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We report numerical studies of phase locking in two-dimensional~2D! arrays of Josephson junctions. In the
conventional 2D arrays biased with dc current in the horizontal (X) direction, the phase-locked solution is only
possible in arrays with no disorder. In the presence of disorder in the junction critical currents, we see vertical
(Y) columns of phase locked clusters form in the array with no intercolumn locking. As an extension, we
introduced a geometry calledXY-biased array, where the array is biased in bothX and Y directions. In
XY-biased array we found a dynamical state, where all junction voltages are strictly dc and the only oscillating
components are the supercurrents in each junction. This dynamical state is stable against experimentally
achievable disorder in the junction critical currents.

I. INTRODUCTION

Studies of synchronization phenomena in coupled nonlin-
ear oscillators have broad scientific and technological
interest.1–7 Josephson-junction arrays, when biased in the
voltage state, are well-characterized coupled oscillator sys-
tems with important potential for high-frequency applica-
tions. One of the major challenges in building practical
Josephson-junction array oscillators is getting all the junc-
tions in the array to synchronize, in order to get coherent
high power output.8–14

In this paper, we use numerical simulations to investigate
phase locking in two-dimensional~2D! arrays of Josephson
junctions. In our analysis, we do not include a load circuit.
This enables us to study the intrinsic phase-locking capabil-
ity of the array due to internal coupling of the junctions.

Our initial interest in this problem was inspired by the
work of Aoyagi and Kuramoto.5 These authors studied a
general nearest-neighbor-coupled oscillator lattice with ran-
domly distributed frequencies. Their numerical results indi-
cated a frequency locking transition in two-dimensional lat-
tices as the coupling strength between nearest-neighbor
oscillators is increased.

Previously, Hadley and co-workers10 have analyzed the
linear stability of the in-phase~synchronized! solution in
Josephson-junction series~1D! arrays and found that the in-
phase solution is neutrally stable~meaning that a perturba-
tion would neither grow nor shrink within a linear approxi-
mation! for small perturbations. They generalized their result
to 2D arrays by noting that the vertical (Y) junctions in an
array biased in the horizontal (X) direction are inactive and
the activeX junctions across a column share a common volt-
age. This led them to conclude that in an unloaded 2D array
the in-phase solution is also neutrally stable.

More recently, the analytic calculations of Wiesenfeld
et al.13 and the numerical simulations of Kautz14 showed
similar behavior. In Kautz’s simulation, he explicitly re-
moved the inactiveY junctions and connected the neighbor-
ing islands with pure inductors. This approach still leaves
open the question of the role played by theY junctions, or,
for that matter, if they play any role at all. TheY junctions
are considered inactive in the sense that they normally do not

have a net dc voltage across them and therefore do not have
sustained Josephson oscillations. Small amplitude plasma
oscillations,15 however, can affect the coupling among the
active X junctions, especially in the underdamped regime.
Indeed, Geigenmu¨ller et al.16 showed that the small ampli-
tude ‘‘spin fluctuations’’ in 2D underdamped arrays play a
profound role in the vortex dynamics of this system.

The method we use in this paper is largely based on the
method used by Sakaguchiet al.3 Here we will briefly out-
line it.

Consider a pair of nearest-neighbor junctionsn andm.
The phasedifferencesin the superconducting order param-
eter across each junction aregn and gm , respectively. We
consider the two junctions synchronized if the difference be-
tween thephase differences, Dgnm5gn2gm , stays constant
with respect to time. This would guarantee that the two junc-
tions have identical voltages, i.e.,

vn2vm5
d~Dgnm!

dt
50.

In practice, we require,

uDgnm~t01t!2Dgnm~t0!u,e, ~1!

for a small e and a long timet. In our simulations, we
choosee510° and varyt.

Imagine we apply the criterion, Eq.~1!, to all nearest-
neighbor-pair junctions in the array. Each time we find a pair
that is synchronized@according to Eq.~1!#, we put an imagi-
nary bond connecting the two junctions in that pair.17 After
we are finished, we might expect to see one or more synchro-
nized clusters in the array. Within each cluster all junctions
are synchronized to one another and are interconnected by
the imaginary bonds. Figure 1 illustrates a possible scenario.

We now follow Sakaguchiet al.3 and define a synchroni-
zation order parameter

r5 lim
N→`

Ns

N
, ~2!

whereNs is the number of junctions in thelargestsynchro-
nized clusters andN is the total number of junctions on the
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lattice. In the case of complete synchronization,r51. Oth-
erwise, in general,r,1. In principle,r should be averaged
over a statistical ensemble, but in practice we often average
it on 3–5 samples, which nevertheless appears to give rea-
sonable results. In order to compute the order parameterr ,
the synchronized clusters need to be labeled. We use an ef-
ficient algorithm due to Hoshen and Kopelman18 to automate
the cluster labeling procedure.

In the next section, we discuss a conventional 2D array
design, which is current biased in theX direction, and study
the synchronization with and without disorder in the critical
currents. In Sec. III, we introduce an array design, where the
array is current biased in bothX andY directions, and dis-
cuss the dynamical states that are made available by this
simple extension. Section IV is a brief summary and conclu-
sions.

II. X-BIASED ARRAY

In Fig. 2, we show a sketch of a conventional 2D array
biased in theX direction, with equal amount of currentI
injected into each node of the column on the left-hand side
and extracted from the corresponding nodes on the right-
hand side. Each junction is described by the usual
resistively-capacitively shunted junction~RCSJ! model.15

For example, for the junction connecting islandsn andm,
we have

i nm5bCg̈nm1ġnm1anmsin~gnm!,
~3!

vnm5ġnm ,

and on each node current conservation is enforced, i.e.,

(
mPNN

i nm5 i n
ext. ~4!

Here i n
ext denotes the external current injected at each node.

For ourX-biased array,

i n
ext5H i if n P left boundary

2 i if n Pright boundary. ~5!

The normalization convention we have adopted here is fairly
standard. The currents are normalized to theaveragesingle-
junction critical current Ī c and voltages are normalized
to Ī cR. Here R is the single-junction resistance which is
assumed to be the same for all junctions. We also assume all
junction capacitances are the same.

The only disorder we consider here is the spread in the
junction critical currents, which we expect to be the domi-
nating factor in most experimental situations due to their
exponential dependences on the barrier thickness in tunnel
junctions. We characterize this disorder using Gaussian-
distributed random numbers,19

anm5
I c
nm

Ī c
~6!

with meanānm51, and standard deviations.
In Eq. ~3!, gnm is the phase difference of the supercon-

ducting order parameter across the junction connecting is-
landsn andm, and the overdots denote time derivatives with
respect to the normalized timet5vct52p Ī cRt/F0 . bC is
the average Stewart-McCumber parameter of the single junc-
tions,

bC5
2p Ī cR

2C

F0
. ~7!

We solve the complete array dynamical equations, Eqs.
~3!–~5!, using a simple Euler method assisted by an efficient
fast-Fourier-transform capacitance matrix inversion
scheme.16,20During the integration process, we can compute
and monitor the order parameterr (t), defined in the previ-
ous section. When applying the synchronization criterion,

FIG. 1. A sketch illustrating synchronized clusters and the defi-
nition of the order parameterr . Each pair of nearest-neighbor junc-
tions are connected by a bond~heavy lines! if they synchronize to
one another according to the criterion in the text. In this figure,
there are three synchronized clusters. The largest cluster is cluster 2
and it contains 15 junctions. Therefore the order parameter
r515/24. Note here we count theX junctions only, since theY
junctions have no sustained oscillations.

FIG. 2. A sketch of a 536 2D array biased in theX direction.
Each cross represents a Josephson junction.
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Eq. ~1!, we will only consider theX junctions, since theY
junctions, in general, will have no sustained ac Josephson
oscillations.

In Fig. 3, we show anr vs t plot for an array of size
838 with no critical current disorder, i.e.,s50.0. The pa-
rameter values arebC59.0 andi51.2. We see from Fig. 3
that in a uniform array of identical junctions, the order pa-
rameter always stays close tor51, indicating that none of
the junction phases grow relative to their nearest neighbors.
Therefore, a synchronized solution can and does exist in the
system as long as the junctions are identical.

The synchronized solution becomes unstable when we in-
troduce some disorder in the junction critical currents. Figure
4 is a plot similar to Fig. 3, but for a disordered array with
s50.10. The array size is 16316, andbC59.0, i51.20.
There is obviously no synchronization in this disordered ar-
ray, since the order parameter rapidly decays and reaches a

value much less than unity. We did a similar calculation for
s50.01. The result is essentially the same, except the decay
of r is less rapid, which seems to indicate that the synchro-
nized solution is always unstable in the presence of finite
amount of disorder.

In the disordered array, it is instructive to look at the
picture of the actual synchronized clusters after the order
parameter has settled to a final value. Figure 5 is a snapshot,
taken att53500, of the clusters in the array that corresponds
to Fig. 4. If the entire array is synchronized, we should see a
single cluster spanning the whole array. Instead, what we see
in Fig. 5 are vertical lines connecting junctions along theY
columns, indicating that the junctions along theY direction
are mostly synchronized, despite the spread in the critical
currents. We do not see any horizontal lines connecting the
vertical column clusters, which means that the columns are
decoupled from one another and no longer synchronize. Thus
we conclude that in this nonuniform 2D array biased in the
X direction, the final solution of the system is made up of
synchronized columns along theY direction. The intercol-
umn locking is broken by disorder. Although other authors
have previously reached similar conclusions10,13,14our clus-
ter analysis explicitly demonstrates how synchronization is
destroyed by disorder.

III. XY-BIASED ARRAY

As we saw in the previous section, inX-biased arrays the
intercolumn locking is broken by disorder even though
within aY column the junctions do tend to synchronize. This
is not very useful in practice, since real arrays always have
some disorder~with current technology,s50.01 perhaps is
the limit!, and without intercolumn locking each column can
oscillate completely independently and the entire array will
be incoherent.

Although complete synchronization in a disordered

FIG. 3. Synchronization order parameterr plotted against time
for an 838 array made of identical junctions (s50.0). The param-
eter values arebC59.0 andi51.20. Noticer'1.0 throughout the
observation period, indicating that a complete synchronization is
possible for a uniform array.

FIG. 4. Synchronization order parameterr plotted against time
for a 16316 array with disordered junction critical currents,
s50.10. The other parameter values arebC59.0 andi51.20. No-
tice r decays rapidly towards a value much smaller than one, indi-
cating lack of synchronization in this disordered array.

FIG. 5. Synchronized clusters in a disorderedX-biased 16316
array. Heres50.10, bC59.0, andi51.20. The snapshot is taken
at t53500.
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X-biased array is difficult to achieve, the fact that theY
junctions in the same column prefer to be locked gives us
some hint on how the design might be improved. SinceX
bias induces synchronization alongY columns, by symmetry
we would expect thatY bias should induce synchronization
alongX rows. Then the next natural question is what hap-
pens if we bias the array along bothX andY directions, as
shown in Fig. 6. This design, which we callXY-biased array,
has the advantage that every junction in the array is biased in
the voltage state and therefore oscillating. Thus we can treat
both theX junctions and theY junctions on an equal footing.
This also brings us closer to the model originally studied by
Kuramoto and co-workers.3,5

To proceed, we define a quantity to measure phase coher-
ence, the variance of all nearest-neighbor junction phase dif-
ferences,

^Dg~t!&5A (
^n,m&

@gn~t!2gm~t!#2. ~8!

Here the summation is over all nearest-neighbor pairs of
junctions andA is a constant chosen to normalize^Dg& to a
convenient value. Note we are consideringall junctions here,
instead of only theX junctions as we did forX-biased arrays
in the previous section.

In Fig. 7, we shoŵ Dg(t)& vs t plot for a 434 array
with and without disorder. The parameter values are
bC59.0 andi52.0. The solid curve in Fig. 7 corresponds to
a uniform 434 array, while the dashed curve corresponds to
a disordered array~with s50.10) of the same size. From
Fig. 7, we see that the system reaches a phase-locked state
after some transient oscillations, since^Dg(t)& saturates to a
constant value and stays there. Moreover, this phase-locked
state is reached in the presence of a fairly large disorder,
s50.10 ~notice the dashed curve in Fig. 7 also saturates!.

This latter point is of great importance, since any dynamical
state of the system has to be stable against disorder in order
to be experimentally relevant.

To get a better understanding of the nature of this phase
locked dynamical state, we consider the simplest nontrivial
case—a 232 XY-biased array. Figure 8 shows the variance
of the phase differenceŝDg&, along with all four junction
voltages, as functions of time. The parameter values in Fig. 8
are the same as in Fig. 7. As we can see, the junction volt-
ages oscillate in the transient state, but in the locked stateall
junctions have the same constant dc valuev52. In general
the constant voltage is given byv5 i in our normalized units.
This means once the system reaches the locked state, there is
no oscillating voltage anywhere in the system. There is, how-
ever, oscillating supercurrent sin(gn). Since the voltage
v5 i is a constant, we have

gn5 i t1cn , ~9!

FIG. 6. Sketch of anXY-biased array. An equal amount of cur-
rent is injected into every node at the left and top boundaries and
extracted from the remaining two~i.e., right and bottom! bound-
aries.

FIG. 7. The phase variance^Dg& of nearest-neighbor junctions
is plotted as a function of time for a 434 array. The parameter
values arebC510 and i52.0. From the figure, we see that
XY-biased array approaches a phase-locked state after some tran-
sient, and moreover, this state is stable even in the presence of
disorder. Here we chose the normalization such that the saturated
values of^Dg& is one.

FIG. 8. Time dependences of^Dg& and all the junction voltages
in a 232 XY-biased array. The array geometry is shown in the
inset. Notice that once the system reaches the synchronized state,
the voltages on all the junctions cease to oscillate and there are only
dc voltages.
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wherecn is an arbitrary constant. The corresponding super-
current

sin~gn!5sin~ i t1cn!, ~10!

is a pure sine wave with the frequency determined by the dc
bias currenti .

In the simple case of a 232 uniform (s50) array, we
can demonstrate analytically how such a special type of so-
lution occurs. A 232 XY-biased array consists of four junc-
tions and four nodes, as sketched in the inset of Fig. 8. Note
at the nodes on the upper left corner and lower right corner,
the bias currents alongX andY directions add and give 2i
and22i respectively. At the other two nodes~upper right
and lower left corners!, the bias currents cancel. The dynami-
cal equations for this system are

i 15bCg̈11ġ11sin~g1!, ~11!

i 15bCg̈21ġ21sin~g2!, ~12!

i 25bCg̈31ġ31sin~g3!, ~13!

i 25bCg̈41ġ41sin~g4!, ~14!

i 11 i 252i , ~15!

ġ11ġ25ġ31ġ4 . ~16!

We first eliminatei 1 and i 2 in the above set of equations
and solve for theg ’s. The locked constant voltage solution

ġ15ġ25ġ35ġ45 i , ~17!

can exist if the following conditions are satisfied:

sin~g1!1sin~g3!5sin~g2!1sin~g4!50, ~18!

sin~g1!2sin~g2!5sin~g3!2sin~g4!50. ~19!

The final solution, in terms ofg ’s, is

g15g25 i t1c0 , ~20!

g35g45 i t1p1c0 , ~21!

wherec0 is an arbitrary constant. One can easily check that
this solution guarantees that all junctions have constant volt-
agev5 i . The oscillating supercurrents give rise to a sinu-
soidal circulating current

i circ[ i 12 i 252sin~ i t1c0! ~22!

in the loop. Figure 9 illustrates this special solution.
If we convert Eq.~22! back to our original units, we have,

I circ[I Ci circ52I csin~v I t1c0!, ~23!

with

v I5 ivc5
2eIR

\
. ~24!

Therefore a 232 XY-biased array is a purely sinusoidal cur-
rent dipole oscillator with the frequency conveniently tuned
by the dc bias current. However, it suffers from the same

drawback as other Josephson oscillators with few junctions.
The maximum power available for radiation~to free space! is
on the order of 1 nW.

For arrays larger than 232, the phase locked solution is
much more complicated. First of all we cannot have every
plaquette maintaining a circulating sinusoidal supercurrent
and keep all of them in phase from plaquette to plaquette. If
this were to happen, we are left with a situation where all
internal oscillating currents cancel and the only supercurrent
oscillations are confined to the boundaries. However, we saw
in Fig. 8 that every junction carries a constant dc voltage,
therefore all the supercurrents have to oscillate according to
Josephson’s second equation, Eq.~3!.

Another complication arises due to the symmetry in the
uniform array. In a large uniform array, there are many dif-
ferent relative phase configurations that an array can lock to,
even for a single bias current value. One might expect some-
thing similar to the attractor crowding phenomena observed
in series arrays21 may also occur in this case. The exact
phase configurations in larger arrays are unclear at present
and need further investigation. Our preliminary results sug-
gest that the system tends to ‘‘hop’’ or even drift very slowly
between equivalent phase configurations, while still main-
taining constant voltages on each individual junctions.

So far in this paper, we have ignored inductive effects
altogether. In real samples there will inevitably be some in-
ductance, which includes the cell inductance, mutual induc-
tance among different cells, and junction parasitics. The cell
inductances and the mutual inductances can be reduced by
putting down a superconducting ground plane underneath the
sample. The parasitics, on the other hand, are more difficult
to eliminate.22 Darulaet al.23 have studied linear Josephson-
junction arrays closed into a superconducting loop. They
were able to find a stable phase-locked state in their system
in a wide range of inductance parameters. Their system,
when simplified to the smallest nontrivial unit with four
junctions, is equivalent to our smallest (232) XY-biased
array with the cell inductance included. Therefore we know
that at least in the 232 XY-biased array, our special syn-
chronized state survives when cell inductances are included.
For larger arrays, analysis including inductance is not avail-
able at the moment.

FIG. 9. Illustration of the special phase locked state in a 232
XY-biased array. All junction voltages arev5 i and there is a cir-
culating supercurrent 2sin(it1c0) in the loop.
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Experimentally, Beuvenet al.24 studied 232 high-Tc
junction arrays with large inductances. Using additional cur-
rent compensation, they found a range of total bias current
where all junctions have the same dc voltage. Larger
XY-biased arrays have yet to be implemented. One might
wonder whether theXY-biased array is simply equivalent to
the diagonally biased square array, such as those studied by
Sohnet al.25 While an infinite sizeXY-biased array should
be equivalent to diagonally biased array, they are different at
finite size due to extra constraints applied by the boundary
conditions at allfour edges of theXY-biased array~see Fig.
6!. It is not clear, however, whether such a distinction is
crucial for the existence of the locked state.

IV. CONCLUSION

We have studied phase locking in two-dimensional arrays
of Josephson junctions by numerically solving the full 2D
array dynamical equations. In a conventional 2D square ar-
ray biased along theX direction, we found that a completely
synchronized solution is possible only for a uniform array.
When a small amount of disorder is included in the junction
critical currents, the synchronized array is broken into syn-
chronized column clusters alongY direction with no inter-
column locking alongX direction.

To improve the coupling among junctions, we propose an
array design in which one biases the 2D square array along
bothX andY directions. In thisXY-biased array, we found a
synchronized dynamical state, where all junction voltages
stay purely dc while all currents oscillate. More importantly,
the dynamical state is stable in arrays with disorders up to
s50.10. This level of uniformity can be easily achieved
with current fabrication technology. For a small 232
XY-biased array, we obtained an analytical expression for
the dynamical state, which consists of a sinusoidal circulat-
ing loop current acting like a dipole current oscillator with
the frequency directly tuned by the dc bias current. The de-
tailed nature of the dynamical state in larger arrays is cur-
rently unclear and needs further investigation. Other interest-
ing directions for future investigations include taking into
account all the inductances in the circuit, as well as the ef-
fects of magnetic field and thermal noise.
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