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The influence of an external magnetic field on a quasi-one-dimensional system with a charge-density wave
~CDW! instability is treated within the random-phase approximation which includes both CDW and spin-
density wave correlations. We show that the CDW is sensitive to both orbital and Pauli effects of the field. In
the case of perfect nesting, the critical temperature decreases monotonically with the field, and the wave vector
of the instability starts to shift above some critical value of magnetic field. Depending on the ratio between the
spin and charge coupling constants and on the direction of the applied magnetic field, the wave-vector shift is
either parallel~CDWx order! or perpendicular~CDWy order! to the most conducting direction. The CDWx
order is a field-dependent linear combination of the charge- and spin-density waves and is sensible only to the
Pauli effect. The wave-vector shift in CDWy depends on the interchain coupling, but the critical temperature
does not. This order is affected by the confinement of the electronic orbits. By increasing the relative strength
of the orbital effect with respect to the Pauli effect, one can destroy the CDWy, establishing either a CDWx or
a CDW0 ~corresponding to the perfect nesting wave vector!. By increasing the imperfect nesting parameter, one
passes from the regime where the critical temperature decreases with the field to the regime where it is initially
enhanced by the orbital effect and eventually suppressed by the Pauli effect. For a bad nesting, the quantized
phases of the field-induced CDW appear.

I. INTRODUCTION

The open and almost flat Fermi surface that characterizes
the quasi-one-dimensional~Q1D! electronic systems gives
rise to the formation of charge~or spin! density waves.1–3

Moreover, the external magnetic field couples to the spin~via
Pauli term! and to the orbits~via Peierls substitution in the
Hamiltonian! of the electrons. This coupling affects the prop-
erties related to density wave~DW! formation like the order
parameter, the critical temperature, and the wave vector of
instability. The scale for the Pauli impact in the momentum
space is the wave numberqP5mBH/vF , while the orbital
effect enters through the inverse magnetic lengthq0
5ebHcosu, whereu is the inclination of the magnetic field
H from the transversec direction in the (b,c) plane~a plane
perpendicular to the chains!. The ratio of these two charac-
teristic wave numbersh[q0 /qP5ebvFcosu/mB is of the or-
der of unity in real materials. It will play an important role in
the phase diagram for the CDW in a magnetic field.

The Pauli term introduces a finite coupling between the
CDW and the component of the SDW parallel toH, and may
lead to a finite, magnetic-field-dependent, shift in the wave
vector of instability.4 It is therefore necessary to treat CDW
and SDW together. A simple relevant model is the extended
Hubbard or (g1 ,g2) model,1,3 with coupling constants
Us5g2/2 andUc5(2g12g2)/2 for the SDW and CDW,
respectively. Since the Pauli term mixes the CDW with the
SDW, the ration[2Us /Uc will be the second relevant pa-
rameter for the CDW phase diagram.

The Pauli term breaks the rotational symmetry of the
complex vectorial SDW order parameter, constraining its di-
rection perpendicularly to magnetic field. With this con-
straint taken into account, the SDW phase diagram depends
only on the orbital coupling, provided that the system is per-
fectly magnetically isotropic in the absence of magnetic
field. However, the fluctuations of the component of SDW
parallel toH around its zero value remain affected by both
Pauli and orbital coupling. Moreover, the Pauli term intro-
duces a finite coupling between these fluctuations and the
noncritical CDW fluctuations.

The influence of a magnetic field on the CDW systems is
even richer, because both Pauli and orbital effects can affect
the CDW ordering. This fact is of direct experimental inter-
est, since, e.g., the critical temperature can easily be mea-
sured. Furthermore, there is a finite magnetic field at which
the wave vector of ordering starts to vary with the magnetic
field. The description of these features, together with the in-
teresting CDW-SDW mixing, is the main objective of the
present detailed analysis.

The various aspects of the interaction between the elec-
trons in Q1D systems and the external magnetic field have
already been subjects of numerous analyses. The quadratic
decrease of the mean-field critical temperature in one-
dimensional CDW systems due to the Zeeman splitting was
proposed theoretically,5 and found experimentally in the or-
ganic compound TTF-TCNQ.6 The recent very precise mea-
surements in Per2@Au(mnt)2] ~Ref. 7! show the decrease of
Tc which differs considerably from the theoretical value.5
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The effect of the Pauli coupling on the CDW order parameter
can be formulated as a breaking of degeneracy of two density
waves, those with parallel and antiparallel spin with respect
to H, each component being a CDW-SDW hybrid. This is
reminiscent of the treatment of two coexisting CDW’s with
overlapping electronic bands.8–10 The coupling of two
CDW’s with different wave vectors may stabilize a soliton
lattice in the relative phase of two waves.10

On the other side, the orbital coupling alone leads to an
increase of the critical temperature for CDW’s.11–13Such an
increase was observed in, e.g., NbSe3 .

14 The aim of the
present work is to introduce both orbital and Pauli couplings,
into the RPA calculation of the DW matrix susceptibility, and
to determine some mean-field properties, in particular the
phase diagram for CDW systems in a magnetic field.

In Sec. II we derive the RPA results for DW response
functions in the form of a 434 matrix. In Sec. III we ana-
lyze in detail the phase diagram for CDW’s in the case of a
perfectly nested Fermi surface. In particular we consider the
influence of the parametersn, h and of the interchain hop-
ping tb on the critical temperature, the wave vector of the
instability, and the CDW-SDW coupling. We also shortly dis-
cuss the effects of the imperfect nesting on the critical tem-
perature as a function of magnetic field. The concluding re-
marks are given in Sec. IV.

II. MODEL

Quasi-one-dimensional electrons in an external magnetic
field are usually modeled by the anisotropic two-dimensional
Hamiltonian

H05
b

2p E dqyE dxC†~x,qy!@H1D1HQ1D,orb

1HPauli#C~x,qy! ~1!

with

H1D5 ivFr3]x , ~2a!

HQ1D,orb52tbr3 sin~qyb2q0x!12tb8 cos2~qyb2q0x!,
~2b!

HPauli52s3mBH. ~2c!

HereC† andC are four-component fermion fields,

C†5~C↑1
† ,C↑2

† ,C↓1
† ,C↓2

† !,

where the indices↑,↓ span the spin space ands i are corre-
sponding Pauli matrices. Indices1~2! denote the right~left!

Fermi surface with the states defined with respect to6Q/2,
whereQ5(2kF ,p/b) is the wave vector of perfect nesting
realized for tb850, and r i ’s are the Pauli matrices in that
space. The chains lie in thexy plane and are parallel to thex
axis.b is the lattice constant in they direction. The longitu-
dinal electronic dispersion given byH1D is linearized in the
vicinity of the Fermi wave numbers6kF , with vF being the
longitudinal Fermi velocity.tb is the hopping integral be-
tween nearest neighboring chains andtb8 parametrizes the
imperfect nesting. The spin space is chosen to have the third
component parallel toH.

Let us now introduce the relevant interaction part of the
Hamiltonian. Since the further considerations are limited to
the 2kF RPA response, it is sufficient to keep only the con-
tributions with bilinearly coupled electron-hole operators for
spin- and charge-density waves. They are given by

H int5E dx(
R'

@2UsM
†~R!•M ~R!1UcM4

†~R!M4~R!#.

~3!

The two-fermion operators in Eq.~3! are defined by

Mi5C†r1s iC, i51,2,3,4, ~4!

wheres4[I . The first three components (i51,2,3) define
the complex SDW vector amplitudeM , while the fourth
componentM4 is the complex CDW scalar amplitude. The
SDW and CDW coupling constants in Eq.~3! are related to
the usual backward (g1) and forward (g2) electron-
electron coupling constants byUs[g2/2 and Uc[(g1
22g2)/2. Weshall specify later the range of these constants
for the most interesting physical cases relevant for our analy-
sis.

The mean-field~MF! critical temperature for the spin- or
charge-density wave is defined as the temperature at which
the corresponding RPA susceptibility diverges. In our case
the Pauli term introduces a finite coupling between the com-
ponent of SDW parallel to the magnetic field (M3) and the
CDW (M4). This coupling is appropriately treated by intro-
ducing the DW susceptibility matrix, with the elements de-
fined as retarded correlators

x i j ~q,t2t8![^MiM j
†&52u~ t2t8!^@Mi~q,t !,M j

†~q,t8!#&,

i , j51, . . . ,4, ~5!

where q is the deviation of the wave vector from
(2kF ,p/b). The RPA result for this matrix is4

@x i j ~q,v!#5S x0~q,v!

f'
0 0 0

0
x0~q,v!

f'
0 0

0 0
xg~A11d21Ucxg!

f i xgd/ f
i

0 0 xgd/ f
i xg~A11d22Usxg!

f i

D , ~6!
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with

xg[Ax↑~q,v!x↓~q,v!, ~7a!

x↑,↓~q,vn![x0~qx62qp ,qy ,vn!, ~7b!

d[@x↑~q,v!2x↓~q,v!#/2xg , ~7c!

f i[11~Uc2Us!xgA11d22UcUsxg
2 , ~7d!

f'[12Usx0~q,v!. ~7e!

x0(q,v) is the susceptibility which includes orbital contri-
butions of a magnetic field,

x0~q,vn!5 (
l52`

`

P~qx2 lqo ,vn!I l
2~qy!, ~8!

whereP(k2 lq0 ,vn) is the one-dimensional bubble. The co-
efficients I l(qy) bring in the orbital quantization due to the
finite transverse dispersion~2b!,12,15

I l~qy!5(
l 8

Jl22l 8S 4tb
vFq0

sin
qyb

2 D Jl 8S 2tb8

vFq0
cosqybD ,

~9!

whereJl are Bessel functions.
Even without further diagonalization of the matrix~6!, it

is evident that the critical temperatures for the condensation
of density waves follow from the conditions

f'~q' ,Tc
'!50 ~10!

and

f i~qi ,Tc
i !50, ~11!

where all functions have to be taken in the static (v50)
limit. Tc

' is the critical temperature for the SDW with the
orientation of the spin perpendicular toH, i.e., for the degen-
erate componentsM1 andM2 . Tc

i is the critical temperature
for the hybrid of the CDW and the SDW with the spin par-
allel toH, i.e., of the coupled block (M3 ,M4) in the matrix
@x i j (q,v50)#. The corresponding wave vectorsq' andqi
of the ordering are those which maximize the respective
critical temperaturesTc

' andTc
i . The true critical tempera-

ture of the DW instability is equal to max$Tc
' ,Tc

i%.
Having in mind real systems, it is appropriate to distin-

guish the most important situations realized for two charac-
teristic interaction schemes. In the case of repulsive interac-
tions (Us.0 ,Uc.0), usually analyzed in terms of the
Hubbard model (Us5Uc.0), the stable ordering following
from ~7! is the SDW one, determined by the condition~10!.
In other words, as far as the system possesses the internal
magnetic isotropy, there is no effect of Pauli coupling on the
ordering. Its spin is oriented perpendicularly toH, while the
wave vector is given byq'50 in the case of the good nest-
ing (tb8!Tc), and may pass through the well-known cascade
of phase transitions due to the orbital effects when the devia-
tion from the good nesting is large enough (tb8>Tc).

16–19

In the case of predominant electron-phonon interaction
(Uc,0,uUcu.Us>0) the system prefers the CDW ordering.
As it is obvious from Eq.~6!, the off-diagonal matrix ele-

ments vanish in the absence of a magnetic field. The insta-
bility condition ~11! then reduces to 11Ucx050, and the
ordering involves only the CDW componentM4 . For finite
magnetic fields the relation~11! contains contributions origi-
nating from both orbital and Pauli terms in the Hamiltonian
~1! and ~3!. The former enters through the bubble suscepti-
bility ~8!, while the latter introduces the CDW-SDW~i.e.,
M4-M3) hybridization measured through the parameterd.
As it is seen from Eq.~7!, d is finite if qxÞ0. More explic-
itly, after diagonalizing theM32M4 block of the matrix~6!
the normal components of the ‘‘vector’’~4! read

M25
1

N
@dM31DM4#, M15

1

N
@dM42DM3#, ~12!

with

N[Ad21D2

and

D[
12n

2
Uxg1AS 12n

2
UxgD 21d2,

while the corresponding diagonal susceptibilities are

x6
215xg

21FA11d22
11n

2
Uxg6AS 12n

2
UxgD 21d2G .

~13!

In these equations we have defined

U[2Uc , n[Us /U52Us /Uc ~14!

as a convenient parametrization of coupling constants for the
problem of the CDW in the magnetic field. The value ofn
depends on the interactions which participate in the Hamil-
tonian ~1! and ~3!. The global phase diagram1 at H50 in
(n,U) space is shown in Fig. 1, where the regime which we
analyze is the upper half-plane (U.0!. The superconducting
~SC! instability which is present in this diagram is ignored in
our RPA approach. However, since we are interested in the
the effects of magnetic field, this omission can be justified
even in the case when forH50 the singlet SC state~SS in
Fig. 1! is stable, i.e., whenn,21/3. Namely, the supercon-
ducting phase is suppressed by the orbital effect of a mag-
netic field. The critical field at which the critical temperature
for the singlet SC state drops to zero is given by20

Hc
SC5

16p2Tsc
2 ~U,n!

7A2z~3!mBhtb
, ~15!

whereTsc is the critical temperature for the singlet supercon-
ducting state in the absence of a magnetic field. Considering
(g11g2) as the corresponding effective coupling constant,1

one easily finds thatTsc is related to the critical temperature
for the charge-density wave at zero magnetic field,Tc

0 , by
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Tsc5Tc
0 expF2

pvF
U

123n

113nG . ~16!

Equations~15! and~16! give the estimation for the magnetic
field above which our RPA results are valid even in the re-
gime when the singlet superconductivity overwhelms the
CDW.

It is useful for further discussion to mention here a few
characteristic possibilities regarding the value of the param-
etern in the CDW~i.e.,U.0! systems. Taking into account
only pure backward electron-phonon interaction one has
n50. The inclusion of the presumably weaker repulsive
Coulomb interaction between electrons shiftsn to some posi-
tive value. From the other side, a pure Hubbard model with
attractive on-site interaction corresponds ton521. Alto-
gether,n covers a wide range of theoretically allowed values,
but it should be noted that in the most frequent electron-
phonon CDW systems this range is limited ton>0.

Finally, it should be noted that the functionf i from the
matrix ~6! can be expressed in the factorized form,
f i5xg

2x2
21x1

21 . Thus, forU.0 the condition~11! reduces
to

x2
21~q,Tc!50, ~17!

i.e., to the divergence of the susceptibility^M2M2
† &. Indeed,

in the limit H→0 the componentM2 reduces to the pure
CDW componentM4 and the divergence ofx2 coincides
with the condition for the CDW instability, 11Ucx050.
Since the further discussion involves only the ordering with
finite componentsM3 andM4 , we simplify the notation for
Tc

i andqi in Eq. ~17! by skipping the indexi.

III. DISCUSSION

For tb850, the wave vector of CDW ordering forH50 is
defined by the maximum of the susceptibilityx0(q,vn50)
~8! in the limit q0→0. Of course it is located atq50, i.e., at

the wave vector of perfect nesting. The corresponding criti-
cal temperatureTc

05(2gEF /p)exp(2pvF /U) defines the
temperature scale of the problem.

We want now to calculate the position of the minimum of
x2

21 @Eq. ~13!# in the momentum space. The criterion of local
stability of the ordering withq50 at finiteH can be derived
from the quadratic expansion ofx2

21 with respect toqx and
qy . ForT5Tc(H) it suffices to expand the@ # bracket in Eq.
~13!. Noting that there is no bilinearly mixed term (qxqy),
one gets

U21xgx2
21.U212x01axqx

21ayqy
21byqy

4

1O ~qx
2qy

2 ,qx
4 , . . . !, ~18!

with

ax52
1

2

]2x0

]qx
2 1F 1

2x0
2 ~U211x0!2

1

~12n!U2x0
3G S ]x0

]qx
D 2,
~19!

ay52
1

2

]2x0

]qy
2 , ~20!

and

by52
1

4!

]4x0

]qy
4 , ~21!

with the values ofx0[x0(qx ,qy ,vn50) and its derivatives
taken atqx52qp ,qy50. For the later purposes we include
one (;qy

4) of the fourth-order terms in the expansion
~18!. Note that the expansion~18! is valid for
qx,4pTc

0/vF ,qy,4pTc
0/(tbb).

The dependence of the critical temperature for the order-
ing atq50 on the magnetic field follows from the equation

Ux051. ~22!

For small values ofH this expression reduces to the known
result for the suppression of the critical temperature due to
the Pauli splitting of the electron band,5

Tc5Tc
0@127z~3!~mBH/2pTc

0!2#. ~23!

The dependence of the coefficientsax , ay , andby on the
magnetic field follows straightforwardly from Eqs.~8! and
~9!. To this end we use the relation

P~qx!5
1

pvF
F ln 2gEF

pT
2ReCS 121

ivFqx
4pT D1ReCS 12D G ,

~24!

whereC denotes the digamma function, and expand the co-
efficients ~9! ~with tb850) in terms ofqy up to the quartic
contribution. Taking into account also Eq.~22! one gets at
T5Tc(H)

ax5
1

2pvF
F ]2

]qx
2 ReC2

2nU

~12n!pvF
S ]

]qx
ReC D 2G

qx52qP
~25!

with C[C( 121 ivFqx/4pT), and

FIG. 1. A phase diagram of the one-dimensional system in the
(n,U) plane, in the absence of a magnetic field.
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ay5
1

pvF
S tb
2pTchh

D 2b2ay , ~26!

by5
1

pvF
S tb
2pTchh

D 2b4F S tb
2pTchh

D 2by2
1

12
ayG .

~27!

The coefficientsay andby in Eq. ~27! are given by

ay[ReCS 121 ih~11h/2! D1ReCS 121 ih~12h/2! D
22 ReCS 121 ih D ~28!

and

by[
1

4
ReCS 121 ih~11h! D1

1

4
ReCS 121 ih~12h! D

2
1

2
ReCS 121 ih~11h/2! D

2
1

2
ReCS 121 ih~12h/2! D1

3

2
ReCS 121 ih D ,

~29!

respectively. Here we have introduced the dimensionless
variableh[mBH/2pT. Note that the quantitiesax and ay
determine the longitudinal and transverse correlation lengths
for CDW fluctuations (jx5UAax andjy5UAay) when the
temperature is close toTc .

The wave vector of ordering stays atq50 as far as the
coefficientsax(h) anday(h) are positive, and starts to move
in the longitudinal or transverse direction when the former or
later coefficient changes sign. As it is seen from Eqs.~25!
and ~26!, the functionax(h)/ax(h50) contains the interac-
tion parameters U/vF and n, while the function
ay(h)/ay(h50) depends only on the ratioh5q0 /qp
5ebvF cosu/mB which measures the relative impact of the
orbital and Pauli coupling on the CDW. Note that the param-
eterh can be easily changed by varying the angleu between
the direction of magnetic field and thec axis. Since the rea-
sons for possible deviations of stable componentsqx and
qy from zero are essentially different, it is appropriate to
consider each case separately.

The longitudinal component of the CDW wave vector.The
coefficient ax changes its sign at the critical field
hcx[mBHcx/2pT shown in Fig. 2. For small values ofn this
dependence is given by

hcx'hc
0S 122.47n

U

pvF
D ~30!

with hc
0[mBHc

0/(2pT)50.304. As it is seen in Fig. 2, all
curveshcx(n) pass through two common points, given by
n50,hcx50.304 andn51,hcx50. At these points,hcx does
not depend onU. The first point (n50) corresponds to the
CDW ordering with the SDW coupling equal to zero. In the

second case (n51) the interactions in the CDW and SDW
channels are of equal strengths and opposite signs, i.e., we
are at the CDW-SDW boundary. There, the longitudinal
splitting of the wave vector starts already athcx50. The
change of sign ofax athcx(n,U) causes a second-order tran-
sition from the phase withq5 0 named CDW0 , to a phase
with q5„qx(h),0…, named CDWx . The dependence of the
wave vector on the magnetic field is the solution of the equa-
tion ]x2

21/]qx50, and can be written in the form

qx5
4pT

vF
f n,U~h!. ~31!

The functionf n,U(h) is shown in Fig. 3 forU/pvF50.2 and
few values of n. In the limit h@1 one has
qx(h)→2mBH/vF , as it was already shown previously in
the case of repulsive Hubbard model (n521).4

The transverse component of the CDW wave vector.
The critical fieldhcy at which a finite transverse component
of the CDW vector develops is shown in Fig. 4. The line
hcy(h) corresponds to the second-order transition from
CDW0 to a phase CDWy with a transversely shifted wave
vector. At small values ofh the dependencehcy(h) is given
by

hcy'hc
0A110.088h2. ~32!

Here we use the approximative expression ReC( 12
1 ix)'C( 12)18.414x2(113.81x2)21, valid for small val-
ues of the argumentx. The dependence of the wave-vector
componentqy on h for a fixed value ofh can be represented
by

qy5
2

b
arcsinFpTctb

gh~h!G , ~33!

FIG. 2. Scaled critical magnetic fieldhcx[mBHcx /(2pT) as a
function of the parametern for few choices of the coupling con-
stant:U/pvF50, 0.2, 0.4, 0.6. Note that one has to insertTc(H)
@and notTc(H50)# into the defining expression forhcx in order to
get a phase diagram withH dependence.
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with the functiongh(h) shown in Fig. 5. Note that unlike
hcy the wave-vector componentqy depends ontb . For small
values ofh2hcy the functiongh reduces, after using Eq.
~18!, to

gh~h!'2hhA2
ay

2by
, ~34!

with ay andby given by Eqs.~28! and~29!, respectively. On
the other hand, in the high-field limith@hcy and forh50
the function gh50(h) is asymptotically given by
gh50(h@1)→h1k, wherek is of the order 1/p. Note that
the transverse shift of the wave vector does not depend on
the interaction (n or U!. It depends, however, onh, i.e., on
the relative impact of the Pauli and orbital effects. The rea-
son for this is in the fact that all interaction dependence
enters withd @see Eq.~7!#, which is equal to zero ifqx50
and if the nesting is perfect. Thus, only a phase CDWx is
affected by the finiteness of the SDW coupling constantUs
~i.e., n).

The phase diagram for h larger than hcx and/or hcy . To
provide some ideas on the variation of the wave vector of
instability at magnetic fields larger than critical valueshcx
andhcy , it is useful to consider the symmetry and the shape
of functionsx0(q), xg(q), andx2

21(q) at strong magnetic
fields (h of order 1!. Note first that all these functions are
even inqx andqy . The functionx0

21(q) atT!tb has the line
of local maxima given by21

qx56F4tbv sin
qyb

2
1
1

v
O S T

2tb
D G . ~35!

When the Pauli term is introduced, the maxima ofx↑(q) will
move to the left and those ofx↓(q) to the right by 2qP along
the axisqx . The lines of local maxima of the susceptibilities
x0 , x↑ , andx↓ are shown in Fig. 6~a!. For h large enough
the function xg(q)5Ax↑x↓, together with the function
2x2

21(q), will have two pairs of degenerate maxima inq
space as candidates for absolute maxima. These two pairs
have approximate positions at (62qP,0) and
„0,6(2/b)arcsin(vFqP/2tb)… @denoted as A,A8 and B,B8, re-
spectively, in Fig. 6~a!#, in accord with the asymptotic limits
given by Eqs.~31! and ~33!. In Fig. 6, we also show the
function2x2

21(q) for three characteristic choices of param-
etersn, h, andU, i.e., when the absolute maxima are at
(0,6qy) @Fig. 6~b!#, at (62qP,0) @Fig. 6~c!#, and when the
two pairs of maxima have the same value@Fig. 6~d!#. As it
was shown above, the phase transitions from the CDW0 to
CDWx and CDWy @Figs. 6~b! and 6~c!# are of the second
order. The transition between the orderings CDWx and
CDWy , caused by the competition of two maxima in
2x2

21(q) @Fig. 6~d!# is of the first order since the wave
vector has a discontinuous jump between points (qx ,0) and
(0,qy) ~i.e., between points A and B in Fig. 6!.

To complete the phase diagram it is necessary to calculate

FIG. 3. The functionf n,U(h), determining the dependence of
the longitudinal shift of the wave vector on the magnetic field@see
Eq. ~31!#, for U/pvF50.2 andn521 ~A!, 20.5 ~B!, 0.0 ~C!, 0.25
~D!, 0.5 ~E!, 0.75 ~F!, 0.99 ~G!.

FIG. 4. Scaled critical magnetic fieldhcy[mBHcy /(2pT) as a
function of the parameterh.

FIG. 5. A functiongh(h), determining the dependence of the
transverse shift of the wave vector on the magnetic field@see Eq.
~33!#, for h50 ~A!, 0.5 ~B!, 1 ~C!, 1.5 ~D!, 2 ~E!. The inset shows
the largex behavior for a case with no orbital effects (h50).
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the magnetic-field dependence of the critical temperatures,
defined as the solutions of Eq.~5! for q5(0,0), q5(qx,0),
andq5(,qy), and denoted byT0 , Tx , andTy , respectively,
and to determine max@T0(H),Tx(H),Ty(H)#. The dependence
of critical temperaturesT0 , Tx , andTy onH for few values
of n andh and forU/pvF50.2 is shown in Fig. 7~a!. The
sections of linesTx(H) and Ty(H) determine the critical
magnetic fields and the temperatures of the first-order tran-
sitions. Note that the present analysis is based on the Landau
expansion

F5E d2qx2
21~q!@M2~q!M2* ~q!#1O ~$M2

4 %!, ~36!

which is restricted to the range of temperatures not far below
max@T0(H),Tx(H),Ty(H)#.

Since the complete phase diagram depends on three pa-
rameters,H, n, andh ~with fixedU!, it is appropriate to use
two planes, (H,n) (h being a parameter! and (H,h) (n be-

ing a parameter!, for its presentation, as shown in Figs. 7~b!
and 7~c!, respectively. We stress a particularly interesting
situation n→12 for which the critical fieldhcx goes to
zero, and three phases~CDW0, CDWx , and SDW! are
present in the narrow range of parametern. Note also the
presence of the point in Figs. 7~b! and 7~c! at which the
CDW0, CDWx , and CDWy orders meet. The depen-
dencen~h! which defines this tricritical point is shown in
Fig. 7~d!. The corresponding magnetic field weakly varies
with n ~i.e.,h), as is seen in Figs. 7~b! and 7~c!. The line in
Fig. 7~d! thus divides the region where the wave vector shifts
first in transversal direction from the region in which only a
longitudinal shift is possible. Furthermore, among the CDW
phases from Figs. 7~b! and 7~c! only the phase CDWx has a
finite fraction of the componentM3 @see Eq.~12!#, and is
thus a CDW-SDW hybrid. The ratio of componentsM3 and
M4 follows from the constraintM150. At T5Tcx it is
given by

FIG. 6. ~a! The lines of local maxima inq space of the susceptibilityx0(qx ,qy) ~full line! without magnetic field, of
x↑[x0(qx12qP ,qy) ~dot-dashed line!, and of x↓[x0(qx22qP ,qy) ~dashed line!. ~A,A8! and ~B,B8! are the two pairs of de-
generate maxima ofxg(qx ,qy). ~b!, ~c!, and ~d! show the function2x2

21(q) at T50.42Tc
0 and mBH51.14Tc

0 , respectively, for three
cases:n521 ~CDWy is stable, provided that the maxima are in the points B,B8!, n520.1 ~CDWx is stable; the points A,A8 are
dominant!, andn520.33 ~the first-order critical point between CDWy and CDWx , since all four points, A, A8, B, and B8 are of equal
height!.
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M3~q!5
d~q!

A11d2~q!2nUxg~q!
M4~q!, ~37!

and shown in Fig. 8 for few values ofn. Note that
uM3 /M4u tends to 1 as one approaches the CDWx2SDW
transition.

Influence of the imperfect nesting.Let us finally consider
a case when the imperfect nesting is introduced through a
finite effective next-nearest-neighbor hoppingtb8, which can
be usually increased by, e.g., applying a strong pressure on a
CDW system. For example, the relevant pressure scale in
NbSe3 is about 10 kbar.12,23

At small values of the magnetic field, the critical tempera-
ture for the phase CDW0 can be readily found from the Eq.
~22! yielding

Tc2Tc
0'2S ]x0

]T D F12 ]2x0

]q0
2 q0

224axqp
2G . ~38!

The values of]x0 /]T and ]2x0 /]q0
2 as functions oftb8 are

given in Ref. 12. For smalltb8, the coefficientax is given by

ax'
vF

32p3Tc
0 F2C9~1/2!1C IV~1/2!S tb8

2pTc
0D 2G , ~39!

whereC9'216.83 andC IV'2771.47. As one sees from
Eq. ~38!, the orbital and Pauli effects are in competition, the
former trying to enhance, and the latter to suppressTc . For
small tb8/Tc

0(tb850) the function]2x0 /]q0
2 is proportional to

tb8
2. Moreover, the imperfect nesting decreases the coeffi-

cient ax . Altogether, the general trend of the smalltb8 is to
flatten theH dependence ofTc .

For the sake of space, we present the result for the critical
temperature which follows from Eq.~11! only for the case of
attractive Hubbard interaction~i.e., U/pvF50.2, n521!

FIG. 7. ~a! The critical temperaturesT0 , Tx , andTy for the CDW instabilities with the wave vectorsq5 0 ~full line!, q5(qx,0) ~dotted
line!, andq 5 (0,qy) ~dot-dashed line!, respectively. For all curvesU/pvF50.2. ~b! The phase diagram in„n,mBH/(2pTc

0)… plane for
h50. The changes of the diagram with finiteh ~here,h51) are shown by dashed lines.~c! The phase diagram in„h,mBH/(2pTc

0)… plane
for n521. The changes of the diagram whenn520.5 are dashed.~d! The curve in the (n,h) plane which defines the tricritical point in~b!
and ~c!.
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~Ref. 24! and forh52.5. In this regime the orbital effects
are strong enough, which excludes the stabilization of the
CDWy ordering when the nesting is good. The interplay be-
tween two effects of a magnetic field is a main characteristic
of the phase diagram for imperfect nesting, given in Fig. 9.
As the parametertb8 increases from zero, the critical tempera-
ture only monotonously shifts to lower temperatures, still
decreasing with a magnetic field. In other words, our results
for the perfect nesting can be applied even to the systems
with a moderate finite imperfect nesting, i.e., when the criti-
cal temperature remains far above the value oftb8. The orbital
effects enter manifestly into play at rather large values of
tb8, enhancing the critical temperature initially, as it was ob-
served in NbSe3 .

14 The eventual suppression ofTc by the
Pauli term at high magnetic fields will make these diagrams
basically different from the mean-field one for the FISDW
with the orbital coupling only,17 where no eventual suppres-
sion of theTc is present. For a very bad nesting, i.e., fortb8
comparable totb8* @where tb8*;Tc

0(tb850) is the imperfect
nesting parameter at which the CDW is destroyed at zero

field14# the cyclotron frequency becomes the first relevant
energy scale, giving the rise to a cascadelike shape, associ-
ated with the quantized field induced CDW phases. Notice
that our approach does not explain the strong field break-
down of the high field phase in~TMTSF! 2ClO4 ,

22 since the
Pauli term does not affect the SDW.

IV. CONCLUSION

The main result of the present work concerns the phase
diagram of a CDW system in an external magnetic field.
There are three physical parameters which characterize this
diagram, namely the ratio of the SDW and CDW coupling
constants, the strength of the magnetic field, and its direction
with respect to the most conducting plane (x,y). The respec-
tive parameters aren, h, andh. We recall thath also mea-
sures the relative impact of the orbital coupling with respect
to the Pauli coupling.

In the case of a good nested Fermi surface the wave
vector of the CDW has a general tendency to shift from its
zero- field value (2kF ,p/b) as the magnetic field increases
@see Figs. 7~a!–7~c!#. This shift starts continuously, and
may occur either longitudinally or transversally with respect
to the chain direction. The longitudinal shift is governed
solely by the Pauli coupling, with the corresponding CDWx
state being a hybrid of the pure CDW and of the SDW com-
ponent parallel to the magnetic field. Both the critical value
of the magnetic fieldhcx at whichqx starts to shift, and the
relative weights of the CDW and the SDW, depend on the
ratio n. Both qx(h) and the CDW-SDW hybridization in-
crease with the magnetic field. It is important to mention that
hcx , qx , and the hybridization ratio do not depend ontb
because all mean-field properties concerning a longitudinal
tilt of the wave vector are given by pure one-dimensional
expressions.

The shift of the CDW wave vector in the transverse di-
rection is affected by both orbital and Pauli couplings.
Contrary to the CDWx , the CDWy is not a CDW-SDW
hybrid, and therefore is not influenced by the parametern.
It exists only whentb is finite, although the critical mag-
netic fieldhcy does not depend ontb . However,tb influences
the variation ofqy at h.hcy , as shown by Eq.~33!. qy(h)
decreases withtb and increases with the magnetic field.
According to the general fact that the orbital effects lower
the dimensionality of the electronic motion,16 the effect
of the increasingh is to favor the CDWx . After some criti-
cal value ofh ~dependent onn), the orbital impact reduces
the phase diagram to the pure one-dimensional one, consist-
ing only of the CDW0 and CDWx , as it is seen from Fig.
7~b!.

At h50 and forn,0, the shift of the wave vector is at
first directed perpendicularly, and jumps to the longitudinal
direction at some higher magnetic field. This jump between
CDWy and CDWx is a first-order transition. On the contrary,
for 0,n,1, the wave vector is shifted longitudinally for all
magnetic fields higher than the critical fieldhcx(n). Further-
more,hcx(n) tends to zero asn approaches unity. The point
H50,n51 is therefore tricritical, sincen.1 is the range of
SDW stability.

The Pauli and orbital terms together cause a rather com-
plex magnetic-field dependence of the critical temperature in

FIG. 8. The relative weight of the SDW and CDW components
in the hybrid phase CDWx as a function of magnetic field, for
U/pvF50.2 and forn521 ~A!, 0 ~B!, 0.99 ~C!.

FIG. 9. The critical temperature vs magnetic field for a series of
values oftb8/tb8* and forU/pvF50.2 andn521.
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systems with a finite imperfect nesting. This is illustrated in
Fig. 9 in which tb8 varies from zero to the range above the
critical valuetb8* , at which the CDW ordering is completely
eliminated at zero magnetic field. A rich dependenceTc(H)
contains the suppression by the Pauli term, enhancement by
the orbital effects and, for large values oftb8, a cascadelike
shape characterizing the field-induced DW. This phase dia-
gram is quite general and not limited to the valuen521,
chosen in Fig. 9.

Our analysis for the perfect nesting case, showing a strong
dependence of the critical properties in magnetic field on the
ratio n, could find an appropriate experimental support, e.g.,
in theMX compounds. The low-dimensional nature of these
materials corresponds to our model. From our analysis, a
particularly interesting possibility is that the Coulomb and
electron-phonon forces can be tuned in a predictable manner
by external pressure25 or chemically,26 allowing us to ap-
proach the phase boundary between CDW and SDW, corre-
sponding ton51. As we approach the boundary from the
CDW side, the critical field for the CDW0→CDWx transi-
tion hcx[Hcx/2pT will decrease rapidly toward zero, re-
gardless of the value ofT'Tc . Even for largeTc , by ad-
justing carefully n, Hcx can decrease to experimentally
reachable values, being extremely sensible to the variation of
the parametern. We point out that a search for a magnetic-
field-induced phase transitions in a CDW phase with strong
SDW fluctuations~introduced by high pressure, for example!
could confirm our predictions.

In NbSe3 a phase transition in the 59 K CDW phase in-
duced by magnetic field was found27 by observing that a
threshold electric field for the collective CDW motion is
strongly reduced when magnetic field increases beyond the
critical point. The naive explanation that this is a simple
CDW0→CDWx one-dimension-like transition due only to
the Pauli term must be taken with caution. Namely, the ob-
served effect strongly depends on the angleu, indicating that
the orbital effects are also involved. This might mean that the

strong orbital contributions, provided by a badly nested
Fermi surface, affect the phase diagram. However, we be-
lieve that the Pauli term has an important role in this transi-
tion, since it enables the shift of the wave vector from its
commensurable, perfect nesting position. We remind the
reader that pure orbital effects can affect the wave vector
only if it is not at the perfect nesting position@like in, e.g.,
(TMTSF)2ClO4 ~Ref. 22!#. The fact that the nesting in
NbSe3 is quite bad can be deduced from a relatively strong
pressure dependence ofTc (dTc /dP'26.25 K/KBr!.23 In-
deed, from the comparison of a very weak enhancement of
Tc with magnetic field

14 with our results in Fig. 9, it follows
that the value oftb8 should be rather large.

Finally, our analysis of the imperfect nesting case can
somewhat enlighten the recent measurements7 in the com-
pound Per2@Au(mnt)2], where the suppression of the criti-
cal temperature proportional to the square of the magnetic
field was found, but with a coefficient smaller than that
which follows after taking only the Pauli coupling and a
perfectly nested Fermi surface.5 From Eq.~38! and from Fig.
9 one can conclude that the reason for the flattening of the
suppression ofTc is just the finiteness oftb8. However, the
situation is not so simple. At finite values oftb8 the orbital
effects come into play, in contrast to the experimental results
which are independent on the field direction. If we just ig-
nore the orbital effects, we gettb8'7.4 K as an imperfect
nesting parameter fitting the experimental curve. Finally, we
indicate that the measurements of the critical properties in a
magnetic field, and with pressure large enough to almost or
completely destroy the zero-field CDW, could show very
strong, cascadelike enhancement of theTc for the quantized
field induced CDW phases.
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