a phase would arise when the electron is brought around
the ring. The energy for an electron isE5(\2/2m)k2. The
constraint fork would be derived later by the boundary con-
ditions given in Eq.~4! and the quantization rule in Eq.~17!.

The electron wave function in the regions without poten-
tials can be written asc(x)5c1(x)1c2(x), where

c1~x!5Ane
ikx, c2~x!5Bne

2 ikx. ~3!

The coefficientsAn and Bn across sitex5na are related
through the transfer matrixTn , involving the transmission
and reflection amplitudes from the barrier on the site
x5na, tn , andr n . On each site,x5na, the wave function
acquired a phase 2pF/NF0 when the evoluation of the elec-
tron across the site was due to the requirement of single
valueness for the wave function. This can be understood as
follows. We start from a pointx on the positive side ofna
then, after going around the ring one returns to the same
point from the negetive side ofna. The boundary conditions
connecting the wave functions across sitex5na should be

lim
e→0

$c1~na1e!1c2~na1e!2c1~na2e!ei ~2p/N!~F/F0!

2c2~na2e!e~ i2p/N!~F/F0!50 ~4a!

and

lim
e→0

$c18 ~na1e!1c28 ~na1e!2c18 ~na2e!ei ~2p/N!~F/F0!

2c28 ~na2e!ei ~2p/N!~F/F0!%

5 ~2m/\2! ln$c1~na!1c2~na!%ei ~2p/N!~F/F0!. ~4b!

These conditions must be satisfied by the electron crossing
the site occupied by the barriers. By performing the transfer
matrix procedures to the whole ring successively, the coeffi-
cientsA andB corresponding to the ends of the lineL can be
obtained analytically. The twisted periodic condition~2!
leads to an equation for these coefficients defined on the ends
of the line:

S A8

B8D 5TS ABD
5expH i2p

F

F0
1 i @~21!M21#

p

2 J T̃S ABD ,
T̃5S 1/t* r /t

r * /t* 1/t D , ~5!

where the total tranfer matrixT5Pn51
N Tn , and we have ex-

tended the twisted periodic condition forM electrons on the
ring. The second factor in the phase is associated with a
translation of an electron along the ring, which would cross
otherM21 electrons.M is the number of electrons on the
ring. The periodic conditionsA85A and B85B reduce to
the quantization rule fork, in the form

Re~1/t !5cos$2p F/F0 1@~21!M21#p/2 %

5H cos2p F/F0 for M5odd

cos2p~F/F0 2 1
2 ! for M5even ~6!

which agrees with previous work.15 SinceDN5t21, while
the amplitudes of transmissiont and reflectionr are related
by utu21ur u251, the transfer materixT̃ can be expressed as

T̃5S DN* RN

RN* DND , ~7!

where

DN5S aN2
aN21* bN

bN21* DDN211S bN

bN21* DDN22 ~8!

and

RN5ei2k~N21/2!a
aN*

bN
DN2ei2k~N21/2!a

1

bN
DN21 , ~9!

with the definitions

an512 i
1

2k
Vn , bn52 i

1

2k
Vne

2 ika, n.1. ~10!

D051 and D15a1 , where kl5(2mEl /\
2)21/2 and

Vn52mln /\
2. DN can be further expressed in a form

DN5H 11(
p

N

(
np.•••.n151

N ~2 iVn1
!

2k
•••

~2 iVnp
!

2k

3 )
l51

p21

$12exp@2 i2ka~nl112nl !#%J , ~11!

wheren runs from 1 toN. In order to make a comparison of
orderness to disorderness in the influence on the persistent
currents, we at first restrict ourselves to the simple case3,4

that all the barriers have the same strengthln5l. Then, by
settingVn5V and
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cosba5Re@~12 i V/2k!eika#, ~12!

the result becomes simple and Eq.~11! can be expressed in
the form as

DN5e2 ikNaFcosNba2 i S V2kcoska2sinkaD sinNba

sinba G ,
~13!

and Eq.~9! can be expressed in the form as

RN5eik~N11!aiV/2k~sinNba/sinba! . ~14!

It is easy to check thatuDNu22uRNu251, by using Eq.~12!,
which is an alternative representation ofutu21ur u251. It
should be mentioned that Eqs.~8! and ~13! have a similar
form to those in the previous calculation of the resistance of
a one-dimensional chain with arbitaryd potentials.3 But, the
wave vectork is different, due to the ring geometric struc-
ture. Here, the wave function should satisfy a twisted peri-
odic condition and the boundary conditions on the sites,

whered-function potentials are localized.
For a time-independent fluxF threaded the ring, the cur-

rent associated with thel th eigenstate can be derived12 from
Eq. ~6! and with help of the definition of the persistent cur-
rent I l52c]El /]F, the result is

I l5
e

\

sin$2p~F/F0!1@~21!M21#p/2%

„]Re~1/t !/]El…

5
e

\

sin$2p~F/F0!1@~21!M21#p/2%

~]ReDN /]El !
. ~15!

An important condition forI l to be nonzero is that the wave
functions of the charged and spin carriers should stay coher-
ent along the circumferenceNa of the ring.

As pointed out in Ref. 13, the energy quantization rule is
determined by the scattering phases, which can be defined
through theSmatrix. The scattering matrixS is defined as

S A8

B D 5SS A

B8D
5DN

21S exp$ i2p F/F0 1 i @~21!M21#p/2 % RN

2RN* exp$2 i2p F/F0 2 i @~21!M21#p/2 %D S A

B8D , ~16!

in derivation of Eq. ~16!, we have used Eq.~5! and
uDNu22uRNu251. The quantization rule acquires the equa-
tion

det~S21!5@exp~ iw1!21#@exp~ iw2!21#50, ~17!

wherew1,2 are the scattering phases, which are determined
from the eigenvalues of theSmatrix exp(iw1,2). It is evident
that one such phase would vanish when the energy of the
system isEF , which gives the Fermi level. It is of interest to
note that the eigenvalues are independent of whether the
number of electrons is odd or even. If we parametrize the
scattering matrix withu, f and the resistancerN by conve-
niently defining

1/t* 5ArN11eiu, r /t 5ArNe
if, ~18!

then the eigenvalues for theS matrix in Eq. ~16! can be
found as

w1,25u6arccos@~1/ArN11!cos2pF/F0#, ~19!

whereu52arctan@(V/2kcoska2sinka)(sinba)21tanNba#.
In order to find the equilibrium current for a disordered

ring it is sufficient to take into account those energy eigen-
states with the energies satisfied in Eq.~17!. Also, the total
current is given by the sum over all lowest-lying occupied
states up to the Fermi level, so for a fixed number of elec-
trons, the ensemble averaged total persistent currentĪ is
given by

Ī 5
1

NaK (
l

(
i51

2

d~w i !
]w i

]El

e

\

3
sin$2p~F/F0!1@~21!M21#p/2%

~]ReDN /]El !
L , ~20!

where^ & means the ensemble average with the fixed electron
numberM . Following Ref. 13, the calculation is carried out
to the first order inF/F0 , ~!1!, in the limit of the weak
magnetic field. We, therefore, havew1,25u6arccos(rN
11)21/2. The averaged current is then presented in the form

Ī 56~M /L !~e/\!~2p F/F0!^1/~rN11!&, ~21!

where the signs ‘‘1 ’’ and ‘‘ 2 ’’ correspond toM being even
and odd, respectively. As an expectation, it is of interest to
recover the conclusion16 that, for evenM , the current is
paramagnetic~i.e., Ī.0 for small F.0), while, for odd
M , it is diamagnetic~i.e., Ī,0 for smallF.0). In the cal-
culation of averaging over an ensemble of the energyE of
the electron on the ring, we restrict ourselves to the situtation
of kaÞnp and a weak magnetic field. For the ring withN
identical and periodically arranged potentialsV, the rN can
be expressed asrN5(V/2k)2(sin2Nba/sin2ba),3 which does
not increase monotonically withN and reduces to zero at
N→` for ucosbau,1. From Eq.~21!, we, therefore, know
that the ring withN identical and periodically arranged po-
tentials does not have a localization length. The current does
not descrease monotonically with the number of barriers on
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the ring. We are also interested in noting that the resistance
that goes to zero corresponds to the situation of nod scatters
on the ring and, therefore, the persistent current approachs to
the usual result forN free electrons on the ring.

However, when thed scatterers are located periodically
with random amplitude, the physical quantites have a depen-
dence of localization length on disorderness. For the random
d scatterers arranged periodically on a ring, Gasparianet al.3

had obtained an asymptotic expression of the resistance

rN115
1

4 sin2ka S sin2kak2a2 D NV2N5
1

4 sin2kFa
eL/j, ~22!

with j(k) being the localization length and given by3

j21~kF!5 ln^V&2a2 sin2kFa/kF
2a2 1 lnV2/^V&2 . ~23!

By Eq. ~22!, the average current in Eq.~21! can be con-
cluded in the form

Ī 5
M

L

e

h

F

F0
^4 sin2kae2L/j&.

eM

h S Lj D S F

F0
De2L/j,

~24!

which means that the average current descreases exponen-
tially with increasing sample circumferenceL. This expo-
nential localization agrees with the results obtained previ-
ously in Refs. 12–14.

On the other hand, in the case of barriers with random
strength, Gasparianet al.3 obtained

^r&5 (
p51

N

d~EF!p2~p21!

3 (
15n1,•••,np

N

)
l51

p21

@12coskFa~nl112nl !#,

by assuming a uniform distribution of the amplitudes
of the d function ln in an interval @2W/2,W/2#, where

d(EF) is the inverse localization length given by
d(EF)5W21*2W/2

W/2 @Vn
2/4k2#dVn5W2/48kF

2 . In the weak
scattering case, it is easily found

K 1

rN11L 512Nd~EF!1d~EF!2

3F12
sin~N11!kFasin~N21!kFa

sin2kFa
G . ~25!

Therefore, Eq.~21! leads to the conclusion that the average
persistent current in the present system has a lower degree of
power dependence than the exponential decrease in the cir-
cumference of the ring. While for the weak disorder case,
@d(EF)!1#, the decreasing exponential of persistent current
on L is likely happening.

To summarize, a simple model for the electron moving in
the disordered one-dimensional system is discussed, which is
able to explain the main qualitative feature of the persistent
current in a disordered mesoscopic system. Our consider-
ation is based on the hypothesis of localization of the elec-
tron in the presence of short-range disorderness and on the
local-conductivity formalism. We obtain the dependence of
persistent currentĪ on L/j. A power law dependence of the
localization in the amplitude of persistent current would be
confered for uniformly distributed strength of the barriers on
the ring. Our results are in good agreement with the decreas-
ing exponential with localization in the current literature, if
the system is an off resonance transmission and is weakly
disordered. However, a power law dependence of circumfer-
ence and inverse localization length could not be excluded.
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