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The phase diagram of superconducting UPt3 is explained in a Ginzburg-Landau theory starting from the
hypothesis that the order parameter is a pseudo-spin-singlet which transforms according to theE1g represen-
tation of theD6h point group. We show how to compute the positions of the phase boundaries both when the
applied field is in the basal plane and when it is along thec axis. The experimental phase diagrams, as
determined by longitudinal sound velocity data, can be fit using a single set of parameters. In particular the
crossing of the upper critical field curves for the two field directions and the apparent isotropy of the phase
diagram are reproduced. The former is a result of the magnetic properties of UPt3 and their contribution to the
free energy in the superconducting state. The latter is a consequence of an approximate particle-hole symmetry.
Finally, we extend the theory to finite pressure and show that, in contrast to other models, theE1g model
explains the observed pressure dependence of the phase boundaries.@S0163-1829~96!04118-X#

I. INTRODUCTION

Currently, there is a great deal of discussion about the
nature of the superconducting heavy-fermion compounds, es-
pecially UPt3 . Much of this discussion has centered on the
unusual nature of the superconducting state. Experiments to
map out the phase diagram of UPt3 in the field-temperature
(H-T) plane using both specific heat1,2 and longitudinal
sound absorption3,4 and velocity5,6 have revealed multiple
superconducting phases. In particular these measurements
show that two superconducting phases exist even at zero
field, as was predicted7 by an analysis of the free energy for
a two-component order parameter in the presence of
antiferromagnetism.8 The resulting Ginzburg-Landau~GL!
theory makes additional predictions, e.g., the kink in the up-
per critical field when the field is in the basal plane.9,10 In
these theories, the order parameter transforms as one of the
irreducible representations of theD6h point group of the
crystal, eitherE1 or E2 .

11,12

Further evidence about the superconducting state of
UPt3 comes from measurements of ultrasound13,14 and heat
conduction.15 These experiments suggest that there are point
nodes in the superconducting gap function where the Fermi
surface intersects the linekx5ky50 and line nodes where
the Fermi surface intersects thekz50 or kz5p/c planes.
This is evidence for ad-wave E1g order parameter which
transforms like (kxkz ,kykz). The theorem of Blount16 states
that triplet states cannot have lines of nodes when spin-orbit
coupling is taken into account. The theorem assumes that no
symmetries are present other than the crystal point group
symmetries. It has been argued that other symmetries may be
present in UPt3 ~Ref. 17! and thus lines of nodes may be
present even if the Cooper pair is a triplet. Thus the nodal
pattern may not prove singlet pairing.

In spite of the success of theE1g model in explaining the
nodal structure of the gap function and the existence of mul-
tiple superconducting phases, certain objections have been
raised regarding its suitability as a description of UPt3 . One
objection is that theE1g theory fails to explain the isotropy

of the phase diagram or, in other words, why the phase dia-
gram when the field is parallel to thec axis of the crystal
appears to be similar to the phase diagram when the field is
perpendicular to thec axis.17,18 This phenomenological ob-
jection has in fact led to a number of other proposals for the
superconducting order parameter. One example is a state
with a mixture of two different one-dimensional representa-
tions with accidentally nearly equal critical temperatures.19 A
second example is the staggered superconducting state.20

This state is of particular interest because it has a micro-
scopic foundation in the two-channel Kondo model of
UPt3 . What these theories have in common is that the form
of the free energy is the same whenH is in the basal plane
and whenH is along thec axis: The two components of the
order parameter decouple in either case. The result is that the
phase diagrams should be identical for the two field direc-
tions, except for the slopes of the boundaries. Experimen-
tally, the problem with this is that the phase diagrams for the
two directions, though broadly similar, have important dif-
ferences as well. WhenH is in the basal plane the phase
boundaries are more or less straight, the upper critical field
has a very distinct kink, and the tetracritical point is very
well defined. WhenH is along thec axis, on the other hand,
the phase boundaries have considerable curvature, there is no
kink in the upper critical field, and this makes the existence
of the tetracritical point somewhat doubtful. We shall find
that theE1g theory does in fact explain the phase diagram for
both orientations ofH. The other common objection to the
E1g theory is that because it is a singlet theory it cannot
explain why the upper critical field curve forH along thec
axis and the curve forH in the basal plane cross.21 This
crossing is maintained to be a characteristic of triplet theories
alone.22 By a careful analysis of the magnetic properties of
UPt3 and their contributions to the GL free energy we will
show that pseudo-spin-singlet states can also produce this
effect.

The plan for the rest of this paper is as follows. In Sec. II
the overall mathematical approach to the phase diagram
problem is discussed. It is necessary to go into the method in
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some detail: Only a very careful analysis brings out the na-
ture of the inner phase transition. In Sec. III we will take the
free energy and use it to obtain the phase diagram whenH is
in the basal plane. The observed tetracritical point comes out
in a natural way. By fitting the theory to the longitudinal
velocity data we will obtain values for all the relevant pa-
rameters of our theory. Then in Sec. IV we will obtain the
phase diagram for the case whenH is parallel to thec axis.
We will show that our theory can be fit to the data for the
case whenH is parallel to thec axis with the same set of
parameters used for the case whenH is in the basal plane.
The near-crossing of the phase boundaries whenH is along
the c axis is a consequence of approximate particle-hole
symmetry. In Sec. V we will discuss the magnetic properties,
in particular the magnetic susceptibility. We will show the
effect the susceptibility of UPt3 has on the GL free energy
and how this leads to properties such as the crossing of the
upper critical field curves for different directions of the field.
In Sec. VI the phase diagram is extended to finite pressure.
Finally in Sec. VII we make some concluding remarks.

II. EFFECTIVE FIELD METHOD FOR THE PHASE
DIAGRAM

This section will be devoted to explaining the mathemati-
cal method used to obtain the phase diagram for UPt3 in the
presence of an external magnetic field. The full problem is
very complicated. We give first a simple example to orient
the reader to the case of competing order parameters. The
reader who is mainly interested in the overall concept, not
the details, may read the first subsection and consult the sum-
mary figures in the other subsections.

A. Simple model

A simple system with a multicomponent order parameter
and competition among the components is a magnet with
uniaxial anisotropy. The free energy is

F5a0x~T2Tc!~Mx
21My

2!1bxy~Mx
21My

2!2

1a0z~T2Tz!Mz
21bzMz

41bxz~Mx
21My

2!Mz
2 .

~2.1!

Suppose thatTc.Tz . Then atTc , the system develops a
nonzeroM in the x-y plane, its direction otherwise not de-
termined byF. Let us sayM5M x̂ with M (T) given by
^M2&5ax0(Tc2T)/2bxy . The angular brackets indicate
equilibrium values. The question we face~which adumbrates
the whole theme of this paper! is, how doMy andMz behave
below Tc? The first question has a simple answer.My will
remain zero belowTc . One way to see this is to write an
effective free energy forMy belowTc by simply taking the
terms inF which involveMy and writing the equilibrium
value forMx andMz :

Feff~My!5a0x~T2Tc!My
212bxy^Mx

2&My
2

1bxẑ Mz
2&My

21bxyMy
4 ~2.2!

5bxẑ Mz
2&My

21bxyMy
4 . ~2.3!

There will be a temperature range belowTc where
^Mz

2&50. The fact that the effective free energy is then quar-

tic in My is the sign thatMx andMy are degenerate, and the
fact that the minimum ofFeff is at My

250 indicates that
rotation ofM in thex-y plane will take place only if a mag-
netic field ~which could be infinitesimal! is applied.

Now do the same forMz:

Feff~Mz!5a0z~T2Tz!Mz
21bxẑ Mx

2&Mz
21bzMz

4 ~2.4!

5Fa0z~T2Tz!2
bxz

2bxy
a0x~T2Tc!GMz

21bzMz
4 .

~2.5!

There are evidently two possibilities. Either the expression in
square brackets vanishes at positiveT, in which case there is
a second-order phase transition whereMz appears so that the
magnetization rotates in thex-z plane, or it vanishes at nega-
tive T, which implies that there is no further transition and
Mz50 at all T. The rotational phase transition, which is
second order, takes place at a lower critical temperature
given by

Tc25
a0zTz2~bxza0x/2bxy!Tc

a0z2~bxza0x/2bxy!
. ~2.6!

An important point is thatTz , thebare critical temperature
for Mz , may be positive butTc2 still negative. This would be
an example of the effective field suppressing a transition. If
there is a transition (Tc2.0), then the effective free energy
is not valid forT,Tc2—it neglects the feedback ofMz on
Mx .

Of interest below will be the question of artificial terms
such asgMx

3Mz in the original free energy. This would add
a termg@a0x(Tc2T)/2bx#

3/2Mz to the effective free energy
for Mz . This means thatMz becomes nonzero already at
Tc and the lower transition is converted to a crossover, just
as if an external field in thez direction were applied.

For finding out whether there is a transition, whether it is
second order, and computing the lower transition tempera-
ture, analysis of the effective free energy is all that is re-
quired. To find the behavior of the system belowTc2 , one
must minimize the full free energy.

B. s-wave superconductor

We now apply the effective field method to the well-
known problem of an isotropics-wave superconductor to
show how it works in a case which is actually quite non-
trivial, but whose phase diagram is well understood. This
system has a single complex order parameter. In the presence
of a field, however, there is, in a certain sense, an infinite
number of order parameters, and interesting competition
among them.

The free energy density for the system is

f5a0~T2Tc!uhu21buhu41K(
i
DihDi*h* . ~2.7!

Here Di52 i ] i12eAi /\c (2e is the charge on an elec-
tron!, and if we take takeH in thez direction, then the gauge
A5Hxŷ is appropriate. We haveDx52 i ]x and
Dy52 i ]y12eHx/\c. Our problem is to minimize the free
energyF5* f dV for arbitraryH andT.
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The method we will use is to expand the functionh(x) in
a complete set of normalized eigenfunctions of the operator

K~Dx
21Dy

2!, ~2.8!

which are

fnk5~2nn! lL yAp!21/2e2 ikyexp@2~x2kl2!2/2l 2#

3Hn@~x2kl2!/ l #, ~2.9!

where l5\c/2eH, Hn are the Hermite polynomials, and
Ly is the size of the system in they direction. We now write

h~x!5(
nk

Cnkfnk~x!, ~2.10!

and the free energy becomes

F5(
nk

@a0~T2Tc!1«n#uCnku21 (
n1k1 ,n2k2 ,n3k3 ,n4k4

bn1k1 ,n2k2 ,n3k3 ,n4k4Cn1k1
Cn2k2
* Cn3k3

Cn4k4
* . ~2.11!

The coefficients in this equation are

«n5~n11/2!
4KeH

\c
~2.12!

and

bn1k1 ,n2k2 ,n3k3 ,n4 ,k45bE d3xfn1k1
fn2k2
* fn3k3

fn4k4
* .

~2.13!

An important point is that« is independent ofk andb is zero
unless k12k21k32k450. We have reexpressedF as a
fourth-order polynomial in an infinite number of variables
Cnk , which may be thought of formally as competing order
parameters. We must minimize this polynomial.

The upper critical field curve is given by noticing when
the coefficient of the quadratic termfirst changes sign:

a0~T2Tc!1«n50. ~2.14!

The highest value ofH for which this equation holds corre-
sponds ton50 and the curve

a0~T2Tc!12KeH/\c50 ~2.15!

defines the normal-superconducting phase boundary.
Below this boundary, somebut not all of the Cnk are

nonzero and

C0k;@a0~Tc2T!22KeH/\c#1/25d1/2. ~2.16!

This equation definesd, which serves as a small quantity in
the analysis below, the validity of which is thereby limited to
the neighborhood of the phase boundary.d.0 in the ordered
phase. The periodicity of the flux lattice shows thatC0kÞ0 if
and only if k5mq, where m is any integer and
q5AA3p/ l . We shall denote this condition bykPL; i.e.,
k belongs to the discrete set which constitutes the flux lattice.
The discreteness reflects the fact that magnetic translation
symmetry as well as gauge symmetry are broken in the low-
T, low-H phase. Thus, sufficiently close to the phase bound-
ary, only these coefficients need be computed and we get the
familiar theory of the hexagonal flux lattice. As is well
known, no further phase transitions take place as the field is
lowered until the Meissner state takes over atHc1 .

In UPt3 , on the other hand, there is another transition
when the field is reduced. Why does this not occur in the

s-wave case? The answer is not obvious. For example, we
may consider the Landau leveln51. Setting the eigenvalue
equal to zero as we did forn50 would give a critical field
line with the sameTc but with a slope only 1/3 of the slope
of theHc2 curve. Why does no transition take place on this
line in theH-T plane? That is, why is there no nonanalytic
behavior of theC1k on this line? What aboutC0k for k
Þmq?

To answer these questions, we must develop a picture of
the effective fields present in the system when the symmetry
has been broken. This is done by classifying different terms
of the polynomial in Eq.~2.11!.

1. Class 1: Terms determing the leading behavior of C0k , kPL

These are the simplest of all; the free energy is

F5(
k

@a0~T2Tc!1«0#uC0ku21O ~C0k
4 !1•••,

~2.17!

where only the terms relevant to the behavior of terms in
class 1 have been written explicitly.

For smalld, these terms give the simple result

F52d~C1!21O ~~C1!4!⇒~C1!;d1/2, ~2.18!

where (C1) denote collectively theCnk which belong to
class 1. For our considerations which are simply a matter of
power counting, the indices onC are not required at this
point. TheC1 are analogous toMx in the magnetic example.
The conclusion is that theCnk are proportional tod1/2 near
the phase boundary.

2. Class 2: Terms determining the leading behavior of C0k8,
k8PL 8

We write momenta of the formk85(m11/2)q, where
m is an integer, with a prime. Combining theC0k8 builds a
hexagonal lattice which interpenetrates the original one, as
we shall see below in Sec. III. Whend50 these variables are
degenerate with the (C1)—these are the ones not chosen
because of the breaking of the magnetic translation symme-
try. TheC2 should be compared toMy in the previous sub-
section. Asd increases, they become less favored because
they feel an effective repulsion from the (C1). The relevant
terms inF ~call them collectivelyFC1,C2) are of the form
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FC1,C25(
k8

@a0~T2Tc!1«0#uC0k8u
2

1 (
k1 ,k2 ,k3 ,k4

b0k1,0k2,0k3,0k4C0k1
C0k2
* C0k3

C0k4
* 1•••.

~2.19!

This equation repays careful examination. A first crucial

point is that there are no terms of the form (C1)3(C2) or
(C1)(C2)3. Recall thatbn1k1,n2k2 ,n3k3 ,n4k4 is zero unless

k12k21k32k450. However, thekPL are equally spaced,
and so if k1 ,k2 ,k3PL, then k4PL as well. Similarly if
k1 ,k2 ,k3PL8, then alsok4PL8. For the casek1 ,k2PL then
we can havek3 ,k4PL8. Hence the only cross terms~in L
and L8) which survive have the form (C1)2(C2)2. More
explicitly,

FC1,C25(
k8

@a0~T2Tc!1«0#uC0k8u
21 (

k1 ,k2 ,k38 ,k48
B0k1,0k2,0k38,0k48

C0k1
C0k2
* C0k

38
C0k

48
*

1 (
k1 ,k2 ,k38 ,k48

b0k1,0k38,0k2,0k48C0k1
C0k2

C0k
38

* C0k
48

* 1c.c.1 (
k18 ,k28 ,k38 ,k48

b0k
18,0k28,0k38,0k48

C0k
18
C0k

28
* C0k

38
C0k

48
* 1•••.

~2.20!

In this equation

B0k1,0k2,0k38,0k48
5b0k1,0k2,0k38,0k481b0k1,0k4,0k38,0k281b0k3,0k4,0k18,0k281b0k3,0k2,0k18,0k48. ~2.21!

In the summationsk runs overL and k8 runs overL8. The idea of the effective field is to note that, whenH,Hc2 ~or
d.0), we may write an effective free energy for the (C2):

Feff„~C2!…5(
k8

@a0~T2Tc!1«0#uC0k8u
21 (

k1 ,k2 ,k38 ,k48
B0k1,0k2,0k38,0k48

^C0k1
C0k2
* &C0k

38
C0k

48
*

1 (
k1 ,k2 ,k38 ,k48

b0k1,0k38,0k2,0k48^C0k1
C0k2

&C0k
38

* C0k
48

* 1c.c.1 (
k18 ,k28 ,k38 ,k48

b0k
18,0k28,0k38,0k48

C0k
18
C0k

28
* C0k

38
C0k

48
* 1•••,

~2.22!

where the angular brackets denote equilibrium values in the ordered phase. Examination of this free energy is all that is
required to analyze the stability ofL8. SinceC0k;d1/2, the structure of this equation is

Feff„~C2!…52d~11R2!~C2!21O „~C2!4…, ~2.23!

whereR2 is a dimensionless matrix which is independent of temperature. In fact, if theC0k are divided into real and imaginary
parts, thenR2 is a real, symmetric matrix.If there is to be no further phase transition, then all the eigenvalues of R2 must be
less than or equal to21. Otherwise, the (C2) condense, and another lattice would form. This would mean an ‘‘inner’’
transition in ordinarys-wave materials, which does not occur.

3. Class 3: Terms determining the behavior of Cnk for n>0 and kPL

All possible terms come into the effective free energy for the (C3):

Feff„~C3!…5@a0~T2Tc!1~2n11!2KeH/\c#~C3!21b31^~C1!3&~C3!1b32^~C1!2&~C3!21b33^~C1!&~C3!3,
~2.24!

where Feff has been written for a definiten value. The coefficient in square brackets is positive as long as
H.Hc2 /(2n11). b31 , b32 , andb33 are constants independent ofd whose precise form need not detain us. In this field
region the leading behavior is dominated by the term linear in the (C3):

Feff„~C3!…;2~C3!21b31~C1!3~C3!;2~C3!21b31d
3/2~C3!⇒~C3!;d3/2. ~2.25!

This resolves the question raised above. There is no phase transition atHc2 /(2n11) because the coefficients determining the
weight of thenth Landau level have already started to grow atHc2 itself. Thus the putative phase transition is converted into
a crossover.
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4. Class 4: Terms determining the leading behavior of Cnk8, n>0, k8PL 8

We have accumulated enough experience to write the effective free energy immediately:

Feff„~C4!…5(
nk8

@a0~T2Tc!1~2n11!2KeH/\c#uCnk8u
214 (

k1 ,k2 ,nk38 ,n8k48
b0k1,0k2 ,nk38 ,n8k48^C0k1

C0k2
* &Cnk

38
Cn8k48
*

1 (
k1 ,k2 ,nk38 ,n8k48

b0k1,0k38 ,nk2 ,n8k48^C0k1
C0k2

&Cnk
38

* Cn8k48
* 1c.c.

1 (
n1k18 ,n2k28 ,n3k38 ,n4k48

bn1k18 ,n2k28 ,n3k38 ,n4k48Cn1k18
Cn2k28
* Cn3k38

Cn4k48
* 1•••. ~2.26!

In the last term the sums overn1 , n2 , n3 , andn4 are over all
possible values ofn except zero. By analogy with case 2, this
may be written as schematically as

Feff„~C4!…52d~11R4!~C4!21O „~C4!4…, ~2.27!

the only difference being thatR4 is a matrix in then and
n8 indices as well as thek8 index. There are no terms linear
in the (C4). There is no phase transition involving the
(C4)—hence the eigenvalues ofR4 are less than21. The
(C4) are always zero in equilibrium.

5. Class 5: Terms determining the behavior of other k values

It is evident from the momentum conservation condition
that the effective free energy fork such thatkP” L, kP” L8 can
contain terms such aŝ(C1)&(C5)3, for k5q/3, for ex-
ample. There are no terms linear in theC5. The cubic terms
could give rise to additional first-order transitions in prin-
ciple. It is evident that this does not occur and we do not
consider such terms further.

We may conclude this discussion of thes-wave case by a
graphical account of how all transitions except the one at
Hc2 itself are suppressed. Figure 1 shows the bare eigenvalue

curves, the repulsion of some levels away from theHc2
curve, and the conversion to crossover of others. These two
effects arise from the effective field coming from the quartic
term in the original free energy.

C. Effective field method for the d-wave case
The d-wave case may be analyzed in a similar manner.

For our present qualitative discussion we need only the fact
that the order parameter becomes a complex two-component
vector h5(hx ,hy). The free energy again contains qua-
dratic and quartic terms in this variable. It is

f5a0~T2Tx!uhxu21a0~T2Ty!uhyu21b1~h•h* !2

1b2uh•hu21 (
i , j5x,y

~K1Dih jDi*h j*1K2Dih iD j*h j*

1K3Dih jD j*h i* !1K4 (
i5x,y

uDzh i u2. ~2.28!

We have neglected certain terms which are not relevant to
the present discussion. They will be introduced in the next
section. However, we do not specialize to any particular di-

FIG. 1. Consequences of the effective field in thes-wave case.~a! Eigenvalue curves for the new lattice withkPL. The lines are the
solutions to Eq.~2.14!. However, all transitions are suppressed by the effective field except the originalHc2 line. The cross hatching
indicates that the transition is converted to a crossover. The numbers in parentheses denote the class of the line.~b! Curves for the new lattice
with kPL8. As in ~a!, except that the new lattice interpenetrates the old one. All lines are repelled by the effective field to unphysical values
of H andT, and theCnk corresponding to these boundaries never become nonzero. This is indicated by the arrows.
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rection of field, and the analysis is valid for all directions.
This section generalizes the analysis carried out by Joynt23

for the field in the basal plane, which is the easiest case.
The quadratic form may be diagonalized by finding the

two-component vector eigenfunctionsfnk . We then write

h5(
nk

Cnkfnk ~2.29!

to obtain

F5(
nk

@a0~T2Tc1!1«n~H !#uCnku2

1 (
n1k1 ,n2k2 ,n3k3 ,n4k4

bn1k1 ,n2k2 ,n3k3 ,n4k4

3Cn1k1
Cn2k2
* Cn3k3

Cn4k4
* , ~2.30!

the difference with thes-wave case being that the energy
levels«n(H) and the form of theb coefficients are far more
complicated. HereTc1 is the greater ofTx andTy , andTc2

0 is
the lesser ofTx and Ty . The curves which are the lines
a0(T2Tc1)1«n(H)50 are shown in Fig. 2~a!. Crucially,
however, the momentum conservation condition
k12k21k32k450 is the same. We now specialize a bit to
the case of UPt3 . Then the solutionsa0(T2Tc1)1
«n(H)50 fall into two classes. Half the levels have abare
Tc at Tc1 @because«n(H50)50# and half atTc2

0 @because
«n(H50)5a0(Tc12Tc2

0 )#. Thus when we specify the level
index it must be stated to which class the level belongs. Call
those with the higherTc ~a! and those with the lowerTc ~b!.
Apart from this difference, the classification of states pro-
ceeds similarly to thes-wave case.

1. Class 1(a): Terms determining the leading behavior of Cnak ,
n50, kPL

The free energy is

F~C0ak
!5(

k
@a0~T2Tc1!1«0a#uC0ak

u21O ~C0ak
4 !1•••,

~2.31!

with the result that

2d~C1!a
21O „~C1!a

4
…→~C1!a;d1/2, ~2.32!

whered52@a0(T2Tc1)1«0a#.

2. Class 2(a): Terms determining the leading behavior of C0ak8,
k8PL 8

Again, we write momenta of the form (m1 1
2 )q, where

m is an integer, with a prime. These coefficients may be
treated by analogy with thes-wave class 2 above. Familiar
with the procedure, we may write down the relevant effective
free energy immediately:

Feff„~C2!a…52d~11R2a!~C2!a
21O „~C2!a

4
…,

~2.33!

where againR2a is a dimensionless matrix. This matrix is
similar to R2, and we expect that all the eigenvalues of
R2a must be less than or equal to21 and the usual hexago-
nal symmetry arises atHc2 . That this is actually the case has
been shown by Zhitomirskii.24

FIG. 2. Consequences of the effective field in thed-wave case.~a! Eigenvalue curves for the new lattice withkPL setting the
eigenvalues of the quadratic form in Eq.~2.28! equal to zero, neglecting the fourth-order terms. Most transitions are converted to crossovers
by the effective field except the originalHc2 line. The numbers in parentheses denote the class of the line.~b! New lattice withkPL8. As
in ~a!, but the new lattice interpenetrates the old one. Transitions corresponding toC0a

andC0b
are repelled only a short distance~single

arrows!. The dashed lines show the final positions of these boundaries after taking into account the effective field. A single internal transition
line remains.
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3. Class 3(a): Terms determining the behavior of Cnak for n a>0
and kPL

The analysis proceeds as ins-wave class 3:

Feff„~C3!a…;~C3!a
21b31a~C1!a

3~C3!a

;~C3!a
21b31ad

3/2~C3!a

→~C3!a;d3/2. ~2.34!

These candidate phase transitions are thus converted to
crossovers by the effective field. Note that there is, for gen-
eral field directions, no parity selection rule in thed-wave
case, and so there is no distinction betweenn 5 odd andn 5
even. The (C3)a contribute to the change of shape of the
vortices as the external field is reduced belowHc2 , but pro-
duce no further phase transition.

4. Class 4(a): Terms determining the leading behavior of Cnak8,
na>0, k8PL 8

The effective free energy is

Feff„~C4!a…52d~11R4a!~C4!a
21O „~C4!a

4
….

~2.35!

We again argue by analogy withs-wave case 4 that the ei-
genvalues ofR4a must be less than21 so that the (C4)a are
always zero.

5. Class 5(a): Other periodicities

Again other periodicities will not arise from states in class
5~a!, just as ins-wave case 5.

In discussing cases 1~a!–5~a!, we stress that we have not
given explicit proofs for the magnitude of the eigenvalues of
the differentRmatrices. It is possible to write these matrices
formally, but they are quite complicated. However, they are
very similar to thes-wave case, where we are certain of the
result even in the absence of explicit calculation.

Let us now turn to the the levels which start fromTc2
0 .

Here we have less guidance from thes-wave analogy.

6. Class 1(b): Terms determing the leading behavior of C0bk
,

kPL

These terms are analogous to those ins-wave class 3. As
long asHÞ0, all possible terms come into the effective free
energy for the (C1)b :

Feff„~C1!b…5@a0~T2Tc1!1«0b#~C1!b
21b31ab^~C1!a

3&~C1!b1b32ab^~C1!a
2&~C1!b

21b33ab^~C1!a&~C1!b
3 . ~2.36!

For certain special directions of the field, the cubic-linear and linear-cubic terms may vanish, but we are concerned here with
the general case. This leads to the result that

Feff„~C1!b…;~C1!b
21b31ab~C1!a

3~C2!b;~C1!b
21b31abd

3/2~C1!b→~C1!b;d3/2. ~2.37!

Thus these terms show crossover behavior. This fact is the apparent basis for a statement occasionally found in the literature
that for general directions of the field there is no lower phase transition ind-wave systems at finite field.25,18

7. Class 2(b): Terms determining the leading behavior of C0k8, k8PL 8

This is the crucial case so we treat it in detail. The relevant terms inFeff are

Feff„~C2!b…5(
k8

@a0~T2Tc1!1«0b#uC0bk8u
21 (

k1 ,k2 ,k38 ,k48
B0ak1,0ak2,0bk38,0bk48

^C0ak1
C0ak2
* &C0bk38

C0bk48
*

1 (
k1 ,k2 ,k38 ,k48

b0ak1,0bk38,0ak2,0bk48^C0ak1
C0ak2

&C0bk38
* C0bk48

* 1c.c.

1 (
k18 ,k28 ,k38 ,k48

b0ak18,0ak28,0bk38,0bk48^C0ak18
C0ak28
* &C0bk38

C0bk48
* 1•••, ~2.38!

where the angular brackets denote equilibrium values in the
ordered phase and

B0ak1,0ak2,0bk38,0bk48
5b0ak1,0ak2,0bk38,0bk481b0ak1,0bk4,0bk38,0ak28

1b0bk3,0bk4,0ak18,0ak281b0bk3,0ak2,0ak18,0bk48.

~2.39!

SinceC0ak
;d1/2 the structure of this equation is

Feff„~C2!b…5@a0~T2Tc1!1«0b2dR2b#~C2!b
2

1O „~C2!b
4
…, ~2.40!

where againR2b is a dimensionless matrix. The question of
further phase transitions in this case reduces to asking
whether the matrix@a0(T2Tc1)1«0b2dR2b# can ever
have negative eigenvalues. If it does, then there will be a
lower phase transition. The answer is known for UPt3 ~more
formally for E representations of the hexagonal group in
some parameter ranges! in certain limiting cases. IfH50,
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then the problem reduces to a well-known one.26,9,10 There
are indeed two transitions and the effect ofdR2b is to reduce
the bare transition temperature Tc2

0 @where
a0(T2Tc1)1«0b(H50)50] to Tc2 , the observed lower
transition temperature. This is the precise analog of the criti-
cal temperature forMz in Eq. ~2.6!. Also for H in the basal
plane and arbitrary field strength, the problem can be
solved.23 At the tetracritical point,dR2b vanishes, and so
there is no effective field. Near this point, the effective fields
can be calculated, and we will carry this calculation out in
the next section.@a0(T2Tc1)1«0b2dR2b# vanishes along
a line inH-T space. This represents the second phase tran-
sition for this field direction. In fact all the functions in-
volved are continuous and the second phase transition occurs
for all directions ofH for UPt3 .

8. Class 3(b): Terms determining the behavior of Cnbk
for n b>0 and kPL

The interesting new feature that arises for these terms is
that we now have an effective field from both the (C1)a and
the (C2)b . There are more terms in the effective free energy
for the (C3)b . However, we shall not consider this in detail,
since it is evident that these (C3)b couple linearly to the
(C1)a and therefore start their life atHc2(T) where they are
proportional tod3/2.

9. Class 4(b): Terms determining the leading behavior of Cnbk8,
nb>0, k8PL 8

Here the relationship of terms (C4)b to (C2)b is the same
as thats-wave (C3) to s-wave (C1). Thus there is an effec-
tive free energy of the form

Feff„~C4!b…;@a0~T2Tc1!1«nb#~C4!b
21O „~C2!b

3~C4!b….

~2.41!

Crossovers only are allowed for these terms.

10. Class 5(b): Other periodicities

We may neglect these for the same reasons ass-wave
class 5.

Let us now summarize the conclusions. AtHc2 theC0ak

condense to form a hexagonal lattice which we callL. At the
same time, a number of other coefficients begin to grow
@such as those in class 3~a! and 1~b!#, though more slowly
than theC0ak

. Their growth means that the shape of the

vortices is temperature and field dependent, but the symme-
try of the latticeL is unchanged. As the temperature or field
is further lowered, theC0bk8 become unstable, forming a

latticeL8 which interpenetratesL. This occurs by a second-
order phase transition. This process is summarized in Fig. 2.

III. PHASE DIAGRAM: FIELD IN THE BASAL PLANE

We have now established the mathematical method for
finding the phase boundaries. In this section we apply the
method to thequantitativeconstruction of the phase diagram
for the case when the field is in the basal plane of the hex-
agonal UPt3 crystal. We begin by writing down the free
energy density for a hexagonalE1 or E2 system:

f5a0~T2Tx!uhxu21a0~T2Ty!uhyu21b1~h•h* !21b2uh•hu21 (
i , j5x,y

~K1Dih jDi*h j*1K2Dih iD j*h j*1K3Dih jD j*h i* !

1K4 (
i5x,y

uDzh i u21~a0eDT!~\c/2e! (
i5x,y

~ uDihxu22uDihyu2!1azHz
2h•h*1ax~Hx

21Hy
2!h•h*1aduH•hu2. ~3.1!

Here h5(hx ,hy) is the two-component order parameter,
andK1 , K2 , K3 , K4 , a0 , b1 , b2 , ax , az , ad, ande are
constants. The coupling of the staggered magnetization to
h is responsible for the temperature splittingDT5Tx2Ty .

Note that in writing the free energy in this form we are
implicitly assuming that the staggered magnetization rotates
with the magnetic field. Two facts make this assumption rea-
sonable. First, as was originally pointed out by Machida and
Ozaki,27 the term in the free energy for the antiferromagnetic
moment,M, which is responsible for basal plane anisotropy
is of orderM6. Further, becauseM is only about 0.02mB per
uranium atom8 the (M•H)2 term in the free energy for
M,28 which tends to forceM to rotate withH, will likely
dominate over the anisotropy term. Second, this idea of weak
basal-plane anisotropy has been used29 to explain the small
oscillations inHc2 as a function of the orientation of the field
in the basal plane which have been experimentally
observed.30

The terms quadratic inH are Pauli limiting terms. They
arise due to the reduction of the spin susceptibility in the
singlet superconducting state. The effect of these terms on
the phase diagram and a physical explanation for the relative
sizes which we obtain for the variousa coefficients will be
given in Sec. V. The phase diagram for the case of the field
in the basal plane in our theory has been considered previ-
ously by Joynt,23 but we now wish to consider it in more
detail and compare our results to experimental data. Similar
calculations have also been performed in other models.31,32

It has been suggested that the spatial variation ofh along
the field direction needs to be considered in the calculation
of the upper critical field.18 To show that this does not occur,
we have computed the eigenvalues for the quadratic part of
Eq. ~3.1! as a function ofp2, the wave vector along the field
direction. The coefficient ofp2 is positive, meaning thath is
uniform along the direction of the field, unless
(K21K3)/K1.3.126. As we shall see below, this is cer-
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tainly larger than any value which can fit the upper critical
field data. In fact the ratio is roughly unity. Let us choose a
coordinate system such thatH5H x̂. In this system, the re-

sult is that we can minimize any terms in the free energy
density containingDx by setting them to zero. Our free en-
ergy density is then

f5a0S T2Ty1
axH

2

a0
D uhyu21~b11b2!uhyu41K4uDzhyu21K1238 uDyhyu21a0S T2Tx1

~ax1ad!H
2

a0
D uhxu2

1~b11b2!uhxu41K4uDzhxu21K18uDyhxu212b1uhxu2uhyu21b2~hx*
2hy

21 c.c.!. ~3.2!

In this equation K1235K11K21K3 , K1238 5K1232

(a0eDT)(\c/2e), andK185K11(a0eDT)(\c/2e).
The upper critical fields of the separate componentshx

(Hc2x) andhy (Hc2y) are now easy to calculate, though the
equations for the phase boundary are more conveniently ex-
pressed in terms of the inverse functionsTc2x(H) and
Tc2y(H). We obtain

Tc2x52@~ax1ad!/a0#H
21H/Sc2x1Tx , ~3.3!

Tc2y52~ax /a0!H
21H/Sc2y1Ty , ~3.4!

where Sc2x52(\c/2e)(a0 /AK4K18) and Sc2y52(\c/
2e)(a0 /AK4K1238 ). Sc2x andSc2y are the slopes of the re-
spectiveHc2 curves at zero field. Forax andad small ~as we
assume!, and if Ty.Tx andK1238 .K18 , then the two upper
critical field curves cross. The physical phase boundary is the
greater of the two and we obtain the well-known kink in
Hc2 for this direction of the field. We now want to find
expressions for the two inner transition linesHy* (T) and
Hx* (T).

Consider a fixed temperature T such that
Hc2y(T).Hc2x(T) and ask what happens as the field is re-
duced starting from a fieldH.Hc2y(T). As the field is low-
ered belowHc2y(T) we will havehx50 but hyÞ0. From
the parts of the free energy involving onlyhy we immedi-
ately see thathy will form a lattice. However, the lattice will
be distorted from pure hexagonal becauseK4ÞK1238 in gen-
eral. If we choose the gaugeA52Hzŷ we obtain

hy5Ny(
n

cnexp@ inqy2~z2nql2!2/~2r y
2l 2!#. ~3.5!

In this equationr y
25AK4 /K1238 , Ny is the~real! magnitude of

hy , and q5AA3p(r y / l ). Finally, cn51 if n is even and
cn5 i if n is odd. The lattice formed byuhyu is a centered

rectangular lattice, although it is perhaps more clearly imag-
ined as a triangular lattice which has been ‘‘stretched’’ by
the anisotropy. The side of the unit cell parallel toŷ has a
length of 2p/q, while the side parallel toẑ has a length
ql2.

Suppose now that we are at a temperatureT such that
Hc2x(T).Hc2y(T) and we lower the field starting from
H.Hc2x(T). In this case as the field is lowered we will first
come to a region wherehxÞ0 andhy50. We may then find
hx in precisely the same way as we foundhy above. Using
the same gauge as before we have

hx5Nx(
n

cnexp@ inqy2~z2nql2!2/~2r x
2l 2!#. ~3.6!

Here, however, we haver x
25AK4 /K18 andq5A3p(r x / l ).

Let us return to the first case where we lower the field at
constantT andHc2y(T).Hc2x(T) and ask what happens as
the field is lowered belowHc2y(T). Eventually the field will
be low enough so that the free energy is minimized with both
hxÞ0 andhyÞ0. The point where this occurs isHx* (T). To
calculateHx* (T) formally we need to follow the prescription
of Sec. II: Substitute in the functional forms forhx andhy
into f , compute the free energyF5* f dV, and determine
when the coefficient of the term quadratic inNx changes
sign.

We must choose the functional form ofhx very carefully
in this calculation for three reasons. First, we must allow the
singularies of thehx flux lattice to be located at different
points than the singularities of thehy flux lattice while still
ensuring thathx has a form appropriate to the gauge we have
chosen. Second, we need to allowhx andhy to have differ-
ent phases. Finally, sincehx is arising in the effective peri-
odic potential formed byhy , we know thathx will have the
same periodicities ashy . ~This is an application of Bloch’s
theorem.23! Hence we write

hx5Nxe
iu(

n
cnexp@ i ~nq1z0 / l

2!~y2y0!2~z2z02nql2!2/~2r x
2l 2!#, ~3.7!

with q5AA3p(r y / l ).
After minimizing the free energy with respect to the phase differenceu the free energy is

F5a0@T2Tc2y~H !#^uhyu2&1~b11b2!^uhyu4&1a0@T2Tc2x~H !#^uhxu2&1~b11b2!^uhxu4&12b1^uhxu2uhyu2&

22b2u^hx*
2hy

2e2iu&u ~3.8!

5^ f x&1^ f y&12b1I 122b2uI 2u. ~3.9!
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Here the angular brackets denote a spatial average
(^•••&5*•••dV), f x ( f y) is the part of the free energy den-
sity that depends only onhx (hy), I 1[^uhxu2uhyu2&, and
I 2[^hx*

2hy
2e2iu&. The inner transition@Hx* (T)# occurs when

the term quadratic inhx changes sign or when

a0@T2Tc2x~Hx* !#^uhxu2&12b1I 122b2uI 2u50.
~3.10!

This equation containsNy
2 which is determined by minimiz-

ing ^ f y& which gives us

a0@T2Tc2y~Hx* !#^uhyu2&12~b11b2!^uhyu4&50.
~3.11!

We may now solve forHx* (T). Once again, however, it is
easier to express the result in terms of the inverse function
Tx* (H). We obtain

Tx* ~H !52~ax* /a0!H
21H/Sx*1Tx0

* , ~3.12!

where

ax*5
~ax1ad!2Qyax

12Qy
, ~3.13!

Sx*5
Sc2xSc2y~12Qy!

Sc2y2QySc2x
, ~3.14!

Tx0
* 5

Tx2QyTy
12Qy

. ~3.15!

Here

Qy[
b1I 12b2uI 2u

~b11b2!bA^uhxu2&^uhyu2&
, ~3.16!

where bA is the Abrikosov lattice parameter:
bA5^uhyu4&/(^uhyu2&)2. Note that we may rewrite our result
as

Tx* ~H !5Tc2x~H !2S Qy

12Qy
D @Tc2y~H !2Tc2x~H !#.

~3.17!

From this equation we see that the the inner transition line
for hx is repelled away from the calculated upper critical
field curve forhx by an amount proportional to the separa-
tion between the calculated upper critical field curves for
hy andhx .

For the opposite case, when we consider lowering the
field starting from a temperatureT such that
Hc2x(T).Hc2y(T), the calculation proceeds precisely as be-
fore. The inner transition line,Ty* , for this case is related to
the calculated outer transition lines as in Eq.~3.17! so that

Ty* ~H !5Tc2y~H !2S Qx

12Qx
D @Tc2x~H !2Tc2y~H !#.

~3.18!

HereQx is given by Eq.~3.16!. However, sincehy is becom-
ing nonzero in the periodic potential formed byhx , the pe-
riodicity of the flux lattices is set byhx . This means that for
this calculationq5AA3p(r x / l ).

We now must calculate the integralsI 1 and I 2 . This is a
straightforward but tedious exercise and we omit the details.
We only note here that the results do not depend onr x and
r y separately but only on the ratior x /r y . This is significant
for curve fitting because, althoughr x and r y cannot be ob-
tained from the phase diagram whenH is in the basal plane,
their ratio can be obtained through (r x /r y)

25Sc2x /Sc2y .
This equation follows directly from the definitions of the
quantities involved.

We also note that whileI 1 is nonzero for all values of the
offset vectorv5y0ŷ1z0ẑ, I 2 is zero unlessv is a flux lattice
lattice vector or one-half of a flux lattice vector.32 In other
words, if u15(2p/q) ŷ andu25(p/q) ŷ1ql2ẑ are the basis
vectors of the flux lattice, thenI 2 is zero unlessv5
1
2(nu11mu2), where n and m are integers. By symmetry
there are only three distinct offset points in the Wigner-Seitz
primitive unit cell of the flux lattice whereI 2 is nonzero.
These are thed (v50), c (v51/2u1), and b (v51/2u2)
points, as shown in Fig. 3. Consequently, by the definition of
the Q’s @Eq. ~3.16!#, Qx and Qy will have their smallest
values whenv is at one of these points. By the equations for
the inner transition lines@Eqs.~3.17! and ~3.18!# whenQ is
at its smallest the inner transition line is closest to the outer
transition line. Hence, the inner transition line which is ac-
tually observed is the transition line which corresponds to the
smallest value ofQ. Hence, we see that the inner transition
line must correspond to an offset vector which is at one of
pointsd, c, or b.

FIG. 3. The flux lattice forhy . The solid circles indicate the
singularities in the flux lattice. The Wigner-Seitz primitive unit cell
is indicated by the dashed line. Its basis vectors are also shown. The
integral I 2 (uI 2u5u^(hx* )

2hy
2&u) is nonzero only if the singularities

in the hx flux lattice are located at theb ~open square!, c ~open
oval!, or d point (x), or one of the symmetrically equivalent points.
These points for theb (c) point are the solid squares~solid oval!.
The axes arez̄5z/ l (i c axis! andȳ5y/ l . The diagram is drawn to
scale using the values of the parameters we obtain through our fits.
The flux lattice forhx is identical except for greater elongation in
the z̄ direction.
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To determine which offset vector is favored and to fit our
theory to the experimentally observed phase diagram we
must calculateQy , and from itTx* (H), andQx , and from it
Ty* (H). Along with the parameters that can be obtained by
requiring that the outer transition lines fit the data (Tx ,
Sc2x , ad , Ty , Sc2y , ax) we also needb2 /b1 in order to
perform the calculation. This ratio may be determined in
from the specific heat jumps at zero field at the outer
@DCV(Ty)# and inner@DCV(Tx0

* )# transitions using9

b2

b1
5

DCV~Tx0
* !/Tx0

*

DCV~Ty!/Ty
21. ~3.19!

From data for the specific heat jumps33 we obtain
b2 /b150.5.

The phase diagram we obtain from our calculations is
shown along with the ultrasonic velocity data from Ref. 5 in
Fig. 4 along with the values of the parameters used to obtain
it. We find that for our fit to the phase diagram the offset
vector is at theb point. The fit is very good for the outer
transition lines andHx* (T) but poor forHy* (T). The prob-
lems fittingHy* (T) are not difficult to understand. The inner
transition lines are given by equations such as Eq.~3.18!.
These equations state that the inner transition lines are re-
pelled from the continuation of the corresponding outer tran-
sition line by an amount which is proportional@in the case of
Eq. ~3.18!# toQx /(12Qx). The quantityQx has been calcu-
lated in the limit of very smalld, i.e., near the tetracritical
point. Unlike the other quantities calculated, however,Qx is
expected to have very strong nonlinearities. The first term in
Qx is proportional to

^uhxu2uhyu2&
^uhxu2&^uhyu2&

. ~3.20!

This quantity is considerably less than one when the separa-
tion of the vortices is comparable to the core size at the
tetracritical point. We findQx50.333 ~see below!. When
H,Hc2 , however, the core size quickly becomes smaller

than the separation anduhxu2 anduhyu2 are constant except in
the region of the cores, only a small fraction of the volume.
Inspection of Eq. ~3.20! shows that Qx→1 and
Qx /(12Qx) becomes large. This magnifies the repulsion be-
tweenHc2y(T) andHy* (T) and therefore the repulsion be-
tween the phase boundariesHc2x(T) andHy* (T).

This brings in an additional error: the breakdown of the
our approximation for the form of the order parameter. We
assumed that bothhx andhy were formed by the usual linear
combination of lowest Landau levels. This assumption is
strictly correct only at the tetracritical point where the inner
and outer transition lines meet. It remains a reasonable as-
sumption as long as the inner transition line is not repelled
too far away from the outer transition line. These problems
are not so serious forHx* (T), because in this case the curve
fits smoothly to the zero-field point, which is exact. There is
no such additional constraint forHy* (T). It is therefore nec-
essary to incorporate some nonlinear effects in the fit to this
line. The slope at the tetracritical point itself is corectly given
by the linear calculation. Over the length of the line, how-
ever, we use a renormalizedQ̃x given by fitting the slope.
Both renormalized and unrenormalized fits are given in Fig.
4.

IV. PHASE DIAGRAM: FIELD ALONG THE c AXIS

In this section we wish to take the free energy density, Eq.
~3.1!, and use it to compute the phase diagram when the field
is along thec axis ~the z direction! of the crystal. The pro-
cedure for finding the outer transition line~the upper critical
field curve! in our theory for arbitrary angles of the field with
the c axis has been developed elsewhere.34,24We briefly re-
view the procedure.

To find the upper critical field at an arbitrary field direc-
tion one first follows the Euler-Lagrange prescription and
demands that variations in the free energyF with respect to
each component of the order parameter vanish. This condi-
tion gives two GL equations which for purposes of finding
Hc2 may be linearized. The linearized GL equations may be

FIG. 4. Phase diagram when the field is in the
basal plane. The data points are from ultrasonic
velocity measurements and are taken from Ref. 5,
Fig. 3. The solid lines are our fit without the
renormalization discussed in the text. The dashed
line coresponds to a renormalization ofQx by
2.67 orQ̃x52.67Qx . The constants used to make
these graphs areTx50.458 K, Ty50.504 K,
Sc2x529.26 T/K, Sc2y524.39 T/K, ax /a05
0.0138 K/T2, andad /a050.0193 K/T2.
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viewed as a Schro¨dinger equation forh. This defines an
effective Hamiltonian which is a 232 matrix in the compo-
nents ofh. One then defines a new coordinate system with
one axis along the field and the other two axes perpendicular
to it.

It is easy to show that the component of theD operator
along the field (D1) commutes with the components in the
other two directions. HenceD1 commutes with the effective
Hamiltonian and we may rewrite any terms containingD1h
as p1h wherep1 is a c number. When the field is in thez
direction the only terms which result from this substitution
are terms proportional top1

2 , which are minimized by setting
p150. Therefore in this case, as in the less obvious case
when the field is in the basal plane, one may simplify the GL
equations by settingD1h50. Since this procedure may be
done both when the field is in thez direction and in the
seemingly least favorable case when the field is in the basal
plane, it is reasonable to assume that it may be done for any
angle the field makes with thez axis.

One then defines raising and lowering operators
D65 l (rD 26 iD 3 /r )/A2 andh65(hx6 ihy)/2. Herer is a
function of the angle the field makes with thec axis and is
chosen to simplify the GL equations as much as possible.
One can then rewrite the GL equations in terms of these
quantities and expandh1 and h2 in terms of the states
un&:

h15(
n

anun&, h25(
n

bnun&. ~4.1!

HereD1D2un&5nun&. The statesun& are quasi-Landau lev-
els. The problem then becomes finding the eigenvalues of an
infinite tridiagonal matrix. From the lowest eigenvalue one
can then computeHc2 .

Finding the inner transition line near to the upper critical
field is also a linear problem, as the analysis of Sec. II dem-
onstrated. To find the line rigorously we would have to cal-
culate the effective free energy for all of the eigenfunctions
due to the presence of the eigenfunction with the lowest ei-
genvalue, as outlined in Sec. II. However, we have seen that
the only transition line which is not destroyed~that is, either
converted to a crossover or repelled to nonphysical fields and
temperatures! by the coupling to the lowest eigenfunction is
the line which originates at the inner transition temperature
and corrresponds to a flux lattice shifted from the flux lattice
formed by the lowest eigenfunction. The full effective field
matrix therefore contains levels which are pushed to un-
physical fields~pushed up to high energy in the quantum-
mechanical analogy! or have small magnitude (;d3/2).
Thus, rather remarkably, it will be a very good approxima-
tion to compute the inner transition line using only two lev-
els. As in the case when the field is in the basal plane we
then have a correction to the bare inner transition line which
is proportional to the separation between the bare inner tran-
sition and the outer transition in order to find the actual inner
transition line. Our formula for the inner transition line
Tinner(H) in terms of the bare inner transition lineTbare(H)
and the outer transition lineTouter(H) is then

Tinner~H !5Tbare~H !2g@Touter~H !2Tbare~H !#. ~4.2!

When the field was in the basal plane we were able to com-
pute the coupling constantg. For the field along thec axis
this computation, though straightforward in principle, is ex-
ceedingly complicated. Accordingly,g is found by fitting to
the data.

A key feature of the bare inner transiton line comes to
light upon examining the matrix used to find it. This matrix
is

S ~2K11K !2K8 a0l
2DT~2eH21!

a0l
2DT~2eH21! ~2K11K !1K8

D . ~4.3!

Here K5K21K3 and K85K22K3 . Note that the off-
diagonal terms will vanish whenH51/2e. This means that if
K8'0, as is expected from particle-hole symmetry,35,36 the
two eigenvalues will be nearly degenerate at thisH and the
outer and bare inner transition lines will nearly touch. This
near-vanishing ofK8 is central to the whole picture, and so
we discuss it in some detail here. The usual Gor’kov formal-
ism gives identical expressions forK2 andK3 in the absence
of impurities. Even when impurities are included, this iden-
tity still holds for theE1g representation if the impurity scat-
tering is purelys wave. Physically, the smallness ofK8 is
due to the fact that it represents an intrinsic angular momen-
tum of the Cooper pair. Since the actual particle-particle cor-
relations induced by superconductivity are of orderuDu/EF
whereD is a gap energy andEF is the Fermi energy, this
quantity is expected to be small.37,38

The cancellation between the derivative terms in the free
energy density@Eq. ~3.1!# proportional toK2 andK3 and the
terms which couple the staggered magnetization~through
DT) to the derivatives means we obtain anapparenttetrac-
ritical point—the two lines come close but do not quite
touch. There areonly twosuperconducting phases when the
field is in thez direction or indeed for any direction except in
the basal plane. The fact thatK8 depends sensitively on the
impurity density has interesting consequences. The miminum
separation will depend on this density. Unfortunately, the
sharpness of these transitions also depends on the impurity
density.

The phase diagram we obtain from our calculations with
the field in thez direction together with the ultrasonic veloc-
ity data from Ref. 5 has already been published as Fig. 1 in
our earlier paper on UPt3 .

39 Note that we use the same pa-
rameters as for our fit for when the field is in the basal plane
along with some additional parameters. These additional pa-
rameters are g50.6, a0 /K155.631012 K 21 cm22,
e55.2631025 G21, az /a056.3310210 K/G2, and
(K22K3)/K150.1. We use (K21K3)/K15(Sc2x /Sc2y)

2

211(\c/2e)(a0 /K1)eDT@(Sc2x /Sc2y)
211)] and K4 /K1

5@(\c/2e)2(a0 /K1)
2(Sc2x)

22#/@11(a0 /K1)eDT# to ob-
tain (K21K3)/K151.0 andK4 /K157.20. As was the case
when the field was in the basal plane the fit is very good
except for the high-field, low-temperature part of the inner
phase boundary where the linear theory is expected to break
down. This happens because of the renormalizations dis-
cussed in the previous section.

A virtue of the theory given here is that a striking differ-
ence between the phase diagrams for the two directions of
the field receives an explanation. The upper critical field
curve is smoother for field along thec axis, and the inner
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transition line is much smoother. This can now be seen to
result from the ‘‘hybridization’’ of the two curves for this
case due to the presence of the off-diagonal matrix elements
in Eq. ~4.3!. This is absent for the other field direction, when
the two components decouple.

V. MAGNETIC PROPERTIES OF UPt 3

In this section we wish to discuss the origin, effect, and
relative sizes of the Pauli limiting terms in the free energy
density. These are the terms proportional toH2h2 in Eq.
~3.1!. In order to do this, we require some preliminary back-
ground about the magnetic properties of the normal state.
The first fact to appreciate is that the magnetic susceptibility
x i j of the normal state is enhanced by roughly the same
factor as the mass. Becausex i j is large, the Pauli limiting
effect of the field on superconductivity is likely to be appre-
ciable. The second important point is that the susceptibility is
anisotropic, and the temperature dependences of the compo-
nents are different. This is clear from the plots of the suscep-
tibilities xxx(T) andxzz(T). ~See, for example, Ref. 40, Fig.
2.1.! xxx(T).xzz(T) at all temperatures.

41 At high T, both
functions take on the local moment formx;1/T, while each
goes to a finite constant, characteristic of Pauli or Van Vleck
behavior, at lowT. In addition, xxx(T) has an anomaly
around 15 K.

Let us first take a theoretical approach to understanding
the anisotropy inx i j . Our basic assumption is that UPt3 is a
Fermi liquid at temperatures just above the critical tempera-
ture. Then the starting point is the single-particle states cal-
culated in band theory, which account very well for the
Fermi surface.42 The states near the Fermi surface are pre-
dominantly derived from uranium 5f orbitals with j55/2, as
would be expected from Hund’s rules for an actinide system
with a 5f occupancy near 1. In the isolated atom, the
j55/2 level is sixfold degenerate. In the hexagonal crystal
field, there is an effective Hamiltonian at theG point which
splits the sixfold-degenerate state into three doublets at the
G point: j z565/2, j z563/2, and j z561/2. This means
that UPt3 is likely to be an example of a system in which the
magnetism is Van Vleck–like in the plane and Pauli-like
along thec axis, which is expected to be a general feature of
hexagonal U-based systems.43

Let us briefly review the reasons for this expectation. If
we apply a magnetic field, there will be both a Pauli~intra-
band! and a Van Vleck~interband! contribution to the sus-
ceptibility. The former is of order (geffmB)

2N(«F), while the
latter is of order (geffmB)

2/uBhu. Heregeff is an effectiveg
factor for the coupling of the field to the total angular mo-
mentum of the band or bands involved. It is a dimensionless
number of order unity. The Lande´ factor for l53, s51/2, and
j55/2 is 6/7.Bh is the separation between the bands and
N(«F) is the density of states at the Fermi energy. The Van
Vleck susceptibility is given by

x i i52nmB
2(

a,b

u^auLi12Si ub&u2

Eb2Ea
f a~12 f b!. ~5.1!

Here f a , f b , Ea , Eb are occupation factors and energies of
the statesa andb andn is the number of uranium atoms per
unit volume. In view of the greater multiplicity of the inter-

band transitions, we expect the Van Vleck susceptibility to
be very important—indeed it very likely dominates the total.
A band calculation which explicitly computes the two com-
ponents reckons the Pauli contribution at 15%–20%,44 in
rough agreement with this multiplicity argument.

If H is along thec axis, then the relevant matrix element
~with \51) is

u^auLz12Szub&u25~36/49! j z
2da,b . ~5.2!

At the G point, states of differentj z do not mix and the
perturbation introduced byH is diagonal. The occupation
factors then imply that the Van Vleck susceptibility is zero
for this direction. IfH is in thex direction, the corresponding
expression for the square of the matrix element is

u^auLx12Sxub&u25~36/49!~5/22 j z!~5/21 j z11! ~5.3!

if the statesa and b differ by one unit of j z and is zero
otherwise. The Van Vleck susceptibility comes from four
distinct pairs of states, (j z525/2,23/2), (23/2,21/2),
(1/2,3/2), and (3/2,5/2), whenever one of the pair is occu-
pied and the other unoccupied. The Pauli contribution to
xxx , on the other hand, comes only from the pair
(21/2,1/2) when this state is occupied. A sheet of the Fermi
surface will have an isotropic partial Pauli susceptibility
(xzz

P /xxx
P '1) if different j z values are well mixed in the

wave function, but will be anisotropic otherwise:j z51/2 im-
plies xzz

P /xxx
P !1, and j z53/2 or j z55/2 impliesxzz

P /xxx
P @1.

As we shall see below, it is the anisotropy of the Pauli con-
tribution which is critical for understanding the phase dia-
gram. This means that the central question is, what is the
j z content of the Fermi surface, and how much mixing of
different j z’s is there? Band calculations give a clear answer
to this question. They show that the parts of the Fermi sur-
face near theG point and K point are predominantly
j z53/2 or 5/2,45,46 while the parts near theA point are well
mixed. Hence we expect a contribution to the Pauli suscep-
tibility which satisfiesxzz

P /xxx
P @1 from the parts nearG and

K, representing roughly half the total density of states at the
Fermi surface, and a contribution satisfyingxzz

P /xxx
P '1 for

the rest of the Fermi surface. In treatments which go beyond
band theory to discuss many-body renormalizations, it is
found that the Pauli and Van Vleck parts are enhanced by
similar factors.47

Summing up these theoretical considerations, the mag-
netic susceptibility of UPt3 is likely to be dominated by in-
terband~Van Vleck! contributions. This is particularly true
for xxx , which means that the anisotropy in the oberved
susceptibility (xxx.xzz) most likely stems from interband
contributions. The Pauli susceptibility, on the other hand, is
more likely to satisfy the opposite inequalityxxx

P ,xzz
P .

Experimentally, it is not easy to distinguish the Pauli and
Van Vleck contributions to the susceptibility. The most
straightforward way, in principle, is to measure the imagi-
nary part of the susceptibility with neutron scattering. The
Van Vleck contribution has a gap at low frequencies, while
the Pauli part does not. For the present case, however, we
also need to distinguish the different components of the sus-
ceptibility tensor. This means that polarized beam experi-
ments are required, with the associated lower counting rates.
Finally, we are interested here in the uniform susceptibility,
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which means small-angle scattering. Thus this definitive ex-
periment may be difficult to perform.

A more indirect but still informative test arises from the
observation that the Pauli susceptibility depends on the den-
sity of states at the Fermi energy whereas the Van Vleck
susceptibility depends on a joint density of states. The Pauli
part is therefore directly comparable toCV /T, whereCV is
the specific heat. In this regard the peak inxxx(T) at T515
K ~Ref. 41! is of interest. This peak is absent in the smooth
curve forxzz(T), and in the the specific heatCV(T).

40 This
is consistent with the idea that the physical origins ofxzzand
xxx are different, and that the density of states at the Fermi
level largely determinesxzz but notxxx . Thus experiments,
to the exent that we have them, confirm the theoretical pic-
ture.

The importance of these considerations for the supercon-
ducting state is simple.48 Superconductivity affects the Pauli
susceptibility in a drastic fashion. For a singlet state such as
E1g , the Pauli termx i j

P(T) is reduced to zero at zero tem-
perature because it takes a finite amount of energy to break a
pair and magnetize the system. Superconductivity should
have no effect at all on the Van Vleck term, and conversely.
The difference in free energies between the normal and su-
perconducting states in a field is

Fmagnetic52
1

2(i j Dx i j
PHiH j . ~5.4!

HereDx i j
P5x i j

S2x i j
N wherex i j

S andx i j
N are the Pauli suscep-

tibilities in the superconducting and normal states, respec-
tively. Just below the superconducting transition we know
that the change in the susceptibility is quadratic inh. Hence
we add to the usual superconducting free energy the last
three terms of Eq.~3.1! which are quadratic in bothh and
H.

From the arguments above we expect thatax andad will
be smaller thanaz since we anticipate thatxxx

P ,xzz
P . From

our fits to the phase diagrams for the two directions of the
field we find thataz is slightly more than twiceax1ad , in
agreement with the physical picture of the susceptibility. The
differences in the sizes of thea terms affect what happens to
the upper critical field curves for the two directions of the
field at high fields. At high fields the Pauli limiting terms in
the free energy, which are proportional toH2, dominate over
the rest of the free energy, which gives a contribution to
Hc2 proportional toH. Becauseaz.ax1ad , Hc2 when the
field is along thec axis curves down more thanHc2 when the
field is in the basal plane. Consequently, the two upper criti-
cal field curves for the two directions cross. This crossing is
shown in Fig. 2 of our previously published paper on
UPt3 .

39 We have therefore shown that the objection to the
E1g model on the grounds that it cannot explain the crossing
of the upper critical field curves is invalid.

VI. PRESSURE EFFECTS

We have offered a comprehensive description of the
phase diagram of UPt3 in theH-T plane. However, because
of the rather large number of parameters in the Ginzburg-
Landau free energy, this analysis is not yet sufficient to dis-
tinguish theE1g picture from competing pictures such as the

E2u picture and mixed representation pictures. Consideration
of pressure effects will allow us to do this. We will show that
only E1g is consistent with these experiments. The analysis
in this section is an elaboration of earlier work.49 It is some-
what surprising that pressure experiments are so crucial for
understanding the symmetry of the order parameter. Under
normal circumstances, accessible pressures have only a small
effect on superconducting parameters and qualitative conclu-
sions are difficult to draw. In the present case, however,
moderate pressures destroy antiferromagnetism, which re-
stores the full hexagonal symmetry of the crystal structure. It
is this singularly fortunate circumstance which makes pres-
sure such a very powerful tool in unraveling the order pa-
rameter symmetry.

Qualitatively, the facts are these. The antiferromagnetic
moment disappears at a critical pressure of about 3 kbar. The
splitting in Tc also disappears at the same pressure. This
shows that it is indeed the antiferromagnetism which splits
the transition, as originally predicted.7 The coincidence of
the pressures at which these events take place rules out
mixed representation theories such as theA-B theory.18 In
such theories the original splitting is due to an accidental
degeneracy and is not related to the antiferromagnetism.

Our aim is to understand quantitatively the phases of
UPt3 in the entire (H,P,T) space. However, in order to un-
derstand the restoration of crystal symmetry, we first focus
on the (H50,P,T) plane, so that complications due to the
gradient terms can be treated separately. The expression for
the free energy density of the coupled magnetic-
superconducting system is thenf5 f S1 f M1 f SM , where

f M5aM~P,T!M21bMM
4, ~6.1!

f S5aS~P,T!h•h*1b1~h•h* !21b2uh•hu2, ~6.2!

f SM5buM•hu21b8M2h•h* . ~6.3!

We have assumed, as is conventional, that the presure depen-
dence of fourth-order coefficients is weak and can be ne-
glected.

f M , the magnetic part of the free energy, entirely deter-
mines the behavior of the antiferromagnetic moment above
Tc1 . ~Recall thatTc1 is the higher of the two observed tran-
sition temperatures.! The experimental data from neutron
scattering measurements ofM2 @proportional to the magnetic
Bragg scattering at the (1,1

2,0) point# are sufficient to deter-
mine the parameters. AtP50 andT.Tc150.5 K, M2 is a
linear function of TN2T, where TN55 K is the Néel
temperature.8,50 One finds aM(P50,T)/bM5(1.63
1024mB

2/K)(T2TN).
As to the P dependence, it is found thatTN is nearly

independent of pressure fromP50 to P52 kbar and that
M2;(PN2P) for T,2 K,50 wherePN'3 kbar is the criti-
cal pressure at which the antiferromagnetism disappears.
From the point of view of this paper, which concentrates on
the superconducting regimeT,Tc1 , we may therefore
take aM5aM

0 (P2PN)(T2TN)'2aM
0 TN(P2PN), where

aM
0 /bM55.331025mB

2/K kbar. Note that this value and the
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coefficient of the expression foraM(P50,T)/bM have been
corrected from an earlier paper written by one of us
~Joynt!.49

The pressure dependence ofaS(P,T) may be obtained if
we assume thataS(P,T)5aST(T2Tc

0)1aSPP, so that
aS(P,T) is a linear function ofP. aST(T) is the zero-
pressure value ofaS(P,T) which has already been deter-
mined. ForP.PN , M50 and the pressure dependence of
Tc is entirely due to the coefficientaSP. Since
dTc /dP5211 mK/kbar in this region,51 we find
aSP5aST~11 mK/kbar!.

At P50 andT,Tc1 , there is a competition between the
purely magnetic terms and the coupling termf SM . Because
h•h*;Tc12T for T,Tc1 andh50 for T.Tc1 , the coup-
ling term predicts thatM should have a kink atTc1 . The
magnitude of the kink may easily be computed using Eqs.
~6.1!, ~6.2!, and ~6.3!. Differentiation leads to two linear
equations forM andh5h x̂:

h25@aS~Tc
02T!2~b1b8!M2#/2~b11b2!, ~6.4!

M25@aM~TN2T!2~b1b8!h2#/2bM , ~6.5!

which give the behavior of the order parameters below
Tc1 . AboveTc1 we have simply

M25aM~TN2T!/2bM . ~6.6!

The slope is discontinuous atTc1:

F12
~b1b8!2

4bM~b11b2!
GdM2

dT U
T,Tc1

5
dM2

dT U
T.Tc1

1
aST~b1b8!

4bM~b11b2!
. ~6.7!

If we take the approximation that the coupling (b1b8) is
small, then we may write the discontinuity as

D
dM2

dT
52

aST~b1b8!

4bM~b11b2!
. ~6.8!

FIG. 5. Pressure dependence of the phase diagram with the field in the basal plane in theE1g model. The phase diagram is plotted at
pressures (P) of ~a! P50, ~b! P5PN/2 ~1.85 kbar!, ~c! P5PN ~3.7 kbar!, and~d! P5(3/2)PN ~5.55 kbar!. HerePN is the pressure above
which the temperature splitting vanishes. As discussed in the text the theoretical inner transition line for temperatures below the tetracritical
point @Hy* (T)# has been renormalized. The data points in~a! are taken from Ref. 5, Fig. 3. The variation of the transition temperatures with
pressure is taken from Ref. 51.
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In these formulash is assumed to be parallel toM. If these
two vectors are perpendicular, thenb should appear instead
of (b1b8). The kink is observed experimentally,8 which
again confirms that the splitting of the superconducting tran-
sition is due tof SM . These formulas assume that there is
only one component ofM, contrary to the idea of Blount
et al.25 that the moment rotates atTc1 . Recent experiments
have indeed ruled out the possibility of rotation.52

We now wish to calculate the phase diagram at finite pres-
sures, assuming that the only pressure dependence comes
from aS and aM . All other parameters are taken to have
their zero-pressure values. The only dependence on pressure
in our theory of the phase diagram is through the quantity
DT. We calculateDT at various pressures by taking
Tx(P50) and Ty(P50) from our zero-pressure fit,
dTy /dP ~recall Ty.Tx), PN , and dTc /dP ~for P.PN)
from experimental data.51 From Tx(P50) andPN we can
then finddTx /dP. In Fig. 5 we plot the phase diagram in the
H-T plane at various pressures forH in the basal plane using
the renormalizedQx ~see Sec. III!. The behavior with pres-
sure is easily understood qualitatively. The main effect of

pressure is to close up the splitting of the zero-field critical
temperatures. Thus the tetracritical point moves down to-
ward theT axis and disappears, as does theA ~low-field,
high-temperature! phase. Thus theC- ~high-field, low-
temperature! B ~low-field, low-temperature! phase boundary
is very sensitive to pressure as it ends at the tetracritical
point. This is observed experimentally.53 On the other hand,
the N- ~normal-state! C boundary~upper part of theHc2
curve! is not very sensitive to pressure. Again, the agreement
between theory and experiment is very satisfactory. It is dif-
ficult to compare these predictions with the threee-
dimensional phase diagram of Boukhnyet al.54 quantita-
tively. The pressure dependence of the critical temperatures
given by these authors is not in good agreement with that of
Trappmannet al.,51 which we used in plotting the figures.
The behavior of the boundaries is quite sensitive to this de-
pendence. Nevertheless, there appears to be very satisfactory
qualitative agreement between theory and experiment, with
one exception. The experiment shows that there is an addi-
tional phase boundary in theP-T plane whenP.PN . This
cannot be a pure superconducting transition in a two-

FIG. 6. Pressure dependence of the phase diagram with the field in the basal plane with (K21K3)/K150 (E2u model!. The phase
diagram is plotted at pressures (P) of ~a! P50, ~b! P5(1/2)PN ~1.87 kbar!, ~c! P5PN ~3.7 kbar!, and~d! P5(3/2)PN ~5.55 kbar!. In order
to obtain a better fit in this model we have changed the values of some of our input parameters. In these phase diagramsax5ad50,
Sc2x526.66 T/K,Sc2y524.07 T/K,Tx50.465 K, andTy50.509 K. The data, renormalization ofHy* (T), and all other input parameters
are the same as those for Fig. 5.
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component theory. We believe this to be a mixed magnetic-
superconducting transition, so that this boundary is essen-
tially an extension of the magnetic phase boundary. The
signal in the sound velocity is very small. It may be larger
than in the normal phase because of the coupling to the su-
perconducting order parameter which is serving as a second-
ary order parameter in the transition.

Let us compare this behavior to the behavior of the phase
boundaries in theE2u theory in whichK2'K3'0. The best
fit with this constraint is given in Fig. 6. This picture is in
qualitative disagreement with experiment. Again, the quali-
tative reason for this is easily understood. In theE2u theory,
the difference in slope between theHc2 curves forhx and
hy is due only to their differing energies in the presence of
the antiferromagnetism. OnceP.PN , this difference is
gone and the two components have identical free energies
and identical slopes. TheE2u theory says that theN-C and
C-B boundaries must move together, not apart, under the
influence of pressure. This is in conflict with experiment.

VII. CONCLUSION

The Ginzburg-Landau theory is a very powerful tool in
the physics of unconventional superconductivity. We have
pushed the theory to obtain as much information as possible
about the phase diagram. Mathematical difficulties arise
when a magnetic field is applied, a circumstance which has
made the theory of the phase diagram of UPt3 proceed more
slowly than might have been expected. The method of clas-
sifying terms according to their behavior in the effective field
appears to have solved the linear problem in principle,
though explicit calculations for a general direction of the
field still appear daunting. We have limited our treatment to

the two high-symmetry-field directions. Most experiments
are also limited to these directions.

Consistent application of the method, taking into account
the Pauli limiting effect, gives very good agreement between
theory and experiment for theE1g theory. It would be desir-
able, however, to have an explicit calculation of the nonlin-
ear renormalization factors entering the repulsion of the
phase boundaries; obtaining this by a fit, as done here, is not
truly satisfactory from the theorist’s point of view. The pe-
culiar phenomenon of theHc2 crossing is interpreted here as
arising from an interplay of intraband Pauli magnetism and
interband Van Vleck magnetism. While the picture of the
anisotropic susceptibility which emerges is a natural one, it
would be good to have some independent confirmation of it.

The surprise of the past several years is that pressure ex-
periments have been able to play a critical role in sorting out
the nature of the order parameter. They have demonstrated
that it is the antiferromagnetism which splits the critical tem-
perature. Above the critical pressure, the hexagonal symme-
try is restored. Experiments above this pressure have shown
that there are still two phase transitions as a function of
field—this means that the field direction itself couples to the
internal degrees of freedom in the two-component order pa-
rameter. This only occurs in theE1g picture, which appears
to be the only choice fully consistent with all experiments.
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