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The phase diagram of superconducting YRt explained in a Ginzburg-Landau theory starting from the
hypothesis that the order parameter is a pseudo-spin-singlet which transforms according {p réygresen-
tation of theDg, point group. We show how to compute the positions of the phase boundaries both when the
applied field is in the basal plane and when it is along ¢haxis. The experimental phase diagrams, as
determined by longitudinal sound velocity data, can be fit using a single set of parameters. In particular the
crossing of the upper critical field curves for the two field directions and the apparent isotropy of the phase
diagram are reproduced. The former is a result of the magnetic properties pabidPtheir contribution to the
free energy in the superconducting state. The latter is a consequence of an approximate particle-hole symmetry.
Finally, we extend the theory to finite pressure and show that, in contrast to other modeis, theodel
explains the observed pressure dependence of the phase bourf&1e3-18206)04118-X

I. INTRODUCTION of the phase diagram or, in other words, why the phase dia-
gram when the field is parallel to the axis of the crystal
Currently, there is a great deal of discussion about theppears to be similar to the phase diagram when the field is
nature of the superconducting heavy-fermion compounds, eperpendicular to the axis'’'® This phenomenological ob-
pecially UPt. Much of this discussion has centered on thejection has in fact led to a number of other proposals for the
unusual nature of the superconducting state. Experiments superconducting order parameter. One example is a state
map out the phase diagram of URh the field-temperature with a mixture of two different one-dimensional representa-
(H-T) plane using both specific héatand longitudinal tions with accidentally nearly equal critical temperaturea.
sound absorptictf and velocity’® have revealed multiple second example is the staggered superconducting “State.
superconducting phases. In particular these measuremenfhis state is of particular interest because it has a micro-
show that two superconducting phases exist even at zerscopic foundation in the two-channel Kondo model of
field, as was predictédby an analysis of the free energy for UPt;. What these theories have in common is that the form
a two-component order parameter in the presence off the free energy is the same whehnis in the basal plane
antiferromagnetisrfi. The resulting Ginzburg-Landa(GL) and wherH is along thec axis: The two components of the
theory makes additional predictions, e.g., the kink in the up-order parameter decouple in either case. The result is that the
per critical field when the field is in the basal plaé.In phase diagrams should be identical for the two field direc-
these theories, the order parameter transforms as one of ttiens, except for the slopes of the boundaries. Experimen-
irreducible representations of tHeg, point group of the tally, the problem with this is that the phase diagrams for the
crystal, eitherg; or E,. 1112 two directions, though broadly similar, have important dif-
Further evidence about the superconducting state derences as well. Whehl is in the basal plane the phase
UPt; comes from measurements of ultrasotifdand heat boundaries are more or less straight, the upper critical field
conduction'® These experiments suggest that there are poirttas a very distinct kink, and the tetracritical point is very
nodes in the superconducting gap function where the Fermwell defined. WherH is along thec axis, on the other hand,
surface intersects the ling=k,=0 and line nodes where the phase boundaries have considerable curvature, there is no
the Fermi surface intersects tlke=0 or k,=w/c planes. kink in the upper critical field, and this makes the existence
This is evidence for a-wave E;4 order parameter which of the tetracritical point somewhat doubtful. We shall find
transforms like k,k,,k/k,). The theorem of Bloun? states  that theE, 4 theory does in fact explain the phase diagram for
that triplet states cannot have lines of nodes when spin-orbhoth orientations oH. The other common objection to the
coupling is taken into account. The theorem assumes that r6,4 theory is that because it is a singlet theory it cannot
symmetries are present other than the crystal point groupxplain why the upper critical field curve fét along thec
symmetries. It has been argued that other symmetries may lzis and the curve foH in the basal plane crogs.This
present in UP§ (Ref. 17 and thus lines of nodes may be crossing is maintained to be a characteristic of triplet theories
present even if the Cooper pair is a triplet. Thus the nodahlone?? By a careful analysis of the magnetic properties of
pattern may not prove singlet pairing. UPt; and their contributions to the GL free energy we will
In spite of the success of thg; model in explaining the  show that pseudo-spin-singlet states can also produce this
nodal structure of the gap function and the existence of muleffect.
tiple superconducting phases, certain objections have been The plan for the rest of this paper is as follows. In Sec. Il
raised regarding its suitability as a description of YPOne  the overall mathematical approach to the phase diagram
objection is that théE 4 theory fails to explain the isotropy problem is discussed. It is necessary to go into the method in

0163-1829/96/53.8)/1234618)/$10.00 53 12 346 © 1996 The American Physical Society



53 E1q MODEL OF SUPERCONDUCTING URt 12 347

some detail: Only a very careful analysis brings out the natic in M, is the sign thaM, andM, are degenerate, and the
ture of the inner phase transition. In Sec. Il we will take thefact that the minimum ofF . is at M§=0 indicates that
free energy and use it to obtain the phase diagram when  rotation ofM in the x-y plane will take place only if a mag-
in the basal plane. The observed tetracritical point comes outetic field (which could be infinitesimalis applied.

in a natural way. By fitting the theory to the longitudinal  Now do the same foM,:

velocity data we will obtain values for all the relevant pa-

rameters of our theory. Then in Sec. IV we will obtain the Feg(M,) = ag(T—T,)M2+ B, MZIM2+ B,M*% (2.9
phase diagram for the case whidnis parallel to thec axis.

We will show that our theory can be fit to the data for the Byz ) 4
case wherH is parallel to thec axis with the same set of =l agT—T,)— ﬁWOx(T_Tc) Mz +BM3.
parameters used for the case whtris in the basal plane. v (2.5

The near-crossing of the phase boundaries wHen along ) — _ L
the ¢ axis is a consequence of approximate particle-holeThere are evidently two p053|b|I|t-|es.-E|the:\rthe expression in
symmetry. In Sec. V we will discuss the magnetic propertiesSquare brackets vanishes at posifivein which case there is

in particular the magnetic susceptibility. We will show the & Sécond-order phase transition whitgappears so that the
effect the susceptibility of URthas on the GL free energy Magnetization rotates in thez plane, or it vanishes at nega-
and how this leads to properties such as the crossing of tH&/€ T, which implies that there is no further transition and
upper critical field curves for different directions of the field. M.=0 at all T. The rotational phase transition, which is
In Sec. VI the phase diagram is extended to finite pressuréecond order, takes place at a lower critical temperature

Finally in Sec. VIl we make some concluding remarks. given by
Il. EFFECTIVE FIELD METHOD FOR THE PHASE ,= 07T~ (Bxatoxl2Bxy) Te (2.6
DIAGRAM o (Bx@0x/2Bxy)

This section will be devoted to explaining the mathemati-An important point is thafl,, the bare critical temperature
cal method used to obtain the phase diagram for;UfPthe  for M,, may be positive buT ., still negative. This would be
presence of an external magnetic field. The full problem isan example of the effective field suppressing a transition. If
very complicated. We give first a simple example to orientthere is a transitionT.,>0), then the effective free energy
the reader to the case of competing order parameters. The not valid for T<T_.,—it neglects the feedback dfl, on
reader who is mainly interested in the overall concept, not, .
the details, may read the first subsection and consult the sum- Of interest below will be the question of artificial terms

mary figures in the other subsections. such asyM3M, in the original free energy. This would add
. a termy[ aoy(T.— T)/284]%°M, to the effective free energy
A. Simple model for M,. This means thaM, becomes nonzero already at

A simple system with a multicomponent order parameter!c @nd the lower transition is converted to a crossover, just
and competition among the components is a magnet witRS if an external field in the direction were applied.

second order, and computing the lower transition tempera-
F=ao(T—To)(MZ+ M)+ By (MZ+M?)? ture, analysis of the effective free energy is all that is re-

5 4 5 oo quired. To find the behavior of the system beld@y,, one
+ ag(T=T)M;+ B,M;+ By (M +M)M; . must minimize the full free energy.
(2.1

Suppose thaf.>T,. Then atT., the system develops a
nonzeroM in the x-y plane, its direction otherwise not de-  We now apply the effective field method to the well-
termined byF. Let us sayM=MX with M(T) given by  known problem of an isotropis-wave superconductor to
<M2)=axo(TC—T)/2,BXy. The angular brackets indicate show how it works in a case which is actually quite non-
equilibrium values. The question we fagehich adumbrates trivial, but whose phase diagram is well understood. This
the whole theme of this papes, how doM, andM, behave  system has a single complex order parameter. In the presence
below T.? The first question has a simple answdr, will of a field, however, there is, in a certain sense, an infinite
remain zero belowl .. One way to see this is to write an number of order parameters, and interesting competition
effective free energy foM, below T by simply taking the ~among them.

terms inF which involve M, and writing the equilibrium The free energy density for the system is

value forM, andM,:

B. s-wave superconductor

Fei(My) = aox(T—To)MZ+ 2B, (MZ)M2 f:aO(T_Tc)|77|2+,3|77|4+K§i: DinD{ n*. (2.7
2 2 4
+B><Z<MZ>'\/|y+ﬂ><y'v|y (2.2) Here D;=—id;+2eA/#c (—e is the charge on an elec-
_ NV 4 tron), and if we take takél in the z direction, then the gauge
= BxAMo)MyF By My . 23 A=Hxy is appropriate. We haveD,=—id, and
There will be a temperature range beloW, where D,=—idy,+2eHx#c. Our problem is to minimize the free
(M2)=0. The fact that the effective free energy is then quar-energyF = [fdV for arbitraryH andT.
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The method we will use is to expand the functig(x) in  where |=#c/2eH, H, are the Hermite polynomials, and
a complete set of normalized eigenfunctions of the operatot., is the size of the system in thedirection. We now write

K(DZ+DJ), (2.9
which are 700= 2 Crichni(), (2.10
b= (2"nNL ) "2~ Wex — (x—kI?)2/212]
XH[(x—kI?)/I], (2.9 and the free energy becomes

F:% [QO(T_TC)+8n]|CnK|2+ bnlkl,nzkz,n3k3,n4k4Cnlk1C:2k2Cn3k3C:4k4' (2.11

nlkl ,n2k2 ,n3k3 ,n4k4

The coefficients in this equation are s-wave case? The answer is not obvious. For example, we
4Ke may consider the Landau levek 1. Setting the eigenvalue
8n=(n+1/2)W (2.12 equal to zero as we did far=0 would give a critical field
line with the saméT . but with a slope only 1/3 of the slope
and of the H, curve. Why does no transition take place on this
line in theH-T plane? That is, why is there no nonanalytic
bn1k11n2k2,n3k3,ﬂ4,k4:BJA d3X¢n1kl¢:2k2¢n3k3¢:4k4- S&er?]?:]\'/?ior of theclk on this line? What abOUCOk for k
(213 To answer these questions, we must develop a picture of
An important point is that is independent df andb is zero  the effective fields present in the system when the symmetry
unlessk; —k,+ks—k,=0. We have reexpressel as a has been broken. This is done by classifying different terms
fourth-order polynomial in an infinite number of variables of the polynomial in Eq(2.11).
Chk» Which may be thought of formally as competing order
parameters_ We must minimize this p0|ynomia|_ 1. Class 1: Terms determing the Ieading behavior OBkC kel

The upper critical field curve is_given by notic;ing when  These are the simplest of all; the free energy is
the coefficient of the quadratic terfirst changes sign:

ag(T—Tc)+e,=0. (2.14 F:Ek [ao(T—To)+80]|Corl2+A(CG+ - -,
The highest value ol for which this equation holds corre- (2.17

sponds tn=0 and the curve where only the terms relevant to the behavior of terms in
ag(T—T,)+2KeH/#c=0 (2.15 class 1 have been written explicitly.

defines the normal-superconducting phase boundary. For smalls, these terms give the simple result

Below this boundary, soméut not all of the C,, are F=-5(C1)?+((CLH)=(C1)~&" (218

nonzero and where (C1) denote collectively theC,, which belong to
_ o 12 <1f2 class 1. For our considerations which are simply a matter of
Cok~lao(Te—T)—2KeH/Ac]™=6"%  (2.19 power counting, the indices o6 are not required at this

This equation defines, which serves as a small quantity in POInt. TheC1 are analogous t, in the magnetic example.
the analysis below, the validity of which is thereby limited to The conclusion is that th€, are proportional to5™ near
the neighborhood of the phase boundaty.0 in the ordered the phase boundary.

phase. The periodicity of the flux lattice shows tlaf+# 0 if o _ _
and only if k=mg, where m is any integer and 2. Class 2: Terms determining the leading behavior of,C,

q=\/\/§wll. We shall denote this condition byeL; i.e., kel
k belongs to the discrete set which constitutes the flux lattice. We write momenta of the fornk’=(m+1/2)q, where
The discreteness reflects the fact that magnetic translatiom is an integer, with a prime. Combining ti&,,, builds a
symmetry as well as gauge symmetry are broken in the lowhexagonal lattice which interpenetrates the original one, as
T, low-H phase. Thus, sufficiently close to the phase boundwe shall see below in Sec. lll. Whei=0 these variables are
ary, only these coefficients need be computed and we get thtegenerate with theQl)—these are the ones not chosen
familiar theory of the hexagonal flux lattice. As is well because of the breaking of the magnetic translation symme-
known, no further phase transitions take place as the field iy. The C2 should be compared #d in the previous sub-
lowered until the Meissner state takes oveiHa . section. Asé increases, they become less favored because
In UPt;, on the other hand, there is another transitionthey feel an effective repulsion from th€{). The relevant
when the field is reduced. Why does this not occur in theterms inF (call them collectivelyF ¢, c,) are of the form
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5 point is that there are no terms of the for8%)3(C2) or
Fc1,c2=§4 [ao(T=Te)+&0l|Cox| (C1)(C2)% Recall thatby i, nk,nqkq.ngk, IS €0 Unless
ki —k,+ks;—k,=0. However, theke L are equally spaced,

% % and so ifkq,k,,ksel, thenk,el as well. Similarly if

+kl’k§<3’k4 Dok, 0k, 06,0k, Cok, Cor,CogCor, - ki,ky,kzeL’, then alsck,eL’. For the cas&, ,k,eL then

we can havek;,k,eL’. Hence the only cross terms L

(219 4ng L") which survive have the form@1)?(C2)?. More

This equation repays careful examination. A first crucialexplicitly,

— 2 *
Feico=2 [ao(T-To)+eo]|Con 2+ 2 BOk1,0k2,Oké,Okl’lcoleZ){kZCOkécoki
k' k. ko kg ky

* * * *
+ 2 Dok 00, Cok,Cor,Co o FCCH 2 B e ot ok Cok: Coyer Co Cpr -+ -
. 1,0K3,0K5,0k 4 1 2~ Oky 0k, , =, 1702 03y 10k 3 0k,
kg ko kK, K] k) kG K,
(2.20

In this equation
Bok, 0,0k, 0k, = Dok, 0y, 00,0k, Dok 0k, 01,0, Dok 0k, 017 0k, Dok 0y, 01 0k (2.2

In the summationk runs overL andk’ runs overL’. The idea of the effective field is to note that, wher<H., (or
6>0), we may write an effective free energy for thé2):

Fer((C2)=2 [ag(T-To) +2ollCou >+ X BOkl,Okz,Oké,Ok"‘COK1C3k2>COkécgk"‘
K’ ky kg kg Ky

* * * *
+ E, ’ b0k1,0k§,0k2,0k;<C0k1C0k2>COKéC0ké+C-C-+ , ,2, , bOki,Oké,Oké,Ok;lCOkiCo,(éCOkéCOki+'",
Ky ko K k) K kb KL K,

(2.22

where the angular brackets denote equilibrium values in the ordered phase. Examination of this free energy is all that is
required to analyze the stability &f . SinceCq,~ 62, the structure of this equation is

Fe((C2))=—8(1+R2)(C2)2+ ((C2)%), (2.23

whereR2 is a dimensionless matrix which is independent of temperature. In fact,@ghare divided into real and imaginary
parts, therR2 is a real, symmetric matrixf there is to be no further phase transition, then all the eigenvalues2ofnidst be
less than or equal to-1. Otherwise, the €2) condense, and another lattice would form. This would mean an “inner”
transition in ordinarys-wave materials, which does not occur.

3. Class 3: Terms determining the behavior of,cfor n>0 and ke L

All possible terms come into the effective free energy for ta8&):

Fert((C3))=[ag(T—T¢) +(2n+1)2KeH/Ac](C3)%+b3,((C1)3)(C3)+b3,((C1)%)(C3)%+b35((C1))(C3)3,
(2.24

where Fo¢ has been written for a definiten value. The coefficient in square brackets is positive as long as
H>H./(2n+1). b3;, b3,, andb3; are constants independent &fwhose precise form need not detain us. In this field
region the leading behavior is dominated by the term linear in @f&)(

Fei((C3))~—(C3)%2+b3;(C1)3}(C3)~—(C3)%2+b3,6%(C3)=(C3)~ 6> (2.25
This resolves the question raised above. There is no phase transiligp/§2n+ 1) because the coefficients determining the

weight of thenth Landau level have already started to growHas itself. Thus the putative phase transition is converted into
a crossover.
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4. Class 4: Terms determining the leading behavior of G, n>0,k’ eL’

We have accumulated enough experience to write the effective free energy immediately:

Fer((C4)=2 [ag(T—To)+(2n+1)2KeH/Ac][Coel?+4 X bog g,k i Co, Cik,) Crie i
nk’

ky.ko.nkj.n'ky

* *
+ X bok,, 06 .k, 07k Cok, Coky) Crir Crir T C:C.
Ky ko ,nkj,n'k} S

* *
+ - .
) 2 , . bnlki,nzké,n3ké,n4k£’lCnlkicnzkécn3kécn4k"1 (2.26
N1Kq Nk ,NgKz,ngk,

In the last term the sums oveg, n,, n3, andn, are over all  curves, the repulsion of some levels away from thg,
possible values af except zero. By analogy with case 2, this curve, and the conversion to crossover of others. These two
may be written as schematically as effects arise from the effective field coming from the quartic

term in the original free energy.
Fer((C4))=— 8(1+R4)(C4)%+((C4)%), (2.27)

the only difference being tha&®4 is a matrix in then and C. Effective field method for the d-wave case
n’ indices as well as thk’ index. There are no terms linear ~ The d-wave case may be analyzed in a similar manner.
in the (C4). There is no phase transition involving the For our present qualitative discussion we need only the fact
(C4)—hence the eigenvalues B# are less than-1. The that the order parameter becomes a complex two-component
(C4) are always zero in equilibrium. vector n=(7y,7,). The free energy again contains qua-
dratic and quartic terms in this variable. It is
5. Class 5: Terms determining the behavior of other k values

_ 2 2 %\ 2
o . » = — + — + .
It is evident from the momentum conservation condition f=ao(T=Tolnd*+ ao(T=Ty) | my|*+ Bo(n- 7")

that the effective free energy fé@rsuch thak &L, ké L’ can 5
contain terms such a§(C1))(C5)3, for k=q/3, for ex- + Bl p- 9+ Z (K1Di7;Df 7] + KD 7D} nf
ample. There are no terms linear in 168. The cubic terms ey
could give rise to additional first-order transitions in prin-
ciple. It is evident that this does not occur and we do not ~ +KsDi7Df 7ii*)+K4izx D7l (2.28
consider such terms further. Y

We may conclude this discussion of thavave case by a We have neglected certain terms which are not relevant to
graphical account of how all transitions except the one athe present discussion. They will be introduced in the next
H., itself are suppressed. Figure 1 shows the bare eigenvaligection. However, we do not specialize to any particular di-

n=0 a n=0 b
S (a) ' (b)
n=
(3) (4)
H o2 N
(3) (4)
n=3 n=3
(3) (4)
T I T Ic

FIG. 1. Consequences of the effective field in theave case(a) Eigenvalue curves for the new lattice wite L. The lines are the
solutions to Eq.(2.14). However, all transitions are suppressed by the effective field except the oridipdine. The cross hatching
indicates that the transition is converted to a crossover. The numbers in parentheses denote the class f)tilives for the new lattice
with ke L'. As in (a), except that the new lattice interpenetrates the old one. All lines are repelled by the effective field to unphysical values
of H andT, and theC,,, corresponding to these boundaries never become nonzero. This is indicated by the arrows.
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FIG. 2. Consequences of the effective field in tihevave case(a) Eigenvalue curves for the new lattice withe L setting the
eigenvalues of the quadratic form in E&.28 equal to zero, neglecting the fourth-order terms. Most transitions are converted to crossovers
by the effective field except the originBl., line. The numbers in parentheses denote the class of thelinblew lattice withke L’. As
in (a), but the new lattice interpenetrates the old one. Transitions correspond(b(g tnd COb are repelled only a short distan¢gingle
arrows. The dashed lines show the final positions of these boundaries after taking into account the effective field. A single internal transition
line remains.

rection of field, and the analysis is valid for all directions. 1.Class 1(a): Terms determining the leading behavior of &,

This section generalizes the analysis carried out by 3dynt n=0,kelL

for the field in the basal plane, which is the easiest case.
The quadratic form may be diagonalized by finding the

two-component vector eigenfunctiows,,. We then write

The free energy is

F(Cog) =2 Lao(T=Tex) +20,]ICoul®+A(Co 0+ -+,

=2, Coiehrk (229 (2.30
to obtain with the result that
F=2 [ao(T~Ten) +ea(H)|Coil? ~S(CLF A(CHY—(Ca~ 0% (232
nk

where 6= —[ao(T—Te1) +&o_]-

+ b
n1kq ,NoKy,Ngkg,Ngky N1kg 2Kz N3ks Naky
XC, , C* Chk C* - (2.30 2. Class 2(a): Terms determining the leading behavior ogag,
1K1 T NoKy T N33 = NyKy K'el’

the difference with thes-wave case being that the energy  Again, we write momenta of the fornm(+3)q, where
levelse,(H) and the form of théd coefficients are far more m is an integer, with a prime. These coefficients may be
complicated. Herd; is the greater of, andT,, andT,is  treated by analogy with the-wave class 2 above. Familiar
the lesser ofT, and T,. The curves which are the lines with the procedure, we may write down the relevant effective
ao(T—Te) +e,(H)=0 are shown in Fig. @). Crucially, free energy immediately:

however, the momentum conservation condition

k,—k,+ks;—k,=0 is the same. We now specialize a bit to 5 4

the case of URt Then the solutionsag(T—Te)+ Fer((C2)a)=—8(1+R2,)(C2)5+((C2)y),

en(H)=0 fall into two classes. Half the levels havebare (2.33

T, at T; [becauses,(H=0)=0] and half atT?, [because

sn(H=0)=ao(Tcl—T22)]. Thus when we specify the level where againR2, is a dimensionless matrix. This matrix is
index it must be stated to which class the level belongs. Cakimilar to R2, and we expect that all the eigenvalues of
those with the highef . (a) and those with the loweF, (b). R2, must be less than or equal to1 and the usual hexago-
Apart from this difference, the classification of states pro-nal symmetry arises &i.,. That this is actually the case has
ceeds similarly to ths-wave case. been shown by Zhitomirskii*
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3. Class 3(a): Terms determining the behavior of,§ for n,>0 We again argue by analogy witiwave case 4 that the ei-

and kel genvalues oR4, must be less thar 1 so that the C4), are
The analysis proceeds assavave class 3: always zero.
Feﬁ((CS)a)~(C3)§+ b31a(C1)g(C3)a 5. Class 5(a): Other periodicities
~(C3)2+b3,,6%%C3), Again other periodicities will not arise from states in class
- 5(a), just as ins-wave case 5.
—(C3),~ 8% (2.39 In discussing casesd—5(a), we stress that we have not

crossovers by the effective field. Note that there is, for genthe differentR matrices. It is possible to write these matrices
eral field directions, no parity selection rule in tdevave  formally, but they are quite complicated. However, they are

case, and so there is no distinction betwaen odd andn = very similar to thes-wave case, where we are certain of the
even. The C3), contribute to the change of shape of the result even in the absence of explicit calculation.

vortices as the external field is reduced beldyy, but pro- Let us now turn to the the levels which start frofd,.
duce no further phase transition. Here we have less guidance from thevave analogy.

4. Class 4(a): Terms determining the leading behavior o;a@,

6. Class 1(b): Terms determing the leading behavior of €,
na>0,k,EL/ kEL b
The effective free energy is These terms are analogous to thoss-imave class 3. As
Fei((C4))=—8(1+ R4a)(C4)§+ (&((C4)§). long asH#0, all possible terms come into the effective free

(2.35 energy for the C1),:

Fe((CL)p)=[ao(T—Te1) +80,)(CL1)g+b31ap( (CLI(CL)p+b35ap((C1)2)(CL)5+b35an((CL)a) (CL) (2.36

For certain special directions of the field, the cubic-linear and linear-cubic terms may vanish, but we are concerned here with
the general case. This leads to the result that

Fei((C1)p)~(CL)3+b3145(C1)3(C2)p~(CL)+b314p0%(CL),— (C1)y~ 62 (2.37)

Thus these terms show crossover behavior. This fact is the apparent basis for a statement occasionally found in the literature
that for general directions of the field there is no lower phase transitioRviave systems at finite fiefd®:*®

7. Class 2(b): Terms determining the leading behavior of,& k' eL’
This is the crucial case so we treat it in detail. The relevant ternks.grare

Fer((C2)p)=2 [ao(T—Te) T80, ]|Copel*+ 2 Boakl,oakz,obké,obk"‘<Coak1C3ak2>Cobkécgbké/1
k’ ’

ky .k kg, ky

* *
+ > Bo,ky.05k:,04k5. 05k Cok, Coyi,) Copk: oy, TC-C-

kq kg kg Ky
* *
+ b ’ ’ ’ ’ C rC C ;C + ... 23
) Z, ) Oakl,oakz,obk3,0bk4< Y Oak§> Opk3 ~0pk,, , (2.38
kq kg kg kg

where the angular brackets denote equilibrium values in the Fer((C2)p)=[ao(T—Te1) + €0 — 5R2b](C2)ﬁ
ordered phase and b

+0((C2)p), (2.40
Boakl,oakz,obké,obkgl= boakl,oakz,obké,obkglﬂL boakl,obk4,0bkg,oak§ where agairR2,, is a dimensionless matrix. The question of
further phase transitions in this case reduces to asking
+bobks,obk4,oak1,oakg+bobks,oakz,oaki,obkj,- whether the matrix[ao(T—Tcl)+sob— 6R2,] can ever

(2.39  have negative eigenvalues. If it does, then there will be a
lower phase transition. The answer is known for gRhore
formally for E representations of the hexagonal group in

SinceCq x~ 52 the structure of this equation is some parameter range# certain limiting cases. IH=0,
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then the problem reduces to a well-known 8f&°There  F_.(C4),)~[ag(T—Tey) + &, 1(C4)2+((C2)¥(Ch)y).
are indeed two transitions and the effectd®?2,, is to reduce b

the bare  transition temperature ng [where (2.4
ao(T—Te1) + 60, (H=0)=0] to T, the observed lower

transition temperature. This is the precise analog of the critiCrossovers only are allowed for these terms.

cal temperature foM, in Eq. (2.6). Also for H in the basal

plane and arbitrary field strength, the problem can be 10. Class 5(b): Other periodicities

solved® At the tetracritical point,6R2, vanishes, and so

there is no effective field. Near this pOint, the effective fields We may neg'ect these for the same reasons-asmve
can be calculated, and we will carry this calculation out ing|55s 5.

the next sectionf ao(T—Tcs) + &0, — 6R2p] vanishes along Let us now summarize the conclusions. g, the Co_

a line ;n H}I S?aﬁje' d‘_l'his_reprlesefnts th”e shec?nd phase trangndense to form a hexagonal lattice which we talit the
sition for this nie irection. In fact all the functions in- same time, a number of other coefficients begin to grow

volved are continuous and the second phase transition OCCLf?uch as those in clasgad and 1b)], though more slowly
for all directions ofH for UPts. than theCOak. Their growth means that the shape of the

8. Class 3(b): Terms determining the behavior of, G vortices is temperature and field dependent, but the symme-
for ny>0 and kel try of the latticeL is unchanged. As the temperature or field

The interesting new feature that arises for these terms s further lowered, thecobk' become unstable, forming a

that we now have an effective field from both th1(), and lattice L which interpenetratek. This occurs by a second-
the (CZ)b . There are more terms in the effective free energwrder phase transition. This process is summarized in Flg 2.
for the (C3),. However, we shall not consider this in detalil,
since it is evident that theseCB), couple linearly to the
(C1), and therefore start their life &.,(T) where they are Ill. PHASE DIAGRAM: FIELD IN THE BASAL PLANE
proportional tos%?.
We have now established the mathematical method for
9. Class 4(b): Terms determining the leading behavior of &, finding the phase boundaries. In this section we apply the
np>0,k"el’ method to thequantitativeconstruction of the phase diagram
Here the relationship of term£@), to (C2), is the same for the case when the field is in the basal plane of the hex-
as thats-wave (C3) tos-wave (C1). Thus there is an effec- agonal UP§ crystal. We begin by writing down the free
tive free energy of the form energy density for a hexagong} or E, system:

f=ao(T=T0| 7+ ao(T= Tyl my|*+ Bs(n 7*)?+ Bal - 7I|2+i jzxy (K1Di7;Df 7] + KD 7D} nf +K3Dj 7D )

*K‘ﬂ;xy |Dz77i|2+(aofAT)(ﬁC/ze)i;X:y (IDin2=Diny|®) +a,H2np 7 +a(HZ+HY) - 5* +agH- 52 (3.

Here n=(7y,7y) is the two-component order parameter, The terms quadratic il are Pauli limiting terms. They
andKy, K,, Kz, K4, a9, B1, B2, &y, 8;, 84, ande are  arise due to the reduction of the spin susceptibility in the
constants. The coupling of the staggered magnetization teinglet superconducting state. The effect of these terms on
n is responsible for the temperature splittidg =T,—T, . the phase diagram and a physical explanation for the relative
Note that in writing the free energy in this form we are sizes which we obtain for the varioascoefficients will be
implicitly assuming that the staggered magnetization rotategiven in Sec. V. The phase diagram for the case of the field
with the magnetic field. Two facts make this assumption reain the basal plane in our theory has been considered previ-
sonable. First, as was originally pointed out by Machida andusly by Joynt® but we now wish to consider it in more
Ozaki?’ the term in the free energy for the antiferromagneticdetail and compare our results to experimental data. Similar
moment,M, which is responsible for basal plane anisotropycalculations have also been performed in other matlefs.
is of orderM®. Further, becaus® is only about 0.0z per It has been suggested that the spatial variatios afong
uranium atorfl the (M-H)? term in the free energy for the field direction needs to be considered in the calculation
M,28 which tends to forceM to rotate withH, will likely  of the upper critical field® To show that this does not occur,
dominate over the anisotropy term. Second, this idea of weawe have computed the eigenvalues for the quadratic part of
basal-plane anisotropy has been #8ed explain the small Eq.(3.1) as a function op?, the wave vector along the field
oscillations inH, as a function of the orientation of the field direction. The coefficient gp? is positive, meaning thai is
in the basal plane which have been experimentalljuniform along the direction of the field, unless
observed® (K,+Ks3)/K;>3.126. As we shall see below, this is cer-
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tainly larger than any value which can fit the upper criticalsult is that we can minimize any terms in the free energy
field data. In fact the ratio is roughly unity. Let us choose adensity containindd, by setting them to zero. Our free en-

coordinate system such thet=HX. In this system, the re-

a,H?

f: ao(T_Ty+

ag

+(Br+ B2)| 7l *+ Kal D, 2+ KDy 1 2+ 2B4] | ?| my |+ Bo( 75 25+ c.).

In thIS equat|on K123:K1+ K2+ K3, K123:K123_
(apeAT)(Acl2e), andK; =K+ (ageAT)(%c/2e).
The upper critical fields of the separate componepts

|77y|2+(,81+ﬁ2)| 77y|4+K4|Dz77y|2+ KiziDyﬂy|2+a0 T-T+

ergy density is then

(ax+ad)H2 2
——— ||

3.2

rectangular lattice, although it is perhaps more clearly imag-
ined as a triangular lattice which has been “stretched” by
the anisotropy. The side of the unit cell paralleljtdhas a

(Hezx) and my (Hyy) are now easy to calculate, though the Ier;gth of 27/q, while the side parallel t@ has a length
equations for the phase boundary are more conveniently ex®.

pressed in terms of the inverse functiofis,,(H) and
Teoy(H). We obtain

Tc2x:_[(ax+ad)/a0]H2+H/Sc2x+Txv (3.3

Teay= —(ax/ag)H?+H/Sp + T, (3.4)

where Sg=—(hic/2e)(ag/ VK4K]) and Sgy=—(fhic/
2e)(ap/VK4K129). Seox @and S,y are the slopes of the re-
spectiveH, curves at zero field. Fa, anday small (as we
assumg and if T,>T, andKj,z>K}, then the two upper

Suppose now that we are at a temperafliresuch that
Heox(T)>Heoy(T) and we lower the field starting from
H>H 5 (T). In this case as the field is lowered we will first
come to a region wherg,# 0 and»,=0. We may then find
75 in precisely the same way as we fourng above. Using
the same gauge as before we have

mw=N,>, chexdingy—(z—nql?)?/(2r4?)]. (3.6)

Here, however, we havEE= VK4/K; andg= \/§7r(rx/I).

critical field curves cross. The physical phase boundar_y is_the Let us return to the first case where we lower the field at
greater of_the. two and we optaln the well-known k|n!< In constantT andH,,(T)>H(T) and ask what happens as
Hc, for this direction of the field. We now want to find the field is lowered below ., (T). Eventually the field will

expressions for the two inner transition Iianj(T) and
HX (T).

Consider a fixed temperatureT such that

be low enough so that the free energy is minimized with both
7x# 0 andn,#0. The point where this occurs i (T). To
calculateH} (T) formally we need to follow the prescription

Hcay(T)>Hc2x(T) and ask what happens as the field is re-of Sec. Il Substitute in the functional forms fag, and 7,

duced starting from a fielti>H,,(T). As the field is low-
ered belowH,,(T) we will have 7,=0 but 5,#0. From
the parts of the free energy involving onky, we immedi-
ately see thay, will form a lattice. However, the lattice will
be distorted from pure hexagonal becafse: K1,5in gen-
eral. If we choose the gauge= —Hzy we obtain

nyzNy; chexfinqy—(z—ngl?)?/(2r1%)]. (3.5
In this equatiorr§= VK4/K123 Ny is the(rea) magnitude of
Ny andq=\/\/§7-r(ryll). Finally, c,=1 if n is even and

c,=i if nis odd. The lattice formed by»,| is a centered

=N crexdi(ng+2o/12)(y—yo) —(z— 20— nql?)/(2r31%)],
n

with =37 (r,/1).

into f, compute the free energy=ffdV, and determine
when the coefficient of the term quadratic My, changes
sign.

We must choose the functional form gf, very carefully
in this calculation for three reasons. First, we must allow the
singularies of then, flux lattice to be located at different
points than the singularities of the, flux lattice while still
ensuring thatp, has a form appropriate to the gauge we have
chosen. Second, we need to alloyy and 7, to have differ-
ent phases. Finally, since, is arising in the effective peri-
odic potential formed by, , we know thatz, will have the
same periodicities ag, . (This is an application of Bloch’s
theoren?®) Hence we write

(3.7)

After minimizing the free energy with respect to the phase differentiee free energy is
F=ao[ T=Teay(H) I oy I%) + (Bt B2){I my| )+ ol T—Teax(H) K| 7 ) + (Ba+ B2){ ) + 2B(I 7l 1y 1)

—2B,l( 75 2 ne??)|

=(f)+(fy)+2B111= 2,1 ,|.

(3.8

3.9
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Here the angular brackets denote a spatial average P
(---)=[---dV), f, (f,) is the part of the free energy den-

sity that depends only omy (7,), 11=(|7x/? n,|%), and

1,=(7}2n5e??. The inner transitiofiH (T)] occurs when

the term quadratic im, changes sign or when

aol T=Teax(H) 1| 7d%) +2B11 1= 2215 =0. 1
(3.10 I
I
This equation containslf, which is determined by minimiz- |
ing (f,) which gives us P .
L}
aO[T_TCZy(H:)]q77y|2>+2(ﬂ1+:82)<|77y|4>:o' :
(3.1) = !
We may now solve foH} (T). Once again, however, it is :\
easier to express the result in terms of the inverse function
T3 (H). We obtain y
TX(H)=—(a5/ag H*+ HIS; + T} , (3.12
where ® ®
(ayt+aq)—Q,a FIG. 3. The flux lattice forp,. The solid circles indicate the
* _ y—X . . . y . . . .
ay —T, 3.13 singularities in the flux lattice. The Wigner-Seitz primitive unit cell
y is indicated by the dashed line. Its basis vectors are also shown. The
SeaSea(1—Qy) integrall , (|I2|:|((17;‘)21;§>|) is nonzero only if the singularities
:M, (3.14  in the 5, flux lattice are located at thk (open square ¢ (open
ScZy_ stch oval), ord point (x), or one of the symmetrically equivalent points.
These points for thé (c) point are the solid squargsolid ova).
 Ix— QyTy (3.19 The axes arg=2/| (| ¢ axis andy=y/l. The diagram is drawn to
X 11— Qy ’ ' scale using the values of the parameters we obtain through our fits.
The flux lattice fory, is identical except for greater elongation in
Here the z direction.
Q= Pl (316 W t calculate the integrdisand|,. This i
y (ﬂ1+ﬁz)BA<|7lx|2><|77y|2>' . e now must calculate the integrdlsandl,. This is a

straightforward but tedious exercise and we omit the details.

where B, is the Abrikosov lattice parameter: We only note here that the results do not depend oand
Ba={Imy|H/({|my?))?. Note that we may rewrite our result r, separately but only on the ratiq/r,. This is significant
as for curve fitting because, although andr, cannot be ob-
Q tained from the phase diagram whidnis in tr;e basal plane,

* - _ y _ their ratio can be obtained throughr,(r,) =S, /Sy -

T (H)=Tea(H) (1— y)[Tczy(H) Tea(H)J. This equation follows directly from the y(gefinitcii)xns “of the
(3.17  quantities involved.

From this equation we see that the the inner transition line Ve also note that whilg, is nonzero for all values of the
for 5, is repelled away from the calculated upper critical OffSet vectom=yoy+2zyz, 15 is zero unlesw is at'grux lattice
field curve forz, by an amount proportional to the separa- lattice vector or one-half of a flux lattice vecttrin other

tion between the calculated upper critical field curves forVords, if u;=(2m/q)y and u,=(7/q)y+ql?z are the basis

7y and 7, . \1/ectors of the flux lattice, thel, is zero unlessv=

For the opposite case, when we consider lowering the(NUi+muy), wheren and m are integers. By symmetry
field staring from a temperatureT such that there are only three distinct offset points in the Wigner-Seitz
Hoax(T)>Hezy(T), the calculation proceeds precisely as be-Primitive unit cell of the flux lattice wheré, is nonzero.

fore. The inner transition lin€l} , for this case is related to These are thal (v=0), ¢ (v=1/2uy), andb (v=1/2u,)

the calculated outer transition lines as in E8.17) so that points, as shown in Fig. 3. Consequently, by the definition of
the Q's [Eq. (3.16], Q4 and Q, will have their smallest

Qx

values wherv is at one of these points. By the equations for
1_—QX)[TCZX(H)_Tc2y(H)]- the inner transition linefEgs.(3.17 and (3.18] whenQ is
(3.18 at |ts.s.malllest the inner transition Ilne.|.s clqsest to the_ outer
transition line. Hence, the inner transition line which is ac-
HereQ, is given by Eq(3.16. However, sincey, is becom-  tually observed is the transition line which corresponds to the
ing nonzero in the periodic potential formed by, the pe-  smallest value of). Hence, we see that the inner transition
riodicity of the flux lattices is set by, . This means that for |ine must correspond to an offset vector which is at one of

this calculationg= v v3m(r,/1). pointsd, c, or b.

T;(H):TCZy(H)_
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FIG. 4. Phase diagram when the field is in the
basal plane. The data points are from ultrasonic
velocity measurements and are taken from Ref. 5,
Fig. 3. The solid lines are our fit without the
renormalization discussed in the text. The dashed
line coresponds to a renormalization Qf by
2.67 orQ,=2.6M, . The constants used to make
these graphs ard,=0.458 K, T,=0.504 K,
Seox=—9.26 TIK, Spy=—4.39 TIK, a,/ag=
0.0138 K/T?, anday/aq=0.0193 K/T2.

H (Tesla)

T(K)

To determine which offset vector is favored and to fit ourthan the separation andy|? and| 5,|? are constant except in
theory to the experimentally observed phase diagram weéhe region of the cores, only a small fraction of the volume.
must calculat®, , and from itT; (H), andQ,, and from it  Inspection of Eg. (3.20 shows that Q,—1 and
Ty (H). Along with the parameters that can be obtained byQx/(1— Q) becomes large. This magnifies the repulsion be-
requiring that the outer transition lines fit the daff,( tweenH,,(T) and H’y*(T) and therefore the repulsion be-
Scax» @4, Ty, Scoy» &) We also need3,/B; in order to  tween the phase boundariglg,,(T) andHJ (T).
perform the calculation. This ratio may be determined in This brings in an additional error: the breakdown of the
from the specific heat jumps at zero field at the outerour approximation for the form of the order parameter. We

[AC\(Ty)] and inner[ACV(T;‘O)] transitions usingy assumed that both, and », were formed by the usual linear
combination of lowest Landau levels. This assumption is
Ba ACV(TZ))/T:O strictly correct o'nlly at the tetracritical po.int where the inner
AT ——— (3.19 and outer transition lines meet. It remains a reasonable as-
Br  ACU(T)IT, sumption as long as the inner transition line is not repelled
From data for the specific heat junipswe obtain too far away from the*outer transmon' I|ne_. These problems
B,1B,=0.5. are not so serious fdfl} (T), because in this case the curve

The phase diagram we obtain from our calculations idits sSmoothly to the zero-field point, which is exact. There is
shown along with the ultrasonic velocity data from Ref. 5 in N0 such additional constraint féty (T). It is therefore nec-
Fig. 4 along with the values of the parameters used to obtaifissary to incorporate some nonlinear effects in the fit to this
it. We find that for our fit to the phase diagram the offsetline. The slope at the tetracritical point itself is corectly given
vector is at theb point. The fit is very good for the outer by the linear calculation. Over the length of the line, how-
transition lines andH} (T) but poor forH} (T). The prob-  €ver, we use a renormalizég, given by fitting the slope.
lems fittingH3 (T) are not difficult to understand. The inner Both renormalized and unrenormalized fits are given in Fig.
transition lines are given by equations such as @Gql9. 4.

These equations state that the inner transition lines are re-

pelled from the continuation of the corresponding outer tran- |y pHASE DIAGRAM: FIELD ALONG THE ¢ AXIS

sition line by an amount which is proportiorjét the case of

Eqg.(3.18] to Q,/(1—Q,). The quantityQ, has been calcu- In this section we wish to take the free energy density, Eq.
lated in the limit of very smalls, i.e., near the tetracritical (3.1), and use it to compute the phase diagram when the field
point. Unlike the other quantities calculated, howew@y,is IS along thec axis (the z direction of the crystal. The pro-
expected to have very strong nonlinearities. The first term ircedure for finding the outer transition liithe upper critical

Q, is proportional to field curve in our theory for arbitrary angles of the field with
the c axis has been developed elsewh#r& We briefly re-
(|2 my|?) view the procedure.
(7221 7ly| ) (3.20 To find the upper critical field at an arbitrary field direc-

tion one first follows the Euler-Lagrange prescription and
This quantity is considerably less than one when the separalemands that variations in the free eneFgyvith respect to
tion of the vortices is comparable to the core size at theeach component of the order parameter vanish. This condi-
tetracritical point. We findQ,=0.333 (see beloyw. When tion gives two GL equations which for purposes of finding
H<H,.,, however, the core size quickly becomes smalleH., may be linearized. The linearized GL equations may be
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viewed as a Schdinger equation fory. This defines an When the field was in the basal plane we were able to com-
effective Hamiltonian which is a 22 matrix in the compo-  pute the coupling constagt For the field along the axis
nents ofz. One then defines a new coordinate system wittthis computation, though straightforward in principle, is ex-
one axis along the field and the other two axes perpendiculaieedingly complicated. Accordinglyg, is found by fitting to

to it. the data.

It is easy to show that the component of theoperator A key feature of the bare inner transiton line comes to
along the field D;) commutes with the components in the !ight upon examining the matrix used to find it. This matrix
other two directions. HencB,; commutes with the effective 1S
Hamiltonian and we may rewrite any terms containidgn , )
asp,n wherep; is ac number. When the field is in the (2K +K)=K aol “AT(2eH—1)
direction the only terms which result from this substitution aol?’AT(2eH—1) (2K, +K)+K’
are terms proportional tpf, which are minimized by setting
p,=0. Therefore in this case, as in the less obvious caskler® K=K,+K; and K'=K,—K;. Note that the off-
when the field is in the basal plane, one may simplify the cLdiagonal te-rms will vanish whe = 1/2¢. This means ghat if
equations by settin@,»=0. Since this procedure may be K'~0, as is expected from particle-hole symmefty? the
done both when the field is in the direction and in the WO eigenvalues will be nearly degenerate at tisnd the
seemingly least favorable case when the field is in the bas@Uter and bare inner transition lines will nearly touch. This

plane, it is reasonable to assume that it may be done for arfjé@r-vanishing oK is central to the whole picture, and so
angle the field makes with treaxis. we discuss it in some detail here. The usual Gor’kov formal-

One then defines raising and lowering operatordSM gives identical expressions fi§, andKj in the absence
D.=1(rD,+iD4/r)/\2 andzy. = (7,+i7,)/2. Herer is a of impurities. Even when impurities are included, this iden-

* = + X— : ; : in i i ;
function of the angle the field makes Wit)l/1 theaxis and is t|ty st|II. holds for theE 4 repre;entatlon if the impurity s.cat-
chosen to simplify the GL equations as much as possibld€ring is purelys wave. Physically, the smallness Kf is

One can then rewrite the GL equations in terms of thesdUe to the fact that it represents an intrinsic angular momen-
quantities and expandy, and 7_ in terms of the states tum pf thg Cooper pair. Since the agt_ual particle-particle cor-
In): relations induced by superconductivity are of orti&t/Er

where A is a gap energy anéig is the Fermi energy, this
quantity is expected to be smaft*®
.= ajn), n_=> byln). (4.1) The cancellation between the derivative terms in the free
n energy densityEq. (3.1)] proportional toK, andK 5 and the
terms which couple the staggered magnetizaiittmough
HereD.D_|n)=n|n). The state$n) are quasi-Landau lev- AT) to the derivatives means we obtain apparenttetrac-
els. The problem then becomes finding the eigenvalues of aitical point—the two lines come close but do not quite
infinite tridiagonal matrix. From the lowest eigenvalue onetouch. There ar@nly two superconducting phases when the
can then computél ., . field is in thez direction or indeed for any direction except in
Finding the inner transition line near to the upper criticalthe basal plane. The fact tht depends sensitively on the
field is also a linear problem, as the analysis of Sec. Il demimpurity density has interesting consequences. The miminum
onstrated. To find the line rigorously we would have to cal-separation will depend on this density. Unfortunately, the
culate the effective free energy for all of the eigenfunctionssharpness of these transitions also depends on the impurity
due to the presence of the eigenfunction with the lowest eidensity.
genvalue, as outlined in Sec. Il. However, we have seen that The phase diagram we obtain from our calculations with
the only transition line which is not destroyéthat is, either  the field in thez direction together with the ultrasonic veloc-
converted to a crossover or repelled to nonphysical fields angy data from Ref. 5 has already been published as Fig. 1 in
temperaturesby the coupling to the lowest eigenfunction is gur earlier paper on UEtsg Note that we use the same pa-
the line which originates at the inner transition temperaturgameters as for our fit for when the field is in the basal plane
and corrresponds to a flux lattice shifted from the flux latticealong with some additional parameters. These additional pa-
formed by the lowest eigenfunction. The full effective field rameters are g=0.6, a,/K;=5.6x10"% K lcm 2,
matrix therefore contains levels which are pushed to une=526x10"5 G, a,/ap=6.3x10"1° K/G?, and
physical fields(pushed up to high energy in the quantum- (K,—Kz)/K;=0.1. We use K,+ K3)/K1=(Sczx/Sczy)2
mechanical analogyor have small magnitude~5>%).  —1+ (c/2e)(ag/K,) eAT[(Scax/Sezy) 2+ 1)] and K4/K;
Thus, rather remarkably, it will be a very good aDPFOXima'z[(ﬁc/Ze)Z(aO/Kl)z(Sczx)‘2]/[1+(aO/Kl) €AT] to ob-
tion to compute the inner transition line using only two lev- tajn (K,+K3)/K;=1.0 andK,/K;=7.20. As was the case
els. As in the case when the field is in the basal plane Weyhen the field was in the basal plane the fit is very good
then have a correction to the bare inner transition line whichexcept for the high-field, low-temperature part of the inner
is proportional to the separation between the bare inner trarphase boundary where the linear theory is expected to break
sition and the outer transition in order to find the actual inneigown, This happens because of the renormalizations dis-
transition line. Our formula for the inner transition line cyssed in the previous section.
Tine{H) In terms of the bare inner transition lifg,q{H) A virtue of the theory given here is that a striking differ-
and the outer transition lin€,e(H) is then ence between the phase diagrams for the two directions of
the field receives an explanation. The upper critical field
TinnelH) = Tpard H) = 9[ ToutelH) = Toard H)]. (4.2 curve is smoother for field along the axis, and the inner

4.3
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transition line is much smoother. This can now be seen tdand transitions, we expect the Van Vleck susceptibility to
result from the “hybridization” of the two curves for this be very important—indeed it very likely dominates the total.
case due to the presence of the off-diagonal matrix elemen# band calculation which explicitly computes the two com-
in Eq. (4.3). This is absent for the other field direction, when ponents reckons the Pauli contribution at 15%—2@9%%

the two components decouple. rough agreement with this multiplicity argument.
If H is along thec axis, then the relevant matrix element
V. MAGNETIC PROPERTIES OF UPt 5 (with i=1) is
In this section we wish to discuss the origin, effect, and [{a|L,+ ZSZI,B)|2=(36/49j§6a,ﬁ. (5.2

relative sizes of the Pauli limiting terms in the free energy

. . 2 .
density. These are the terms proportionaltén® in Eq. perturbation introduced by is diagonal. The occupation

(3;613-n|(;1 g{)%irt t?hgor;fgsh;vti: re?:'r:rt?:g]gfptrﬁgT}'Q?H%Ibgfgfactors then imply that the Van Vleck susceptibility is zero
9 9 prop Sor this direction. IfH is in thex direction, the corresponding

The first fact to appremat_e is that the magnetic Suscept'b'"%xpression for the square of the matrix element is
Xij of the normal state is enhanced by roughly the same

factor as the mass. Becaugg is large, the Pauli limiting |{a|Ly+2S B)|2=(36/49 (5/2—j,)(5/2+],+1) (5.3
effect of the field on superconductivity is likely to be appre-
ciable. The second important point is that the susceptibility idf the statesa and g differ by one unit ofj, and is zero
anisotropic, and the temperature dependences of the comp@therwise. The Van Vleck susceptibility comes from four
nents are different. This is clear from the plots of the suscepdistinct pairs of states, j{=—5/2,-3/2), (-3/2,—1/2),
tibilities x,(T) andy,AT). (See, for example, Ref. 40, Fig. (1/2,3/2), and (3/2,5/2), whenever one of the pair is occu-
2.1) xx(T)>x,AT) at all temperature®: At high T, both  pied and the other unoccupied. The Pauli contribution to
functions take on the local moment forgn- 1/T, while each  Xxx» ©on the other hand, comes only from the pair
goes to a finite constant, characteristic of Pauli or Van Vlec —1/2,1/2) when this state is occupied. A sheet of the Fermi
behavior, at lowT. In addition, y.(T) has an anomaly surface will have an isotropic partial Pauli susceptibility
around 15 K. (x>/xE~1) if different j, values are well mixed in the
Let us first take a theoretical approach to understandingvave function, but will be anisotropic otherwigg:=1/2 im-
the anisotropy iny;; . Our basic assumption is that Upis a  plies x7/xy,<1, andj,=3/2 or j,=5/2 implies x}/ x> 1.
Fermi liquid at temperatures just above the critical temperaAs we shall see below, it is the anisotropy of the Pauli con-
ture. Then the starting point is the single-patrticle states caltribution which is critical for understanding the phase dia-
culated in band theory, which account very well for thegram. This means that the central question is, what is the
Fermi surfacéd? The states near the Fermi surface are preq, content of the Fermi surface, and how much mixing of
dominantly derived from uraniumfSorbitals withj=5/2, as  differentj,’s is there? Band calculations give a clear answer
would be expected from Hund'’s rules for an actinide systenio this question. They show that the parts of the Fermi sur-
with a 5f occupancy near 1. In the isolated atom, theface near thel’ point and K point are predominantly
j=5/2 level is sixfold degenerate. In the hexagonal crystaj,=3/2 or 5/2:>*®while the parts near tha point are well
field, there is an effective Hamiltonian at tliepoint which  mixed. Hence we expect a contribution to the Pauli suscep-
splits the sixfold-degenerate state into three doublets at thibility which satisfiesy:/x%>1 from the parts near and
I' point: j,==*5/2, j,=*3/2, andj,==*1/2. This means K, representing roughly half the total density of states at the
that UPt is likely to be an example of a system in which the Fermi surface, and a contribution SatiSfyiﬁgz/sz%]- for
magnetism is Van Vleck—like in the plane and Pauli-like the rest of the Fermi surface. In treatments which go beyond
along thec axis, which is expected to be a general feature oband theory to discuss many-body renormalizations, it is

At the T' point, states of differenf, do not mix and the

hexagonal U-based systefits. found that the Pauli and Van Vleck parts are enhanced by
Let us briefly review the reasons for this expectation. Ifsimilar factors?’
we apply a magnetic field, there will be both a Pduitra- Summing up these theoretical considerations, the mag-

band and a Van Vleck(interband contribution to the sus- netic susceptibility of UP§ is likely to be dominated by in-
ceptibility. The former is of orderdenug)?N(eg), while the  terband(Van Vleck contributions. This is particularly true
latter is of order @eup)?/|Bh|. Heregey is an effectiveg  for y,,, which means that the anisotropy in the oberved
factor for the coupling of the field to the total angular mo- susceptibility > x,, most likely stems from interband
mentum of the band or bands involved. It is a dimensionlesgontributions. The Pauli susceptibility, on the other hand, is
number of order unity. The Landactor forl =3,s=1/2,and  more likely to satisfy the opposite inequa|i}<35x<)(zpz-

j=5/2 is 6/7.By, is the separation between the bands and Experimentally, it is not easy to distinguish the Pauli and
N(eg) is the density of states at the Fermi energy. The Vanvan Vieck contributions to the susceptibility. The most

Vleck susceptibility is given by straightforward way, in principle, is to measure the imagi-
) nary part of the susceptibility with neutron scattering. The
onu2S [(alLi+2S]B)] ¢ (1—f 57  Van Vieck contribution has a gap at low frequencies, while

Xii = <Nig v Ez—E. o p- GBI the Pauli part does not. For the present case, however, we

also need to distinguish the different components of the sus-
Heref,, fz, E,, Ez are occupation factors and energies ofceptibility tensor. This means that polarized beam experi-
the statesy and 8 andn is the number of uranium atoms per ments are required, with the associated lower counting rates.
unit volume. In view of the greater multiplicity of the inter- Finally, we are interested here in the uniform susceptibility,
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which means small-angle scattering. Thus this definitive exE,, picture and mixed representation pictures. Consideration
periment may be difficult to perform. of pressure effects will allow us to do this. We will show that
A more indirect but still informative test arises from the only E, is consistent with these experiments. The analysis
observation that the Pauli susceptibility depends on the derin this section is an elaboration of earlier wdfdt is some-
sity of states at the Fermi energy whereas the Van Vleckvhat surprising that pressure experiments are so crucial for
susceptibility depends on a joint density of states. The Paulinderstanding the symmetry of the order parameter. Under
part is therefore directly comparable @&,/T, whereC,, is  normal circumstances, accessible pressures have only a small
the specific heat. In this regard the peakyig(T) at T=15 effect on superconducting parameters and qualitative conclu-
K (Ref. 4 is of interest. This peak is absent in the smoothsions are difficult to draw. In the present case, however,
curve forx,{T), and in the the specific he@,(T).*° This  moderate pressures destroy antiferromagnetism, which re-
is consistent with the idea that the physical origingegfand  stores the full hexagonal symmetry of the crystal structure. It
Xxx are different, and that the density of states at the Fermis this singularly fortunate circumstance which makes pres-
level largely determineg,, but not y,,. Thus experiments, sure such a very powerful tool in unraveling the order pa-
to the exent that we have them, confirm the theoretical pickameter symmetry.
ture. Qualitatively, the facts are these. The antiferromagnetic
The importance of these considerations for the supercormoment disappears at a critical pressure of about 3 kbar. The
ducting state is simpl& Superconductivity affects the Pauli splitting in T, also disappears at the same pressure. This
susceptibility in a drastic fashion. For a singlet state such ashows that it is indeed the antiferromagnetism which splits
Eig, the Pauli termXin(T) is reduced to zero at zero tem- the transition, as originally predictédThe coincidence of
perature because it takes a finite amount of energy to breakthe pressures at which these events take place rules out
pair and magnetize the system. Superconductivity shouléhixed representation theories such as @ theory?® In
have no effect at all on the Van Vleck term, and converselysuch theories the original splitting is due to an accidental
The difference in free energies between the normal and sifegeneracy and is not related to the antiferromagnetism.
perconducting states in a field is Our aim is to understand quantitatively the phases of
UPt; in the entire H,P,T) space. However, in order to un-
1 P derstand the restoration of crystal symmetry, we first focus
F magnetic= — 5; AxijHiH; - (54 on the H=0,P,T) plane, so that complications due to the
gradient terms can be treated separately. The expression for
HereAx{ = x{ — x|} wherey; andy]j are the Pauli suscep- the free energy density of the coupled magnetic-
tibilities in the superconducting and normal states, respecsuperconducting system is thér fs+fy + fsy, where
tively. Just below the superconducting transition we know
that the change in the susceptibility is quadratiainHence
we add to the usual superconducting free energy the last
three terms of Eq(3.1) which are quadratic in botly and
H.
From the arguments above we expect thaanday will
be smaller thara, since we anticipate thag., < x’,. From
our fits to the phase diagrams for the two directions of the fsu=Db|M- 1,|2+ b'M?5- 7*. 6.3
field we find thata, is slightly more than twice, +aq, in
agreement with the physical picture of the susceptibility. The . .
differences in the sizes of theeterms affect what happens to We have assumed, as is conyentlor]al, that the presure depen-
the upper critical field curves for the two directions of the dence of fourth-order coefficients is weak and can be ne-

field at high fields. At high fields the Pauli limiting terms in 9/€cted.

the free energy, which are proportionalHd, dominate over .f'V'  the magngtlc part of the free energy, entirely deter-
the rest of the free energy, which gives a contribution tomines the behavior of the antiferromagnetic moment above

H., proportional toH. Because,>a,+ay, Hg, when the T_c;- (Recall thatT,, is the highgr of the two observed tran-
field is along thec axis curves down more that., when the sition t_emperature}s.The expenmental data from neutrpn
field is in the basal plane. Consequently, the two upper critiScattering megsurementstz [pr_opomonal t.o.the magnetic
cal field curves for the two directions cross. This crossing gBragg scattering at the (20) poing are sufficient tozd_eter—
shown in Fig. 2 of our previously published paper onMine the parameters. =0 andT>T.;=0.5 K, M"is a
UPt,.% We have therefore shown that the objection to theln€@r function of Ty—T, where Ty=5 K is the Nel
E,4 model on the grounds that it cannot explain the crossin

fu=ay(P,T)M?+ByM*, (6.2

fs=as(P,T)n- 7* + B1(m- %)%+ B w9, (6.2

emperaturd>® One finds ay(P=0T)/By=(1.6X
of the upper critical field curves is invalid. 0 4r“é/K)(T_TN)- o .

As to the P dependence, it is found thaty is nearly

V1. PRESSURE EFFECTS independent of pressure from=0 to P=2 kbar and that
: M2~ (Py—P) for T<2 K,*° wherePy~3 kbar is the criti-

We have offered a comprehensive description of thecal pressure at which the antiferromagnetism disappears.
phase diagram of URtin the H-T plane. However, because From the point of view of this paper, which concentrates on
of the rather large number of parameters in the Ginzburgthe superconducting regim&<T., we may therefore
Landau free energy, this analysis is not yet sufficient to distake ay=ay(P—Py)(T—Ty)~—ayTy(P—Py), where
tinguish theE , picture from competing pictures such as the /By =5.3x 10" °u3/K kbar. Note that this value and the
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FIG. 5. Pressure dependence of the phase diagram with the field in the basal plan&jp thedel. The phase diagram is plotted at
pressuresP) of (a) P=0, (b) P=P\/2 (1.85 kbay, (c) P=Py (3.7 kbay, and(d) P=(3/2)Py (5.55 kbaj. HerePy is the pressure above
which the temperature splitting vanishes. As discussed in the text the theoretical inner transition line for temperatures below the tetracritical
point[Hy(T)] has been renormalized. The data pointéanare taken from Ref. 5, Fig. 3. The variation of the transition temperatures with

pressure is taken from Ref. 51.

coefficient of the expression far,,(P=0,T)/8\ have been M2=[ay(Ty—T)—(b+b")5%1/2By, (6.5
corrected from an earlier paper written by one of us
(Joynp.4° which give the behavior of the order parameters below
The pressure dependenceaf(P,T) may be obtained if T.;. AboveT;; we have simply
we assume thatwg(P,T)=as{T—T9)+aspP, so that
M2=ay(Ty—T)/2By . (6.6)

ag(P,T) is a linear function ofP. ag{T) is the zero-

pressure value oteg(P,T) which has already been deter- The sl is di i At
mined. ForP>Py, M=0 and the pressure dependence of e slope Is discontinuous &, :

T. is entirely due to the coefficientagp. Since ,
dT./dP=—11 mKikbar in this regiof® we find |4__ (DFDD? ]dM?
agp=ag(11 mK/kbaj. 4Bu(B1tB2) ] dT |1
At P=0 andT<T,, there is a competition between the ¢
dm? ast(b+b") 6.7

purely magnetic terms and the coupling tefgy,. Because
n-*~T—T for T<T, and =0 for T>T,,, the coup- aT
ling term predicts thaM should have a kink af¢,. The

magnitude of the kink may easily be computed using Edsy \ye take the approximation that the coupling+b’) is
(6.1, (6.2, and (6.3. Difjerentiation leads to two linear small, then we may write the discontinuity as
equations foM and = nx:

v BB B

dM?  agy(b+b’)

7?=[ag(T3—T)—(b+b )M2]/2(B1+ B,), (6.4 dT ~ 4By (Bit By (6.8
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FIG. 6. Pressure dependence of the phase diagram with the field in the basal plan&witk3)/K;=0 (E,, mode). The phase
diagram is plotted at pressureB)(of (a) P=0, (b) P=(1/2)Py (1.87 kba}, (c) P=Py (3.7 kbay, and(d) P=(3/2)Py (5.55 kba}. In order
to obtain a better fit in this model we have changed the values of some of our input parameters. In these phaseajiagignt,
Scox= —6.66 T/K, Scpy=—4.07 T/K, T,=0.465 K, andT,=0.509 K. The data, renormalization bIt’y*(T), and all other input parameters

are the same as those for Fig. 5.

In these formulagy is assumed to be parallel M. If these pressure is to close up the splitting of the zero-field critical
two vectors are perpendicular, thershould appear instead temperatures. Thus the tetracritical point moves down to-
of (b+b’). The kink is observed experimentaflywhich  ward the T axis and disappears, as does thelow-field,
again confirms that the splitting of the superconducting tranhigh-temperatuge phase. Thus theC- (high-field, low-
sition is due tofgy. These formulas assume that there istemperaturgB (low-field, low-temperaturephase boundary
only one component oM, contrary to the idea of Blount is very sensitive to pressure as it ends at the tetracritical
et al?® that the moment rotates at,. Recent experiments point. This is observed experimentaffyyOn the other hand,
have indeed ruled out the possibility of rotatitn. the N- (normal-statg C boundary (upper part of theH.,

We now wish to calculate the phase diagram at finite preseurve is not very sensitive to pressure. Again, the agreement
sures, assuming that the only pressure dependence comgstween theory and experiment is very satisfactory. It is dif-
from ag and ay, . All other parameters are taken to haveficult to compare these predictions with the threee-
their zero-pressure values. The only dependence on pressuiignensional phase diagram of Boukhmy al>* quantita-
in our theory of the phase diagram is through the quantitytively. The pressure dependence of the critical temperatures
AT. We calculate AT at various pressures by taking given by these authors is not in good agreement with that of
T(P=0) and T,(P=0) from our zero-pressure fit, Trappmannet al,>! which we used in plotting the figures.
dT,/dP (recall T,>T,), Py, anddT./dP (for P>Py) The behavior of the boundaries is quite sensitive to this de-
from experimental dat&l From T,(P=0) and Py we can pendence. Nevertheless, there appears to be very satisfactory
then findd T, /dP. In Fig. 5 we plot the phase diagram in the qualitative agreement between theory and experiment, with
H-T plane at various pressures fdrin the basal plane using one exception. The experiment shows that there is an addi-
the renormalized, (see Sec. I)l. The behavior with pres- tional phase boundary in tHe-T plane whenP>Py . This
sure is easily understood qualitatively. The main effect ofcannot be a pure superconducting transition in a two-
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component theory. We believe this to be a mixed magneticthe two high-symmetry-field directions. Most experiments
superconducting transition, so that this boundary is esserare also limited to these directions.
tially an extension of the magnetic phase boundary. The Consistent application of the method, taking into account
signal in the sound velocity is very small. It may be largerthe Pauli limiting effect, gives very good agreement between
than in the normal phase because of the coupling to the suheory and experiment for the, , theory. It would be desir-
perconducting order parameter which is serving as a secondble, however, to have an explicit calculation of the nonlin-
ary order parameter in the transition. ear renormalization factors entering the repulsion of the
Let us compare this behavior to the behavior of the phasehase boundaries; obtaining this by a fit, as done here, is not
boundaries in thé&,, theory in whichK,~K3;~0. The best truly satisfactory from the theorist’s point of view. The pe-
fit with this constraint is given in Fig. 6. This picture is in culiar phenomenon of the ., crossing is interpreted here as
qualitative disagreement with experiment. Again, the quali-arising from an interplay of intraband Pauli magnetism and
tative reason for this is easily understood. In Eyg theory, interband Van Vleck magnetism. While the picture of the
the difference in slope between ti., curves fory, and  anisotropic susceptibility which emerges is a natural one, it
7y is due only to their differing energies in the presence ofwould be good to have some independent confirmation of it.
the antiferromagnetism. OncB>P,, this difference is The surprise of the past several years is that pressure ex-
gone and the two components have identical free energigsriments have been able to play a critical role in sorting out
and identical slopes. ThE,, theory says that th&l-C and  the nature of the order parameter. They have demonstrated
C-B boundaries must move together, not apart, under théhat it is the antiferromagnetism which splits the critical tem-
influence of pressure. This is in conflict with experiment.  perature. Above the critical pressure, the hexagonal symme-
try is restored. Experiments above this pressure have shown
VIl. CONCLUSION that there are still two phase transitions as a function of
field—this means that the field direction itself couples to the
The Ginzburg-Landau theory is a very powerful tool in jnternal degrees of freedom in the two-component order pa-
the physics of unconventional superconductivity. We havéameter. This only occurs in the, 4 picture, which appears

pushed the theory to obtain as much information as possiblg, be the only choice fully consistent with all experiments.
about the phase diagram. Mathematical difficulties arise

when a magnetic field is applied, a circumstance which has
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