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Band-structure parameters by genetic algorithm
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A genetic algorithm has been used to solve a complex multidimensional parameter-fitting problem. We will
focus on the parameters of an empirical tight-binding Hamiltonian. The method is used to approximate the
electronic energy band structure if energy values are known for a few wave vectors of high symmetry.
Compared to the usual manual procedure this method is more accurate and automatic. This approach, based on
the extended Hekel theory(EHT), has provided a list of EHT parameters for IV-1V and Ill-V semiconductors
with zinc-blende structure and helped us to find a symmetry in the EHT.

For very large systems, such as those found in the exment of the resulting band structure with the target band
tended unit cells of gquite common minerals or inhomoge-structure. This function is maximized by a genetic algorithm.
neous crystalsab initio methods for calculating the elec- In the extended Hakel theory the crystal wave functions
tronic structure of solids are still far from application |n,k) are expanded in Bloch functions,a,|) which are the
because of the lack of computer power. In that field the semibasis for the Hamilton matrix. The band indexenumerates

empirical band structure methods still keep their own valughe energy eigenvalues for a Bloch veckora is the orbital

and importancé:? Considering the valence-band regime of symmetry(e.g.,s,px.Py.P,), andl is the index of the basis

nonmetallic compounds, one mainly deals with tight-bindingatom in the unit cell. The Bloch functions are made up of

procedures adjusting the parameters with respect to simplgtomic orbitals whose radial parts are represented by normal-

systems and transferring them to complicated structtftes. ized Slater functionf.To account for an orbital's reduced

Thus, there is a demand for computationally expedient techsize in the solid, the orbital exponents have to be enlarged,

niques yielding the parameters of crystal electronic potentialyielding additional parameters to be fitted. The angle-

according to experimental results or other targets which maglependent part is given by spherical harmonics.

implicitly contain these parameters. The energy band&,(k) are determined by solving the
In this paper we demonstrate the use of methods of evoschralinger equation with HamiltoniarH. Introducing

!utmnary optimization in parameter inference of semlempw-salﬁm(lz): —(Kal|kgm) and Ha|gm(|2)2=<|2a||H||2,3m>

ical physical models. We apply this method to the extendedyith overlap matrixS and Hamilton matrixH we get a gen-

Huckel theory(EHT), an empirical tight-binding theoryit  eralized eigenvalue problem.

provides a numerically fast method for the calculation of the The extended Htkel theory is based on the idea that

electronic band structure and yields satisfactory results, pafarger orbital overlap means stronger coupling of atoms. For

ticularly for the valence bands of many semiconductors andetermining the matrix elements bf we use the following

insulators. Other than the possible application to large sysansatz, which has been modified from Hoffmabg Henk?

tems, in simpler crystals there also arises the necessity for

such method$.Big computational tasks, like the theoretical

determlnatl(?n of photoemission spectrz_i, b_ecorr_1e feasible due Hotot (K)= =T o = K ol [ Sut i (K) = 11, (1)

to the EHT’s enhanced speédihe main idea is to use a

small number of parameters, the EHT parameters, to deduce

the one-electron Hamiltoniaﬁ(IZ) in a basis of atomic or- H (R)= = 1Kol s 41 o) Sor oK) if ()% (BM)
bitals from the matrix of orbital overlapS(k). The latter alpmi BV 2 Rl el 11 Am Pal fm al)#(B ('2)
have to be determined such that the resulting band structure

E(IZ) corresponds as closely as possible to a given band

structure which may have been obtained experimentally or The parameterk,, andTa, can be viewed as the energies
by a more elaborate theoretical method. The EHT, then, is af the orbital « at atom|. The proportionality constant
fast and convenient means to calculate the wave functions &, ; takes into account the Hamiltonian’s dependence on the
a corresponding band structure. The inverse problem, i.edistance between neighboring sites. We thus deal with eleven
finding the correct parameters for a given band structure, iparameters for a two-component solid of eight valence elec-
usually solved by trial and error—a laborious and time-trons per unit cell. One of the parametétg,; or I, can be
consuming task. An attempt to solve this problem by usinggarbitrarily set to a nonzero value since the Hamilton matrix is
feedforward neural networks to learn the inverse proved tanvariant under a transformation in whiéh, ; are divided by

be very difficult® Here we recast the problem into an opti- K¢ and 1, are multiplied byK,. Here, the volume band
mization task. An objective function is defined which quan-structure without spin-orbit interaction was calculated for
titatively characterizes for each parameter vector the agresimplicity. The generalization is straightforward. In con-
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structing the overlap matrix between Bloch functions, thelead to band structures which fit closely at the target points

coupling up to fourth neighbor sites was included. but may be wrong elsewhere, these results have to be dis-
Genetic algorithms are able to maximize a scalar functiorcarded.
in multidimensional binary spac&'" A population of bit To test our method, we looked for a parameter vector for

strings is evaluated according to the scalar objective funcan arbitrarily fixed band structure given by the silicon crystal
tion. Those bit strings with the highest “fitness” will survive strycture and with silicon orbitals but created by using arbi-
and will be replicated while the least fit are removed fromyary EHT parameters. In this case it is assured that the band
the population. Some of _the remaining strings are then ransirycture is exactly reproducible by the extendedckél
domly changed. A mutation operator reverses one or MOrgheory. As a result, the band structure could be reproduced
bits randomly in the individual bit strings, and a Crossoverhy applying the genetic algorithm to five randomly chosen
operator swaps fractions of bits between pairs of strings opulations of ten individuals each, to a maximum energy
Both operators are used to drive the stochastic search, Whilgtference of 0.016 eV between the target and the newly
the selection procedure, in the meantime, focuses on promsarametrized band structure. The accuracy of this result is

ising regions in parameter space. The run is started with agg|ely |imited by the accuracy chosen for the discretay
initial population of strings whose bits are randomly set.coding of the EHT parameters.

Thgse steps are_iterated until the population converges to a \ye have applied the method to zinc-blende semiconduc-

satisfactory solution. _ ~ tors and have taken the target energies from Ref. 13 and
For the method presented here the electronic energies iaferences therein, which provide theoretical and experimen-

the solid have to be available only for a rather small set ot results. The EHT will not necessarily be able to exactly

wave vectork. For the zinc-blende structures we use enerveproduce these target band structures. Our method, how-

giesE.." at high symmetry pointk e {I',K,X,L}. The band  ever, will find closest fits. . _

indexn counts from 1 to 8, yielding 32 values for the ener- \We have used the genetic algorithm simulator P@Af.

gies. These energies, which the parametrized Hamiltonian i54 With a configuration of 60-bit strings. _

to reproduce, are either gained experimentally or from more The intervals from which parameters are to be determined

laborious theoretical means, such as self-consistent method® the algorithm areKss=1, K, and Ky, from [0,6], 14

The objective functiord(p) to be maximized is defined from [—9,30], andl, from [—30,90. A selection proce-
dure was chosen in which the probability to select an indi-

as vidual for reproduction is proportional to its fitness rank in-
. 1 . expr 12 side its populatior(rather than to its fithess vallueAt each
d(p)=—[ —> Wi [Ein(p)—Ep, . (3 iteration, two individuals are chosen according to the selec-
> wi K tion procedure, and through crossover two complementary
k'n’ children are obtained. They are mutated as well, and the

- resulting offspring are fed back into the population, replacing
Herep denotes the vector of the band-structure parametergyq |east fit members. The mutation operator used randomly
Ein(p) the electronic energy value calculated with thechanges each bit with a probability governed by the fraction
Hamiltonian of parametens, andwy, a weight chosen from of equal bits between the parents: the probability would be
the interval[ 0,100 in accordance with the importance of 0.0 for two totally dissimilar parents, and increase up to a
energyEg,. There is a strong emphasis on the occupiedcchosen value of 0.1 if the parents were identical.
bands. In the end it was possible to use one set of weights for The optimization procedure works as follows: the coeffi-
all solids except in a few hard cases. Better compliance atients of the atomic wave functions, the lattice constant, the
crucial energies will usually result in worse performance atarget energies, and the weights for the solid are provided to
less essential energies. The differenEQn(ﬁ)_Egﬁp is  the program. First, to test the choice of weights, we run the
squared to penalize large deviations more heavily. genetic a'99“”_“_" with ten randomly C.hosef‘ initial popula-
> . - tions of ten individuals each for 20 000 iterations. The result-
The vegtorp of pand-structure parameters is optimized bying band structures are checked for possible adjustment of
the genetic algorithm. The parameters are converted to b

bers for thi The bi b the weights if crucial energies have large errors. After a com-
hary numbers for this purpose. The binary NUmbers are Corl,, ge of weights had been established, further changes in

catenha}t?]d ;O form a strllng .0; bits, the SO'_CI_?]”eg. genomdg, eneral were not necessary in our calculations. With the final
on which the genetic algorithm operates. The binary codin eights a higher accuracy run with ten initial populations of

used here is 8RAY code,” which improves the performance 100 individuals each is done for 100 000 iterations. In many

.Of th\e/:v%ﬁnenc altg?rlthm co_m[:iare?_ to at_reglilg; bmar;(/j COd'(:ases this number may be unnecessarily high but it proved to
Ing. WWIth réspect 1o numerica’ optimization, AY COd- reliably provide accurate parameters. Ten populations run-
Ing behaves smoothly under bit mutation, so that the algohing on Sun 10-52 workstations need ten hours of computa-
rithm can perform a local stochastic search in “fitness” tion time

space by one-bit mutation in parameter space. For three zinc-blende solid&Si, CdTe, and GaAswe

i The alg?‘rlthrphls :ttopped alfter a ;:et;]talr) rc}yr_réberl of :}i;‘ahave parameters previously obtained without any automatic
lons or when tné Tness vajues ot e individuals o eoptimization procedure. For these crystals we use our

population have converged. The individual with tbe higheStmethod to determine parameter vectors and compare the re-
fitness is then decoded into the vector of parametershe  sulting band structure with the manual results. For silicon,
dispersion ink space outside of the points of high symmetry seven EHT parameters are needed, whereas for the two het-
is not included in the objective function. Since the EHT mayeropolar solids cadmium telluride and gallium arsenide
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TABLE I. EHT parameters for group-1V elements, IV-1V, and IlI-V compounds and CdTe determined by
evolutionary optimization. The superscript “so” indicates that the effect of spin-orbit interaction was taken
into account for these parameters of CdTéhe two additional parameters arg,=—0.156 and
\,=0.781). The subscript “hand” points out the manually achieved parameters. Max. error gives the
maximum energy difference between computed and target values for the valence band and the gap; source
gives the reference for the target energies. For this table the orbital exponents have been reduced by a fraction
of 0.25(0.20 for s (p) waves. It isKss=1.0 and the index Q1) refers to the aniorication.

Solid Kp Koo Too Too Ta Tpr e lo la lpn Max. error Source

C 0.809 1.000 9.32 0.00 29.06 21.45 0.46 eV 15

Si 0.773 1.000 6.88 0.00 23.44 12.07 0.48 eV 16

Ge 0.803 1.000 7.83 0.00 25.78 13.24 0.41 eV 17
a-Sn 0.961 1.000 6.67 0.00 36.90 12.08 0.32 eV 17
SiC 0.563 0.375 12.33 -2.30 1050 0.14 13.13 20.63 45.00 60.00 0.47eVv 18,13
BN 0.375 0.563 -4.13 -5.34 1659 441 13.13 7.50 56.25 86.25 0.36 eV 19
BP 0.844 1.875 -1.08 -7.17 6.84 -291 56.25 188 9.38 11.25 0.32eV 18
BAs 1.500 1.688 258 -291 258 197 -2250 -20.63 -13.12 750 0.88¢eV 20
AIP 0.281 0.188 11.11 4.41 258 -0.47 15.00 60.00 31.88 39.38 0.27 eV 21

AlAs 0.750 0.563 20.25 11.11 10.50 9.89 30.00 39.38 20.63 28.13 0.26 eV 21
AISb 0.563 0.375 3.19 -413 -473 -7.17 15.00 16.88 1.88 -9.38 0.22eV 21
GaP 0.563 0.375 23.30 15.38 14.77 12.33 33.75 63.75 35.63 50.63 0.17 eV 17
GaAs 0.844 0.844 1538 7.45 14.16 7.45 39.38 2250 24.38 2250 0.16eV 17
GaAs,ag 0.961 1.122 16.95 9.14 1534 6.93 40.08 20.32 26.24 17.73 0.17eV 17
GaSb 0.656 0.656 2.58 -6.56 -291 -7.78 11.25 5.63 16.88 -1.88 0.35eV 17
InP 0.938 0.844 5.02 -3.52 -1.08 -4.73 11.25 1.88 1875 7.50 0.25eV 17
InAs 0.563 0.281 9.28 -0.47 197 -1.69 18.75 30.00 16.88 24.38 0.23eV 17
InSb 0.938 0.656 3.80 -5.34 -473 -534 11.25 0.00 -26.25 13.12 0.29eV 17,22
CdTe 0.469 0.281 14.77 6.23 9.89 3.19 28.13 5250 15.00 39.38 0.19eV 17
CdTeng 1.000 1.266 9.30 090 530 -1.70 2338 7.90 10.11 569 0.47eV 17
CdTe® 0.938 0.563 1598 8.06 1.36 7.45 30.00 30.00 26.25 20.63 0.30eV 17,23

eleven parameters have to be determined. For GaAs arglructure. It is achieved by the genetic algorithm even for the
CdTe—where the manual fits are very good—fits of equal okconduction band where the EHT is known to be less suitable.
even better quality could be achieved. The parameter vectors We have determined EHT parameters for CdTe and for
are given in Table I. The result for CdTe is displayed in Fig.those group-IV elements, IV-IV, and 1ll-V compounds
1, which typically shows the agreement with the target bandvhich are semiconductors and crystallize in zinc-blende
structure: see Table I.

Table | is a compilation of EHT parameters for this rather
large class of semiconducting materials. The parameters
were calculated with moderate effort. Since the EHT param-
eters are known to be independent of bond length, this for-
malism covers a wide range of applications.

For certain zinc-blende crystals, for example, those made
up of one component, we have found a symmetry in the
EHT. A large number of parameter vectors gained from the
6.0 1 ] genetic algorithm led to band structures which are identical
except for a shift in the absolute energy scale. To see this, we

Energy (eV)

> LI _ _ drop the irrelevant atom indexand define a new vector of
00T R fommmZ - N parameters’ =[T5,1,,1¢,Kppl p,Kspls+1,)/2], which in-
-12.0 cludes all the factors necessary for the construction of the
L r X UK r matrix H. Guided by the variation of the parameter vectors,

we observed that the Hamiltonian obeys

noted by plus symbols. The best manual fit is drawn with long
dashes, the genetic algorithm result with a solid line. Spin- Orb,tenergles this means thBfg(p’ +\u) = Enk(p ) 7\ In this
interaction has been introduced via a localized coupling of thecase the number of parameters can be reduced by two, e.g.,
atomic sites, yielding an additional parameter for each species. by settingK,,:=1.0 andl,:=0.0. This symmetry occurs
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only where at least one of the three following relations issuperior to those achieved by traditional methods of deter-
valid: K, p=— K/ (Ksp—2), Isg=1lg1, Orl po=1p;. For sol-  mining the parameters. The method has helped us to find an
ids of one component both of the last conditions are satisfiednterdependence of the parameters, which enables us to
In this paper we have shown that a genetic algorithm carliminate two parameters for one-component solids. We are
be used to determine the parameters of an empirical tightconfident that the method will work for other than zinc-

binding Hamiltonian for zinc-blende semiconductors. A list plende solids and that it can be applied to various other fields

of EHT parameters for the IV-IV and -V semiconductor of physics where problems of model inversion or multidi-
series was computed. The method works with automatic conmensional parameter optimization occur.

trol, has moderate computational costs, and provides results

1G. Theodorou and C. Tserbak, Phys. RevsB 4723(1995. in Science and Technologgdited by O. MadelungSpringer-
2R. Whittle, I. T. McGovern, A. Hughes, T.-H. Shen, and C. C. Verlag, Berlin, 1991

Matthai, J. Phys. Condens. Matt&r6555(1993. 14p. Ross, computer codesa, Genetic Algorithm Diges8 (1994,
®R. Poteau, F. Spiegelmann, and P. Labastie, Z. Phy30,057 available on http://www.aic.nvl.navy.mil/galist

(1994. ) 15J. R. Chelikowsky and S. G. Louie, Phys. Rev.2B, 3470
4M. Couty and B. Ley, Int. J. Quantum Chen®2, 59 (1994. (1984).
°R. Hoffmann, J. Chem. Phy89, 1397(1963. 16K, S. Sieh and P. V. Smith, Phys. Status Solidi1B9 259
8M. Kitamura, S. Muramatsu, and W. A. Harrison, Phys. Rev. B (1985.

46, 1351(1992. 173. R. Chelikowsky and M. L. Cohen, Phys. Rev. 18, 556

7J. Henk, W. Schattke, H. Carstensen, R. Manzke, and M. Ski- (1976

8 bowski, Phys. Rev. BI7, 2251(1993. 183, L. A. Hemstreet and C. Y. Fong, Phys. Rev6,B1464(1972.
F. Starrost and W. Schattke, Verhandl. DR®@I) 30, 1103 19D. M. Hoffman, G. L. Doll, and P. C. EKlund, Phys. Rev.38,

(1995.
. . 6051(1984).
9E. Clementi and C. Roetti, At. Data Nucl. Data Tablet 177
(1974 b 20D, J. Stukel, Phys. Rev. B, 3458(1970.

103, H. Holland Adaptation in Natural and Artificial Systeni€am- *'M.-Z. Huang and W. Y. Ching, J. Phys. Chem. Solitt 977
bridge University Press, Cambridge, 1992 - (1985. )

11 E. GoldbergGenetic Algorithms in Search, Optimization, and ~ J- R. Chelikowsky and M. L. Cohen, Phys. Rev.38, 4828
Machine Learning/Addison-Wesley, Reading, MA, 1989 (1984.

12W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan- -B. A. Orlowski, Z. Gotacki, C. Janowitz, L. Kipp, and R. Man-
nery, Numerical Recipes in C2nd ed.(Cambridge University zke, Acta Phys. Pol. A7, 295(1990; B. A. Ortowski, E. Janik,
Press, Cambridge, 1992%. 794. C. Janowitz, and R. Manzke, Acta Phys. P9, 303(1991); D.

3semiconductors: Group IV Elements and 111-V-CompouiBisa W. Niles and H. Hehst, Phys. Rev. B3, 1492(1991).



