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A genetic algorithm has been used to solve a complex multidimensional parameter-fitting problem. We will
focus on the parameters of an empirical tight-binding Hamiltonian. The method is used to approximate the
electronic energy band structure if energy values are known for a few wave vectors of high symmetry.
Compared to the usual manual procedure this method is more accurate and automatic. This approach, based on
the extended Hu¨ckel theory~EHT!, has provided a list of EHT parameters for IV-IV and III-V semiconductors
with zinc-blende structure and helped us to find a symmetry in the EHT.

For very large systems, such as those found in the ex-
tended unit cells of quite common minerals or inhomoge-
neous crystals,ab initio methods for calculating the elec-
tronic structure of solids are still far from application
because of the lack of computer power. In that field the semi-
empirical band structure methods still keep their own value
and importance.1,2 Considering the valence-band regime of
nonmetallic compounds, one mainly deals with tight-binding
procedures adjusting the parameters with respect to simple
systems and transferring them to complicated structures.3,4

Thus, there is a demand for computationally expedient tech-
niques yielding the parameters of crystal electronic potentials
according to experimental results or other targets which may
implicitly contain these parameters.

In this paper we demonstrate the use of methods of evo-
lutionary optimization in parameter inference of semiempir-
ical physical models. We apply this method to the extended
Hückel theory~EHT!, an empirical tight-binding theory.5 It
provides a numerically fast method for the calculation of the
electronic band structure and yields satisfactory results, par-
ticularly for the valence bands of many semiconductors and
insulators. Other than the possible application to large sys-
tems, in simpler crystals there also arises the necessity for
such methods.6 Big computational tasks, like the theoretical
determination of photoemission spectra, become feasible due
to the EHT’s enhanced speed.7 The main idea is to use a
small number of parameters, the EHT parameters, to deduce

the one-electron HamiltonianĤ(kW ) in a basis of atomic or-

bitals from the matrix of orbital overlapsS(kW ). The latter
have to be determined such that the resulting band structure

E(kW ) corresponds as closely as possible to a given band
structure which may have been obtained experimentally or
by a more elaborate theoretical method. The EHT, then, is a
fast and convenient means to calculate the wave functions of
a corresponding band structure. The inverse problem, i.e.,
finding the correct parameters for a given band structure, is
usually solved by trial and error—a laborious and time-
consuming task. An attempt to solve this problem by using
feedforward neural networks to learn the inverse proved to
be very difficult.8 Here we recast the problem into an opti-
mization task. An objective function is defined which quan-
titatively characterizes for each parameter vector the agree-

ment of the resulting band structure with the target band
structure. This function is maximized by a genetic algorithm.

In the extended Hu¨ckel theory the crystal wave functions
un,kW & are expanded in Bloch functionsukW ,a,l & which are the
basis for the Hamilton matrix. The band indexn enumerates
the energy eigenvalues for a Bloch vectorkW , a is the orbital
symmetry~e.g.,s,px ,py ,pz), and l is the index of the basis
atom in the unit cell. The Bloch functions are made up of
atomic orbitals whose radial parts are represented by normal-
ized Slater functions.9 To account for an orbital’s reduced
size in the solid, the orbital exponents have to be enlarged,
yielding additional parameters to be fitted. The angle-
dependent part is given by spherical harmonics.

The energy bandsEn(kW ) are determined by solving the
Schrödinger equation with HamiltonianĤ. Introducing
Sa lbm(kW ):5^kWa l ukWbm& and Ha lbm(kW ):5^kWa l uĤukWbm&
with overlap matrixS and Hamilton matrixH we get a gen-
eralized eigenvalue problem.

The extended Hu¨ckel theory is based on the idea that
larger orbital overlap means stronger coupling of atoms. For
determining the matrix elements ofH we use the following
ansatz, which has been modified from Hoffmann5 by Henk:7

Ha la l~kW !52 Ĩ a l2KaaI a l@Sa la l~kW !21#, ~1!

Ha lbm~kW !52 1
2 Kab~ I a l1I bm!Sa lbm~kW ! if ~a l !Þ~bm!.

~2!

The parametersI a l and Ĩ a l can be viewed as the energies
of the orbital a at atom l . The proportionality constant
Kab takes into account the Hamiltonian’s dependence on the
distance between neighboring sites. We thus deal with eleven
parameters for a two-component solid of eight valence elec-
trons per unit cell. One of the parametersKab or I a l can be
arbitrarily set to a nonzero value since the Hamilton matrix is
invariant under a transformation in whichKab are divided by
Kss and I a l are multiplied byKss. Here, the volume band
structure without spin-orbit interaction was calculated for
simplicity. The generalization is straightforward. In con-
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structing the overlap matrix between Bloch functions, the
coupling up to fourth neighbor sites was included.

Genetic algorithms are able to maximize a scalar function
in multidimensional binary space.10,11 A population of bit
strings is evaluated according to the scalar objective func-
tion. Those bit strings with the highest ‘‘fitness’’ will survive
and will be replicated while the least fit are removed from
the population. Some of the remaining strings are then ran-
domly changed. A mutation operator reverses one or more
bits randomly in the individual bit strings, and a crossover
operator swaps fractions of bits between pairs of strings.
Both operators are used to drive the stochastic search, while
the selection procedure, in the meantime, focuses on prom-
ising regions in parameter space. The run is started with an
initial population of strings whose bits are randomly set.
These steps are iterated until the population converges to a
satisfactory solution.

For the method presented here the electronic energies in
the solid have to be available only for a rather small set of
wave vectorskW . For the zinc-blende structures we use ener-
giesEkWn

exp at high symmetry pointskWP$G,K,X,L%. The band
indexn counts from 1 to 8, yielding 32 values for the ener-
gies. These energies, which the parametrized Hamiltonian is
to reproduce, are either gained experimentally or from more
laborious theoretical means, such as self-consistent methods.

The objective functiond(pW ) to be maximized is defined
as

d~pW !52S 1

(
kW8n8

wkW8n8

(
kWn

wkWn@EkWn~pW !2EkWn
exp

#2D 1/2

. ~3!

HerepW denotes the vector of the band-structure parameters,
EkWn(pW ) the electronic energy value calculated with the
Hamiltonian of parameterspW , andwkWn a weight chosen from
the interval @0,100# in accordance with the importance of
energyEkWn . There is a strong emphasis on the occupied
bands. In the end it was possible to use one set of weights for
all solids except in a few hard cases. Better compliance at
crucial energies will usually result in worse performance at
less essential energies. The differenceEkWn(pW )2EkWn

exp is
squared to penalize large deviations more heavily.

The vectorpW of band-structure parameters is optimized by
the genetic algorithm. The parameters are converted to bi-
nary numbers for this purpose. The binary numbers are con-
catenated to form a string of bits, the so-called ‘‘genome,’’
on which the genetic algorithm operates. The binary coding
used here is aGRAY code,12 which improves the performance
of the genetic algorithm compared to a regular binary cod-
ing. With respect to numerical optimization, theGRAY cod-
ing behaves smoothly under bit mutation, so that the algo-
rithm can perform a local stochastic search in ‘‘fitness’’
space by one-bit mutation in parameter space.

The algorithm is stopped after a certain number of itera-
tions or when the fitness values of the individuals of the
population have converged. The individual with the highest
fitness is then decoded into the vector of parameterspW . The
dispersion inkW space outside of the points of high symmetry
is not included in the objective function. Since the EHT may

lead to band structures which fit closely at the target points
but may be wrong elsewhere, these results have to be dis-
carded.

To test our method, we looked for a parameter vector for
an arbitrarily fixed band structure given by the silicon crystal
structure and with silicon orbitals but created by using arbi-
trary EHT parameters. In this case it is assured that the band
structure is exactly reproducible by the extended Hu¨ckel
theory. As a result, the band structure could be reproduced
by applying the genetic algorithm to five randomly chosen
populations of ten individuals each, to a maximum energy
difference of 0.016 eV between the target and the newly
parametrized band structure. The accuracy of this result is
solely limited by the accuracy chosen for the discreteGRAY

coding of the EHT parameters.
We have applied the method to zinc-blende semiconduc-

tors and have taken the target energies from Ref. 13 and
references therein, which provide theoretical and experimen-
tal results. The EHT will not necessarily be able to exactly
reproduce these target band structures. Our method, how-
ever, will find closest fits.

We have used the genetic algorithm simulator PGA~Ref.
14! with a configuration of 60-bit strings.

The intervals from which parameters are to be determined
by the algorithm areKss51, Ksp andKpp from @0,6#, Ĩ a l
from @29,30#, and I a l from @230,90#. A selection proce-
dure was chosen in which the probability to select an indi-
vidual for reproduction is proportional to its fitness rank in-
side its population~rather than to its fitness value!. At each
iteration, two individuals are chosen according to the selec-
tion procedure, and through crossover two complementary
children are obtained. They are mutated as well, and the
resulting offspring are fed back into the population, replacing
the least fit members. The mutation operator used randomly
changes each bit with a probability governed by the fraction
of equal bits between the parents: the probability would be
0.0 for two totally dissimilar parents, and increase up to a
chosen value of 0.1 if the parents were identical.

The optimization procedure works as follows: the coeffi-
cients of the atomic wave functions, the lattice constant, the
target energies, and the weights for the solid are provided to
the program. First, to test the choice of weights, we run the
genetic algorithm with ten randomly chosen initial popula-
tions of ten individuals each for 20 000 iterations. The result-
ing band structures are checked for possible adjustment of
the weights if crucial energies have large errors. After a com-
mon set of weights had been established, further changes in
general were not necessary in our calculations. With the final
weights a higher accuracy run with ten initial populations of
100 individuals each is done for 100 000 iterations. In many
cases this number may be unnecessarily high but it proved to
reliably provide accurate parameters. Ten populations run-
ning on Sun 10-52 workstations need ten hours of computa-
tion time.

For three zinc-blende solids~Si, CdTe, and GaAs! we
have parameters previously obtained without any automatic
optimization procedure. For these crystals we use our
method to determine parameter vectors and compare the re-
sulting band structure with the manual results. For silicon,
seven EHT parameters are needed, whereas for the two het-
eropolar solids cadmium telluride and gallium arsenide
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eleven parameters have to be determined. For GaAs and
CdTe—where the manual fits are very good—fits of equal or
even better quality could be achieved. The parameter vectors
are given in Table I. The result for CdTe is displayed in Fig.
1, which typically shows the agreement with the target band

structure. It is achieved by the genetic algorithm even for the
conduction band where the EHT is known to be less suitable.

We have determined EHT parameters for CdTe and for
those group-IV elements, IV-IV, and III-V compounds
which are semiconductors and crystallize in zinc-blende
structure: see Table I.

Table I is a compilation of EHT parameters for this rather
large class of semiconducting materials. The parameters
were calculated with moderate effort. Since the EHT param-
eters are known to be independent of bond length, this for-
malism covers a wide range of applications.

For certain zinc-blende crystals, for example, those made
up of one component, we have found a symmetry in the
EHT. A large number of parameter vectors gained from the
genetic algorithm led to band structures which are identical
except for a shift in the absolute energy scale. To see this, we
drop the irrelevant atom indexl and define a new vector of
parameterspW 85@ Ĩ s , Ĩ p ,I s ,KppI p ,Ksp(I s1I p)/2#, which in-
cludes all the factors necessary for the construction of the
matrixH. Guided by the variation of the parameter vectors,
we observed that the Hamiltonian obeys
H(pW 81luW )5H(pW 8)2lSwith vectoruW 5(1,1,1,1,1). For the
energies, this means thatEnkW(pW 81luW )5EnkW(pW 8)2l. In this
case the number of parameters can be reduced by two, e.g.,
by settingKpp :51.0 and Ĩ p :50.0. This symmetry occurs

FIG. 1. The target energies of the CdTe band structure are de-
noted by plus symbols. The best manual fit is drawn with long
dashes, the genetic algorithm result with a solid line. Spin-orbit
interaction has been introduced via a localized coupling of the
atomic sites, yielding an additional parameter for each species.

TABLE I. EHT parameters for group-IV elements, IV-IV, and III-V compounds and CdTe determined by
evolutionary optimization. The superscript ‘‘so’’ indicates that the effect of spin-orbit interaction was taken
into account for these parameters of CdTe~the two additional parameters arel0520.156 and
l150.781). The subscript ‘‘hand’’ points out the manually achieved parameters. Max. error gives the
maximum energy difference between computed and target values for the valence band and the gap; source
gives the reference for the target energies. For this table the orbital exponents have been reduced by a fraction
of 0.25 ~0.20! for s (p) waves. It isKss51.0 and the index 0~1! refers to the anion~cation!.

Solid Ksp Kpp Ĩ s0 Ĩ p0 Ĩ s1 Ĩ p1 I s0 I p0 I s1 I p1 Max. error Source

C 0.809 1.000 9.32 0.00 29.06 21.45 0.46 eV 15

Si 0.773 1.000 6.88 0.00 23.44 12.07 0.48 eV 16

Ge 0.803 1.000 7.83 0.00 25.78 13.24 0.41 eV 17

a-Sn 0.961 1.000 6.67 0.00 36.90 12.08 0.32 eV 17

SiC 0.563 0.375 12.33 -2.30 10.50 0.14 13.13 20.63 45.00 60.00 0.47 eV 18,13

BN 0.375 0.563 -4.13 -5.34 16.59 4.41 13.13 7.50 56.25 86.25 0.36 eV 19

BP 0.844 1.875 -1.08 -7.17 6.84 -2.91 56.25 1.88 9.38 11.25 0.32 eV 18

BAs 1.500 1.688 2.58 -2.91 2.58 1.97 -22.50 -20.63 -13.12 7.50 0.88 eV 20

AlP 0.281 0.188 11.11 4.41 2.58 -0.47 15.00 60.00 31.88 39.38 0.27 eV 21

AlAs 0.750 0.563 20.25 11.11 10.50 9.89 30.00 39.38 20.63 28.13 0.26 eV 21

AlSb 0.563 0.375 3.19 -4.13 -4.73 -7.17 15.00 16.88 1.88 -9.38 0.22 eV 21

GaP 0.563 0.375 23.30 15.38 14.77 12.33 33.75 63.75 35.63 50.63 0.17 eV 17

GaAs 0.844 0.844 15.38 7.45 14.16 7.45 39.38 22.50 24.38 22.50 0.16 eV 17

GaAshand 0.961 1.122 16.95 9.14 15.34 6.93 40.08 20.32 26.24 17.73 0.17 eV 17

GaSb 0.656 0.656 2.58 -6.56 -2.91 -7.78 11.25 5.63 16.88 -1.88 0.35 eV 17

InP 0.938 0.844 5.02 -3.52 -1.08 -4.73 11.25 1.88 18.75 7.50 0.25 eV 17

InAs 0.563 0.281 9.28 -0.47 1.97 -1.69 18.75 30.00 16.88 24.38 0.23 eV 17

InSb 0.938 0.656 3.80 -5.34 -4.73 -5.34 11.25 0.00 -26.25 13.12 0.29 eV 17,22

CdTe 0.469 0.281 14.77 6.23 9.89 3.19 28.13 52.50 15.00 39.38 0.19 eV 17

CdTehand 1.000 1.266 9.30 0.90 5.30 -1.70 23.38 7.90 10.11 5.69 0.47 eV 17

CdTeso 0.938 0.563 15.98 8.06 1.36 7.45 30.00 30.00 26.25 20.63 0.30 eV 17,23
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only where at least one of the three following relations is
valid: Kpp52Ksp /(Ksp22), I s05I s1 , or I p05I p1 . For sol-
ids of one component both of the last conditions are satisfied.

In this paper we have shown that a genetic algorithm can
be used to determine the parameters of an empirical tight-
binding Hamiltonian for zinc-blende semiconductors. A list
of EHT parameters for the IV-IV and III-V semiconductor
series was computed. The method works with automatic con-
trol, has moderate computational costs, and provides results

superior to those achieved by traditional methods of deter-
mining the parameters. The method has helped us to find an
interdependence of the parameters, which enables us to
eliminate two parameters for one-component solids. We are
confident that the method will work for other than zinc-
blende solids and that it can be applied to various other fields
of physics where problems of model inversion or multidi-
mensional parameter optimization occur.
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