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Localization and mesoscopic persistent current in a disordered metal ring
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A simple model for an electron moving in a disordered one-dimensional system is investigated analytically
and the persistent current in this model of a disordered mesoscopic system is studied. We show that persistent
currents decrease exponentially with increasing sample circumference. Our analysis is based on comparison
with an exact calculation of the average resistance of a disordered one-dimensional chain.
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Recently, considerable effort has been made in under- In this paper, we attempt to examine the issue of expo-
standing the nature of electronic states in one dimensionalential decay behavior of persistent current by analytically
(1D) disordered systens? This is partly due to the connec- calculating the averaging persistent current over an en-

tion with the problem of two-dimensional electronic systemssemple, with a fixed number of electrons for an exactly solv-
in a magnetic field and electrons in the presence of the ranspie 1D disorder model. Unlike the previous

dom barriers, especially mesoscopic quantum interferencgiscussionéz_m and in order to show the influence of the
effect contributions to the conductivity. ’

The investigation of the electrical conductivitg of 1D localization effect on the persistent current in 1D disordered

metal with static disorder was initiated by Landatiavho ~ MESOSCOpiC ring, we solve the generalized Kronig-Penny
derived a connection between total transmission and resi$ing consisting ofN arbitrary barriers arranged periodically
tance. The averaged resistancéds~ (e-/¢—1), where¢ is ~ on the circumference. We thought that it might be of some
the localization length of the localized states. The electrorinterest to use the technique developed in the study of resis-
localization was discussed by Andersemnal® in the frame-  tance fluctuation to show how the electron localization en-
work of scaling theo.ry for 1D disorder systems. Thouless tered when the system is disordered. We consider the one-
has proposed a relation between the density of states and td#nensional ring geometry with a magnetic fidxthreading
electron localization length. Since then, several results on thgyrough it. Our approach is based on the method used in
relation between the conductance and the transmission coekefs. 3,4, where the localization length was calculated for
ficient of the chain have been established nu8rr91er|cally anghe uniformly distributed amplitude of théfunction poten-
analytically to support the idea of localizatidfi®®On the  tia) we work in terms of a transmission coefficient, the
other hand, the Kubo formula for the conductivity was usedy,qgqulus squared of which is inverse proportional to the re-

for a tight binding model with random site energiédMith  gigionce for the model. We then apply this to calculate aver-
the sizeL of the sample as a scaling parameter, Ahrahamsg -

and Stephelt examined the changes in conductivity for a ?hged pe_rst|st?nt currtel_ht t\Ne car]l t%bt?m an _expressmr;f_f(_)r t
small size sample. e persistent current in terms of the transmission coefficien

The persistent current in 1D disordered mesoscopic rin@f he system. According to the localization theory, the lo-
lization length¢ can be expressed in terms of the resis-

has been the subject of much interest now. In close analo .
to the behavior of localization dependence in the resistancé@nce, which could further be calculated through the trans-
it was theoretically predicted that the averaged current amdlission  coefficient by using Landauer formula.
plitude would decrease as a function of degrees of disorde€gonsequently, the amplitude of persistent current can be es-
for a disordered ring. The current amplitude is found to betimated through the modulus of the transmission coefficient
| ~1,e~“¢.12 This behavior can be understood as the eigenin terms of localization lengthé. Hence, we obtain the de-
functions of electrons in the disordered system, which arg@pendence of persistent current goand ring circumference
exponentically localized. Such a localization dependence hds. For clarity and convenience, we convert the problem on a
further been discussed by using the concept of one-electraiing to a problem on a line with peridd. We used an exact
localizatiot®> and by the single band spinless fermion solvable model, which differs from the previous ones in lit-
model* in a one-dimension disordered ring. According to erature and this model is solved analytically.

these results, the disorder tends to localize the electrons in The Hamiltonian for the system, which consists of uni-
the lowest energy site in the sample and, consequently, rdermly spaced 5-function potential of random strengths,
duces the presistent current. reads
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where m is the bare electron mass ang, is potential- | (A " 7|~
strength parameter, which may be considered as an on-site =ex '27T¢TO+'[(_1) “l5 T
diagonal disorder in the tight binding model, aadis the

lattice spacing. We have not written the magnetic flux in the
Hamiltonian(1) explicitly, but take the flux into account by
requiring a twisted periodic condition for the wave function

A
B

I
H:_ﬁWjLngo And(X—na), (1)

A
B

T=| x4 5

1h* r/t)

where the total tranfer matriXx=IIN_,T,, and we have ex-
tended the twisted periodic condition fbt electrons on the
ring. The second factor in the phase is associated with a
where @, is the flux quanturhc/e and L=Na, meaning translation of an electron along the ring, which would cross
that a phase would arise when the electron is brought arourff"erM —1 electronsM is the’number of’electrons on the
the ring. The energy for an electron = (A%/2m)k2. The  'Ng. The_perlodlc condlthnsﬁ\ =A and B’ =B reduce to
constraint fork would be derived later by the boundary con- theé quantization rule fok, in the form
ditions given in Eq(4) and the quantization rule in E¢L7). _ ML

The electron wave function in the regions without poten- Re(1/t) =cog2m @/Po +[(~1)" ~1]m/2}
tials can be written ag/(x) = ¢, (X) + ¥ _(x), where cos2r ®/d, for M=odd

cos2m(®/P,—3) for M=even ©

P(x+L)=expi 2P/ D) (X), 2

P ()=Ae", ¢ (x)=Bpe . ()
which agrees with previous worR.SinceDy=t"1, while
the amplitudes of transmissidnand reflectiorr are related

The coefficientsA,, and B, across sitex=na are related 2112 .
by [t|*+|r|?=1, the transfer materiX can be expressed as

through the transfer matriX,,, involving the transmission

and reflection amplitudes from the barrier on the site D* R
i i N N

X=na, t,, andr,,. On each sitex=na, the wave function =

acquired a phase2®/N®, when the evoluation of the elec- T= ( ) '

tron across the site was due to the requirement of single

valueness for the wave function. This can be understood aghere

follows. We start from a poink on the positive side ofia

then, after going around the ring one returns to the same aN_1Bn

point from the negetive side ofa. The boundary conditions Dn=| an— R ) Dn-1t

connecting the wave functions across sitena should be N—1

RY Dy (7)

Bn
—— Dy 8
Bﬁ—l) N2 ®

and

i _ )@l (27IN) (DD g) *
lim{y.(na+e)+y(nate)—y.(na-ee ’ RN:ei2k(N71/2)aﬂDN_eiZK(N71/2)aiD

N

n-1, (9

e—0
_ _ A\ ali2aN)(®/Pg) _
¥_(na—e)el2mN(®/P0 = (48 ith the definitions

1 1
and ap=1-im Ve, Ba=-ig Vee ™, n>1 (10

Do=1 and D;=a;, where k=(2mE /%% "2 and

: ' ' Y _ i(27/N)(D/ D)
lim{y, (na+e)+y-(na+e)-yi(na-eje V,=2m\,/#2. Dy can be further expressed in a form

e—0
_ /_(na_ 6)ei(27r/N)(CI>/<D0) N N (—iV ) (—iV )
w } . DN: 1+2 2 2knl 2knp
= (2mI%2) Ny, (na)+ _(na)le!CTNI(®/Po)  (4p) ponp>-->n=1
p—1
These conditions must be satisfied by the electron crossing X IHl {1—exd —i2ka(n =)}, 11

the site occupied by the barriers. By performing the transfer

matrix procedures to the whole ring successively, the coeffiwheren runs from 1 toN. In order to make a comparison of
cientsA andB corresponding to the ends of the lihecan be  orderness to disorderness in the influence on the persistent
obtained analytically. The twisted periodic conditidg) currents, we at first restrict ourselves to the simple thse
leads to an equation for these coefficients defined on the endisat all the barriers have the same strengik-\. Then, by

of the line: settingV,,=V and



53 BRIEF REPORTS 12 599

cosBa=Re (1—iV/2k)e'ka], (12  whereéfunction potentials are localized.
. , For a time-independent flu® threaded the ring, the cur-
the result becomes simple and Efj1) can be expressed in o associated with thih eigenstate can be deriv@drom

the form as Eq. (6) and with help of the definition of the persistent cur-
V sinNBa rentl,= —cdE,; /9P, the result is
_ ~—ikNa| - e
Dy=¢e coNpBa—i 2kcoska sinka singa |
(13) e sinf2m(®/Pg)+[(— )M - 1]7/2}
and Eq.(9) can be expressed in the form as T (ORe(1h)/9E))
Ry = e/XN*Daj\//2k(sinN Ba/singa) . (14) _ e sin2a(®/Pg) +[(- DM -1]w/2}

(15
It is easy to check thdDy|?—|Ry|?=1, by using Eq(12), h (JReDy/IE))
which is an alternative representation f2+|r|>=1. It

should be mentioned that Eq&) and (13) have a similar An important condition foll, to be nonzero is that the wave
form to those in the previous calculation of the resistance ofunctions of the charged and spin carriers should stay coher-
a one-dimensional chain with arbitasypotentials® But, the  ent along the circumferendéa of the ring.

wave vectork is different, due to the ring geometric struc-  As pointed out in Ref. 13, the energy quantization rule is
ture. Here, the wave function should satisfy a twisted peri-determined by the scattering phases, which can be defined

odic condition and the boundary conditions on the sitesthrough theS matrix. The scattering matri$ is defined as

A’ A
B |=S| B
expli2m ®/dg+i[(—1)M—1]7/2} =N A
=Dy’ —RY exp{—i2m ®/®y —i[(—1)M—1]m/2} || B’ |- (16)
|
in derivation of Eg.(16), we have used Eq(5) and 1 dg; e
|Dy|2—|Ry|2=1. The quantization rule acquires the equa- =—(> > s¢)——
tion Na\ 9 =1 JE h

de(S—1)=[exp(ip,) — L] expig,) —1]=0, (17) | SiN2m(®1Po) +[(~ 1" — 1] 7/2}
(JReD/IE))

where ¢, , are the scattering phases, which are determined . )
from the eigenvalues of th® matrix exp{e, 5). It is evident where( ) means thg ensemble average W|th thg flxed. electron
that one such phase would vanish when the energy of th@umber_M. Follow_mg Ref. 13, the_ calculgtlpn is carried out
system isE¢ , which gives the Fermi level. It is of interest to (O the first order in®/d,, (<1), in the limit of the weak
note that the eigenvalues are independent of whether tH@agf‘%tz'C field. We, therefore, have,,=6=*arccospy
number of electrons is odd or even. If we parametrize thet 1)~ The averaged current is then presented in the form
scattering matrix withg, ¢ and the resistancey by conve- —
niently defining I

> . (20

+(MIL)(e/h) (27 ®ID)(1(py+1)),  (21)

, ‘ where the signs 4" and “ —" correspond toM being even
1t* =\pn+1€'?,  rit=\pye'?, (18)  and odd, respectively. As an expectation, it is of interest to
recover the conclusidh that, for evenM, the current is
paramagnetidi.e., | >0 for small ®>0), while, for odd
M, it is diamagnetidi.e., | <0 for small®>0). In the cal-

@1,= 0= arccof(1/\py+ 1)cos2rd/d,], (19  culation of averaging over an ensemble of the endfgyf
’ the electron on the ring, we restrict ourselves to the situtation
where 6= — arctafi(V/2kcoska—sinka)(sinBa) ‘tarN3a]. of ka#nx and a weak magnetic field. For the ring with
In order to find the equilibrium current for a disordered identical and periodically arranged potenti®ls the py can
ring it is sufficient to take into account those energy eigenbe expressed agsy= (V/2k)?(sir’NBa/sir’8a),® which does
states with the energies satisfied in Efj7). Also, the total not increase monotonically withl and reduces to zero at
current is given by the sum over all lowest-lying occupiedN— o for |cos8al<1. From Eq.(21), we, therefore, know
states up to the Fermi level, so for a fixed number_of electhat the ring withN identical and periodically arranged po-
trons, the ensemble averaged total persistent cuidreist tentials does not have a localization length. The current does
given by not descrease monotonically with the number of barriers on

then the eigenvalues for th® matrix in Eq. (16) can be
found as
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the ring. We are also interested in noting that the resistancé(Eg) is the inverse localization length given by
that goes to zero corresponds to the situation ofsoatters — §(Eg) =W 1 W2 [V2/4k?]dV,=W?/482. In the weak
on the ring and, therefore, the persistent current approachs tgattering case, it is easily found
the usual result foN free electrons on the ring.

However, when thes scatterers are located periodically < 1

with random amplitude, the physical quantites have a depen- > =1-N&(Eg)+ 8(Eg)?

dence of localization length on disorderness. For the random pntl

& scatterers arranged periodically on a ring, Gaspagtaal 2 sin(N+1)krasin(N—1)kga

had obtained an asymptotic expression of the resistance X|1- sitkea . (29
1 sirfka|N

pntl= ——— | = e'/é, (220  Therefore, Eq(21) leads to the conclusion that the average
4sirrkal k*a 4 sirrkga persistent current in the present system has a lower degree of
with £(k) being the localization length and givenby power dependence t_han the_ exponential decre_ase in the cir-
cumference of the ring. While for the weak disorder case,
£ Ykp)=In(V)2a®sirkralk2a? +InV/(V)2. (23) [8(Egf)<1], the decreasing exponential of persistent current
. onL is likely happening.
By Eq. (22), the average current in E421) can be con- To summarize, a simple model for the electron moving in
cluded in the form the disordered one-dimensional system is discussed, which is
__ Me® eM/L\[ ® able to explain the main qualitative feature of the persistent
| = TH¢T<4 sir?kae‘L/'-f):T( )(3) Lig current in a disordered mesoscopic system. Our consider-
0 0 ation is based on the hypothesis of localization of the elec-
(24) tron in the presence of short-range disorderness and on the
which means that the average current descreases expondoeal-conductivity formalism. We obtain the dependence of
tially with increasing sample circumferente This expo- persistent current onL/&. A power law dependence of the
nential localization agrees with the results obtained previlocalization in the amplitude of persistent current would be

3

ously in Refs. 12-14. confered for uniformly distributed strength of the barriers on
On the other hand, in the case of barriers with randonthe ring. Our results are in good agreement with the decreas-
strength, Gaspariaet al3 obtained ing exponential with localization in the current literature, if

the system is an off resonance transmission and is weakly

N
=S S(Eq)P2P-D) disordered. However, a power law dependence of circumfer-
<p>_p=1 (Ee) ence and inverse localization length could not be excluded.
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